/* * arch/arm/kernel/topology.c * * Copyright (C) 2011 Linaro Limited. * Written by: Vincent Guittot * * based on arch/sh/kernel/topology.c * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include /* * cpu capacity scale management */ /* * cpu capacity table * This per cpu data structure describes the relative capacity of each core. * On a heteregenous system, cores don't have the same computation capacity * and we reflect that difference in the cpu_capacity field so the scheduler * can take this difference into account during load balance. A per cpu * structure is preferred because each CPU updates its own cpu_capacity field * during the load balance except for idle cores. One idle core is selected * to run the rebalance_domains for all idle cores and the cpu_capacity can be * updated during this sequence. */ static DEFINE_PER_CPU(unsigned long, cpu_scale); unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu) { return per_cpu(cpu_scale, cpu); } unsigned long arch_get_max_cpu_capacity(int cpu) { return per_cpu(cpu_scale, cpu); } static void set_capacity_scale(unsigned int cpu, unsigned long capacity) { per_cpu(cpu_scale, cpu) = capacity; } #ifdef CONFIG_OF struct cpu_efficiency { const char *compatible; unsigned long efficiency; }; static int __init get_cpu_for_node(struct device_node *node) { struct device_node *cpu_node; int cpu; cpu_node = of_parse_phandle(node, "cpu", 0); if (!cpu_node) return -1; for_each_possible_cpu(cpu) { if (of_get_cpu_node(cpu, NULL) == cpu_node) { of_node_put(cpu_node); return cpu; } } pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name); of_node_put(cpu_node); return -1; } static int __init parse_core(struct device_node *core, int cluster_id, int core_id) { char name[10]; bool leaf = true; int i = 0; int cpu; struct device_node *t; do { snprintf(name, sizeof(name), "thread%d", i); t = of_get_child_by_name(core, name); if (t) { leaf = false; cpu = get_cpu_for_node(t); if (cpu >= 0) { cpu_topology[cpu].socket_id = cluster_id; cpu_topology[cpu].core_id = core_id; cpu_topology[cpu].thread_id = i; } else { pr_err("%s: Can't get CPU for thread\n", t->full_name); of_node_put(t); return -EINVAL; } of_node_put(t); } i++; } while (t); cpu = get_cpu_for_node(core); if (cpu >= 0) { if (!leaf) { pr_err("%s: Core has both threads and CPU\n", core->full_name); return -EINVAL; } cpu_topology[cpu].socket_id = cluster_id; cpu_topology[cpu].core_id = core_id; } else if (leaf) { pr_err("%s: Can't get CPU for leaf core\n", core->full_name); return -EINVAL; } return 0; } static int __init parse_cluster(struct device_node *cluster, int depth) { char name[10]; bool leaf = true; bool has_cores = false; int core_id = 0; static int cluster_id __initdata; struct device_node *c; int i, ret; /* * First check for child clusters; we currently ignore any * information about the nesting of clusters and present the * scheduler with a flat list of them. */ i = 0; do { snprintf(name, sizeof(name), "cluster%d", i); c = of_get_child_by_name(cluster, name); if (c) { leaf = false; ret = parse_cluster(c, depth + 1); of_node_put(c); if (ret != 0) return ret; } i++; } while (c); /* Now check for cores */ i = 0; do { snprintf(name, sizeof(name), "core%d", i); c = of_get_child_by_name(cluster, name); if (c) { has_cores = true; if (depth == 0) { pr_err("%s: cpu-map children should be clusters\n", c->full_name); of_node_put(c); return -EINVAL; } if (leaf) { ret = parse_core(c, cluster_id, core_id++); } else { pr_err("%s: Non-leaf cluster with core %s\n", cluster->full_name, name); ret = -EINVAL; } of_node_put(c); if (ret != 0) return ret; } i++; } while (c); if (leaf && !has_cores) pr_warn("%s: empty cluster\n", cluster->full_name); if (leaf) cluster_id++; return 0; } /* * Table of relative efficiency of each processors * The efficiency value must fit in 20bit and the final * cpu_scale value must be in the range * 0 < cpu_scale < SCHED_CAPACITY_SCALE. * Processors that are not defined in the table, * use the default SCHED_CAPACITY_SCALE value for cpu_scale. */ static const struct cpu_efficiency table_efficiency[] = { {"arm,cortex-a15", 3891}, {"arm,cortex-a17", 3276}, {"arm,cortex-a12", 3276}, {"arm,cortex-a53", 2520}, {"arm,cortex-a7", 2048}, {NULL, }, }; static unsigned long *__cpu_capacity; #define cpu_capacity(cpu) __cpu_capacity[cpu] static unsigned long max_cpu_perf, min_cpu_perf; static int __init parse_dt_topology(void) { struct device_node *cn, *map; int ret = 0; int cpu; cn = of_find_node_by_path("/cpus"); if (!cn) { pr_err("No CPU information found in DT\n"); return 0; } /* * When topology is provided cpu-map is essentially a root * cluster with restricted subnodes. */ map = of_get_child_by_name(cn, "cpu-map"); if (!map) goto out; ret = parse_cluster(map, 0); if (ret != 0) goto out_map; /* * Check that all cores are in the topology; the SMP code will * only mark cores described in the DT as possible. */ for_each_possible_cpu(cpu) if (cpu_topology[cpu].socket_id == -1) ret = -EINVAL; out_map: of_node_put(map); out: of_node_put(cn); return ret; } /* * Iterate all CPUs' descriptor in DT and compute the efficiency * (as per table_efficiency). Calculate the max cpu performance too. */ static void parse_dt_cpu_capacity(void) { const struct cpu_efficiency *cpu_eff; struct device_node *cn = NULL; int cpu = 0, i = 0; __cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity), GFP_NOWAIT); min_cpu_perf = ULONG_MAX; max_cpu_perf = 0; for_each_possible_cpu(cpu) { const u32 *rate; int len; unsigned long cpu_perf; /* too early to use cpu->of_node */ cn = of_get_cpu_node(cpu, NULL); if (!cn) { pr_err("missing device node for CPU %d\n", cpu); continue; } for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++) if (of_device_is_compatible(cn, cpu_eff->compatible)) break; if (cpu_eff->compatible == NULL) continue; rate = of_get_property(cn, "clock-frequency", &len); if (!rate || len != 4) { pr_err("%s missing clock-frequency property\n", cn->full_name); continue; } cpu_perf = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency; cpu_capacity(cpu) = cpu_perf; max_cpu_perf = max(max_cpu_perf, cpu_perf); min_cpu_perf = min(min_cpu_perf, cpu_perf); i++; } if (i < num_possible_cpus()) { max_cpu_perf = 0; min_cpu_perf = 0; } } /* * Look for a customed capacity of a CPU in the cpu_capacity table during the * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the * function returns directly for SMP systems or if there is no complete set * of cpu efficiency, clock frequency data for each cpu. */ static void update_cpu_capacity(unsigned int cpu) { unsigned long capacity = cpu_capacity(cpu); if (!capacity || !max_cpu_perf) { cpu_capacity(cpu) = 0; return; } capacity *= SCHED_CAPACITY_SCALE; capacity /= max_cpu_perf; set_capacity_scale(cpu, capacity); printk(KERN_INFO "CPU%u: update cpu_capacity %lu\n", cpu, arch_scale_cpu_capacity(NULL, cpu)); } /* * Scheduler load-tracking scale-invariance * * Provides the scheduler with a scale-invariance correction factor that * compensates for frequency scaling. */ static DEFINE_PER_CPU(atomic_long_t, cpu_freq_capacity); static DEFINE_PER_CPU(atomic_long_t, cpu_max_freq); /* cpufreq callback function setting current cpu frequency */ void arch_scale_set_curr_freq(int cpu, unsigned long freq) { unsigned long max = atomic_long_read(&per_cpu(cpu_max_freq, cpu)); unsigned long curr; if (!max) return; curr = (freq * SCHED_CAPACITY_SCALE) / max; atomic_long_set(&per_cpu(cpu_freq_capacity, cpu), curr); } /* cpufreq callback function setting max cpu frequency */ void arch_scale_set_max_freq(int cpu, unsigned long freq) { atomic_long_set(&per_cpu(cpu_max_freq, cpu), freq); } unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu) { unsigned long curr = atomic_long_read(&per_cpu(cpu_freq_capacity, cpu)); if (!curr) return SCHED_CAPACITY_SCALE; return curr; } #else static inline void parse_dt_topology(void) {} static inline void update_cpu_capacity(unsigned int cpuid) {} #endif /* * cpu topology table */ struct cputopo_arm cpu_topology[NR_CPUS]; EXPORT_SYMBOL_GPL(cpu_topology); const struct cpumask *cpu_coregroup_mask(int cpu) { return &cpu_topology[cpu].core_sibling; } /* * The current assumption is that we can power gate each core independently. * This will be superseded by DT binding once available. */ const struct cpumask *cpu_corepower_mask(int cpu) { return &cpu_topology[cpu].thread_sibling; } static void update_siblings_masks(unsigned int cpuid) { struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; int cpu; /* update core and thread sibling masks */ for_each_possible_cpu(cpu) { cpu_topo = &cpu_topology[cpu]; if (cpuid_topo->socket_id != cpu_topo->socket_id) continue; cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); if (cpu != cpuid) cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); if (cpuid_topo->core_id != cpu_topo->core_id) continue; cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); if (cpu != cpuid) cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); } smp_wmb(); } /* * store_cpu_topology is called at boot when only one cpu is running * and with the mutex cpu_hotplug.lock locked, when several cpus have booted, * which prevents simultaneous write access to cpu_topology array */ void store_cpu_topology(unsigned int cpuid) { struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid]; unsigned int mpidr; mpidr = read_cpuid_mpidr(); /* If the cpu topology has been already set, just return */ if (cpuid_topo->socket_id != -1) goto topology_populated; /* create cpu topology mapping */ if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) { /* * This is a multiprocessor system * multiprocessor format & multiprocessor mode field are set */ if (mpidr & MPIDR_MT_BITMASK) { /* core performance interdependency */ cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1); cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2); } else { /* largely independent cores */ cpuid_topo->thread_id = -1; cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1); } } else { /* * This is an uniprocessor system * we are in multiprocessor format but uniprocessor system * or in the old uniprocessor format */ cpuid_topo->thread_id = -1; cpuid_topo->core_id = 0; cpuid_topo->socket_id = -1; } cpuid_topo->partno = read_cpuid_part(); topology_populated: update_siblings_masks(cpuid); update_cpu_capacity(cpuid); printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n", cpuid, cpu_topology[cpuid].thread_id, cpu_topology[cpuid].core_id, cpu_topology[cpuid].socket_id, mpidr); } static inline int cpu_corepower_flags(void) { return SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN; } static struct sched_domain_topology_level arm_topology[] = { #ifdef CONFIG_SCHED_MC { cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) }, { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, #endif { cpu_cpu_mask, SD_INIT_NAME(DIE) }, { NULL, }, }; #ifdef CONFIG_SCHED_HMP void __init arch_get_fast_and_slow_cpus(struct cpumask *fast, struct cpumask *slow) { unsigned int cpu; cpumask_clear(fast); cpumask_clear(slow); /* * Use the config options if they are given. This helps testing * HMP scheduling on systems without a big.LITTLE architecture. */ if (strlen(CONFIG_HMP_FAST_CPU_MASK) && strlen(CONFIG_HMP_SLOW_CPU_MASK)) { if (cpulist_parse(CONFIG_HMP_FAST_CPU_MASK, fast)) WARN(1, "Failed to parse HMP fast cpu mask!\n"); if (cpulist_parse(CONFIG_HMP_SLOW_CPU_MASK, slow)) WARN(1, "Failed to parse HMP slow cpu mask!\n"); return; } /* check by capacity */ for_each_possible_cpu(cpu) { if (cpu_capacity(cpu) > min_cpu_perf) cpumask_set_cpu(cpu, fast); else cpumask_set_cpu(cpu, slow); } if (!cpumask_empty(fast) && !cpumask_empty(slow)) return; /* * We didn't find both big and little cores so let's call all cores * fast as this will keep the system running, with all cores being * treated equal. */ cpumask_setall(slow); cpumask_clear(fast); } struct cpumask hmp_fast_cpu_mask; struct cpumask hmp_slow_cpu_mask; void __init arch_get_hmp_domains(struct list_head *hmp_domains_list) { struct hmp_domain *domain; arch_get_fast_and_slow_cpus(&hmp_fast_cpu_mask, &hmp_slow_cpu_mask); /* * Initialize hmp_domains * Must be ordered with respect to compute capacity. * Fastest domain at head of list. */ if (!cpumask_empty(&hmp_slow_cpu_mask)) { domain = (struct hmp_domain *) kmalloc(sizeof(struct hmp_domain), GFP_KERNEL); cpumask_copy(&domain->possible_cpus, &hmp_slow_cpu_mask); cpumask_and(&domain->cpus, cpu_online_mask, &domain->possible_cpus); list_add(&domain->hmp_domains, hmp_domains_list); } domain = (struct hmp_domain *) kmalloc(sizeof(struct hmp_domain), GFP_KERNEL); cpumask_copy(&domain->possible_cpus, &hmp_fast_cpu_mask); cpumask_and(&domain->cpus, cpu_online_mask, &domain->possible_cpus); list_add(&domain->hmp_domains, hmp_domains_list); } #endif /* CONFIG_SCHED_HMP */ static void __init reset_cpu_topology(void) { unsigned int cpu; /* init core mask and capacity */ for_each_possible_cpu(cpu) { struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]); cpu_topo->thread_id = -1; cpu_topo->core_id = -1; cpu_topo->socket_id = -1; cpumask_clear(&cpu_topo->core_sibling); cpumask_set_cpu(cpu, &cpu_topo->core_sibling); cpumask_clear(&cpu_topo->thread_sibling); cpumask_set_cpu(cpu, &cpu_topo->thread_sibling); set_capacity_scale(cpu, SCHED_CAPACITY_SCALE); } smp_wmb(); } static int cpu_topology_init; /* * init_cpu_topology is called at boot when only one cpu is running * which prevent simultaneous write access to cpu_topology array */ /* * init_cpu_topology is called at boot when only one cpu is running * which prevent simultaneous write access to cpu_topology array */ void __init init_cpu_topology(void) { if (cpu_topology_init) return; reset_cpu_topology(); /* * Discard anything that was parsed if we hit an error so we * don't use partial information. */ if (parse_dt_topology()) reset_cpu_topology(); parse_dt_cpu_capacity(); /* Set scheduler topology descriptor */ set_sched_topology(arm_topology); } #ifdef CONFIG_MTK_CPU_TOPOLOGY void __init arch_build_cpu_topology_domain(void) { init_cpu_topology(); cpu_topology_init = 1; } #endif /* * Extras of CPU & Cluster functions */ int arch_cpu_is_big(unsigned int cpu) { struct cputopo_arm *arm_cputopo = &cpu_topology[cpu]; switch (arm_cputopo->partno) { case ARM_CPU_PART_CORTEX_A12: case ARM_CPU_PART_CORTEX_A17: case ARM_CPU_PART_CORTEX_A15: return 1; default: return 0; } } int arch_cpu_is_little(unsigned int cpu) { return !arch_cpu_is_big(cpu); } int arch_is_smp(void) { static int __arch_smp = -1; if (__arch_smp != -1) return __arch_smp; __arch_smp = (max_cpu_perf != min_cpu_perf) ? 0 : 1; return __arch_smp; } int arch_get_nr_clusters(void) { static int __arch_nr_clusters = -1; int max_id = 0; unsigned int cpu; if (__arch_nr_clusters != -1) return __arch_nr_clusters; /* assume socket id is monotonic increasing without gap. */ for_each_possible_cpu(cpu) { struct cputopo_arm *arm_cputopo = &cpu_topology[cpu]; if (arm_cputopo->socket_id > max_id) max_id = arm_cputopo->socket_id; } __arch_nr_clusters = max_id + 1; return __arch_nr_clusters; } int arch_is_multi_cluster(void) { return arch_get_nr_clusters() > 1 ? 1 : 0; } int arch_get_cluster_id(unsigned int cpu) { struct cputopo_arm *arm_cputopo = &cpu_topology[cpu]; return arm_cputopo->socket_id < 0 ? 0 : arm_cputopo->socket_id; } void arch_get_cluster_cpus(struct cpumask *cpus, int cluster_id) { unsigned int cpu; cpumask_clear(cpus); for_each_possible_cpu(cpu) { struct cputopo_arm *arm_cputopo = &cpu_topology[cpu]; if (arm_cputopo->socket_id == cluster_id) cpumask_set_cpu(cpu, cpus); } } int arch_better_capacity(unsigned int cpu) { BUG_ON(cpu >= num_possible_cpus()); return cpu_capacity(cpu) > min_cpu_perf; }