#include "mag.h" #include "accel.h" struct mag_context *mag_context_obj = NULL; static struct mag_init_info *msensor_init_list[MAX_CHOOSE_G_NUM] = {0}; static void initTimer(struct hrtimer *timer, enum hrtimer_restart (*callback)(struct hrtimer *)) { hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); timer->function = callback; } static void startTimer(struct hrtimer *timer, int delay_ms, bool first) { struct acc_context *obj = (struct acc_context *)container_of(timer, struct acc_context, hrTimer); if (obj == NULL) { MAG_ERR("NULL pointer\n"); return; } if (first) { obj->target_ktime = ktime_add_ns(ktime_get(), (int64_t)delay_ms*1000000); } else { do { obj->target_ktime = ktime_add_ns(obj->target_ktime, (int64_t)delay_ms*1000000); } while (ktime_to_ns(obj->target_ktime) < ktime_to_ns(ktime_get())); } hrtimer_start(timer, obj->target_ktime, HRTIMER_MODE_ABS); } static void stopTimer(struct hrtimer *timer) { hrtimer_cancel(timer); } static void mag_work_func(struct work_struct *work) { struct mag_context *cxt = NULL; struct hwm_sensor_data sensor_data; int64_t m_pre_ns, o_pre_ns, cur_ns; int64_t delay_ms; struct timespec time; int err; int i; int x, y, z, status; cxt = mag_context_obj; delay_ms = atomic_read(&cxt->delay); memset(&sensor_data, 0, sizeof(sensor_data)); time.tv_sec = time.tv_nsec = 0; get_monotonic_boottime(&time); cur_ns = time.tv_sec*1000000000LL+time.tv_nsec; for (i = 0; i < MAX_M_V_SENSOR; i++) { if (!(cxt->active_data_sensor&(0x01<mag_dev_data.get_data_m(&x, &y, &z, &status); if (err) { MAG_ERR("get %d data fails!!\n" , i); return; } cxt->drv_data[i].mag_data.values[0] = x; cxt->drv_data[i].mag_data.values[1] = y; cxt->drv_data[i].mag_data.values[2] = z; cxt->drv_data[i].mag_data.status = status; m_pre_ns = cxt->drv_data[i].mag_data.time; cxt->drv_data[i].mag_data.time = cur_ns; if (true == cxt->is_first_data_after_enable) { m_pre_ns = cur_ns; cxt->is_first_data_after_enable = false; /* filter -1 value */ if (MAG_INVALID_VALUE == cxt->drv_data[i].mag_data.values[0] || MAG_INVALID_VALUE == cxt->drv_data[i].mag_data.values[1] || MAG_INVALID_VALUE == cxt->drv_data[i].mag_data.values[2]) { MAG_LOG(" read invalid data\n"); continue; } } while ((cur_ns - m_pre_ns) >= delay_ms*1800000LL) { m_pre_ns += delay_ms*1000000LL; mag_data_report(MAGNETIC, cxt->drv_data[i].mag_data.values[0], cxt->drv_data[i].mag_data.values[1], cxt->drv_data[i].mag_data.values[2], cxt->drv_data[i].mag_data.status, m_pre_ns); } mag_data_report(MAGNETIC, cxt->drv_data[i].mag_data.values[0], cxt->drv_data[i].mag_data.values[1], cxt->drv_data[i].mag_data.values[2], cxt->drv_data[i].mag_data.status, cxt->drv_data[i].mag_data.time); /* MAG_LOG("mag_type(%d) data[%d,%d,%d]\n" ,i,cxt->drv_data[i].mag_data.values[0], */ /* cxt->drv_data[i].mag_data.values[1],cxt->drv_data[i].mag_data.values[2]); */ } if (ID_M_V_ORIENTATION == i) { err = cxt->mag_dev_data.get_data_o(&x, &y, &z, &status); if (err) { MAG_ERR("get %d data fails!!\n" , i); return; } cxt->drv_data[i].mag_data.values[0] = x; cxt->drv_data[i].mag_data.values[1] = y; cxt->drv_data[i].mag_data.values[2] = z; cxt->drv_data[i].mag_data.status = status; o_pre_ns = cxt->drv_data[i].mag_data.time; cxt->drv_data[i].mag_data.time = cur_ns; if (true == cxt->is_first_data_after_enable) { o_pre_ns = cur_ns; cxt->is_first_data_after_enable = false; /* filter -1 value */ if (MAG_INVALID_VALUE == cxt->drv_data[i].mag_data.values[0] || MAG_INVALID_VALUE == cxt->drv_data[i].mag_data.values[1] || MAG_INVALID_VALUE == cxt->drv_data[i].mag_data.values[2]) { MAG_LOG(" read invalid data\n"); continue; } } while ((cur_ns - o_pre_ns) >= delay_ms*1800000LL) { o_pre_ns += delay_ms*1000000LL; mag_data_report(ORIENTATION, cxt->drv_data[i].mag_data.values[0], cxt->drv_data[i].mag_data.values[1], cxt->drv_data[i].mag_data.values[2], cxt->drv_data[i].mag_data.status, o_pre_ns); } mag_data_report(ORIENTATION, cxt->drv_data[i].mag_data.values[0], cxt->drv_data[i].mag_data.values[1], cxt->drv_data[i].mag_data.values[2], cxt->drv_data[i].mag_data.status, cxt->drv_data[i].mag_data.time); /* MAG_LOG("mag_type(%d) data[%d,%d,%d]\n" ,i,cxt->drv_data[i].mag_data.values[0], */ /* cxt->drv_data[i].mag_data.values[1],cxt->drv_data[i].mag_data.values[2]); */ } } if (true == cxt->is_polling_run) startTimer(&cxt->hrTimer, atomic_read(&cxt->delay), false); } enum hrtimer_restart mag_poll(struct hrtimer *timer) { struct mag_context *obj = (struct mag_context *)container_of(timer, struct mag_context, hrTimer); queue_work(obj->mag_workqueue, &obj->report); return HRTIMER_NORESTART; } static struct mag_context *mag_context_alloc_object(void) { struct mag_context *obj = kzalloc(sizeof(*obj), GFP_KERNEL); MAG_LOG("mag_context_alloc_object++++\n"); if (!obj) { MAG_ERR("Alloc magel object error!\n"); return NULL; } atomic_set(&obj->delay, 200); /* set work queue delay time 200ms */ atomic_set(&obj->wake, 0); INIT_WORK(&obj->report, mag_work_func); obj->mag_workqueue = NULL; obj->mag_workqueue = create_workqueue("mag_polling"); if (!obj->mag_workqueue) { kfree(obj); return NULL; } initTimer(&obj->hrTimer, mag_poll); obj->is_first_data_after_enable = false; obj->is_polling_run = false; obj->active_data_sensor = 0; obj->active_nodata_sensor = 0; obj->is_batch_enable = false; mutex_init(&obj->mag_op_mutex); MAG_LOG("mag_context_alloc_object----\n"); return obj; } static int mag_enable_data(int handle, int enable) { struct mag_context *cxt = NULL; cxt = mag_context_obj; if (NULL == cxt->drv_obj[handle] && NULL == cxt->mag_ctl.m_enable) { MAG_ERR("no real mag driver\n"); return -1; } if (1 == enable) { MAG_LOG("MAG(%d) enable\n", handle); cxt->is_first_data_after_enable = true; cxt->active_data_sensor |= 1<mag_ctl.o_enable(1); cxt->mag_ctl.o_open_report_data(1); } if (ID_M_V_MAGNETIC == handle) { cxt->mag_ctl.m_enable(1); cxt->mag_ctl.m_open_report_data(1); } if ((0 != cxt->active_data_sensor) && (false == cxt->is_polling_run) && (false == cxt->is_batch_enable)) { if (false == cxt->mag_ctl.is_report_input_direct) { MAG_LOG("MAG(%d) mod timer\n", handle); startTimer(&cxt->hrTimer, atomic_read(&cxt->delay), true); cxt->is_polling_run = true; } } } if (0 == enable) { MAG_LOG("MAG(%d) disable\n", handle); cxt->active_data_sensor &= ~(1<mag_ctl.o_enable(0); cxt->mag_ctl.o_open_report_data(0); } if (ID_M_V_MAGNETIC == handle) { cxt->mag_ctl.m_enable(0); cxt->mag_ctl.m_open_report_data(0); } if (0 == cxt->active_data_sensor && true == cxt->is_polling_run) { if (false == cxt->mag_ctl.is_report_input_direct) { MAG_LOG("MAG(%d) del timer\n", handle); cxt->is_polling_run = false; smp_mb();/*fo memory barrier*/ stopTimer(&cxt->hrTimer); smp_mb();/*for memory barrier*/ cancel_work_sync(&cxt->report); cxt->drv_data[handle].mag_data.values[0] = MAG_INVALID_VALUE; cxt->drv_data[handle].mag_data.values[1] = MAG_INVALID_VALUE; cxt->drv_data[handle].mag_data.values[2] = MAG_INVALID_VALUE; } } } return 0; } /*----------------------------------------------------------------------------*/ static ssize_t mag_show_magdev(struct device *dev, struct device_attribute *attr, char *buf) { int len = 0; MAG_LOG("sensor test: mag function!\n"); return len; } /*----------------------------------------------------------------------------*/ static ssize_t mag_store_oactive(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mag_context *cxt = NULL; MAG_LOG("mag_store_oactive buf=%s\n", buf); mutex_lock(&mag_context_obj->mag_op_mutex); cxt = mag_context_obj; if (NULL == cxt->mag_ctl.o_enable) { mutex_unlock(&mag_context_obj->mag_op_mutex); MAG_LOG("mag_ctl o-enable NULL\n"); return count; } if (!strncmp(buf, "1", 1)) mag_enable_data(ID_M_V_ORIENTATION, 1); else if (!strncmp(buf, "0", 1)) mag_enable_data(ID_M_V_ORIENTATION, 0); else MAG_ERR(" mag_store_oactive error !!\n"); mutex_unlock(&mag_context_obj->mag_op_mutex); MAG_LOG(" mag_store_oactive done\n"); return count; } /*----------------------------------------------------------------------------*/ static ssize_t mag_show_oactive(struct device *dev, struct device_attribute *attr, char *buf) { struct mag_context *cxt = NULL; int div = 0; cxt = mag_context_obj; div = cxt->mag_dev_data.div_o; ACC_LOG("acc mag_dev_data o_div value: %d\n", div); return snprintf(buf, PAGE_SIZE, "%d\n", div); } static ssize_t mag_store_active(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mag_context *cxt = NULL; MAG_LOG("mag_store_active buf=%s\n", buf); mutex_lock(&mag_context_obj->mag_op_mutex); cxt = mag_context_obj; if (NULL == cxt->mag_ctl.m_enable) { mutex_unlock(&mag_context_obj->mag_op_mutex); MAG_LOG("mag_ctl path is NULL\n"); return count; } if (!strncmp(buf, "1", 1)) mag_enable_data(ID_M_V_MAGNETIC, 1); else if (!strncmp(buf, "0", 1)) mag_enable_data(ID_M_V_MAGNETIC, 0); else MAG_ERR(" mag_store_active error !!\n"); mutex_unlock(&mag_context_obj->mag_op_mutex); MAG_LOG(" mag_store_active done\n"); return count; } /*----------------------------------------------------------------------------*/ static ssize_t mag_show_active(struct device *dev, struct device_attribute *attr, char *buf) { struct mag_context *cxt = NULL; int div = 0; cxt = mag_context_obj; div = cxt->mag_dev_data.div_m; ACC_LOG("acc mag_dev_data m_div value: %d\n", div); return snprintf(buf, PAGE_SIZE, "%d\n", div); } static ssize_t mag_store_odelay(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int delay = 0; int mdelay = 0; int ret = 0; struct mag_context *cxt = NULL; mutex_lock(&mag_context_obj->mag_op_mutex); cxt = mag_context_obj; if (NULL == cxt->mag_ctl.o_set_delay) { mutex_unlock(&mag_context_obj->mag_op_mutex); MAG_LOG("mag_ctl o_delay NULL\n"); return count; } MAG_LOG(" mag_odelay ++\n"); ret = kstrtoint(buf, 10, &delay); if (ret != 0) { mutex_unlock(&mag_context_obj->mag_op_mutex); MAG_ERR("invalid format!!\n"); return count; } if (false == cxt->mag_ctl.is_report_input_direct) { mdelay = (int)delay/1000/1000; atomic_set(&mag_context_obj->delay, mdelay); } cxt->mag_ctl.o_set_delay(delay); mutex_unlock(&mag_context_obj->mag_op_mutex); MAG_LOG(" mag_odelay %d ns done\n", delay); return count; } static ssize_t mag_show_odelay(struct device *dev, struct device_attribute *attr, char *buf) { int len = 0; MAG_LOG(" not support now\n"); return len; } static ssize_t mag_store_delay(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int64_t delay = 0; int64_t mdelay = 0; int ret = 0; struct mag_context *cxt = NULL; mutex_lock(&mag_context_obj->mag_op_mutex); cxt = mag_context_obj; if (NULL == cxt->mag_ctl.m_set_delay) { mutex_unlock(&mag_context_obj->mag_op_mutex); MAG_LOG("mag_ctl m_delay NULL\n"); return count; } MAG_LOG(" mag_delay ++\n"); ret = kstrtoll(buf, 10, &delay); if (ret != 0) { mutex_unlock(&mag_context_obj->mag_op_mutex); MAG_ERR("invalid format!!\n"); return count; } if (false == cxt->mag_ctl.is_report_input_direct) { mdelay = delay; do_div(mdelay, 1000000); atomic_set(&mag_context_obj->delay, mdelay); } cxt->mag_ctl.m_set_delay(delay); mutex_unlock(&mag_context_obj->mag_op_mutex); MAG_LOG(" mag_delay %lld ns done\n", delay); return count; } static ssize_t mag_show_delay(struct device *dev, struct device_attribute *attr, char *buf) { int len = 0; MAG_LOG(" not support now\n"); return len; } static ssize_t mag_store_batch(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mag_context *cxt = NULL; MAG_LOG("mag_store_batch buf=%s\n", buf); mutex_lock(&mag_context_obj->mag_op_mutex); cxt = mag_context_obj; if (cxt->mag_ctl.is_support_batch) { if (!strncmp(buf, "1", 1)) { cxt->is_batch_enable = true; if (true == cxt->is_polling_run) { cxt->is_polling_run = false; smp_mb(); /* for memory barrier */ stopTimer(&cxt->hrTimer); smp_mb(); /* for memory barrier */ cancel_work_sync(&cxt->report); cxt->drv_data[ID_M_V_MAGNETIC].mag_data.values[0] = MAG_INVALID_VALUE; cxt->drv_data[ID_M_V_MAGNETIC].mag_data.values[1] = MAG_INVALID_VALUE; cxt->drv_data[ID_M_V_MAGNETIC].mag_data.values[2] = MAG_INVALID_VALUE; } } else if (!strncmp(buf, "0", 1)) { cxt->is_batch_enable = false; if (false == cxt->is_polling_run) { if (false == cxt->mag_ctl.is_report_input_direct) { startTimer(&cxt->hrTimer, atomic_read(&cxt->delay), true); cxt->is_polling_run = true; } } } else MAG_ERR(" mag_store_batch error !!\n"); } else MAG_LOG(" mag_store_batch not supported\n"); mutex_unlock(&mag_context_obj->mag_op_mutex); MAG_LOG(" mag_store_batch done: %d\n", cxt->is_batch_enable); return count; } static ssize_t mag_show_batch(struct device *dev, struct device_attribute *attr, char *buf) { int len = 0; MAG_LOG(" not support now\n"); return len; } static ssize_t mag_store_flush(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return count; } /* need work around again */ static ssize_t mag_show_sensordevnum(struct device *dev, struct device_attribute *attr, char *buf) { unsigned int devnum; int ret; struct mag_context *cxt = NULL; const char *devname = NULL; cxt = mag_context_obj; devname = dev_name(&cxt->idev->dev); ret = sscanf(devname+5, "%d", &devnum); return snprintf(buf, PAGE_SIZE, "%d\n", devnum); } static ssize_t mag_show_flush(struct device *dev, struct device_attribute *attr, char *buf) { int len = 0; MAG_LOG(" not support now\n"); return len; } static ssize_t mag_store_obatch(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mag_context *cxt = NULL; MAG_LOG("mag_store_obatch buf=%s\n", buf); mutex_lock(&mag_context_obj->mag_op_mutex); cxt = mag_context_obj; if (cxt->mag_ctl.is_support_batch) { if (!strncmp(buf, "1", 1)) { cxt->is_batch_enable = true; if (true == cxt->is_polling_run) { cxt->is_polling_run = false; del_timer_sync(&cxt->timer); cancel_work_sync(&cxt->report); cxt->drv_data[ID_M_V_ORIENTATION].mag_data.values[0] = MAG_INVALID_VALUE; cxt->drv_data[ID_M_V_ORIENTATION].mag_data.values[1] = MAG_INVALID_VALUE; cxt->drv_data[ID_M_V_ORIENTATION].mag_data.values[2] = MAG_INVALID_VALUE; } } else if (!strncmp(buf, "0", 1)) { cxt->is_batch_enable = false; if (false == cxt->is_polling_run) { if (false == cxt->mag_ctl.is_report_input_direct && 0 != (cxt->active_data_sensor&ID_M_V_ORIENTATION)) { startTimer(&cxt->hrTimer, atomic_read(&cxt->delay), true); cxt->is_polling_run = true; } } } else MAG_ERR(" mag_store_obatch error !!\n"); } else MAG_LOG(" mag_store_obatch not supported\n"); mutex_unlock(&mag_context_obj->mag_op_mutex); MAG_LOG(" mag_store_obatch done: %d\n", cxt->is_batch_enable); return count; } static ssize_t mag_show_obatch(struct device *dev, struct device_attribute *attr, char *buf) { int len = 0; MAG_LOG(" not support now\n"); return len; } static ssize_t mag_store_oflush(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return count; } static ssize_t mag_show_oflush(struct device *dev, struct device_attribute *attr, char *buf) { int len = 0; MAG_LOG(" not support now\n"); return len; } int mag_attach(int sensor, struct mag_drv_obj *obj) { int err = 0; MAG_FUN(); mag_context_obj->drv_obj[sensor] = kzalloc(sizeof(struct mag_drv_obj), GFP_KERNEL); if (mag_context_obj->drv_obj[sensor] == NULL) { err = -EPERM; MAG_ERR(" mag attatch alloc fail\n"); return err; } memcpy(mag_context_obj->drv_obj[sensor], obj, sizeof(*obj)); if (NULL == mag_context_obj->drv_obj[sensor]) { err = -1; MAG_ERR(" mag attatch fail\n"); } return err; } /*----------------------------------------------------------------------------*/ EXPORT_SYMBOL_GPL(mag_attach); static int msensor_remove(struct platform_device *pdev) { MAG_LOG("msensor_remove\n"); return 0; } static int msensor_probe(struct platform_device *pdev) { MAG_LOG("msensor_probe\n"); return 0; } #ifdef CONFIG_OF static const struct of_device_id msensor_of_match[] = { { .compatible = "mediatek,msensor", }, {}, }; #endif static struct platform_driver msensor_driver = { .probe = msensor_probe, .remove = msensor_remove, .driver = { .name = "msensor", #ifdef CONFIG_OF .of_match_table = msensor_of_match, #endif } }; static int mag_real_driver_init(void) { int i = 0; int err = 0; MAG_LOG(" mag_real_driver_init +\n"); for (i = 0; i < MAX_CHOOSE_G_NUM; i++) { MAG_LOG(" i=%d\n", i); if (0 != msensor_init_list[i]) { MAG_LOG(" mag try to init driver %s\n", msensor_init_list[i]->name); err = msensor_init_list[i]->init(); if (0 == err) { MAG_LOG(" mag real driver %s probe ok\n", msensor_init_list[i]->name); break; } } } if (i == MAX_CHOOSE_G_NUM) { MAG_LOG(" mag_real_driver_init fail\n"); err = -1; } return err; } int mag_driver_add(struct mag_init_info *obj) { int err = 0; int i = 0; MAG_FUN(); if (!obj) { MAG_ERR("MAG driver add fail, mag_init_info is NULL\n"); return -1; } for (i = 0; i < MAX_CHOOSE_G_NUM; i++) { if ((i == 0) && (NULL == msensor_init_list[0])) { MAG_LOG("register mensor driver for the first time\n"); if (platform_driver_register(&msensor_driver)) MAG_ERR("failed to register msensor driver already exist\n"); } if (NULL == msensor_init_list[i]) { obj->platform_diver_addr = &msensor_driver; msensor_init_list[i] = obj; break; } } if (i >= MAX_CHOOSE_G_NUM) { MAG_ERR("MAG driver add err\n"); err = -1; } return err; } EXPORT_SYMBOL_GPL(mag_driver_add); static int mag_misc_init(struct mag_context *cxt) { int err = 0; cxt->mdev.minor = MISC_DYNAMIC_MINOR; cxt->mdev.name = MAG_MISC_DEV_NAME; err = misc_register(&cxt->mdev); if (err) MAG_ERR("unable to register mag misc device!!\n"); return err; } static void mag_input_destroy(struct mag_context *cxt) { struct input_dev *dev = cxt->idev; input_unregister_device(dev); input_free_device(dev); } static int mag_input_init(struct mag_context *cxt) { struct input_dev *dev; int err = 0; dev = input_allocate_device(); if (NULL == dev) return -ENOMEM; dev->name = MAG_INPUTDEV_NAME; input_set_capability(dev, EV_ABS, EVENT_TYPE_MAGEL_X); input_set_capability(dev, EV_ABS, EVENT_TYPE_MAGEL_Y); input_set_capability(dev, EV_ABS, EVENT_TYPE_MAGEL_Z); input_set_capability(dev, EV_ABS, EVENT_TYPE_MAGEL_STATUS); input_set_capability(dev, EV_REL, EVENT_TYPE_MAGEL_UPDATE); input_set_capability(dev, EV_REL, EVENT_TYPE_MAG_TIMESTAMP_HI); input_set_capability(dev, EV_REL, EVENT_TYPE_MAG_TIMESTAMP_LO); input_set_capability(dev, EV_REL, EVENT_TYPE_ORIENT_UPDATE); input_set_capability(dev, EV_REL, EVENT_TYPE_ORIENT_TIMESTAMP_HI); input_set_capability(dev, EV_REL, EVENT_TYPE_ORIENT_TIMESTAMP_LO); input_set_capability(dev, EV_ABS, EVENT_TYPE_O_X); input_set_capability(dev, EV_ABS, EVENT_TYPE_O_Y); input_set_capability(dev, EV_ABS, EVENT_TYPE_O_Z); input_set_capability(dev, EV_ABS, EVENT_TYPE_O_STATUS); input_set_capability(dev, EV_REL, EVENT_TYPE_O_UPDATE); input_set_abs_params(dev, EVENT_TYPE_MAGEL_X, MAG_VALUE_MIN, MAG_VALUE_MAX, 0, 0); input_set_abs_params(dev, EVENT_TYPE_MAGEL_Y, MAG_VALUE_MIN, MAG_VALUE_MAX, 0, 0); input_set_abs_params(dev, EVENT_TYPE_MAGEL_Z, MAG_VALUE_MIN, MAG_VALUE_MAX, 0, 0); input_set_abs_params(dev, EVENT_TYPE_MAGEL_STATUS, MAG_STATUS_MIN, MAG_STATUS_MAX, 0, 0); input_set_abs_params(dev, EVENT_TYPE_O_X, MAG_VALUE_MIN, MAG_VALUE_MAX, 0, 0); input_set_abs_params(dev, EVENT_TYPE_O_Y, MAG_VALUE_MIN, MAG_VALUE_MAX, 0, 0); input_set_abs_params(dev, EVENT_TYPE_O_Z, MAG_VALUE_MIN, MAG_VALUE_MAX, 0, 0); input_set_abs_params(dev, EVENT_TYPE_O_STATUS, MAG_STATUS_MIN, MAG_STATUS_MAX, 0, 0); input_set_drvdata(dev, cxt); err = input_register_device(dev); if (err < 0) { input_free_device(dev); return err; } cxt->idev = dev; return 0; } DEVICE_ATTR(magdev, S_IWUSR | S_IRUGO, mag_show_magdev, NULL); DEVICE_ATTR(magactive, S_IWUSR | S_IRUGO, mag_show_active, mag_store_active); DEVICE_ATTR(magdelay, S_IWUSR | S_IRUGO, mag_show_delay, mag_store_delay); DEVICE_ATTR(magoactive, S_IWUSR | S_IRUGO, mag_show_oactive, mag_store_oactive); DEVICE_ATTR(magodelay, S_IWUSR | S_IRUGO, mag_show_odelay, mag_store_odelay); DEVICE_ATTR(magbatch, S_IWUSR | S_IRUGO, mag_show_batch, mag_store_batch); DEVICE_ATTR(magflush, S_IWUSR | S_IRUGO, mag_show_flush, mag_store_flush); DEVICE_ATTR(magobatch, S_IWUSR | S_IRUGO, mag_show_obatch, mag_store_obatch); DEVICE_ATTR(magoflush, S_IWUSR | S_IRUGO, mag_show_oflush, mag_store_oflush); DEVICE_ATTR(magdevnum, S_IWUSR | S_IRUGO, mag_show_sensordevnum, NULL); static struct attribute *mag_attributes[] = { &dev_attr_magdev.attr, &dev_attr_magactive.attr, &dev_attr_magdelay.attr, &dev_attr_magbatch.attr, &dev_attr_magflush.attr, &dev_attr_magoactive.attr, &dev_attr_magodelay.attr, &dev_attr_magobatch.attr, &dev_attr_magoflush.attr, &dev_attr_magdevnum.attr, NULL }; static struct attribute_group mag_attribute_group = { .attrs = mag_attributes }; int mag_register_data_path(struct mag_data_path *data) { struct mag_context *cxt = NULL; cxt = mag_context_obj; cxt->mag_dev_data.div_m = data->div_m; cxt->mag_dev_data.div_o = data->div_o; cxt->mag_dev_data.get_data_m = data->get_data_m; cxt->mag_dev_data.get_data_o = data->get_data_o; cxt->mag_dev_data.get_raw_data = data->get_raw_data; MAG_LOG("mag register data path div_o: %d\n", cxt->mag_dev_data.div_o); MAG_LOG("mag register data path div_m: %d\n", cxt->mag_dev_data.div_m); return 0; } int mag_register_control_path(struct mag_control_path *ctl) { struct mag_context *cxt = NULL; int err = 0; cxt = mag_context_obj; cxt->mag_ctl.m_set_delay = ctl->m_set_delay; cxt->mag_ctl.m_enable = ctl->m_enable; cxt->mag_ctl.m_open_report_data = ctl->m_open_report_data; cxt->mag_ctl.o_set_delay = ctl->o_set_delay; cxt->mag_ctl.o_open_report_data = ctl->o_open_report_data; cxt->mag_ctl.o_enable = ctl->o_enable; cxt->mag_ctl.is_report_input_direct = ctl->is_report_input_direct; cxt->mag_ctl.is_support_batch = ctl->is_support_batch; cxt->mag_ctl.is_use_common_factory = ctl->is_use_common_factory; if (NULL == cxt->mag_ctl.m_set_delay || NULL == cxt->mag_ctl.m_enable || NULL == cxt->mag_ctl.m_open_report_data || NULL == cxt->mag_ctl.o_set_delay || NULL == cxt->mag_ctl.o_open_report_data || NULL == cxt->mag_ctl.o_enable) { MAG_LOG("mag register control path fail\n"); return -1; } /* add misc dev for sensor hal control cmd */ err = mag_misc_init(mag_context_obj); if (err) { MAG_ERR("unable to register mag misc device!!\n"); return -2; } err = sysfs_create_group(&mag_context_obj->mdev.this_device->kobj, &mag_attribute_group); if (err < 0) { MAG_ERR("unable to create mag attribute file\n"); return -3; } kobject_uevent(&mag_context_obj->mdev.this_device->kobj, KOBJ_ADD); return 0; } static int x1, y1, z1; static long pc; static long count; static int check_repeat_data(int x, int y, int z) { if ((x1 == x) && (y1 == y) && (z1 == z)) pc++; else pc = 0; x1 = x; y1 = y; z1 = z; if (pc > 100) { MAG_ERR("Mag sensor output repeat data\n"); pc = 0; } return 0; } static int check_abnormal_data(int x, int y, int z, int status) { long total; total = (x*x + y*y + z*z)/16; if ((total < 100) || (total > 10000)) { if (count % 10 == 0) MAG_ERR("mag sensor abnormal data: x=%d,y=%d,z=%d, status=%d\n", x, y, z, status); count++; if (count > 1000) count = 0; } return 0; } int mag_data_report(enum MAG_TYPE type, int x, int y, int z, int status, int64_t nt) { /* MAG_LOG("update!valus: %d, %d, %d, %d\n" , x, y, z, status); */ struct mag_context *cxt = NULL; check_repeat_data(x, y, z); check_abnormal_data(x, y, z, status); cxt = mag_context_obj; if (MAGNETIC == type) { input_report_abs(cxt->idev, EVENT_TYPE_MAGEL_STATUS, status); input_report_abs(cxt->idev, EVENT_TYPE_MAGEL_X, x); input_report_abs(cxt->idev, EVENT_TYPE_MAGEL_Y, y); input_report_abs(cxt->idev, EVENT_TYPE_MAGEL_Z, z); input_report_rel(cxt->idev, EVENT_TYPE_MAGEL_UPDATE, 1); input_report_rel(cxt->idev, EVENT_TYPE_MAG_TIMESTAMP_HI, nt >> 32); input_report_rel(cxt->idev, EVENT_TYPE_MAG_TIMESTAMP_LO, nt & 0xFFFFFFFFLL); input_sync(cxt->idev); } if (ORIENTATION == type) { input_report_abs(cxt->idev, EVENT_TYPE_O_STATUS, status); input_report_abs(cxt->idev, EVENT_TYPE_O_X, x); input_report_abs(cxt->idev, EVENT_TYPE_O_Y, y); input_report_abs(cxt->idev, EVENT_TYPE_O_Z, z); input_report_rel(cxt->idev, EVENT_TYPE_O_UPDATE, 1); input_report_rel(cxt->idev, EVENT_TYPE_ORIENT_TIMESTAMP_HI, nt >> 32); input_report_rel(cxt->idev, EVENT_TYPE_ORIENT_TIMESTAMP_LO, nt & 0xFFFFFFFFLL); input_sync(cxt->idev); } return 0; } static int mag_probe(void) { int err; MAG_LOG("+++++++++++++mag_probe!!\n"); mag_context_obj = mag_context_alloc_object(); if (!mag_context_obj) { err = -ENOMEM; MAG_ERR("unable to allocate devobj!\n"); goto exit_alloc_data_failed; } /* init real mageleration driver */ err = mag_real_driver_init(); if (err) { MAG_ERR("mag_real_driver_init fail\n"); goto exit_alloc_data_failed; } err = mag_factory_device_init(); if (err) MAG_ERR("mag_factory_device_init fail\n"); /* init input dev */ err = mag_input_init(mag_context_obj); if (err) { MAG_ERR("unable to register mag input device!\n"); goto exit_alloc_input_dev_failed; } MAG_LOG("----magel_probe OK !!\n"); return 0; exit_alloc_input_dev_failed: mag_input_destroy(mag_context_obj); exit_alloc_data_failed: kfree(mag_context_obj); MAG_ERR("----magel_probe fail !!!\n"); return err; } static int mag_remove(void) { int err = 0; MAG_FUN(f); input_unregister_device(mag_context_obj->idev); sysfs_remove_group(&mag_context_obj->idev->dev.kobj, &mag_attribute_group); err = misc_deregister(&mag_context_obj->mdev); if (err) MAG_ERR("misc_deregister fail: %d\n", err); kfree(mag_context_obj); return 0; } static int __init mag_init(void) { MAG_FUN(); if (mag_probe()) { MAG_ERR("failed to register mag driver\n"); return -ENODEV; } return 0; } static void __exit mag_exit(void) { mag_remove(); platform_driver_unregister(&msensor_driver); } late_initcall(mag_init); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MAGELEROMETER device driver"); MODULE_AUTHOR("Mediatek");