#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MTK_MEMCFG_SIMPLE_BUFFER_LEN 16 #define MTK_MEMCFG_LARGE_BUFFER_LEN (2048) struct mtk_memcfg_info_buf { unsigned long max_len; unsigned long curr_pos; char buf[MTK_MEMCFG_LARGE_BUFFER_LEN]; }; static struct mtk_memcfg_info_buf mtk_memcfg_layout_buf = { .buf = {[0 ... (MTK_MEMCFG_LARGE_BUFFER_LEN - 1)] = 0,}, .max_len = MTK_MEMCFG_LARGE_BUFFER_LEN, .curr_pos = 0, }; static unsigned long mtk_memcfg_late_warning_flag; void mtk_memcfg_write_memory_layout_buf(char *fmt, ...) { va_list ap; struct mtk_memcfg_info_buf *layout_buf = &mtk_memcfg_layout_buf; if (layout_buf->curr_pos <= layout_buf->max_len) { va_start(ap, fmt); layout_buf->curr_pos += vsnprintf((layout_buf->buf + layout_buf->curr_pos), (layout_buf->max_len - layout_buf->curr_pos), fmt, ap); va_end(ap); } } void mtk_memcfg_late_warning(unsigned long flag) { mtk_memcfg_late_warning_flag |= flag; } /* kenerl memory information */ static int mtk_memcfg_memory_layout_show(struct seq_file *m, void *v) { seq_printf(m, "%s", mtk_memcfg_layout_buf.buf); seq_printf(m, "buffer usage: %lu/%lu\n", (mtk_memcfg_layout_buf.curr_pos <= mtk_memcfg_layout_buf.max_len ? mtk_memcfg_layout_buf.curr_pos : mtk_memcfg_layout_buf.max_len), mtk_memcfg_layout_buf.max_len); return 0; } static int mtk_memcfg_memory_layout_open(struct inode *inode, struct file *file) { return single_open(file, mtk_memcfg_memory_layout_show, NULL); } /* end of kenerl memory information */ /* kenerl memory fragmentation trigger */ static LIST_HEAD(frag_page_list); static DEFINE_SPINLOCK(frag_page_list_lock); static unsigned long mtk_memcfg_frag_round; static struct kmem_cache *frag_page_cache; struct frag_page { struct list_head list; struct page *page; }; static int mtk_memcfg_frag_show(struct seq_file *m, void *v) { int cnt = 0; struct frag_page *frag_page, *n_frag_page; spin_lock(&frag_page_list_lock); list_for_each_entry_safe(frag_page, n_frag_page, &frag_page_list, list) { cnt++; } spin_unlock(&frag_page_list_lock); seq_printf(m, "round: %lu, fragmentation-trigger held %d pages, %d MB\n", mtk_memcfg_frag_round, cnt, (cnt << PAGE_SHIFT) >> 20); return 0; } static int mtk_memcfg_frag_open(struct inode *inode, struct file *file) { return single_open(file, mtk_memcfg_frag_show, NULL); } static int do_fragmentation(void *n) { struct frag_page *frag_page, *n_frag_page; struct page *page; gfp_t gfp_mask = GFP_ATOMIC; unsigned int max_order = 2; int cnt = 0, i; /* trigger fragmentation */ /* * Allocate an order-2-page, split it into 4 order-0-pages, * and free 3 of them, repeatedly. * In this way, we split all high order pages to * order-0-pages and order-1-pages to create a * fragmentation scenario. * * In current stage, we only trigger fragmentation in * normal zone. */ while (1) { #if 1 if (cnt >= 10000) { /* * release all memory and restart the fragmentation * Allocating too much frag_page consumes * too mush order-0 pages */ spin_lock(&frag_page_list_lock); list_for_each_entry_safe(frag_page, n_frag_page, &frag_page_list, list) { list_del(&frag_page->list); __free_page(frag_page->page); kmem_cache_free(frag_page_cache, frag_page); cnt--; } spin_unlock(&frag_page_list_lock); pr_alert("round: %lu, fragmentation-trigger free pages %d left\n", mtk_memcfg_frag_round, cnt); } #endif while (1) { frag_page = kmem_cache_alloc(frag_page_cache, gfp_mask); if (!frag_page) break; page = alloc_pages(gfp_mask, max_order); if (!page) { kfree(frag_page); break; } split_page(page, 0); INIT_LIST_HEAD(&frag_page->list); frag_page->page = page; spin_lock(&frag_page_list_lock); list_add(&frag_page->list, &frag_page_list); spin_unlock(&frag_page_list_lock); for (i = 1; i < (1 << max_order); i++) __free_page(page + i); cnt++; } mtk_memcfg_frag_round++; pr_alert("round: %lu, fragmentation-trigger allocate %d pages %d MB\n", mtk_memcfg_frag_round, cnt, (cnt << PAGE_SHIFT) >> 20); msleep(500); } return 0; } static ssize_t mtk_memcfg_frag_write(struct file *file, const char __user *buffer, size_t count, loff_t *pos) { static char state; static struct task_struct *p; if (count > 0) { if (get_user(state, buffer)) return -EFAULT; state -= '0'; pr_alert("%s state = %d\n", __func__, state); if (state) { pr_alert("activate do_fragmentation kthread\n"); p = kthread_create(do_fragmentation, NULL, "fragmentationd"); if (!IS_ERR(p)) wake_up_process(p); } } return count; } /* end of kenerl memory fragmentation trigger */ static int mtk_memcfg_oom_show(struct seq_file *m, void *v) { seq_puts(m, "oom-trigger\n"); return 0; } static int mtk_memcfg_oom_open(struct inode *inode, struct file *file) { return single_open(file, mtk_memcfg_oom_show, NULL); } static ssize_t mtk_memcfg_oom_write(struct file *file, const char __user *buffer, size_t count, loff_t *pos) { static char state; if (count > 0) { if (get_user(state, buffer)) return -EFAULT; state -= '0'; pr_alert("%s state = %d\n", __func__, state); if (state) { pr_alert("oom test, trying to kill system under oom scenario\n"); /* exhaust all memory */ for (;;) alloc_pages(GFP_KERNEL, 0); } } return count; } /* end of kenerl out-of-memory(oom) trigger */ static int __init mtk_memcfg_init(void) { return 0; } static void __exit mtk_memcfg_exit(void) { } static const struct file_operations mtk_memcfg_memory_layout_operations = { .open = mtk_memcfg_memory_layout_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static const struct file_operations mtk_memcfg_frag_operations = { .open = mtk_memcfg_frag_open, .write = mtk_memcfg_frag_write, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static const struct file_operations mtk_memcfg_oom_operations = { .open = mtk_memcfg_oom_open, .write = mtk_memcfg_oom_write, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; #ifdef CONFIG_SLUB_DEBUG static const struct file_operations proc_slabtrace_operations = { .open = slabtrace_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; #endif static int __init mtk_memcfg_late_init(void) { struct proc_dir_entry *entry = NULL; struct proc_dir_entry *mtk_memcfg_dir = NULL; mtk_memcfg_dir = proc_mkdir("mtk_memcfg", NULL); if (!mtk_memcfg_dir) { pr_err("[%s]: mkdir /proc/mtk_memcfg failed\n", __func__); } else { /* display kernel memory layout */ entry = proc_create("memory_layout", S_IRUGO | S_IWUSR, mtk_memcfg_dir, &mtk_memcfg_memory_layout_operations); if (!entry) pr_err("create memory_layout proc entry failed\n"); /* fragmentation test */ entry = proc_create("frag-trigger", S_IRUGO | S_IWUSR, mtk_memcfg_dir, &mtk_memcfg_frag_operations); if (!entry) pr_err("create frag-trigger proc entry failed\n"); frag_page_cache = kmem_cache_create("frag_page_cache", sizeof(struct frag_page), 0, SLAB_PANIC, NULL); if (!frag_page_cache) pr_err("create frag_page_cache failed\n"); /* oom test */ entry = proc_create("oom-trigger", S_IRUGO | S_IWUSR, mtk_memcfg_dir, &mtk_memcfg_oom_operations); if (!entry) pr_err("create oom entry failed\n"); #ifdef CONFIG_SLUB_DEBUG /* slabtrace - full slub object backtrace */ entry = proc_create("slabtrace", S_IRUSR, mtk_memcfg_dir, &proc_slabtrace_operations); if (!entry) pr_err("create slabtrace proc entry failed\n"); #endif } return 0; } module_init(mtk_memcfg_init); module_exit(mtk_memcfg_exit); static int __init mtk_memcfg_late_sanity_test(void) { #if 0 /* trigger kernel warning if warning flag is set */ if (mtk_memcfg_late_warning_flag & WARN_MEMBLOCK_CONFLICT) { aee_kernel_warning("[memory layout conflict]", mtk_memcfg_layout_buf.buf); } if (mtk_memcfg_late_warning_flag & WARN_MEMSIZE_CONFLICT) { aee_kernel_warning("[memory size conflict]", mtk_memcfg_layout_buf.buf); } if (mtk_memcfg_late_warning_flag & WARN_API_NOT_INIT) { aee_kernel_warning("[API is not initialized]", mtk_memcfg_layout_buf.buf); } #ifdef CONFIG_HIGHMEM /* check highmem zone size */ if (unlikely (totalhigh_pages && (totalhigh_pages << PAGE_SHIFT) < SZ_8M)) { aee_kernel_warning("[high zone lt 8MB]", __func__); } #endif /* end of CONFIG_HIGHMEM */ #endif return 0; } /* scan memory layout */ #ifdef CONFIG_OF static int dt_scan_memory(unsigned long node, const char *uname, int depth, void *data) { const char *type = of_get_flat_dt_prop(node, "device_type", NULL); int i; int l; u64 kernel_mem_sz = 0; u64 phone_dram_sz = 0x0; /* original phone DRAM size */ u64 dram_sz = 0; /* total DRAM size of all modules */ struct dram_info *dram_info; struct mem_desc *mem_desc; struct mblock_info *mblock_info; const __be32 *reg, *endp; u64 fb_base = 0x12345678, fb_size = 0; /* We are scanning "memory" nodes only */ if (type == NULL) { /* * The longtrail doesn't have a device_type on the * /memory node, so look for the node called /memory@0. */ if (depth != 1 || strcmp(uname, "memory@0") != 0) return 0; } else if (strcmp(type, "memory") != 0) { return 0; } reg = of_get_flat_dt_prop(node, "reg", &l); if (reg == NULL) return 0; endp = reg + (l / sizeof(__be32)); while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { u64 base, size; base = dt_mem_next_cell(dt_root_addr_cells, ®); size = dt_mem_next_cell(dt_root_size_cells, ®); if (size == 0) continue; MTK_MEMCFG_LOG_AND_PRINTK( "[debug]DRAM size (dt) : 0x%llx - 0x%llx (0x%llx)\n", (unsigned long long)base, (unsigned long long)base + (unsigned long long)size - 1, (unsigned long long)size); kernel_mem_sz += size; } /* orig_dram_info */ dram_info = (struct dram_info *)of_get_flat_dt_prop(node, "orig_dram_info", NULL); if (dram_info) { for (i = 0; i < dram_info->rank_num; i++) { MTK_MEMCFG_LOG_AND_PRINTK( "[debug]orig_dram rank[%d] : 0x%08llx - 0x%08llx (0x%llx)\n", i, dram_info->rank_info[i].start, dram_info->rank_info[i].start + dram_info->rank_info[i].size - 1, dram_info->rank_info[i].size ); phone_dram_sz += dram_info->rank_info[i].size; } } /* mblock_info */ mblock_info = (struct mblock_info *)of_get_flat_dt_prop(node, "mblock_info", NULL); if (mblock_info) { for (i = 0; i < mblock_info->mblock_num; i++) { MTK_MEMCFG_LOG_AND_PRINTK( "[debug]mblock[%d][r%d] : 0x%08llx - 0x%08llx (0x%llx)\n", i, mblock_info->mblock[i].rank, mblock_info->mblock[i].start, mblock_info->mblock[i].start + mblock_info->mblock[i].size - 1, mblock_info->mblock[i].size ); dram_sz += mblock_info->mblock[i].size; } } /* lca reserved memory */ mem_desc = (struct mem_desc *)of_get_flat_dt_prop(node, "lca_reserved_mem", NULL); if (mem_desc && mem_desc->size) { MTK_MEMCFG_LOG_AND_PRINTK( "[PHY layout]lca_reserved_mem : 0x%08llx - 0x%08llx (0x%llx)\n", mem_desc->start, mem_desc->start + mem_desc->size - 1, mem_desc->size ); dram_sz += mem_desc->size; } /* tee reserved memory */ mem_desc = (struct mem_desc *)of_get_flat_dt_prop(node, "tee_reserved_mem", NULL); if (mem_desc && mem_desc->size) { MTK_MEMCFG_LOG_AND_PRINTK( "[PHY layout]tee_reserved_mem : 0x%08llx - 0x%08llx (0x%llx)\n", mem_desc->start, mem_desc->start + mem_desc->size - 1, mem_desc->size ); dram_sz += mem_desc->size; } /* frame buffer */ fb_size = (u64)mtkfb_get_fb_size(); fb_base = (u64)mtkfb_get_fb_base(); dram_sz += fb_size; /* print memory information */ MTK_MEMCFG_LOG_AND_PRINTK( "[debug]available DRAM size = 0x%llx\n[PHY layout]FB (dt) : 0x%llx - 0x%llx (0x%llx)\n", (unsigned long long)kernel_mem_sz, (unsigned long long)fb_base, (unsigned long long)fb_base + fb_size - 1, (unsigned long long)fb_size); return node; } static int __init display_early_memory_info(void) { int node; /* system memory */ node = of_scan_flat_dt(dt_scan_memory, NULL); return 0; } #endif /* end of CONFIG_OF */ late_initcall(mtk_memcfg_late_init); late_initcall(mtk_memcfg_late_sanity_test); #ifdef CONFIG_OF pure_initcall(display_early_memory_info); #endif /* end of CONFIG_OF */ #if 0 /* test code of of_reserve */ /* test memory-reservd code */ phys_addr_t test_base = 0; phys_addr_t test_size = 0; reservedmem_of_init_fn reserve_memory_test_fn(struct reserved_mem *rmem, unsigned long node, const char *uname) { pr_alert("%s, name: %s, uname: %s, base: 0x%llx, size: 0x%llx\n", __func__, rmem->name, uname, (unsigned long long)rmem->base, (unsigned long long)rmem->size); /* memblock_free(rmem->base, rmem->size); */ test_base = rmem->base; test_size = rmem->size; return 0; } static int __init init_test_reserve_memory(void) { void *p = 0; p = ioremap(test_base, (size_t)test_size); if (p) { pr_alert("%s:%d ioremap ok: %p\n", __func__, __LINE__, p); } else { pr_alert("%s:%d ioremap failed\n", __func__, __LINE__); } return 0; } late_initcall(init_test_reserve_memory); reservedmem_of_init_fn mrdump_reserve_initfn(struct reserved_mem *rmem, unsigned long node, const char *uname) { pr_alert("%s, name: %s, uname: %s, base: 0x%llx, size: 0x%llx\n", __func__, rmem->name, uname, (unsigned long long)rmem->base, (unsigned long long)rmem->size); return 0; } RESERVEDMEM_OF_DECLARE(reserve_memory_test1, "reserve-memory-test", reserve_memory_test_fn); RESERVEDMEM_OF_DECLARE(mrdump_reserved_memory, "mrdump-reserved-memory", mrdump_reserve_initfn); #endif /* end of test code of of_reserve */