/* * kernel/sched/debug.c * * Print the CFS rbtree * * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define DEBUG #include #include #include #include #include #include #include #ifdef CONFIG_KGDB_KDB #include #endif #ifdef CONFIG_MTPROF #include "mt_sched_mon.h" #endif #include "sched.h" /* sched: kdb for sched/debug*/ /* #define TEST_SCHED_DEBUG_ENHANCEMENT */ /* #define MTK_SCHED_CMP_PRINT */ #define TRYLOCK_NUM 10 #include static DEFINE_SPINLOCK(sched_debug_lock); /* sched: add rt_exec_task info */ DECLARE_PER_CPU(u64, rt_throttling_start); DECLARE_PER_CPU(u64, exec_delta_time); DECLARE_PER_CPU(u64, clock_task); DECLARE_PER_CPU(u64, exec_start); DECLARE_PER_CPU(struct task_struct, exec_task); /* * This allows printing both to /proc/sched_debug and * to the console */ #ifndef CONFIG_KGDB_KDB #define SEQ_printf(m, x...) \ do { \ if (m) \ seq_printf(m, x); \ else \ pr_debug(x); \ } while (0) #else #define SEQ_printf(m, x...) \ do { \ if (m) \ seq_printf(m, x); \ else if (__get_cpu_var(kdb_in_use) == 1) \ kdb_printf(x); \ else \ pr_debug(x); \ } while (0) #endif /* * Ease the printing of nsec fields: */ static long long nsec_high(unsigned long long nsec) { if ((long long)nsec < 0) { nsec = -nsec; do_div(nsec, 1000000); return -nsec; } do_div(nsec, 1000000); return nsec; } static unsigned long nsec_low(unsigned long long nsec) { if ((long long)nsec < 0) nsec = -nsec; return do_div(nsec, 1000000); } #define SPLIT_NS(x) nsec_high(x), nsec_low(x) #ifdef CONFIG_FAIR_GROUP_SCHED static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) { struct sched_entity *se = tg->se[cpu]; #define P(F) \ SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) #define PN(F) \ SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) if (!se) { struct sched_avg *avg = &cpu_rq(cpu)->avg; P(avg->runnable_avg_sum); P(avg->avg_period); #ifdef MTK_SCHED_CMP_PRINT P(avg->last_runnable_update); #endif return; } PN(se->exec_start); PN(se->vruntime); PN(se->sum_exec_runtime); #ifdef CONFIG_SCHEDSTATS PN(se->statistics.wait_start); PN(se->statistics.sleep_start); PN(se->statistics.block_start); PN(se->statistics.sleep_max); PN(se->statistics.block_max); PN(se->statistics.exec_max); PN(se->statistics.slice_max); PN(se->statistics.wait_max); PN(se->statistics.wait_sum); P(se->statistics.wait_count); #endif P(se->load.weight); #ifdef CONFIG_SMP P(se->avg.runnable_avg_sum); P(se->avg.running_avg_sum); P(se->avg.avg_period); P(se->avg.load_avg_contrib); P(se->avg.utilization_avg_contrib); P(se->avg.decay_count); #endif #undef PN #undef P } #endif #ifdef CONFIG_CGROUP_SCHED static char group_path[PATH_MAX]; static char *task_group_path(struct task_group *tg) { if (autogroup_path(tg, group_path, PATH_MAX)) return group_path; return cgroup_path(tg->css.cgroup, group_path, PATH_MAX); } #endif static void print_task_at_AEE(struct seq_file *m, struct rq *rq, struct task_struct *p) { #ifdef CONFIG_SCHEDSTATS if (rq->curr == p) { #ifdef CONFIG_CGROUP_SCHED SEQ_printf(m, "R %15s %5d %9Ld.%06ld %9Ld %5d %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld %s\n", p->comm, task_pid_nr(p), SPLIT_NS(p->se.vruntime), (long long)(p->nvcsw + p->nivcsw), p->prio, SPLIT_NS(p->se.vruntime), SPLIT_NS(p->se.sum_exec_runtime), SPLIT_NS(p->se.statistics.sum_sleep_runtime), task_group_path(task_group(p))); #else SEQ_printf(m, "R %15s %5d %9Ld.%06ld %9Ld %5d %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld\n", p->comm, task_pid_nr(p), SPLIT_NS(p->se.vruntime), (long long)(p->nvcsw + p->nivcsw), p->prio, SPLIT_NS(p->se.vruntime), SPLIT_NS(p->se.sum_exec_runtime), SPLIT_NS(p->se.statistics.sum_sleep_runtime)); #endif } else { #ifdef CONFIG_CGROUP_SCHED SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld %s\n", p->comm, task_pid_nr(p), SPLIT_NS(p->se.vruntime), (long long)(p->nvcsw + p->nivcsw), p->prio, SPLIT_NS(p->se.vruntime), SPLIT_NS(p->se.sum_exec_runtime), SPLIT_NS(p->se.statistics.sum_sleep_runtime), task_group_path(task_group(p))); #else SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld\n", p->comm, task_pid_nr(p), SPLIT_NS(p->se.vruntime), (long long)(p->nvcsw + p->nivcsw), p->prio, SPLIT_NS(p->se.vruntime), SPLIT_NS(p->se.sum_exec_runtime), SPLIT_NS(p->se.statistics.sum_sleep_runtime)); #endif } #else SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld", 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L); #endif } static void print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) { if (rq->curr == p) SEQ_printf(m, "R"); else SEQ_printf(m, " "); SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", p->comm, task_pid_nr(p), SPLIT_NS(p->se.vruntime), (long long)(p->nvcsw + p->nivcsw), p->prio); #ifdef CONFIG_SCHEDSTATS SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", SPLIT_NS(p->se.vruntime), SPLIT_NS(p->se.sum_exec_runtime), SPLIT_NS(p->se.statistics.sum_sleep_runtime)); #else SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld", 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L); #endif #ifdef CONFIG_NUMA_BALANCING SEQ_printf(m, " %d", task_node(p)); #endif #ifdef CONFIG_CGROUP_SCHED SEQ_printf(m, " %s", task_group_path(task_group(p))); #endif SEQ_printf(m, "\n"); } static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) { struct task_struct *g, *p; SEQ_printf(m, "\nrunnable tasks:\n" " task PID tree-key switches prio" " exec-runtime sum-exec sum-sleep\n" "------------------------------------------------------" "----------------------------------------------------\n"); rcu_read_lock(); for_each_process_thread(g, p) { if (task_cpu(p) != rq_cpu) continue; print_task(m, rq, p); } rcu_read_unlock(); } void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) { s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, spread, rq0_min_vruntime, spread0; struct rq *rq = cpu_rq(cpu); struct sched_entity *last; unsigned long flags; #ifdef CONFIG_FAIR_GROUP_SCHED SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); #else SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); #endif SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", SPLIT_NS(cfs_rq->exec_clock)); raw_spin_lock_irqsave(&rq->lock, flags); if (cfs_rq->rb_leftmost) MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; last = __pick_last_entity(cfs_rq); if (last) max_vruntime = last->vruntime; min_vruntime = cfs_rq->min_vruntime; rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; raw_spin_unlock_irqrestore(&rq->lock, flags); SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", SPLIT_NS(MIN_vruntime)); SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", SPLIT_NS(min_vruntime)); SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", SPLIT_NS(max_vruntime)); spread = max_vruntime - MIN_vruntime; SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread)); spread0 = min_vruntime - rq0_min_vruntime; SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", SPLIT_NS(spread0)); SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", cfs_rq->nr_spread_over); SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); #ifdef CONFIG_SMP SEQ_printf(m, " .%-30s: %ld\n", "runnable_load_avg", cfs_rq->runnable_load_avg); SEQ_printf(m, " .%-30s: %ld\n", "blocked_load_avg", cfs_rq->blocked_load_avg); SEQ_printf(m, " .%-30s: %ld\n", "utilization_load_avg", cfs_rq->utilization_load_avg); #ifdef CONFIG_FAIR_GROUP_SCHED SEQ_printf(m, " .%-30s: %ld\n", "tg_load_contrib", cfs_rq->tg_load_contrib); SEQ_printf(m, " .%-30s: %d\n", "tg_runnable_contrib", cfs_rq->tg_runnable_contrib); SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", atomic_long_read(&cfs_rq->tg->load_avg)); SEQ_printf(m, " .%-30s: %d\n", "tg->runnable_avg", atomic_read(&cfs_rq->tg->runnable_avg)); #endif #endif #ifdef CONFIG_CFS_BANDWIDTH SEQ_printf(m, " .%-30s: %d\n", "tg->cfs_bandwidth.timer_active", cfs_rq->tg->cfs_bandwidth.timer_active); SEQ_printf(m, " .%-30s: %d\n", "throttled", cfs_rq->throttled); SEQ_printf(m, " .%-30s: %d\n", "throttle_count", cfs_rq->throttle_count); #endif #ifdef CONFIG_FAIR_GROUP_SCHED print_cfs_group_stats(m, cpu, cfs_rq->tg); #endif } void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) { #ifdef CONFIG_RT_GROUP_SCHED SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); #else SEQ_printf(m, "\nrt_rq[%d]:\n", cpu); #endif #define P(x) \ SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) #define PN(x) \ SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) P(rt_nr_running); P(rt_throttled); PN(rt_time); PN(rt_runtime); #undef PN #undef P } extern __read_mostly int sched_clock_running; static void print_cpu(struct seq_file *m, int cpu) { struct rq *rq = cpu_rq(cpu); unsigned long flags; #ifdef CONFIG_X86 { unsigned int freq = cpu_khz ? : 1; SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", cpu, freq / 1000, (freq % 1000)); } #else /* sched: add cpu info */ SEQ_printf(m, "cpu#%d: %s\n", cpu, cpu_is_offline(cpu)?"Offline":"Online"); #endif #define P(x) \ do { \ if (sizeof(rq->x) == 4) \ SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ else \ SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ } while (0) #define PN(x) \ SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) P(nr_running); SEQ_printf(m, " .%-30s: %lu\n", "load", rq->load.weight); P(nr_switches); P(nr_load_updates); P(nr_uninterruptible); PN(next_balance); SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); PN(clock); P(cpu_load[0]); P(cpu_load[1]); P(cpu_load[2]); P(cpu_load[3]); P(cpu_load[4]); #undef P #undef PN #ifdef CONFIG_SCHEDSTATS #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); P(yld_count); P(sched_count); P(sched_goidle); #ifdef CONFIG_SMP P64(avg_idle); P64(max_idle_balance_cost); #endif P(ttwu_count); P(ttwu_local); #undef P #undef P64 #endif spin_lock_irqsave(&sched_debug_lock, flags); print_cfs_stats(m, cpu); print_rt_stats(m, cpu); print_rq(m, rq, cpu); spin_unlock_irqrestore(&sched_debug_lock, flags); SEQ_printf(m, "\n"); } static const char *sched_tunable_scaling_names[] = { "none", "logaritmic", "linear" }; static void sched_debug_header(struct seq_file *m) { u64 ktime, sched_clk, cpu_clk; unsigned long flags; #ifdef TEST_SCHED_DEBUG_ENHANCEMENT static int i; i++; if (i == 10) { struct rq *rq = cpu_rq(0); /* lock_timekeeper(); */ raw_spin_lock_irq(&rq->lock); spin_lock_irqsave(&sched_debug_lock, flags); write_lock_irqsave(&tasklist_lock, flags); BUG_ON(1); } #endif local_irq_save(flags); ktime = ktime_to_ns(ktime_get()); sched_clk = sched_clock(); cpu_clk = local_clock(); local_irq_restore(flags); SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", init_utsname()->release, (int)strcspn(init_utsname()->version, " "), init_utsname()->version); #define P(x) \ SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) #define PN(x) \ SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) PN(ktime); PN(sched_clk); PN(cpu_clk); P(jiffies); #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK P(sched_clock_stable()); #endif #undef PN #undef P SEQ_printf(m, "\n"); SEQ_printf(m, "sysctl_sched\n"); #define P(x) \ SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) #define PN(x) \ SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) PN(sysctl_sched_latency); PN(sysctl_sched_min_granularity); PN(sysctl_sched_wakeup_granularity); P(sysctl_sched_child_runs_first); P(sysctl_sched_features); #undef PN #undef P SEQ_printf(m, " .%-40s: %d (%s)\n", "sysctl_sched_tunable_scaling", sysctl_sched_tunable_scaling, sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); SEQ_printf(m, "\n"); } static int sched_debug_show(struct seq_file *m, void *v) { int cpu = (unsigned long)(v - 2); unsigned long flags; if (cpu != -1) { /* sched: add lock */ read_lock_irqsave(&tasklist_lock, flags); print_cpu(m, cpu); read_unlock_irqrestore(&tasklist_lock, flags); SEQ_printf(m, "\n"); } else sched_debug_header(m); return 0; } void sysrq_sched_debug_show(void) { int cpu; unsigned long flags; sched_debug_header(NULL); /* sched: add lock */ read_lock_irqsave(&tasklist_lock, flags); /* for_each_online_cpu(cpu) */ for_each_possible_cpu(cpu) print_cpu(NULL, cpu); read_unlock_irqrestore(&tasklist_lock, flags); } /* * This itererator needs some explanation. * It returns 1 for the header position. * This means 2 is cpu 0. * In a hotplugged system some cpus, including cpu 0, may be missing so we have * to use cpumask_* to iterate over the cpus. */ static void *sched_debug_start(struct seq_file *file, loff_t *offset) { unsigned long n = *offset; if (n == 0) return (void *) 1; n--; if (n > 0) n = cpumask_next(n - 1, cpu_online_mask); else n = cpumask_first(cpu_online_mask); *offset = n + 1; if (n < nr_cpu_ids) return (void *)(unsigned long)(n + 2); return NULL; } static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) { (*offset)++; return sched_debug_start(file, offset); } static void sched_debug_stop(struct seq_file *file, void *data) { } static const struct seq_operations sched_debug_sops = { .start = sched_debug_start, .next = sched_debug_next, .stop = sched_debug_stop, .show = sched_debug_show, }; static int sched_debug_release(struct inode *inode, struct file *file) { seq_release(inode, file); return 0; } static int sched_debug_open(struct inode *inode, struct file *filp) { int ret = 0; ret = seq_open(filp, &sched_debug_sops); return ret; } static const struct file_operations sched_debug_fops = { .open = sched_debug_open, .read = seq_read, .llseek = seq_lseek, .release = sched_debug_release, }; static int __init init_sched_debug_procfs(void) { struct proc_dir_entry *pe; pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops); if (!pe) return -ENOMEM; return 0; } __initcall(init_sched_debug_procfs); #define __P(F) \ SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) #define P(F) \ SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) #define __PN(F) \ SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) #define PN(F) \ SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) static void sched_show_numa(struct task_struct *p, struct seq_file *m) { #ifdef CONFIG_NUMA_BALANCING struct mempolicy *pol; int node, i; if (p->mm) P(mm->numa_scan_seq); task_lock(p); pol = p->mempolicy; if (pol && !(pol->flags & MPOL_F_MORON)) pol = NULL; mpol_get(pol); task_unlock(p); SEQ_printf(m, "numa_migrations, %ld\n", xchg(&p->numa_pages_migrated, 0)); for_each_online_node(node) { for (i = 0; i < 2; i++) { unsigned long nr_faults = -1; int cpu_current, home_node; if (p->numa_faults_memory) nr_faults = p->numa_faults_memory[2*node + i]; cpu_current = !i ? (task_node(p) == node) : (pol && node_isset(node, pol->v.nodes)); home_node = (p->numa_preferred_nid == node); SEQ_printf(m, "numa_faults_memory, %d, %d, %d, %d, %ld\n", i, node, cpu_current, home_node, nr_faults); } } mpol_put(pol); #endif } void proc_sched_show_task(struct task_struct *p, struct seq_file *m) { unsigned long nr_switches; SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p), get_nr_threads(p)); SEQ_printf(m, "---------------------------------------------------------" "----------\n"); #define __P(F) \ SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) #define P(F) \ SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) #define __PN(F) \ SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) #define PN(F) \ SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) PN(se.exec_start); PN(se.vruntime); PN(se.sum_exec_runtime); nr_switches = p->nvcsw + p->nivcsw; #ifdef CONFIG_SCHEDSTATS PN(se.statistics.wait_start); PN(se.statistics.sleep_start); PN(se.statistics.block_start); PN(se.statistics.sleep_max); PN(se.statistics.block_max); PN(se.statistics.exec_max); PN(se.statistics.slice_max); PN(se.statistics.wait_max); PN(se.statistics.wait_sum); P(se.statistics.wait_count); PN(se.statistics.iowait_sum); P(se.statistics.iowait_count); P(se.nr_migrations); P(se.statistics.nr_migrations_cold); P(se.statistics.nr_failed_migrations_affine); P(se.statistics.nr_failed_migrations_running); P(se.statistics.nr_failed_migrations_hot); P(se.statistics.nr_forced_migrations); P(se.statistics.nr_wakeups); P(se.statistics.nr_wakeups_sync); P(se.statistics.nr_wakeups_migrate); P(se.statistics.nr_wakeups_local); P(se.statistics.nr_wakeups_remote); P(se.statistics.nr_wakeups_affine); P(se.statistics.nr_wakeups_affine_attempts); P(se.statistics.nr_wakeups_passive); P(se.statistics.nr_wakeups_idle); { u64 avg_atom, avg_per_cpu; avg_atom = p->se.sum_exec_runtime; if (nr_switches) avg_atom = div64_ul(avg_atom, nr_switches); else avg_atom = -1LL; avg_per_cpu = p->se.sum_exec_runtime; if (p->se.nr_migrations) { avg_per_cpu = div64_u64(avg_per_cpu, p->se.nr_migrations); } else { avg_per_cpu = -1LL; } __PN(avg_atom); __PN(avg_per_cpu); } #endif __P(nr_switches); SEQ_printf(m, "%-45s:%21Ld\n", "nr_voluntary_switches", (long long)p->nvcsw); SEQ_printf(m, "%-45s:%21Ld\n", "nr_involuntary_switches", (long long)p->nivcsw); P(se.load.weight); #ifdef CONFIG_SMP P(se.avg.runnable_avg_sum); P(se.avg.running_avg_sum); P(se.avg.avg_period); P(se.avg.load_avg_contrib); P(se.avg.utilization_avg_contrib); P(se.avg.decay_count); #endif P(policy); P(prio); #undef PN #undef __PN #undef P #undef __P { unsigned int this_cpu = raw_smp_processor_id(); u64 t0, t1; t0 = cpu_clock(this_cpu); t1 = cpu_clock(this_cpu); SEQ_printf(m, "%-45s:%21Ld\n", "clock-delta", (long long)(t1-t0)); } sched_show_numa(p, m); } void proc_sched_set_task(struct task_struct *p) { #ifdef CONFIG_SCHEDSTATS memset(&p->se.statistics, 0, sizeof(p->se.statistics)); #endif } /* sched: add ke log */ #define read_trylock_irqsave(lock, flags) \ ({ \ typecheck(unsigned long, flags); \ local_irq_save(flags); \ read_trylock(lock) ? \ 1 : ({ local_irq_restore(flags); 0; }); \ }) int read_trylock_n_irqsave(rwlock_t *lock, unsigned long *flags, struct seq_file *m, char *msg) { int locked, trylock_cnt = 0; do { locked = read_trylock_irqsave(lock, *flags); trylock_cnt++; mdelay(10); } while ((!locked) && (trylock_cnt < TRYLOCK_NUM)); if (!locked) { #ifdef CONFIG_DEBUG_SPINLOCK struct task_struct *owner = NULL; #endif SEQ_printf(m, "Warning: fail to get lock in %s\n", msg); #ifdef CONFIG_DEBUG_SPINLOCK if (lock->owner && lock->owner != SPINLOCK_OWNER_INIT) owner = lock->owner; #ifdef CONFIG_SMP SEQ_printf(m, " lock: %p, .magic: %08x, .owner: %s/%d", lock, lock->magic, owner ? owner->comm : "<>", owner ? task_pid_nr(owner) : -1); SEQ_printf(m, ".owner_cpu: %d, value: %d\n", lock->owner_cpu, lock->raw_lock.lock); #else SEQ_printf(m, " lock: %p, .magic: %08x, .owner: %s/%d", lock, lock->magic, owner ? owner->comm : "<>", owner ? task_pid_nr(owner) : -1); SEQ_printf(m, ".owner_cpu: %d\n", lock->owner_cpu); #endif #endif } return locked; } int raw_spin_trylock_n_irqsave(raw_spinlock_t *lock, unsigned long *flags, struct seq_file *m, char *msg) { int locked, trylock_cnt = 0; do { locked = raw_spin_trylock_irqsave(lock, *flags); trylock_cnt++; mdelay(10); } while ((!locked) && (trylock_cnt < TRYLOCK_NUM)); if (!locked) { #ifdef CONFIG_DEBUG_SPINLOCK struct task_struct *owner = NULL; #endif SEQ_printf(m, "Warning: fail to get lock in %s\n", msg); #ifdef CONFIG_DEBUG_SPINLOCK if (lock->owner && lock->owner != SPINLOCK_OWNER_INIT) owner = lock->owner; #ifdef CONFIG_ARM64 #ifdef CONFIG_SMP SEQ_printf(m, " lock: %lx, .magic: %08x, .owner: %s/%d", (long)lock, lock->magic, owner ? owner->comm : "<>", owner ? task_pid_nr(owner) : -1); SEQ_printf(m, ".owner_cpu: %d, owner: %hu, next: %hu\n", lock->owner_cpu, lock->raw_lock.owner, lock->raw_lock.next); #else SEQ_printf(m, " lock: %lx, .magic: %08x, .owner: %s/%d", (long)lock, lock->magic, owner ? owner->comm : "<>", owner ? task_pid_nr(owner) : -1); SEQ_printf(m, ".owner_cpu: %d, value: %d\n", lock->owner_cpu, lock->raw_lock.slock); #endif #else SEQ_printf(m, " lock: %x, .magic: %08x, .owner: %s/%d", (int)lock, lock->magic, owner ? owner->comm : "<>", owner ? task_pid_nr(owner) : -1); SEQ_printf(m, ".owner_cpu: %d, value: %d\n", lock->owner_cpu, lock->raw_lock.slock); #endif #endif } return locked; } int spin_trylock_n_irqsave(spinlock_t *lock, unsigned long *flags, struct seq_file *m, char *msg) { int locked, trylock_cnt = 0; do { locked = spin_trylock_irqsave(lock, *flags); trylock_cnt++; mdelay(10); } while ((!locked) && (trylock_cnt < TRYLOCK_NUM)); if (!locked) { #ifdef CONFIG_DEBUG_SPINLOCK raw_spinlock_t rlock = lock->rlock; struct task_struct *owner = NULL; #endif SEQ_printf(m, "Warning: fail to get lock in %s\n", msg); #ifdef CONFIG_DEBUG_SPINLOCK if (rlock.owner && rlock.owner != SPINLOCK_OWNER_INIT) owner = rlock.owner; #ifdef CONFIG_ARM64 #ifdef CONFIG_SMP SEQ_printf(m, " lock: %lx, .magic: %08x, .owner: %s/%d", (long)&rlock, rlock.magic, owner ? owner->comm : "<>", owner ? task_pid_nr(owner) : -1); SEQ_printf(m, ".owner_cpu: %d, owner: %hu, next: %hu\n", rlock.owner_cpu, rlock.raw_lock.owner, rlock.raw_lock.next); #else SEQ_printf(m, " lock: %lx, .magic: %08x, .owner: %s/%d", (long)&rlock, rlock.magic, owner ? owner->comm : "<>", owner ? task_pid_nr(owner) : -1); SEQ_printf(m, ".owner_cpu: %d, value: %d\n", rlock.owner_cpu, rlock.raw_lock.slock); #endif #else SEQ_printf(m, " lock: %x, .magic: %08x, .owner: %s/%d", (int)&rlock, rlock.magic, owner ? owner->comm : "<>", owner ? task_pid_nr(owner) : -1); SEQ_printf(m, ".owner_cpu: %d, value: %d\n", rlock.owner_cpu, rlock.raw_lock.slock); #endif #endif } return locked; } static void print_rq_at_AEE(struct seq_file *m, struct rq *rq, int rq_cpu) { struct task_struct *g, *p; SEQ_printf(m, "runnable tasks:\n"); SEQ_printf(m, " task PID tree-key switches prio exec-runtime sum-exec sum-sleep\n"); SEQ_printf(m, "------------------------------------------------------------------------------\n"); rcu_read_lock(); for_each_process_thread(g, p) { /* if (task_cpu(p) != rq_cpu) sched: only output the runnable tasks rather than ALL tasks in runqueues */ if (!p->on_rq || task_cpu(p) != rq_cpu) continue; print_task_at_AEE(m, rq, p); } rcu_read_unlock(); } #ifdef CONFIG_FAIR_GROUP_SCHED static void print_cfs_group_stats_at_AEE(struct seq_file *m, int cpu, struct task_group *tg) { struct sched_entity *se = tg->se[cpu]; #define P(F) \ SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) #define PN(F) \ SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) if (!se) { struct sched_avg *avg = &cpu_rq(cpu)->avg; P(avg->runnable_avg_sum); P(avg->avg_period); #ifdef MTK_SCHED_CMP_PRINT P(avg->last_runnable_update); #endif return; } PN(se->exec_start); PN(se->vruntime); PN(se->sum_exec_runtime); #ifdef CONFIG_SCHEDSTATS PN(se->statistics.wait_start); PN(se->statistics.sleep_start); PN(se->statistics.block_start); PN(se->statistics.sleep_max); PN(se->statistics.block_max); PN(se->statistics.exec_max); PN(se->statistics.slice_max); PN(se->statistics.wait_max); PN(se->statistics.wait_sum); P(se->statistics.wait_count); #endif P(se->load.weight); #ifdef CONFIG_SMP P(se->avg.runnable_avg_sum); P(se->avg.avg_period); P(se->avg.load_avg_contrib); P(se->avg.decay_count); # ifdef MTK_SCHED_CMP_PRINT P(se->last_runnable_update); # endif #endif #undef PN #undef P } #endif void print_cfs_rq_at_AEE(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) { s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, spread, rq0_min_vruntime, spread0; struct rq *rq = cpu_rq(cpu); struct sched_entity *last; unsigned long flags; int locked; #ifdef CONFIG_FAIR_GROUP_SCHED SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); #else SEQ_printf(m, "cfs_rq[%d]:\n", cpu); #endif SEQ_printf(m, " .%-22s: %lld.%06ld\n", "exec_clock", SPLIT_NS(cfs_rq->exec_clock)); /*raw_spin_lock_irqsave(&rq->lock, flags);*/ locked = raw_spin_trylock_n_irqsave(&rq->lock, &flags, m, "print_cfs_rq_at_AEE"); if (cfs_rq->rb_leftmost) MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; last = __pick_last_entity(cfs_rq); if (last) max_vruntime = last->vruntime; min_vruntime = cfs_rq->min_vruntime; rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; if (locked) raw_spin_unlock_irqrestore(&rq->lock, flags); SEQ_printf(m, " .%-22s: %lld.%06ld\n", "MIN_vruntime", SPLIT_NS(MIN_vruntime)); SEQ_printf(m, " .%-22s: %lld.%06ld\n", "min_vruntime", SPLIT_NS(min_vruntime)); SEQ_printf(m, " .%-22s: %lld.%06ld\n", "max_vruntime", SPLIT_NS(max_vruntime)); spread = max_vruntime - MIN_vruntime; /* SEQ_printf(m, " .%-22s: %lld.%06ld\n", "spread", SPLIT_NS(spread)); */ spread0 = min_vruntime - rq0_min_vruntime; /* SEQ_printf(m, " .%-22s: %lld.%06ld\n", "spread0", SPLIT_NS(spread0)); SEQ_printf(m, " .%-22s: %d\n", "nr_spread_over", cfs_rq->nr_spread_over); */ SEQ_printf(m, " .%-22s: %d\n", "nr_running", cfs_rq->nr_running); SEQ_printf(m, " .%-22s: %ld\n", "load", cfs_rq->load.weight); #ifdef CONFIG_SMP SEQ_printf(m, " .%-22s: %ld\n", "runnable_load_avg", cfs_rq->runnable_load_avg); SEQ_printf(m, " .%-22s: %ld\n", "blocked_load_avg", cfs_rq->blocked_load_avg); #ifdef CONFIG_FAIR_GROUP_SCHED SEQ_printf(m, " .%-22s: %ld\n", "tg_load_contrib", cfs_rq->tg_load_contrib); SEQ_printf(m, " .%-22s: %d\n", "tg_runnable_contrib", cfs_rq->tg_runnable_contrib); SEQ_printf(m, " .%-22s: %ld\n", "tg_load_avg", atomic_long_read(&cfs_rq->tg->load_avg)); SEQ_printf(m, " .%-22s: %d\n", "tg->runnable_avg", atomic_read(&cfs_rq->tg->runnable_avg)); #endif #endif #ifdef CONFIG_CFS_BANDWIDTH SEQ_printf(m, " .%-30s: %d\n", "tg->cfs_bandwidth.timer_active", cfs_rq->tg->cfs_bandwidth.timer_active); SEQ_printf(m, " .%-30s: %d\n", "throttled", cfs_rq->throttled); SEQ_printf(m, " .%-30s: %d\n", "throttle_count", cfs_rq->throttle_count); #endif #ifdef CONFIG_FAIR_GROUP_SCHED print_cfs_group_stats_at_AEE(m, cpu, cfs_rq->tg); #endif } #define for_each_leaf_cfs_rq(rq, cfs_rq) \ list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) void print_cfs_stats_at_AEE(struct seq_file *m, int cpu) { struct cfs_rq *cfs_rq; rcu_read_lock(); cfs_rq = &cpu_rq(cpu)->cfs; /*sched: only output / cgroup schedule info*/ print_cfs_rq_at_AEE(m, cpu, cfs_rq); rcu_read_unlock(); } void print_rt_rq_at_AEE(struct seq_file *m, int cpu, struct rt_rq *rt_rq) { #ifdef CONFIG_RT_GROUP_SCHED int cpu_rq_throttle = rq_cpu(rt_rq->rq); SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); #else SEQ_printf(m, "rt_rq[%d]:\n", cpu); #endif #define P(x) \ SEQ_printf(m, " .%-22s: %lld\n", #x, (long long)(rt_rq->x)) #define PN(x) \ SEQ_printf(m, " .%-22s: %lld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) P(rt_nr_running); P(rt_throttled); SEQ_printf(m, " exec_task[%d:%s], prio=%d\n", per_cpu(exec_task, cpu).pid, per_cpu(exec_task, cpu).comm, per_cpu(exec_task, cpu).prio); #ifdef CONFIG_RT_GROUP_SCHED SEQ_printf(m, " .rt_throttling_start : [%llu]\n", per_cpu(rt_throttling_start, cpu_rq_throttle)); #endif PN(rt_time); PN(rt_runtime); #undef PN #undef P } #ifdef CONFIG_RT_GROUP_SCHED typedef struct task_group *rt_rq_iter_t; static inline struct task_group *next_task_group(struct task_group *tg) { do { tg = list_entry_rcu(tg->list.next, typeof(struct task_group), list); } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); if (&tg->list == &task_groups) tg = NULL; return tg; } #define for_each_rt_rq(rt_rq, iter, rq) \ for (iter = container_of(&task_groups, typeof(*iter), list); \ (iter = next_task_group(iter)) && \ (rt_rq = iter->rt_rq[cpu_of(rq)]);) #else /* !CONFIG_RT_GROUP_SCHED */ typedef struct rt_rq *rt_rq_iter_t; #define for_each_rt_rq(rt_rq, iter, rq) \ for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) #endif void print_rt_stats_at_AEE(struct seq_file *m, int cpu) { struct rt_rq *rt_rq; rt_rq = &cpu_rq(cpu)->rt; rcu_read_lock(); /*sched: only output / cgroup schedule info*/ print_rt_rq_at_AEE(m, cpu, rt_rq); rcu_read_unlock(); } static void print_cpu_at_AEE(struct seq_file *m, int cpu) { struct rq *rq = cpu_rq(cpu); unsigned long flags; int locked; #ifdef CONFIG_X86 { unsigned int freq = cpu_khz ? : 1; SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", cpu, freq / 1000, (freq % 1000)); } #else SEQ_printf(m, "cpu#%d: %s\n", cpu, cpu_is_offline(cpu)?"Offline":"Online"); #endif #define P(x) \ do { \ if (sizeof(rq->x) == 4) \ SEQ_printf(m, " .%-22s: %ld\n", #x, (long)(rq->x)); \ else \ SEQ_printf(m, " .%-22s: %lld\n", #x, (long long)(rq->x));\ } while (0) #define PN(x) \ SEQ_printf(m, " .%-22s: %lld.%06ld\n", #x, SPLIT_NS(rq->x)) P(nr_running); SEQ_printf(m, " .%-22s: %lu\n", "load", rq->load.weight); /*P(nr_switches);*/ P(nr_load_updates); P(nr_uninterruptible); PN(next_balance); SEQ_printf(m, " .%-22s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); PN(clock); SEQ_printf(m, " .%-22s: %ld %ld %ld %ld %ld\n", "cpu_load", (long)(rq->cpu_load[0]), (long)(rq->cpu_load[1]), (long)(rq->cpu_load[2]), (long)(rq->cpu_load[3]), (long)(rq->cpu_load[4])); /* P(cpu_load[0]); P(cpu_load[1]); P(cpu_load[2]); P(cpu_load[3]); P(cpu_load[4]); */ #undef P #undef PN #ifdef CONFIG_SCHEDSTATS #define P(n) SEQ_printf(m, " .%-22s: %d\n", #n, rq->n) #define P64(n) SEQ_printf(m, " .%-22s: %lld\n", #n, rq->n) /* P(yld_count); P(sched_count); P(sched_goidle); */ #ifdef CONFIG_SMP P64(avg_idle); P64(max_idle_balance_cost); #endif /*P(ttwu_count); P(ttwu_local);*/ #undef P #undef P64 #endif /*spin_lock_irqsave_lock_irqsave(&sched_debug_lock, flags);*/ locked = spin_trylock_n_irqsave(&sched_debug_lock, &flags, m, "print_cpu_at_AEE"); print_cfs_stats_at_AEE(m, cpu); print_rt_stats_at_AEE(m, cpu); rcu_read_lock(); print_rq_at_AEE(m, rq, cpu); SEQ_printf(m, "============================================\n"); rcu_read_unlock(); /*spin_unlock_irqrestore(&sched_debug_lock, flags);*/ if (locked) spin_unlock_irqrestore(&sched_debug_lock, flags); } static void sched_debug_header_at_AEE(struct seq_file *m) { u64 sched_clk, cpu_clk; unsigned long flags; local_irq_save(flags); /*ktime = ktime_to_ns(ktime_get());*/ sched_clk = sched_clock(); cpu_clk = local_clock(); local_irq_restore(flags); SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", init_utsname()->release, (int)strcspn(init_utsname()->version, " "), init_utsname()->version); #define P(x) \ SEQ_printf(m, "%-22s: %lld\n", #x, (long long)(x)) #define PN(x) \ SEQ_printf(m, "%-22s: %lld.%06ld\n", #x, SPLIT_NS(x)) /*PN(ktime);*/ PN(sched_clk); PN(cpu_clk); P(jiffies); #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK P(sched_clock_stable()); #endif #undef PN #undef P /*SEQ_printf(m, "\n");*/ SEQ_printf(m, "sysctl_sched\n"); #define P(x) \ SEQ_printf(m, " .%-35s: %lld\n", #x, (long long)(x)) #define PN(x) \ SEQ_printf(m, " .%-35s: %lld.%06ld\n", #x, SPLIT_NS(x)) PN(sysctl_sched_latency); PN(sysctl_sched_min_granularity); PN(sysctl_sched_wakeup_granularity); P(sysctl_sched_child_runs_first); P(sysctl_sched_features); #undef PN #undef P SEQ_printf(m, " .%-35s: %d (%s)\n", "sysctl_sched_tunable_scaling", sysctl_sched_tunable_scaling, sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); SEQ_printf(m, "\n"); } void sysrq_sched_debug_show_at_AEE(void) { int cpu; unsigned long flags; int locked; sched_debug_header_at_AEE(NULL); /* read_lock_irqsave(&tasklist_lock, flags); */ locked = read_trylock_n_irqsave(&tasklist_lock, &flags, NULL, "sched_debug_show_at_AEE"); /* for_each_online_cpu(cpu) */ for_each_possible_cpu(cpu) { print_cpu_at_AEE(NULL, cpu); } if (locked) read_unlock_irqrestore(&tasklist_lock, flags); #ifdef CONFIG_MTPROF /* sched:rt throttle monitor */ mt_rt_mon_print_task_from_buffer(); #endif } /* sched: add ke log */