#include #ifdef DFT_TAG #undef DFT_TAG #endif #define DFT_TAG "MTK-BTIF-DMA" #include "btif_dma_priv.h" #define DMA_USER_ID "btif_driver" /************************************Global variable***********************************/ static MTK_BTIF_DMA_VFIFO mtk_tx_dma_vfifo = { .vfifo = { .p_vir_addr = NULL, .phy_addr = 0, .vfifo_size = TX_DMA_VFF_SIZE, .thre = DMA_TX_THRE(TX_DMA_VFF_SIZE), }, .wpt = 0, .last_wpt_wrap = 0, .rpt = 0, .last_rpt_wrap = 0, }; static MTK_BTIF_IRQ_STR mtk_btif_tx_dma_irq = { .name = "mtk btif tx dma irq", .is_irq_sup = true, .reg_flag = false, #ifdef CONFIG_OF .irq_flags = IRQF_TRIGGER_NONE, #else .irq_id = MT_DMA_BTIF_TX_IRQ_ID, .sens_type = IRQ_SENS_LVL, .lvl_type = IRQ_LVL_LOW, #endif .p_irq_handler = NULL, }; static MTK_BTIF_DMA_VFIFO mtk_rx_dma_vfifo = { .vfifo = { .p_vir_addr = NULL, .phy_addr = 0, .vfifo_size = RX_DMA_VFF_SIZE, .thre = DMA_RX_THRE(RX_DMA_VFF_SIZE), }, .wpt = 0, .last_wpt_wrap = 0, .rpt = 0, .last_rpt_wrap = 0, }; static MTK_BTIF_IRQ_STR mtk_btif_rx_dma_irq = { .name = "mtk btif rx dma irq", .is_irq_sup = true, .reg_flag = false, #ifdef CONFIG_OF .irq_flags = IRQF_TRIGGER_NONE, #else .irq_id = MT_DMA_BTIF_RX_IRQ_ID, .sens_type = IRQ_SENS_LVL, .lvl_type = IRQ_LVL_LOW, #endif .p_irq_handler = NULL, }; static MTK_DMA_INFO_STR mtk_btif_tx_dma = { #ifndef CONFIG_OF .base = AP_DMA_BASE + BTIF_TX_DMA_OFFSET, #endif .dir = DMA_DIR_TX, .p_irq = &mtk_btif_tx_dma_irq, .p_vfifo = &(mtk_tx_dma_vfifo.vfifo), }; static MTK_DMA_INFO_STR mtk_btif_rx_dma = { #ifndef CONFIG_OF .base = AP_DMA_BASE + BTIF_RX_DMA_OFFSET, #endif .dir = DMA_DIR_RX, .p_irq = &mtk_btif_rx_dma_irq, .p_vfifo = &(mtk_rx_dma_vfifo.vfifo), }; static spinlock_t g_clk_cg_spinlock; /*dma clock's spinlock */ /************************************Function declearation***********************************/ static int _is_tx_dma_in_flush(P_MTK_DMA_INFO_STR p_dma_info); static int _tx_dma_flush(P_MTK_DMA_INFO_STR p_dma_info); static int btif_rx_dma_ctrl(P_MTK_DMA_INFO_STR p_dma_info, ENUM_DMA_CTRL ctrl_id); static int btif_tx_dma_ctrl(P_MTK_DMA_INFO_STR p_dma_info, ENUM_DMA_CTRL ctrl_id); static int btif_rx_dma_ier_ctrl(P_MTK_DMA_INFO_STR p_dma_info, bool en); static int btif_tx_dma_ier_ctrl(P_MTK_DMA_INFO_STR p_dma_info, bool en); static int hal_rx_dma_dump_reg(P_MTK_DMA_INFO_STR p_dma_info, ENUM_BTIF_REG_ID flag); static int hal_tx_dma_dump_reg(P_MTK_DMA_INFO_STR p_dma_info, ENUM_BTIF_REG_ID flag); static int is_tx_dma_irq_finish_done(P_MTK_DMA_INFO_STR p_dma_info); static int _btif_dma_dump_dbg_reg(void); /***************************************************************************** * FUNCTION * hal_tx_dma_ier_ctrl * DESCRIPTION * BTIF Tx DMA's interrupt enable/disable * PARAMETERS * p_dma_info [IN] pointer to BTIF dma channel's information * enable [IN] control if tx interrupt enabled or not * dma_dir [IN] DMA's direction * RETURNS * 0 means success, negative means fail *****************************************************************************/ static int hal_btif_dma_ier_ctrl(P_MTK_DMA_INFO_STR p_dma_info, bool en); /***************************************************************************** * FUNCTION * hal_dma_receive_data * DESCRIPTION * receive data from btif module in DMA polling mode * PARAMETERS * p_dma_info [IN] pointer to BTIF dma channel's information * p_buf [IN/OUT] pointer to rx data buffer * max_len [IN] max length of rx buffer * RETURNS * positive means data is available, 0 means no data available *****************************************************************************/ #ifndef MTK_BTIF_MARK_UNUSED_API static int hal_dma_receive_data(P_MTK_DMA_INFO_STR p_dma_info, unsigned char *p_buf, const unsigned int max_len); /************************************Function***********************************/ #endif #ifdef CONFIG_OF static void hal_dma_set_default_setting(ENUM_DMA_DIR dma_dir) { struct device_node *node = NULL; unsigned int irq_info[3] = {0, 0, 0}; unsigned int phy_base; if (DMA_DIR_RX == dma_dir) { node = of_find_compatible_node(NULL, NULL, "mediatek,btif_rx"); if (node) { mtk_btif_rx_dma.p_irq->irq_id = irq_of_parse_and_map(node, 0); /*fixme, be compitable arch 64bits*/ mtk_btif_rx_dma.base = (unsigned long)of_iomap(node, 0); BTIF_INFO_FUNC("get rx_dma irq(%d),register base(0x%lx)\n", mtk_btif_rx_dma.p_irq->irq_id, mtk_btif_rx_dma.base); } else { BTIF_ERR_FUNC("get rx_dma device node fail\n"); } /* get the interrupt line behaviour */ if (of_property_read_u32_array(node, "interrupts", irq_info, ARRAY_SIZE(irq_info))) { BTIF_ERR_FUNC("get interrupt flag from DTS fail\n"); } else { mtk_btif_rx_dma.p_irq->irq_flags = irq_info[2]; BTIF_INFO_FUNC("get interrupt flag(0x%x)\n", mtk_btif_rx_dma.p_irq->irq_flags); } if (of_property_read_u32_index(node, "reg", 0, &phy_base)) { BTIF_ERR_FUNC("get register phy base from DTS fail,dma_dir(%d)\n", dma_dir); } else { BTIF_INFO_FUNC("get register phy base dma_dir(%d)(0x%x)\n", dma_dir, (unsigned int)phy_base); } } else if (DMA_DIR_TX == dma_dir) { node = of_find_compatible_node(NULL, NULL, "mediatek,btif_tx"); if (node) { mtk_btif_tx_dma.p_irq->irq_id = irq_of_parse_and_map(node, 0); /*fixme, be compitable arch 64bits*/ mtk_btif_tx_dma.base = (unsigned long)of_iomap(node, 0); BTIF_INFO_FUNC("get tx_dma irq(%d),register base(0x%lx)\n", mtk_btif_tx_dma.p_irq->irq_id, mtk_btif_tx_dma.base); } else { BTIF_ERR_FUNC("get tx_dma device node fail\n"); } /* get the interrupt line behaviour */ if (of_property_read_u32_array(node, "interrupts", irq_info, ARRAY_SIZE(irq_info))) { BTIF_ERR_FUNC("get interrupt flag from DTS fail\n"); } else { mtk_btif_tx_dma.p_irq->irq_flags = irq_info[2]; BTIF_INFO_FUNC("get interrupt flag(0x%x)\n", mtk_btif_tx_dma.p_irq->irq_flags); } if (of_property_read_u32_index(node, "reg", 0, &phy_base)) { BTIF_ERR_FUNC("get register phy base from DTS fail,dma_dir(%d)\n", dma_dir); } else { BTIF_INFO_FUNC("get register phy base dma_dir(%d)(0x%x)\n", dma_dir, (unsigned int)phy_base); } } } #endif /***************************************************************************** * FUNCTION * hal_tx_dma_info_get * DESCRIPTION * get btif tx dma channel's information * PARAMETERS * dma_dir [IN] DMA's direction * RETURNS * pointer to btif dma's information structure *****************************************************************************/ P_MTK_DMA_INFO_STR hal_btif_dma_info_get(ENUM_DMA_DIR dma_dir) { P_MTK_DMA_INFO_STR p_dma_info = NULL; BTIF_TRC_FUNC(); #ifdef CONFIG_OF hal_dma_set_default_setting(dma_dir); #endif if (DMA_DIR_RX == dma_dir) /*Rx DMA*/ p_dma_info = &mtk_btif_rx_dma; else if (DMA_DIR_TX == dma_dir) /*Tx DMA*/ p_dma_info = &mtk_btif_tx_dma; else /*print error log*/ BTIF_ERR_FUNC("invalid DMA dir (%d)\n", dma_dir); spin_lock_init(&g_clk_cg_spinlock); BTIF_TRC_FUNC(); return p_dma_info; } /***************************************************************************** * FUNCTION * hal_btif_clk_ctrl * DESCRIPTION * control clock output enable/disable of DMA module * PARAMETERS * p_dma_info [IN] pointer to BTIF dma channel's information * RETURNS * 0 means success, negative means fail *****************************************************************************/ int hal_btif_dma_clk_ctrl(P_MTK_DMA_INFO_STR p_dma_info, ENUM_CLOCK_CTRL flag) { /*In MTK DMA BTIF channel, there's only one global CG on AP_DMA, no sub channel's CG bit*/ /*according to Artis's comment, clock of DMA and BTIF is default off, so we assume it to be off by default*/ int i_ret = 0; unsigned long irq_flag = 0; #if MTK_BTIF_ENABLE_CLK_REF_COUNTER static atomic_t s_clk_ref = ATOMIC_INIT(0); #else static ENUM_CLOCK_CTRL status = CLK_OUT_DISABLE; #endif spin_lock_irqsave(&(g_clk_cg_spinlock), irq_flag); #if MTK_BTIF_ENABLE_CLK_CTL #if MTK_BTIF_ENABLE_CLK_REF_COUNTER if (CLK_OUT_ENABLE == flag) { if (1 == atomic_inc_return(&s_clk_ref)) { #if defined(CONFIG_MTK_CLKMGR) i_ret = enable_clock(MTK_BTIF_APDMA_CLK_CG, DMA_USER_ID); #else BTIF_DBG_FUNC("[CCF]enable clk_btif_apdma\n"); i_ret = clk_enable(clk_btif_apdma); #endif /* defined(CONFIG_MTK_CLKMGR) */ if (i_ret) { BTIF_WARN_FUNC ("enable_clock for MTK_BTIF_APDMA_CLK_CG failed, ret:%d", i_ret); } } } else if (CLK_OUT_DISABLE == flag) { if (0 == atomic_dec_return(&s_clk_ref)) { #if defined(CONFIG_MTK_CLKMGR) i_ret = disable_clock(MTK_BTIF_APDMA_CLK_CG, DMA_USER_ID); if (i_ret) { BTIF_WARN_FUNC ("disable_clock for MTK_BTIF_APDMA_CLK_CG failed, ret:%d", i_ret); } #else BTIF_DBG_FUNC("[CCF] clk_disable(clk_btif_apdma) calling\n"); clk_disable(clk_btif_apdma); #endif /* defined(CONFIG_MTK_CLKMGR) */ } } else { i_ret = ERR_INVALID_PAR; BTIF_ERR_FUNC("invalid clock ctrl flag (%d)\n", flag); } #else if (status == flag) { i_ret = 0; BTIF_DBG_FUNC("dma clock already %s\n", CLK_OUT_ENABLE == status ? "enabled" : "disabled"); } else { if (CLK_OUT_ENABLE == flag) { #if defined(CONFIG_MTK_CLKMGR) i_ret = enable_clock(MTK_BTIF_APDMA_CLK_CG, DMA_USER_ID); #else BTIF_DBG_FUNC("[CCF]enable clk_btif_apdma\n"); i_ret = clk_enable(clk_btif_apdma); #endif /* defined(CONFIG_MTK_CLKMGR) */ status = (0 == i_ret) ? flag : status; if (i_ret) { BTIF_WARN_FUNC ("enable_clock for MTK_BTIF_APDMA_CLK_CG failed, ret:%d", i_ret); } } else if (CLK_OUT_DISABLE == flag) { #if defined(CONFIG_MTK_CLKMGR) i_ret = disable_clock(MTK_BTIF_APDMA_CLK_CG, DMA_USER_ID); status = (0 == i_ret) ? flag : status; if (i_ret) { BTIF_WARN_FUNC ("disable_clock for MTK_BTIF_APDMA_CLK_CG failed, ret:%d", i_ret); } #else BTIF_DBG_FUNC("[CCF] clk_disable_unprepare(clk_btif_apdma) calling\n"); clk_disable(clk_btif_apdma); #endif /* defined(CONFIG_MTK_CLKMGR) */ } else { i_ret = ERR_INVALID_PAR; BTIF_ERR_FUNC("invalid clock ctrl flag (%d)\n", flag); } } #endif #else #if MTK_BTIF_ENABLE_CLK_REF_COUNTER #else status = flag; #endif i_ret = 0; #endif spin_unlock_irqrestore(&(g_clk_cg_spinlock), irq_flag); #if MTK_BTIF_ENABLE_CLK_REF_COUNTER if (0 == i_ret) { BTIF_DBG_FUNC("dma clock %s\n", CLK_OUT_ENABLE == flag ? "enabled" : "disabled"); } else { BTIF_ERR_FUNC("%s dma clock failed, ret(%d)\n", CLK_OUT_ENABLE == flag ? "enable" : "disable", i_ret); } #else if (0 == i_ret) { BTIF_DBG_FUNC("dma clock %s\n", CLK_OUT_ENABLE == flag ? "enabled" : "disabled"); } else { BTIF_ERR_FUNC("%s dma clock failed, ret(%d)\n", CLK_OUT_ENABLE == flag ? "enable" : "disable", i_ret); } #endif #if defined(CONFIG_MTK_CLKMGR) BTIF_DBG_FUNC("DMA's clock is %s\n", (0 == clock_is_on(MTK_BTIF_APDMA_CLK_CG)) ? "off" : "on"); #endif return i_ret; } int hal_btif_dma_hw_init(P_MTK_DMA_INFO_STR p_dma_info) { int i_ret = 0; unsigned int dat = 0; unsigned long base = p_dma_info->base; P_DMA_VFIFO p_vfifo = p_dma_info->p_vfifo; P_MTK_BTIF_DMA_VFIFO p_mtk_dma_vfifo = container_of(p_vfifo, MTK_BTIF_DMA_VFIFO, vfifo); if (DMA_DIR_RX == p_dma_info->dir) { /*Rx DMA*/ /*do hardware reset*/ /* BTIF_SET_BIT(RX_DMA_RST(base), DMA_HARD_RST);*/ /* BTIF_CLR_BIT(RX_DMA_RST(base), DMA_HARD_RST);*/ BTIF_SET_BIT(RX_DMA_RST(base), DMA_WARM_RST); do { dat = BTIF_READ32(RX_DMA_EN(base)); } while (0x01 & dat); /*write vfifo base address to VFF_ADDR*/ btif_reg_sync_writel(p_vfifo->phy_addr, RX_DMA_VFF_ADDR(base)); /*write vfifo length to VFF_LEN*/ btif_reg_sync_writel(p_vfifo->vfifo_size, RX_DMA_VFF_LEN(base)); /*write wpt to VFF_WPT*/ btif_reg_sync_writel(p_mtk_dma_vfifo->wpt, RX_DMA_VFF_WPT(base)); btif_reg_sync_writel(p_mtk_dma_vfifo->rpt, RX_DMA_VFF_RPT(base)); /*write vff_thre to VFF_THRESHOLD*/ btif_reg_sync_writel(p_vfifo->thre, RX_DMA_VFF_THRE(base)); /*clear Rx DMA's interrupt status*/ BTIF_SET_BIT(RX_DMA_INT_FLAG(base), RX_DMA_INT_DONE | RX_DMA_INT_THRE); /*enable Rx IER by default*/ btif_rx_dma_ier_ctrl(p_dma_info, true); } else { /*Tx DMA*/ /*do hardware reset*/ /* BTIF_SET_BIT(TX_DMA_RST(base), DMA_HARD_RST);*/ /* BTIF_CLR_BIT(TX_DMA_RST(base), DMA_HARD_RST);*/ BTIF_SET_BIT(TX_DMA_RST(base), DMA_WARM_RST); do { dat = BTIF_READ32(TX_DMA_EN(base)); } while (0x01 & dat); /*write vfifo base address to VFF_ADDR*/ btif_reg_sync_writel(p_vfifo->phy_addr, TX_DMA_VFF_ADDR(base)); /*write vfifo length to VFF_LEN*/ btif_reg_sync_writel(p_vfifo->vfifo_size, TX_DMA_VFF_LEN(base)); /*write wpt to VFF_WPT*/ btif_reg_sync_writel(p_mtk_dma_vfifo->wpt, TX_DMA_VFF_WPT(base)); btif_reg_sync_writel(p_mtk_dma_vfifo->rpt, TX_DMA_VFF_RPT(base)); /*write vff_thre to VFF_THRESHOLD*/ btif_reg_sync_writel(p_vfifo->thre, TX_DMA_VFF_THRE(base)); BTIF_CLR_BIT(TX_DMA_INT_FLAG(base), TX_DMA_INT_FLAG_MASK); hal_btif_dma_ier_ctrl(p_dma_info, false); } return i_ret; } /***************************************************************************** * FUNCTION * hal_tx_dma_ctrl * DESCRIPTION * enable/disable Tx DMA channel * PARAMETERS * p_dma_info [IN] pointer to BTIF dma channel's information * ctrl_id [IN] enable/disable ID * RETURNS * 0 means success; negative means fail *****************************************************************************/ int hal_btif_dma_ctrl(P_MTK_DMA_INFO_STR p_dma_info, ENUM_DMA_CTRL ctrl_id) { unsigned int i_ret = -1; ENUM_DMA_DIR dir = p_dma_info->dir; if (DMA_DIR_RX == dir) i_ret = btif_rx_dma_ctrl(p_dma_info, ctrl_id); else if (DMA_DIR_TX == dir) i_ret = btif_tx_dma_ctrl(p_dma_info, ctrl_id); else { /*TODO: print error log*/ BTIF_ERR_FUNC("invalid dma ctrl id (%d)\n", ctrl_id); i_ret = ERR_INVALID_PAR; } return i_ret; } int hal_btif_dma_rx_cb_reg(P_MTK_DMA_INFO_STR p_dma_info, dma_rx_buf_write rx_cb) { if (NULL != p_dma_info->rx_cb) { BTIF_DBG_FUNC ("rx_cb already registered, replace (0x%p) with (0x%p)\n", p_dma_info->rx_cb, rx_cb); } p_dma_info->rx_cb = rx_cb; return 0; } int btif_tx_dma_ctrl(P_MTK_DMA_INFO_STR p_dma_info, ENUM_DMA_CTRL ctrl_id) { unsigned int i_ret = -1; unsigned long base = p_dma_info->base; unsigned int dat; BTIF_TRC_FUNC(); if (DMA_CTRL_DISABLE == ctrl_id) { /*if write 0 to EN bit, DMA will be stopped imediately*/ /*if write 1 to STOP bit, DMA will be stopped after current transaction finished*/ /*BTIF_CLR_BIT(TX_DMA_EN(base), DMA_EN_BIT);*/ BTIF_SET_BIT(TX_DMA_STOP(base), DMA_STOP_BIT); do { dat = BTIF_READ32(TX_DMA_STOP(base)); } while (0x1 & dat); BTIF_DBG_FUNC("BTIF Tx DMA disabled,EN(0x%x),STOP(0x%x)\n", BTIF_READ32(TX_DMA_EN(base)), BTIF_READ32(TX_DMA_STOP(base))); i_ret = 0; } else if (DMA_CTRL_ENABLE == ctrl_id) { BTIF_SET_BIT(TX_DMA_EN(base), DMA_EN_BIT); BTIF_DBG_FUNC("BTIF Tx DMA enabled\n"); i_ret = 0; } else { /*TODO: print error log*/ BTIF_ERR_FUNC("invalid DMA ctrl_id (%d)\n", ctrl_id); i_ret = ERR_INVALID_PAR; } BTIF_TRC_FUNC(); return i_ret; } int btif_rx_dma_ctrl(P_MTK_DMA_INFO_STR p_dma_info, ENUM_DMA_CTRL ctrl_id) { unsigned int i_ret = -1; unsigned long base = p_dma_info->base; unsigned int dat; BTIF_TRC_FUNC(); if (DMA_CTRL_DISABLE == ctrl_id) { /*if write 0 to EN bit, DMA will be stopped imediately*/ /*if write 1 to STOP bit, DMA will be stopped after current transaction finished*/ /*BTIF_CLR_BIT(RX_DMA_EN(base), DMA_EN_BIT);*/ BTIF_SET_BIT(RX_DMA_STOP(base), DMA_STOP_BIT); do { dat = BTIF_READ32(RX_DMA_STOP(base)); } while (0x1 & dat); BTIF_DBG_FUNC("BTIF Rx DMA disabled,EN(0x%x),STOP(0x%x)\n", BTIF_READ32(RX_DMA_EN(base)), BTIF_READ32(RX_DMA_STOP(base))); i_ret = 0; } else if (DMA_CTRL_ENABLE == ctrl_id) { BTIF_SET_BIT(RX_DMA_EN(base), DMA_EN_BIT); BTIF_DBG_FUNC("BTIF Rx DMA enabled\n"); i_ret = 0; } else { /*TODO: print error log*/ BTIF_ERR_FUNC("invalid DMA ctrl_id (%d)\n", ctrl_id); i_ret = ERR_INVALID_PAR; } BTIF_TRC_FUNC(); return i_ret; } /***************************************************************************** * FUNCTION * hal_tx_vfifo_reset * DESCRIPTION * reset tx virtual fifo information, except memory information * PARAMETERS * p_dma_info [IN] pointer to BTIF dma channel's information * RETURNS * 0 means success, negative means fail *****************************************************************************/ int hal_btif_vfifo_reset(P_MTK_DMA_INFO_STR p_dma_info) { unsigned int i_ret = -1; P_DMA_VFIFO p_vfifo = p_dma_info->p_vfifo; P_MTK_BTIF_DMA_VFIFO p_mtk_dma_vfifo = container_of(p_vfifo, MTK_BTIF_DMA_VFIFO, vfifo); BTIF_TRC_FUNC(); p_mtk_dma_vfifo->rpt = 0; p_mtk_dma_vfifo->last_rpt_wrap = 0; p_mtk_dma_vfifo->wpt = 0; p_mtk_dma_vfifo->last_wpt_wrap = 0; BTIF_TRC_FUNC(); return i_ret; } /***************************************************************************** * FUNCTION * hal_tx_dma_ier_ctrl * DESCRIPTION * BTIF Tx DMA's interrupt enable/disable * PARAMETERS * p_dma_info [IN] pointer to BTIF dma channel's information * enable [IN] control if tx interrupt enabled or not * RETURNS * 0 means success, negative means fail *****************************************************************************/ int hal_btif_dma_ier_ctrl(P_MTK_DMA_INFO_STR p_dma_info, bool en) { unsigned int i_ret = -1; ENUM_DMA_DIR dir = p_dma_info->dir; if (DMA_DIR_RX == dir) { i_ret = btif_rx_dma_ier_ctrl(p_dma_info, en); } else if (DMA_DIR_TX == dir) { i_ret = btif_tx_dma_ier_ctrl(p_dma_info, en); } else { /*TODO: print error log*/ BTIF_ERR_FUNC("invalid DMA dma dir (%d)\n", dir); i_ret = ERR_INVALID_PAR; } return i_ret; } int btif_rx_dma_ier_ctrl(P_MTK_DMA_INFO_STR p_dma_info, bool en) { unsigned int i_ret = -1; unsigned long base = p_dma_info->base; BTIF_TRC_FUNC(); if (!en) { BTIF_CLR_BIT(RX_DMA_INT_EN(base), (RX_DMA_INT_THRE_EN | RX_DMA_INT_DONE_EN)); } else { BTIF_SET_BIT(RX_DMA_INT_EN(base), (RX_DMA_INT_THRE_EN | RX_DMA_INT_DONE_EN)); } i_ret = 0; BTIF_TRC_FUNC(); return i_ret; } int btif_tx_dma_ier_ctrl(P_MTK_DMA_INFO_STR p_dma_info, bool en) { unsigned int i_ret = -1; unsigned long base = p_dma_info->base; BTIF_TRC_FUNC(); if (!en) BTIF_CLR_BIT(TX_DMA_INT_EN(base), TX_DMA_INTEN_BIT); else BTIF_SET_BIT(TX_DMA_INT_EN(base), TX_DMA_INTEN_BIT); i_ret = 0; BTIF_TRC_FUNC(); return i_ret; } static int is_tx_dma_irq_finish_done(P_MTK_DMA_INFO_STR p_dma_info) { int tx_irq_done = 0; #if MTK_BTIF_ENABLE_CLK_REF_COUNTER /*if we enable this clock reference couner, just return , because when enter IRQ handler, DMA's clock will be opened*/ tx_irq_done = 1; #else unsigned long flag = 0; unsigned long base = p_dma_info->base; spin_lock_irqsave(&(g_clk_cg_spinlock), flag); tx_irq_done = (0 == (BTIF_READ32(TX_DMA_INT_FLAG(base)) & TX_DMA_INT_FLAG_MASK)) ? 1 : 0; spin_unlock_irqrestore(&(g_clk_cg_spinlock), flag); #endif return tx_irq_done; } /***************************************************************************** * FUNCTION * hal_tx_dma_irq_handler * DESCRIPTION * lower level tx interrupt handler * PARAMETERS * p_dma_info [IN] pointer to BTIF dma channel's information * RETURNS * 0 means success, negative means fail *****************************************************************************/ int hal_tx_dma_irq_handler(P_MTK_DMA_INFO_STR p_dma_info) { #define MAX_CONTINIOUS_TIMES 512 unsigned int i_ret = -1; unsigned int valid_size = 0; unsigned int vff_len = 0; unsigned int left_len = 0; unsigned long base = p_dma_info->base; static int flush_irq_counter; static struct timeval start_timer; static struct timeval end_timer; unsigned long flag = 0; spin_lock_irqsave(&(g_clk_cg_spinlock), flag); #if defined(CONFIG_MTK_CLKMGR) if (0 == clock_is_on(MTK_BTIF_APDMA_CLK_CG)) { spin_unlock_irqrestore(&(g_clk_cg_spinlock), flag); BTIF_ERR_FUNC ("%s: clock is off before irq status clear done!!!\n", __FILE__); return i_ret; } #endif /*check if Tx VFF Left Size equal to VFIFO size or not*/ vff_len = BTIF_READ32(TX_DMA_VFF_LEN(base)); valid_size = BTIF_READ32(TX_DMA_VFF_VALID_SIZE(base)); left_len = BTIF_READ32(TX_DMA_VFF_LEFT_SIZE(base)); if (0 == flush_irq_counter) do_gettimeofday(&start_timer); if ((0 < valid_size) && (8 > valid_size)) { i_ret = _tx_dma_flush(p_dma_info); flush_irq_counter++; if (MAX_CONTINIOUS_TIMES <= flush_irq_counter) { do_gettimeofday(&end_timer); /*when btif tx fifo cannot accept any data and counts of bytes left in tx vfifo < 8 for a while we assume that btif cannot send data for a long time in order not to generate interrupt continiously, which may effect system's performance. we clear tx flag and disable btif tx interrupt */ /*clear interrupt flag*/ BTIF_CLR_BIT(TX_DMA_INT_FLAG(base), TX_DMA_INT_FLAG_MASK); /*vFIFO data has been read by DMA controller, just disable tx dma's irq*/ i_ret = hal_btif_dma_ier_ctrl(p_dma_info, false); BTIF_ERR_FUNC ("**********************ERROR, ERROR, ERROR**************************\n"); BTIF_ERR_FUNC ("BTIF Tx IRQ happened %d times (continiously), between %d.%d and %d.%d\n", MAX_CONTINIOUS_TIMES, start_timer.tv_sec, start_timer.tv_usec, end_timer.tv_usec, end_timer.tv_usec); } } else if (vff_len == left_len) { flush_irq_counter = 0; /*clear interrupt flag*/ BTIF_CLR_BIT(TX_DMA_INT_FLAG(base), TX_DMA_INT_FLAG_MASK); /*vFIFO data has been read by DMA controller, just disable tx dma's irq*/ i_ret = hal_btif_dma_ier_ctrl(p_dma_info, false); } else { #if 0 BTIF_ERR_FUNC ("**********************WARNING**************************\n"); BTIF_ERR_FUNC("invalid irq condition, dump register\n"); hal_dma_dump_reg(p_dma_info, REG_TX_DMA_ALL); #endif BTIF_DBG_FUNC ("superious IRQ occurs, vff_len(%d), valid_size(%d), left_len(%d)\n", vff_len, valid_size, left_len); } spin_unlock_irqrestore(&(g_clk_cg_spinlock), flag); return i_ret; } /***************************************************************************** * FUNCTION * hal_dma_send_data * DESCRIPTION * send data through btif in DMA mode * PARAMETERS * p_dma_info [IN] pointer to BTIF dma channel's information * p_buf [IN] pointer to rx data buffer * max_len [IN] tx buffer length * RETURNS * 0 means success, negative means fail *****************************************************************************/ int hal_dma_send_data(P_MTK_DMA_INFO_STR p_dma_info, const unsigned char *p_buf, const unsigned int buf_len) { unsigned int i_ret = -1; unsigned long base = p_dma_info->base; P_DMA_VFIFO p_vfifo = p_dma_info->p_vfifo; unsigned int len_to_send = buf_len; unsigned int ava_len = 0; unsigned int wpt = 0; unsigned int last_wpt_wrap = 0; unsigned int vff_size = 0; unsigned char *p_data = (unsigned char *)p_buf; P_MTK_BTIF_DMA_VFIFO p_mtk_vfifo = container_of(p_vfifo, MTK_BTIF_DMA_VFIFO, vfifo); BTIF_TRC_FUNC(); if ((NULL == p_buf) || (0 == buf_len)) { i_ret = ERR_INVALID_PAR; BTIF_ERR_FUNC("invalid parameters, p_buf:0x%p, buf_len:%d\n", p_buf, buf_len); return i_ret; } /*check if tx dma in flush operation? if yes, should wait until DMA finish flush operation*/ /*currently uplayer logic will make sure this pre-condition*/ /*disable Tx IER, in case Tx irq happens, flush bit may be set in irq handler*/ btif_tx_dma_ier_ctrl(p_dma_info, false); vff_size = p_mtk_vfifo->vfifo.vfifo_size; ava_len = BTIF_READ32(TX_DMA_VFF_LEFT_SIZE(base)); wpt = BTIF_READ32(TX_DMA_VFF_WPT(base)) & DMA_WPT_MASK; last_wpt_wrap = BTIF_READ32(TX_DMA_VFF_WPT(base)) & DMA_WPT_WRAP; /*copy data to vFIFO, Note: ava_len should always large than buf_len, otherwise common logic layer will not call hal_dma_send_data*/ if (buf_len > ava_len) { BTIF_ERR_FUNC ("length to send:(%d) < length available(%d), abnormal!!!---!!!\n", buf_len, ava_len); BUG_ON(buf_len > ava_len); /* this will cause kernel panic */ } len_to_send = buf_len < ava_len ? buf_len : ava_len; if (len_to_send + wpt >= vff_size) { unsigned int tail_len = vff_size - wpt; memcpy((p_mtk_vfifo->vfifo.p_vir_addr + wpt), p_data, tail_len); p_data += tail_len; memcpy(p_mtk_vfifo->vfifo.p_vir_addr, p_data, len_to_send - tail_len); /*make sure all data write to memory area tx vfifo locates*/ mb(); /*calculate WPT*/ wpt = wpt + len_to_send - vff_size; last_wpt_wrap ^= DMA_WPT_WRAP; } else { memcpy((p_mtk_vfifo->vfifo.p_vir_addr + wpt), p_data, len_to_send); /*make sure all data write to memory area tx vfifo locates*/ mb(); /*calculate WPT*/ wpt += len_to_send; } p_mtk_vfifo->wpt = wpt; p_mtk_vfifo->last_wpt_wrap = last_wpt_wrap; /*make sure tx dma is allowed(tx flush bit is not set) to use before update WPT*/ if (hal_dma_is_tx_allow(p_dma_info)) { /*make sure tx dma enabled*/ hal_btif_dma_ctrl(p_dma_info, DMA_CTRL_ENABLE); /*update WTP to Tx DMA controller's control register*/ btif_reg_sync_writel(wpt | last_wpt_wrap, TX_DMA_VFF_WPT(base)); if ((8 > BTIF_READ32(TX_DMA_VFF_VALID_SIZE(base))) && (0 < BTIF_READ32(TX_DMA_VFF_VALID_SIZE(base)))) { /*0 < valid size in Tx vFIFO < 8 && TX Flush is not in process? if yes, set flush bit to DMA*/ _tx_dma_flush(p_dma_info); } i_ret = len_to_send; } else { /*TODO: print error log*/ BTIF_ERR_FUNC("Tx DMA flush operation is in process, this case should never happen,", "please check if tx operation is allowed before call this API\n"); /*if flush operation is in process , we will return 0*/ i_ret = 0; } /*Enable Tx IER*/ btif_tx_dma_ier_ctrl(p_dma_info, true); BTIF_TRC_FUNC(); return i_ret; } /***************************************************************************** * FUNCTION * hal_dma_is_tx_complete * DESCRIPTION * get tx complete flag * PARAMETERS * p_dma_info [IN] pointer to BTIF dma channel's information * RETURNS * true means tx complete, false means tx in process *****************************************************************************/ bool hal_dma_is_tx_complete(P_MTK_DMA_INFO_STR p_dma_info) { bool b_ret = -1; unsigned long base = p_dma_info->base; unsigned int valid_size = BTIF_READ32(TX_DMA_VFF_VALID_SIZE(base)); unsigned int inter_size = BTIF_READ32(TX_DMA_INT_BUF_SIZE(base)); unsigned int tx_done = is_tx_dma_irq_finish_done(p_dma_info); /*only when virtual FIFO valid size and Tx channel internal buffer size are both becomes to be 0, we can identify tx operation finished confirmed with DE. */ if ((0 == valid_size) && (0 == inter_size) && (1 == tx_done)) { b_ret = true; BTIF_DBG_FUNC("DMA tx finished.\n"); } else { BTIF_DBG_FUNC ("DMA tx is in process. vfifo valid size(%d), dma internal size (%d), tx_done(%d)\n", valid_size, inter_size, tx_done); b_ret = false; } return b_ret; } /***************************************************************************** * FUNCTION * hal_dma_get_ava_room * DESCRIPTION * get tx available room * PARAMETERS * p_dma_info [IN] pointer to BTIF dma channel's information * RETURNS * available room size *****************************************************************************/ int hal_dma_get_ava_room(P_MTK_DMA_INFO_STR p_dma_info) { int i_ret = -1; unsigned long base = p_dma_info->base; /*read vFIFO's left size*/ i_ret = BTIF_READ32(TX_DMA_VFF_LEFT_SIZE(base)); BTIF_DBG_FUNC("DMA tx ava room (%d).\n", i_ret); if (0 == i_ret) BTIF_INFO_FUNC("DMA tx vfifo is full.\n"); return i_ret; } /***************************************************************************** * FUNCTION * hal_dma_is_tx_allow * DESCRIPTION * is tx operation allowed by DMA * PARAMETERS * p_dma_info [IN] pointer to BTIF dma channel's information * RETURNS * true if tx operation is allowed; false if tx is not allowed *****************************************************************************/ bool hal_dma_is_tx_allow(P_MTK_DMA_INFO_STR p_dma_info) { #define MIN_TX_MB ((26 * 1000000 / 13) / 1000000) #define AVE_TX_MB ((26 * 1000000 / 8) / 1000000) bool b_ret = false; unsigned int wait_us = 8 / MIN_TX_MB; /*only ava length */ /*see if flush operation is in process*/ b_ret = _is_tx_dma_in_flush(p_dma_info) ? false : true; if (!b_ret) { usleep_range(wait_us, 2 * wait_us); b_ret = _is_tx_dma_in_flush(p_dma_info) ? false : true; } if (!b_ret) BTIF_WARN_FUNC("btif tx dma is not allowed\n"); /*after Tx flush operation finished, HW will set DMA_EN back to 0 and stop DMA*/ return b_ret; } /***************************************************************************** * FUNCTION * hal_rx_dma_irq_handler * DESCRIPTION * lower level rx interrupt handler * PARAMETERS * p_dma_info [IN] pointer to BTIF dma channel's information * p_buf [IN/OUT] pointer to rx data buffer * max_len [IN] max length of rx buffer * RETURNS * 0 means success, negative means fail *****************************************************************************/ int hal_rx_dma_irq_handler(P_MTK_DMA_INFO_STR p_dma_info, unsigned char *p_buf, const unsigned int max_len) { int i_ret = -1; unsigned int valid_len = 0; unsigned int wpt_wrap = 0; unsigned int rpt_wrap = 0; unsigned int wpt = 0; unsigned int rpt = 0; unsigned int tail_len = 0; unsigned int real_len = 0; unsigned long base = p_dma_info->base; P_DMA_VFIFO p_vfifo = p_dma_info->p_vfifo; dma_rx_buf_write rx_cb = p_dma_info->rx_cb; unsigned char *p_vff_buf = NULL; unsigned char *vff_base = p_vfifo->p_vir_addr; unsigned int vff_size = p_vfifo->vfifo_size; P_MTK_BTIF_DMA_VFIFO p_mtk_vfifo = container_of(p_vfifo, MTK_BTIF_DMA_VFIFO, vfifo); unsigned long flag = 0; spin_lock_irqsave(&(g_clk_cg_spinlock), flag); #if defined(CONFIG_MTK_CLKMGR) if (0 == clock_is_on(MTK_BTIF_APDMA_CLK_CG)) { spin_unlock_irqrestore(&(g_clk_cg_spinlock), flag); BTIF_ERR_FUNC("%s: clock is off before irq handle done!!!\n", __FILE__); return i_ret; } #endif /*disable DMA Rx IER*/ hal_btif_dma_ier_ctrl(p_dma_info, false); /*clear Rx DMA's interrupt status*/ BTIF_SET_BIT(RX_DMA_INT_FLAG(base), RX_DMA_INT_DONE | RX_DMA_INT_THRE); valid_len = BTIF_READ32(RX_DMA_VFF_VALID_SIZE(base)); rpt = BTIF_READ32(RX_DMA_VFF_RPT(base)); wpt = BTIF_READ32(RX_DMA_VFF_WPT(base)); if ((0 == valid_len) && (rpt == wpt)) { BTIF_DBG_FUNC ("rx interrupt, no data available in Rx DMA, wpt(0x%08x), rpt(0x%08x)\n", rpt, wpt); } i_ret = 0; while ((0 < valid_len) || (rpt != wpt)) { rpt_wrap = rpt & DMA_RPT_WRAP; wpt_wrap = wpt & DMA_WPT_WRAP; rpt &= DMA_RPT_MASK; wpt &= DMA_WPT_MASK; /*calcaute length of available data in vFIFO*/ if (wpt_wrap != p_mtk_vfifo->last_wpt_wrap) real_len = wpt + vff_size - rpt; else real_len = wpt - rpt; if (NULL != rx_cb) { tail_len = vff_size - rpt; p_vff_buf = vff_base + rpt; if (tail_len >= real_len) { (*rx_cb) (p_dma_info, p_vff_buf, real_len); } else { (*rx_cb) (p_dma_info, p_vff_buf, tail_len); p_vff_buf = vff_base; (*rx_cb) (p_dma_info, p_vff_buf, real_len - tail_len); } i_ret += real_len; } else BTIF_ERR_FUNC("no rx_cb found, please check your init process\n"); mb(); rpt += real_len; if (rpt >= vff_size) { /*read wrap bit should be revert*/ rpt_wrap ^= DMA_RPT_WRAP; rpt %= vff_size; } rpt |= rpt_wrap; /*record wpt, last_wpt_wrap, rpt, last_rpt_wrap*/ p_mtk_vfifo->wpt = wpt; p_mtk_vfifo->last_wpt_wrap = wpt_wrap; p_mtk_vfifo->rpt = rpt; p_mtk_vfifo->last_rpt_wrap = rpt_wrap; /*update rpt information to DMA controller*/ btif_reg_sync_writel(rpt, RX_DMA_VFF_RPT(base)); /*get vff valid size again and check if rx data is processed completely*/ valid_len = BTIF_READ32(RX_DMA_VFF_VALID_SIZE(base)); rpt = BTIF_READ32(RX_DMA_VFF_RPT(base)); wpt = BTIF_READ32(RX_DMA_VFF_WPT(base)); } /*enable DMA Rx IER*/ hal_btif_dma_ier_ctrl(p_dma_info, true); spin_unlock_irqrestore(&(g_clk_cg_spinlock), flag); return i_ret; } static int hal_tx_dma_dump_reg(P_MTK_DMA_INFO_STR p_dma_info, ENUM_BTIF_REG_ID flag) { int i_ret = -1; unsigned long base = p_dma_info->base; unsigned int int_flag = 0; unsigned int enable = 0; unsigned int stop = 0; unsigned int flush = 0; unsigned int wpt = 0; unsigned int rpt = 0; unsigned int int_buf = 0; unsigned int valid_size = 0; /*unsigned long irq_flag = 0;*/ #if defined(CONFIG_MTK_CLKMGR) /*spin_lock_irqsave(&(g_clk_cg_spinlock), irq_flag);*/ if (0 == clock_is_on(MTK_BTIF_APDMA_CLK_CG)) { /*spin_unlock_irqrestore(&(g_clk_cg_spinlock), irq_flag);*/ BTIF_ERR_FUNC("%s: clock is off, this should never happen!!!\n", __FILE__); return i_ret; } #endif int_flag = BTIF_READ32(TX_DMA_INT_FLAG(base)); enable = BTIF_READ32(TX_DMA_EN(base)); stop = BTIF_READ32(TX_DMA_STOP(base)); flush = BTIF_READ32(TX_DMA_FLUSH(base)); wpt = BTIF_READ32(TX_DMA_VFF_WPT(base)); rpt = BTIF_READ32(TX_DMA_VFF_RPT(base)); int_buf = BTIF_READ32(TX_DMA_INT_BUF_SIZE(base)); valid_size = BTIF_READ32(TX_DMA_VFF_VALID_SIZE(base)); /*spin_unlock_irqrestore(&(g_clk_cg_spinlock), irq_flag);*/ BTIF_INFO_FUNC("DMA's clock is on\n"); BTIF_INFO_FUNC("Tx DMA's base address: 0x%lx\n", base); if (REG_TX_DMA_ALL == flag) { BTIF_INFO_FUNC("TX_EN(:0x%x\n", enable); BTIF_INFO_FUNC("INT_FLAG:0x%x\n", int_flag); BTIF_INFO_FUNC("TX_STOP:0x%x\n", stop); BTIF_INFO_FUNC("TX_FLUSH:0x%x\n", flush); BTIF_INFO_FUNC("TX_WPT:0x%x\n", wpt); BTIF_INFO_FUNC("TX_RPT:0x%x\n", rpt); BTIF_INFO_FUNC("INT_BUF_SIZE:0x%x\n", int_buf); BTIF_INFO_FUNC("VALID_SIZE:0x%x\n", valid_size); BTIF_INFO_FUNC("INT_EN:0x%x\n", BTIF_READ32(TX_DMA_INT_EN(base))); BTIF_INFO_FUNC("TX_RST:0x%x\n", BTIF_READ32(TX_DMA_RST(base))); BTIF_INFO_FUNC("VFF_ADDR:0x%x\n", BTIF_READ32(TX_DMA_VFF_ADDR(base))); BTIF_INFO_FUNC("VFF_LEN:0x%x\n", BTIF_READ32(TX_DMA_VFF_LEN(base))); BTIF_INFO_FUNC("TX_THRE:0x%x\n", BTIF_READ32(TX_DMA_VFF_THRE(base))); BTIF_INFO_FUNC("W_INT_BUF_SIZE:0x%x\n", BTIF_READ32(TX_DMA_W_INT_BUF_SIZE(base))); BTIF_INFO_FUNC("LEFT_SIZE:0x%x\n", BTIF_READ32(TX_DMA_VFF_LEFT_SIZE(base))); BTIF_INFO_FUNC("DBG_STATUS:0x%x\n", BTIF_READ32(TX_DMA_DEBUG_STATUS(base))); i_ret = 0; } else { BTIF_WARN_FUNC("unknown flag:%d\n", flag); } BTIF_INFO_FUNC("tx dma %s\n", (enable & DMA_EN_BIT) && (!(stop && DMA_STOP_BIT)) ? "enabled" : "stopped"); BTIF_INFO_FUNC("data in tx dma is %s sent by HW\n", ((wpt == rpt) && (int_buf == 0)) ? "completely" : "not completely"); return i_ret; } static int hal_rx_dma_dump_reg(P_MTK_DMA_INFO_STR p_dma_info, ENUM_BTIF_REG_ID flag) { int i_ret = -1; unsigned long base = p_dma_info->base; unsigned int int_flag = 0; unsigned int enable = 0; unsigned int stop = 0; unsigned int flush = 0; unsigned int wpt = 0; unsigned int rpt = 0; unsigned int int_buf = 0; unsigned int valid_size = 0; /*unsigned long irq_flag = 0;*/ #if defined(CONFIG_MTK_CLKMGR) /*spin_lock_irqsave(&(g_clk_cg_spinlock), irq_flag);*/ if (0 == clock_is_on(MTK_BTIF_APDMA_CLK_CG)) { /*spin_unlock_irqrestore(&(g_clk_cg_spinlock), irq_flag);*/ BTIF_ERR_FUNC("%s: clock is off, this should never happen!!!\n", __FILE__); return i_ret; } #endif BTIF_INFO_FUNC("dump DMA status register\n"); _btif_dma_dump_dbg_reg(); int_flag = BTIF_READ32(RX_DMA_INT_FLAG(base)); enable = BTIF_READ32(RX_DMA_EN(base)); stop = BTIF_READ32(RX_DMA_STOP(base)); flush = BTIF_READ32(RX_DMA_FLUSH(base)); wpt = BTIF_READ32(RX_DMA_VFF_WPT(base)); rpt = BTIF_READ32(RX_DMA_VFF_RPT(base)); int_buf = BTIF_READ32(RX_DMA_INT_BUF_SIZE(base)); valid_size = BTIF_READ32(RX_DMA_VFF_VALID_SIZE(base)); /*spin_unlock_irqrestore(&(g_clk_cg_spinlock), irq_flag);*/ BTIF_INFO_FUNC("DMA's clock is on\n"); BTIF_INFO_FUNC("Rx DMA's base address: 0x%lx\n", base); if (REG_RX_DMA_ALL == flag) { BTIF_INFO_FUNC("RX_EN(:0x%x\n", enable); BTIF_INFO_FUNC("RX_STOP:0x%x\n", stop); BTIF_INFO_FUNC("RX_FLUSH:0x%x\n", flush); BTIF_INFO_FUNC("INT_FLAG:0x%x\n", int_flag); BTIF_INFO_FUNC("RX_WPT:0x%x\n", wpt); BTIF_INFO_FUNC("RX_RPT:0x%x\n", rpt); BTIF_INFO_FUNC("INT_BUF_SIZE:0x%x\n", int_buf); BTIF_INFO_FUNC("VALID_SIZE:0x%x\n", valid_size); BTIF_INFO_FUNC("INT_EN:0x%x\n", BTIF_READ32(RX_DMA_INT_EN(base))); BTIF_INFO_FUNC("RX_RST:0x%x\n", BTIF_READ32(RX_DMA_RST(base))); BTIF_INFO_FUNC("VFF_ADDR:0x%x\n", BTIF_READ32(RX_DMA_VFF_ADDR(base))); BTIF_INFO_FUNC("VFF_LEN:0x%x\n", BTIF_READ32(RX_DMA_VFF_LEN(base))); BTIF_INFO_FUNC("RX_THRE:0x%x\n", BTIF_READ32(RX_DMA_VFF_THRE(base))); BTIF_INFO_FUNC("RX_FLOW_CTRL_THRE:0x%x\n", BTIF_READ32(RX_DMA_FLOW_CTRL_THRE(base))); BTIF_INFO_FUNC("LEFT_SIZE:0x%x\n", BTIF_READ32(RX_DMA_VFF_LEFT_SIZE(base))); BTIF_INFO_FUNC("DBG_STATUS:0x%x\n", BTIF_READ32(RX_DMA_DEBUG_STATUS(base))); i_ret = 0; } else { BTIF_WARN_FUNC("unknown flag:%d\n", flag); } BTIF_INFO_FUNC("rx dma %s\n", (enable & DMA_EN_BIT) && (!(stop && DMA_STOP_BIT)) ? "enabled" : "stopped"); BTIF_INFO_FUNC("data in rx dma is %s by driver\n", ((wpt == rpt) && (int_buf == 0)) ? "received" : "not received"); return i_ret; } /***************************************************************************** * FUNCTION * hal_dma_dump_reg * DESCRIPTION * dump BTIF module's information when needed * PARAMETERS * p_dma_info [IN] pointer to BTIF dma channel's information * flag [IN] register id flag * RETURNS * 0 means success, negative means fail *****************************************************************************/ int hal_dma_dump_reg(P_MTK_DMA_INFO_STR p_dma_info, ENUM_BTIF_REG_ID flag) { unsigned int i_ret = -1; if (DMA_DIR_TX == p_dma_info->dir) i_ret = hal_tx_dma_dump_reg(p_dma_info, flag); else if (DMA_DIR_RX == p_dma_info->dir) i_ret = hal_rx_dma_dump_reg(p_dma_info, flag); else BTIF_WARN_FUNC("unknown dir:%d\n", p_dma_info->dir); return i_ret; } static int _tx_dma_flush(P_MTK_DMA_INFO_STR p_dma_info) { unsigned int i_ret = -1; unsigned long base = p_dma_info->base; unsigned int stop = BTIF_READ32(TX_DMA_STOP(base)); /*in MTK DMA BTIF channel we cannot set STOP and FLUSH bit at the same time*/ if ((DMA_STOP_BIT && stop) != 0) BTIF_ERR_FUNC("BTIF's DMA in stop state, omit flush operation\n"); else { BTIF_DBG_FUNC("flush tx dma\n"); BTIF_SET_BIT(TX_DMA_FLUSH(base), DMA_FLUSH_BIT); i_ret = 0; } return i_ret; } static int _is_tx_dma_in_flush(P_MTK_DMA_INFO_STR p_dma_info) { bool b_ret = true; unsigned long base = p_dma_info->base; /*see if flush operation is in process*/ b_ret = ((DMA_FLUSH_BIT & BTIF_READ32(TX_DMA_FLUSH(base))) != 0) ? true : false; return b_ret; } int hal_dma_pm_ops(P_MTK_DMA_INFO_STR p_dma_info, MTK_BTIF_PM_OPID opid) { int i_ret = -1; BTIF_INFO_FUNC("op id: %d\n", opid); switch (opid) { case BTIF_PM_DPIDLE_EN: i_ret = 0; break; case BTIF_PM_DPIDLE_DIS: i_ret = 0; break; case BTIF_PM_SUSPEND: i_ret = 0; break; case BTIF_PM_RESUME: i_ret = 0; break; case BTIF_PM_RESTORE_NOIRQ:{ unsigned int flag = 0; P_MTK_BTIF_IRQ_STR p_irq = p_dma_info->p_irq; #ifdef CONFIG_OF flag = p_irq->irq_flags; #else switch (p_irq->sens_type) { case IRQ_SENS_EDGE: if (IRQ_EDGE_FALL == p_irq->edge_type) flag = IRQF_TRIGGER_FALLING; else if (IRQ_EDGE_RAISE == p_irq->edge_type) flag = IRQF_TRIGGER_RISING; else if (IRQ_EDGE_BOTH == p_irq->edge_type) flag = IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING; else flag = IRQF_TRIGGER_FALLING; /*make this as default type */ break; case IRQ_SENS_LVL: if (IRQ_LVL_LOW == p_irq->lvl_type) flag = IRQF_TRIGGER_LOW; else if (IRQ_LVL_HIGH == p_irq->lvl_type) flag = IRQF_TRIGGER_HIGH; else flag = IRQF_TRIGGER_LOW; /*make this as default type */ break; default: flag = IRQF_TRIGGER_LOW; /*make this as default type */ break; } #endif /* irq_set_irq_type(p_irq->irq_id, flag); */ i_ret = 0; } i_ret = 0; break; default: i_ret = ERR_INVALID_PAR; break; } return i_ret; } /***************************************************************************** * FUNCTION * hal_dma_receive_data * DESCRIPTION * receive data from btif module in DMA polling mode * PARAMETERS * p_dma_info [IN] pointer to BTIF dma channel's information * p_buf [IN/OUT] pointer to rx data buffer * max_len [IN] max length of rx buffer * RETURNS * positive means data is available, 0 means no data available *****************************************************************************/ #ifndef MTK_BTIF_MARK_UNUSED_API int hal_dma_receive_data(P_MTK_DMA_INFO_STR p_dma_info, unsigned char *p_buf, const unsigned int max_len) { unsigned int i_ret = -1; return i_ret; } #endif int _btif_dma_dump_dbg_reg(void) { #if 0 static MTK_BTIF_DMA_REG_DMP_DBG g_dma_dbg_regs[] = { {0x10201180, 0x0}, {0x10201184, 0x0}, {0x10201188, 0x0}, {0x1020118C, 0x0}, {0x10201190, 0x0}, {0x1000320C, 0x0}, {0x10003210, 0x0}, {0x10003214, 0x0}, }; int i = 0; char *addr1 = NULL; char *addr2 = NULL; int array_num = sizeof(g_dma_dbg_regs) / sizeof(g_dma_dbg_regs[0]); addr1 = ioremap(g_dma_dbg_regs[0].reg_addr, 0x20); if (addr1) { for (i = 0; i < 5; i++) g_dma_dbg_regs[i].reg_val = *(volatile unsigned int*)(addr1 + i*4); iounmap(addr1); } addr2 = ioremap(g_dma_dbg_regs[5].reg_addr, 0x10); if (addr2) { g_dma_dbg_regs[5].reg_val = *(volatile unsigned int*)(addr2); g_dma_dbg_regs[6].reg_val = *(volatile unsigned int*)(addr2+4); g_dma_dbg_regs[7].reg_val = *(volatile unsigned int*)(addr2+8); iounmap(addr2); } for (i = 0; i < array_num; i++) BTIF_INFO_FUNC("-<0x%lx, 0x%08x>\n", g_dma_dbg_regs[i].reg_addr, g_dma_dbg_regs[i].reg_val); #endif return 0; }