mm.h 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/mmdebug.h>
  6. #include <linux/gfp.h>
  7. #include <linux/bug.h>
  8. #include <linux/list.h>
  9. #include <linux/mmzone.h>
  10. #include <linux/rbtree.h>
  11. #include <linux/atomic.h>
  12. #include <linux/debug_locks.h>
  13. #include <linux/mm_types.h>
  14. #include <linux/range.h>
  15. #include <linux/pfn.h>
  16. #include <linux/bit_spinlock.h>
  17. #include <linux/shrinker.h>
  18. #include <linux/resource.h>
  19. struct mempolicy;
  20. struct anon_vma;
  21. struct anon_vma_chain;
  22. struct file_ra_state;
  23. struct user_struct;
  24. struct writeback_control;
  25. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  26. extern unsigned long max_mapnr;
  27. static inline void set_max_mapnr(unsigned long limit)
  28. {
  29. max_mapnr = limit;
  30. }
  31. #else
  32. static inline void set_max_mapnr(unsigned long limit) { }
  33. #endif
  34. extern unsigned long totalram_pages;
  35. extern void * high_memory;
  36. extern int page_cluster;
  37. #ifdef CONFIG_SYSCTL
  38. extern int sysctl_legacy_va_layout;
  39. #else
  40. #define sysctl_legacy_va_layout 0
  41. #endif
  42. #include <asm/page.h>
  43. #include <asm/pgtable.h>
  44. #include <asm/processor.h>
  45. #ifndef __pa_symbol
  46. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  47. #endif
  48. extern unsigned long sysctl_user_reserve_kbytes;
  49. extern unsigned long sysctl_admin_reserve_kbytes;
  50. extern int sysctl_overcommit_memory;
  51. extern int sysctl_overcommit_ratio;
  52. extern unsigned long sysctl_overcommit_kbytes;
  53. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  54. size_t *, loff_t *);
  55. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  56. size_t *, loff_t *);
  57. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  58. /* to align the pointer to the (next) page boundary */
  59. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  60. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  61. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
  62. /*
  63. * Linux kernel virtual memory manager primitives.
  64. * The idea being to have a "virtual" mm in the same way
  65. * we have a virtual fs - giving a cleaner interface to the
  66. * mm details, and allowing different kinds of memory mappings
  67. * (from shared memory to executable loading to arbitrary
  68. * mmap() functions).
  69. */
  70. extern struct kmem_cache *vm_area_cachep;
  71. #ifndef CONFIG_MMU
  72. extern struct rb_root nommu_region_tree;
  73. extern struct rw_semaphore nommu_region_sem;
  74. extern unsigned int kobjsize(const void *objp);
  75. #endif
  76. /*
  77. * vm_flags in vm_area_struct, see mm_types.h.
  78. */
  79. #define VM_NONE 0x00000000
  80. #define VM_READ 0x00000001 /* currently active flags */
  81. #define VM_WRITE 0x00000002
  82. #define VM_EXEC 0x00000004
  83. #define VM_SHARED 0x00000008
  84. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  85. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  86. #define VM_MAYWRITE 0x00000020
  87. #define VM_MAYEXEC 0x00000040
  88. #define VM_MAYSHARE 0x00000080
  89. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  90. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  91. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  92. #define VM_LOCKED 0x00002000
  93. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  94. /* Used by sys_madvise() */
  95. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  96. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  97. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  98. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  99. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  100. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  101. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  102. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  103. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  104. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  105. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  106. #ifdef CONFIG_MEM_SOFT_DIRTY
  107. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  108. #else
  109. # define VM_SOFTDIRTY 0
  110. #endif
  111. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  112. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  113. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  114. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  115. #if defined(CONFIG_X86)
  116. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  117. #elif defined(CONFIG_PPC)
  118. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  119. #elif defined(CONFIG_PARISC)
  120. # define VM_GROWSUP VM_ARCH_1
  121. #elif defined(CONFIG_METAG)
  122. # define VM_GROWSUP VM_ARCH_1
  123. #elif defined(CONFIG_IA64)
  124. # define VM_GROWSUP VM_ARCH_1
  125. #elif !defined(CONFIG_MMU)
  126. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  127. #endif
  128. #ifndef VM_GROWSUP
  129. # define VM_GROWSUP VM_NONE
  130. #endif
  131. /* Bits set in the VMA until the stack is in its final location */
  132. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  133. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  134. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  135. #endif
  136. #ifdef CONFIG_STACK_GROWSUP
  137. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  138. #else
  139. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  140. #endif
  141. /*
  142. * Special vmas that are non-mergable, non-mlock()able.
  143. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  144. */
  145. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  146. /* This mask defines which mm->def_flags a process can inherit its parent */
  147. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  148. /*
  149. * mapping from the currently active vm_flags protection bits (the
  150. * low four bits) to a page protection mask..
  151. */
  152. extern pgprot_t protection_map[16];
  153. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  154. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  155. #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
  156. #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
  157. #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
  158. #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
  159. #define FAULT_FLAG_TRIED 0x40 /* second try */
  160. #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
  161. /*
  162. * vm_fault is filled by the the pagefault handler and passed to the vma's
  163. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  164. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  165. *
  166. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  167. * is used, one may implement ->remap_pages to get nonlinear mapping support.
  168. */
  169. struct vm_fault {
  170. unsigned int flags; /* FAULT_FLAG_xxx flags */
  171. pgoff_t pgoff; /* Logical page offset based on vma */
  172. void __user *virtual_address; /* Faulting virtual address */
  173. struct page *page; /* ->fault handlers should return a
  174. * page here, unless VM_FAULT_NOPAGE
  175. * is set (which is also implied by
  176. * VM_FAULT_ERROR).
  177. */
  178. /* for ->map_pages() only */
  179. pgoff_t max_pgoff; /* map pages for offset from pgoff till
  180. * max_pgoff inclusive */
  181. pte_t *pte; /* pte entry associated with ->pgoff */
  182. };
  183. /*
  184. * These are the virtual MM functions - opening of an area, closing and
  185. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  186. * to the functions called when a no-page or a wp-page exception occurs.
  187. */
  188. struct vm_operations_struct {
  189. void (*open)(struct vm_area_struct * area);
  190. void (*close)(struct vm_area_struct * area);
  191. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  192. void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
  193. /* notification that a previously read-only page is about to become
  194. * writable, if an error is returned it will cause a SIGBUS */
  195. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  196. /* called by access_process_vm when get_user_pages() fails, typically
  197. * for use by special VMAs that can switch between memory and hardware
  198. */
  199. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  200. void *buf, int len, int write);
  201. /* Called by the /proc/PID/maps code to ask the vma whether it
  202. * has a special name. Returning non-NULL will also cause this
  203. * vma to be dumped unconditionally. */
  204. const char *(*name)(struct vm_area_struct *vma);
  205. #ifdef CONFIG_NUMA
  206. /*
  207. * set_policy() op must add a reference to any non-NULL @new mempolicy
  208. * to hold the policy upon return. Caller should pass NULL @new to
  209. * remove a policy and fall back to surrounding context--i.e. do not
  210. * install a MPOL_DEFAULT policy, nor the task or system default
  211. * mempolicy.
  212. */
  213. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  214. /*
  215. * get_policy() op must add reference [mpol_get()] to any policy at
  216. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  217. * in mm/mempolicy.c will do this automatically.
  218. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  219. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  220. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  221. * must return NULL--i.e., do not "fallback" to task or system default
  222. * policy.
  223. */
  224. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  225. unsigned long addr);
  226. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  227. const nodemask_t *to, unsigned long flags);
  228. #endif
  229. /* called by sys_remap_file_pages() to populate non-linear mapping */
  230. int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
  231. unsigned long size, pgoff_t pgoff);
  232. };
  233. struct mmu_gather;
  234. struct inode;
  235. #define page_private(page) ((page)->private)
  236. #define set_page_private(page, v) ((page)->private = (v))
  237. /* It's valid only if the page is free path or free_list */
  238. static inline void set_freepage_migratetype(struct page *page, int migratetype)
  239. {
  240. page->index = migratetype;
  241. }
  242. /* It's valid only if the page is free path or free_list */
  243. static inline int get_freepage_migratetype(struct page *page)
  244. {
  245. return page->index;
  246. }
  247. /*
  248. * FIXME: take this include out, include page-flags.h in
  249. * files which need it (119 of them)
  250. */
  251. #include <linux/page-flags.h>
  252. #include <linux/huge_mm.h>
  253. /*
  254. * Methods to modify the page usage count.
  255. *
  256. * What counts for a page usage:
  257. * - cache mapping (page->mapping)
  258. * - private data (page->private)
  259. * - page mapped in a task's page tables, each mapping
  260. * is counted separately
  261. *
  262. * Also, many kernel routines increase the page count before a critical
  263. * routine so they can be sure the page doesn't go away from under them.
  264. */
  265. /*
  266. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  267. */
  268. static inline int put_page_testzero(struct page *page)
  269. {
  270. VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
  271. return atomic_dec_and_test(&page->_count);
  272. }
  273. /*
  274. * Try to grab a ref unless the page has a refcount of zero, return false if
  275. * that is the case.
  276. * This can be called when MMU is off so it must not access
  277. * any of the virtual mappings.
  278. */
  279. static inline int get_page_unless_zero(struct page *page)
  280. {
  281. return atomic_inc_not_zero(&page->_count);
  282. }
  283. /*
  284. * Try to drop a ref unless the page has a refcount of one, return false if
  285. * that is the case.
  286. * This is to make sure that the refcount won't become zero after this drop.
  287. * This can be called when MMU is off so it must not access
  288. * any of the virtual mappings.
  289. */
  290. static inline int put_page_unless_one(struct page *page)
  291. {
  292. return atomic_add_unless(&page->_count, -1, 1);
  293. }
  294. extern int page_is_ram(unsigned long pfn);
  295. extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
  296. /* Support for virtually mapped pages */
  297. struct page *vmalloc_to_page(const void *addr);
  298. unsigned long vmalloc_to_pfn(const void *addr);
  299. /*
  300. * Determine if an address is within the vmalloc range
  301. *
  302. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  303. * is no special casing required.
  304. */
  305. static inline int is_vmalloc_addr(const void *x)
  306. {
  307. #ifdef CONFIG_MMU
  308. unsigned long addr = (unsigned long)x;
  309. return addr >= VMALLOC_START && addr < VMALLOC_END;
  310. #else
  311. return 0;
  312. #endif
  313. }
  314. #ifdef CONFIG_MMU
  315. extern int is_vmalloc_or_module_addr(const void *x);
  316. #else
  317. static inline int is_vmalloc_or_module_addr(const void *x)
  318. {
  319. return 0;
  320. }
  321. #endif
  322. extern void kvfree(const void *addr);
  323. static inline void compound_lock(struct page *page)
  324. {
  325. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  326. VM_BUG_ON_PAGE(PageSlab(page), page);
  327. bit_spin_lock(PG_compound_lock, &page->flags);
  328. #endif
  329. }
  330. static inline void compound_unlock(struct page *page)
  331. {
  332. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  333. VM_BUG_ON_PAGE(PageSlab(page), page);
  334. bit_spin_unlock(PG_compound_lock, &page->flags);
  335. #endif
  336. }
  337. static inline unsigned long compound_lock_irqsave(struct page *page)
  338. {
  339. unsigned long uninitialized_var(flags);
  340. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  341. local_irq_save(flags);
  342. compound_lock(page);
  343. #endif
  344. return flags;
  345. }
  346. static inline void compound_unlock_irqrestore(struct page *page,
  347. unsigned long flags)
  348. {
  349. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  350. compound_unlock(page);
  351. local_irq_restore(flags);
  352. #endif
  353. }
  354. static inline struct page *compound_head_by_tail(struct page *tail)
  355. {
  356. struct page *head = tail->first_page;
  357. /*
  358. * page->first_page may be a dangling pointer to an old
  359. * compound page, so recheck that it is still a tail
  360. * page before returning.
  361. */
  362. smp_rmb();
  363. if (likely(PageTail(tail)))
  364. return head;
  365. return tail;
  366. }
  367. static inline struct page *compound_head(struct page *page)
  368. {
  369. if (unlikely(PageTail(page)))
  370. return compound_head_by_tail(page);
  371. return page;
  372. }
  373. /*
  374. * The atomic page->_mapcount, starts from -1: so that transitions
  375. * both from it and to it can be tracked, using atomic_inc_and_test
  376. * and atomic_add_negative(-1).
  377. */
  378. static inline void page_mapcount_reset(struct page *page)
  379. {
  380. atomic_set(&(page)->_mapcount, -1);
  381. }
  382. static inline int page_mapcount(struct page *page)
  383. {
  384. return atomic_read(&(page)->_mapcount) + 1;
  385. }
  386. static inline int page_count(struct page *page)
  387. {
  388. return atomic_read(&compound_head(page)->_count);
  389. }
  390. #ifdef CONFIG_HUGETLB_PAGE
  391. extern int PageHeadHuge(struct page *page_head);
  392. #else /* CONFIG_HUGETLB_PAGE */
  393. static inline int PageHeadHuge(struct page *page_head)
  394. {
  395. return 0;
  396. }
  397. #endif /* CONFIG_HUGETLB_PAGE */
  398. static inline bool __compound_tail_refcounted(struct page *page)
  399. {
  400. return !PageSlab(page) && !PageHeadHuge(page);
  401. }
  402. /*
  403. * This takes a head page as parameter and tells if the
  404. * tail page reference counting can be skipped.
  405. *
  406. * For this to be safe, PageSlab and PageHeadHuge must remain true on
  407. * any given page where they return true here, until all tail pins
  408. * have been released.
  409. */
  410. static inline bool compound_tail_refcounted(struct page *page)
  411. {
  412. VM_BUG_ON_PAGE(!PageHead(page), page);
  413. return __compound_tail_refcounted(page);
  414. }
  415. static inline void get_huge_page_tail(struct page *page)
  416. {
  417. /*
  418. * __split_huge_page_refcount() cannot run from under us.
  419. */
  420. VM_BUG_ON_PAGE(!PageTail(page), page);
  421. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  422. VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
  423. if (compound_tail_refcounted(page->first_page))
  424. atomic_inc(&page->_mapcount);
  425. }
  426. extern bool __get_page_tail(struct page *page);
  427. static inline void get_page(struct page *page)
  428. {
  429. if (unlikely(PageTail(page)))
  430. if (likely(__get_page_tail(page)))
  431. return;
  432. /*
  433. * Getting a normal page or the head of a compound page
  434. * requires to already have an elevated page->_count.
  435. */
  436. VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
  437. atomic_inc(&page->_count);
  438. }
  439. static inline struct page *virt_to_head_page(const void *x)
  440. {
  441. struct page *page = virt_to_page(x);
  442. return compound_head(page);
  443. }
  444. /*
  445. * Setup the page count before being freed into the page allocator for
  446. * the first time (boot or memory hotplug)
  447. */
  448. static inline void init_page_count(struct page *page)
  449. {
  450. atomic_set(&page->_count, 1);
  451. }
  452. /*
  453. * PageBuddy() indicate that the page is free and in the buddy system
  454. * (see mm/page_alloc.c).
  455. *
  456. * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
  457. * -2 so that an underflow of the page_mapcount() won't be mistaken
  458. * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
  459. * efficiently by most CPU architectures.
  460. */
  461. #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
  462. static inline int PageBuddy(struct page *page)
  463. {
  464. return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
  465. }
  466. static inline void __SetPageBuddy(struct page *page)
  467. {
  468. VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
  469. atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
  470. }
  471. static inline void __ClearPageBuddy(struct page *page)
  472. {
  473. VM_BUG_ON_PAGE(!PageBuddy(page), page);
  474. atomic_set(&page->_mapcount, -1);
  475. }
  476. #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
  477. static inline int PageBalloon(struct page *page)
  478. {
  479. return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
  480. }
  481. static inline void __SetPageBalloon(struct page *page)
  482. {
  483. VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
  484. atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
  485. }
  486. static inline void __ClearPageBalloon(struct page *page)
  487. {
  488. VM_BUG_ON_PAGE(!PageBalloon(page), page);
  489. atomic_set(&page->_mapcount, -1);
  490. }
  491. void put_page(struct page *page);
  492. void put_pages_list(struct list_head *pages);
  493. void split_page(struct page *page, unsigned int order);
  494. int split_free_page(struct page *page);
  495. /*
  496. * Compound pages have a destructor function. Provide a
  497. * prototype for that function and accessor functions.
  498. * These are _only_ valid on the head of a PG_compound page.
  499. */
  500. typedef void compound_page_dtor(struct page *);
  501. static inline void set_compound_page_dtor(struct page *page,
  502. compound_page_dtor *dtor)
  503. {
  504. page[1].lru.next = (void *)dtor;
  505. }
  506. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  507. {
  508. return (compound_page_dtor *)page[1].lru.next;
  509. }
  510. static inline int compound_order(struct page *page)
  511. {
  512. if (!PageHead(page))
  513. return 0;
  514. return (unsigned long)page[1].lru.prev;
  515. }
  516. static inline void set_compound_order(struct page *page, unsigned long order)
  517. {
  518. page[1].lru.prev = (void *)order;
  519. }
  520. #ifdef CONFIG_MMU
  521. /*
  522. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  523. * servicing faults for write access. In the normal case, do always want
  524. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  525. * that do not have writing enabled, when used by access_process_vm.
  526. */
  527. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  528. {
  529. if (likely(vma->vm_flags & VM_WRITE))
  530. pte = pte_mkwrite(pte);
  531. return pte;
  532. }
  533. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  534. struct page *page, pte_t *pte, bool write, bool anon);
  535. #endif
  536. /*
  537. * Multiple processes may "see" the same page. E.g. for untouched
  538. * mappings of /dev/null, all processes see the same page full of
  539. * zeroes, and text pages of executables and shared libraries have
  540. * only one copy in memory, at most, normally.
  541. *
  542. * For the non-reserved pages, page_count(page) denotes a reference count.
  543. * page_count() == 0 means the page is free. page->lru is then used for
  544. * freelist management in the buddy allocator.
  545. * page_count() > 0 means the page has been allocated.
  546. *
  547. * Pages are allocated by the slab allocator in order to provide memory
  548. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  549. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  550. * unless a particular usage is carefully commented. (the responsibility of
  551. * freeing the kmalloc memory is the caller's, of course).
  552. *
  553. * A page may be used by anyone else who does a __get_free_page().
  554. * In this case, page_count still tracks the references, and should only
  555. * be used through the normal accessor functions. The top bits of page->flags
  556. * and page->virtual store page management information, but all other fields
  557. * are unused and could be used privately, carefully. The management of this
  558. * page is the responsibility of the one who allocated it, and those who have
  559. * subsequently been given references to it.
  560. *
  561. * The other pages (we may call them "pagecache pages") are completely
  562. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  563. * The following discussion applies only to them.
  564. *
  565. * A pagecache page contains an opaque `private' member, which belongs to the
  566. * page's address_space. Usually, this is the address of a circular list of
  567. * the page's disk buffers. PG_private must be set to tell the VM to call
  568. * into the filesystem to release these pages.
  569. *
  570. * A page may belong to an inode's memory mapping. In this case, page->mapping
  571. * is the pointer to the inode, and page->index is the file offset of the page,
  572. * in units of PAGE_CACHE_SIZE.
  573. *
  574. * If pagecache pages are not associated with an inode, they are said to be
  575. * anonymous pages. These may become associated with the swapcache, and in that
  576. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  577. *
  578. * In either case (swapcache or inode backed), the pagecache itself holds one
  579. * reference to the page. Setting PG_private should also increment the
  580. * refcount. The each user mapping also has a reference to the page.
  581. *
  582. * The pagecache pages are stored in a per-mapping radix tree, which is
  583. * rooted at mapping->page_tree, and indexed by offset.
  584. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  585. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  586. *
  587. * All pagecache pages may be subject to I/O:
  588. * - inode pages may need to be read from disk,
  589. * - inode pages which have been modified and are MAP_SHARED may need
  590. * to be written back to the inode on disk,
  591. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  592. * modified may need to be swapped out to swap space and (later) to be read
  593. * back into memory.
  594. */
  595. /*
  596. * The zone field is never updated after free_area_init_core()
  597. * sets it, so none of the operations on it need to be atomic.
  598. */
  599. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  600. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  601. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  602. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  603. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  604. /*
  605. * Define the bit shifts to access each section. For non-existent
  606. * sections we define the shift as 0; that plus a 0 mask ensures
  607. * the compiler will optimise away reference to them.
  608. */
  609. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  610. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  611. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  612. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  613. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  614. #ifdef NODE_NOT_IN_PAGE_FLAGS
  615. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  616. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  617. SECTIONS_PGOFF : ZONES_PGOFF)
  618. #else
  619. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  620. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  621. NODES_PGOFF : ZONES_PGOFF)
  622. #endif
  623. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  624. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  625. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  626. #endif
  627. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  628. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  629. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  630. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  631. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  632. static inline enum zone_type page_zonenum(const struct page *page)
  633. {
  634. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  635. }
  636. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  637. #define SECTION_IN_PAGE_FLAGS
  638. #endif
  639. /*
  640. * The identification function is mainly used by the buddy allocator for
  641. * determining if two pages could be buddies. We are not really identifying
  642. * the zone since we could be using the section number id if we do not have
  643. * node id available in page flags.
  644. * We only guarantee that it will return the same value for two combinable
  645. * pages in a zone.
  646. */
  647. static inline int page_zone_id(struct page *page)
  648. {
  649. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  650. }
  651. static inline int zone_to_nid(struct zone *zone)
  652. {
  653. #ifdef CONFIG_NUMA
  654. return zone->node;
  655. #else
  656. return 0;
  657. #endif
  658. }
  659. #ifdef NODE_NOT_IN_PAGE_FLAGS
  660. extern int page_to_nid(const struct page *page);
  661. #else
  662. static inline int page_to_nid(const struct page *page)
  663. {
  664. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  665. }
  666. #endif
  667. #ifdef CONFIG_NUMA_BALANCING
  668. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  669. {
  670. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  671. }
  672. static inline int cpupid_to_pid(int cpupid)
  673. {
  674. return cpupid & LAST__PID_MASK;
  675. }
  676. static inline int cpupid_to_cpu(int cpupid)
  677. {
  678. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  679. }
  680. static inline int cpupid_to_nid(int cpupid)
  681. {
  682. return cpu_to_node(cpupid_to_cpu(cpupid));
  683. }
  684. static inline bool cpupid_pid_unset(int cpupid)
  685. {
  686. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  687. }
  688. static inline bool cpupid_cpu_unset(int cpupid)
  689. {
  690. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  691. }
  692. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  693. {
  694. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  695. }
  696. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  697. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  698. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  699. {
  700. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  701. }
  702. static inline int page_cpupid_last(struct page *page)
  703. {
  704. return page->_last_cpupid;
  705. }
  706. static inline void page_cpupid_reset_last(struct page *page)
  707. {
  708. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  709. }
  710. #else
  711. static inline int page_cpupid_last(struct page *page)
  712. {
  713. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  714. }
  715. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  716. static inline void page_cpupid_reset_last(struct page *page)
  717. {
  718. int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
  719. page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
  720. page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
  721. }
  722. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  723. #else /* !CONFIG_NUMA_BALANCING */
  724. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  725. {
  726. return page_to_nid(page); /* XXX */
  727. }
  728. static inline int page_cpupid_last(struct page *page)
  729. {
  730. return page_to_nid(page); /* XXX */
  731. }
  732. static inline int cpupid_to_nid(int cpupid)
  733. {
  734. return -1;
  735. }
  736. static inline int cpupid_to_pid(int cpupid)
  737. {
  738. return -1;
  739. }
  740. static inline int cpupid_to_cpu(int cpupid)
  741. {
  742. return -1;
  743. }
  744. static inline int cpu_pid_to_cpupid(int nid, int pid)
  745. {
  746. return -1;
  747. }
  748. static inline bool cpupid_pid_unset(int cpupid)
  749. {
  750. return 1;
  751. }
  752. static inline void page_cpupid_reset_last(struct page *page)
  753. {
  754. }
  755. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  756. {
  757. return false;
  758. }
  759. #endif /* CONFIG_NUMA_BALANCING */
  760. static inline struct zone *page_zone(const struct page *page)
  761. {
  762. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  763. }
  764. #ifdef SECTION_IN_PAGE_FLAGS
  765. static inline void set_page_section(struct page *page, unsigned long section)
  766. {
  767. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  768. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  769. }
  770. static inline unsigned long page_to_section(const struct page *page)
  771. {
  772. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  773. }
  774. #endif
  775. static inline void set_page_zone(struct page *page, enum zone_type zone)
  776. {
  777. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  778. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  779. }
  780. static inline void set_page_node(struct page *page, unsigned long node)
  781. {
  782. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  783. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  784. }
  785. static inline void set_page_links(struct page *page, enum zone_type zone,
  786. unsigned long node, unsigned long pfn)
  787. {
  788. set_page_zone(page, zone);
  789. set_page_node(page, node);
  790. #ifdef SECTION_IN_PAGE_FLAGS
  791. set_page_section(page, pfn_to_section_nr(pfn));
  792. #endif
  793. }
  794. /*
  795. * Some inline functions in vmstat.h depend on page_zone()
  796. */
  797. #include <linux/vmstat.h>
  798. static __always_inline void *lowmem_page_address(const struct page *page)
  799. {
  800. return __va(PFN_PHYS(page_to_pfn(page)));
  801. }
  802. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  803. #define HASHED_PAGE_VIRTUAL
  804. #endif
  805. #if defined(WANT_PAGE_VIRTUAL)
  806. static inline void *page_address(const struct page *page)
  807. {
  808. return page->virtual;
  809. }
  810. static inline void set_page_address(struct page *page, void *address)
  811. {
  812. page->virtual = address;
  813. }
  814. #define page_address_init() do { } while(0)
  815. #endif
  816. #if defined(HASHED_PAGE_VIRTUAL)
  817. void *page_address(const struct page *page);
  818. void set_page_address(struct page *page, void *virtual);
  819. void page_address_init(void);
  820. #endif
  821. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  822. #define page_address(page) lowmem_page_address(page)
  823. #define set_page_address(page, address) do { } while(0)
  824. #define page_address_init() do { } while(0)
  825. #endif
  826. /*
  827. * On an anonymous page mapped into a user virtual memory area,
  828. * page->mapping points to its anon_vma, not to a struct address_space;
  829. * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
  830. *
  831. * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
  832. * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
  833. * and then page->mapping points, not to an anon_vma, but to a private
  834. * structure which KSM associates with that merged page. See ksm.h.
  835. *
  836. * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
  837. *
  838. * Please note that, confusingly, "page_mapping" refers to the inode
  839. * address_space which maps the page from disk; whereas "page_mapped"
  840. * refers to user virtual address space into which the page is mapped.
  841. */
  842. #define PAGE_MAPPING_ANON 1
  843. #define PAGE_MAPPING_KSM 2
  844. #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
  845. extern struct address_space *page_mapping(struct page *page);
  846. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  847. static inline void *page_rmapping(struct page *page)
  848. {
  849. return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
  850. }
  851. extern struct address_space *__page_file_mapping(struct page *);
  852. static inline
  853. struct address_space *page_file_mapping(struct page *page)
  854. {
  855. if (unlikely(PageSwapCache(page)))
  856. return __page_file_mapping(page);
  857. return page->mapping;
  858. }
  859. static inline int PageAnon(struct page *page)
  860. {
  861. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  862. }
  863. /*
  864. * Return the pagecache index of the passed page. Regular pagecache pages
  865. * use ->index whereas swapcache pages use ->private
  866. */
  867. static inline pgoff_t page_index(struct page *page)
  868. {
  869. if (unlikely(PageSwapCache(page)))
  870. return page_private(page);
  871. return page->index;
  872. }
  873. extern pgoff_t __page_file_index(struct page *page);
  874. /*
  875. * Return the file index of the page. Regular pagecache pages use ->index
  876. * whereas swapcache pages use swp_offset(->private)
  877. */
  878. static inline pgoff_t page_file_index(struct page *page)
  879. {
  880. if (unlikely(PageSwapCache(page)))
  881. return __page_file_index(page);
  882. return page->index;
  883. }
  884. /*
  885. * Return true if this page is mapped into pagetables.
  886. */
  887. static inline int page_mapped(struct page *page)
  888. {
  889. return atomic_read(&(page)->_mapcount) >= 0;
  890. }
  891. /*
  892. * Different kinds of faults, as returned by handle_mm_fault().
  893. * Used to decide whether a process gets delivered SIGBUS or
  894. * just gets major/minor fault counters bumped up.
  895. */
  896. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  897. #define VM_FAULT_OOM 0x0001
  898. #define VM_FAULT_SIGBUS 0x0002
  899. #define VM_FAULT_MAJOR 0x0004
  900. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  901. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  902. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  903. #define VM_FAULT_SIGSEGV 0x0040
  904. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  905. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  906. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  907. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  908. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  909. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  910. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  911. VM_FAULT_FALLBACK)
  912. /* Encode hstate index for a hwpoisoned large page */
  913. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  914. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  915. /*
  916. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  917. */
  918. extern void pagefault_out_of_memory(void);
  919. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  920. /*
  921. * Flags passed to show_mem() and show_free_areas() to suppress output in
  922. * various contexts.
  923. */
  924. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  925. extern void show_free_areas(unsigned int flags);
  926. extern bool skip_free_areas_node(unsigned int flags, int nid);
  927. void shmem_set_file(struct vm_area_struct *vma, struct file *file);
  928. int shmem_zero_setup(struct vm_area_struct *);
  929. #ifdef CONFIG_SHMEM
  930. bool shmem_mapping(struct address_space *mapping);
  931. #else
  932. static inline bool shmem_mapping(struct address_space *mapping)
  933. {
  934. return false;
  935. }
  936. #endif
  937. extern int can_do_mlock(void);
  938. extern int user_shm_lock(size_t, struct user_struct *);
  939. extern void user_shm_unlock(size_t, struct user_struct *);
  940. /*
  941. * Parameter block passed down to zap_pte_range in exceptional cases.
  942. */
  943. struct zap_details {
  944. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  945. struct address_space *check_mapping; /* Check page->mapping if set */
  946. pgoff_t first_index; /* Lowest page->index to unmap */
  947. pgoff_t last_index; /* Highest page->index to unmap */
  948. };
  949. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  950. pte_t pte);
  951. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  952. unsigned long size);
  953. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  954. unsigned long size, struct zap_details *);
  955. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  956. unsigned long start, unsigned long end);
  957. /**
  958. * mm_walk - callbacks for walk_page_range
  959. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  960. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  961. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  962. * this handler is required to be able to handle
  963. * pmd_trans_huge() pmds. They may simply choose to
  964. * split_huge_page() instead of handling it explicitly.
  965. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  966. * @pte_hole: if set, called for each hole at all levels
  967. * @hugetlb_entry: if set, called for each hugetlb entry
  968. * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
  969. * is used.
  970. *
  971. * (see walk_page_range for more details)
  972. */
  973. struct mm_walk {
  974. int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
  975. unsigned long next, struct mm_walk *walk);
  976. int (*pud_entry)(pud_t *pud, unsigned long addr,
  977. unsigned long next, struct mm_walk *walk);
  978. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  979. unsigned long next, struct mm_walk *walk);
  980. int (*pte_entry)(pte_t *pte, unsigned long addr,
  981. unsigned long next, struct mm_walk *walk);
  982. int (*pte_hole)(unsigned long addr, unsigned long next,
  983. struct mm_walk *walk);
  984. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  985. unsigned long addr, unsigned long next,
  986. struct mm_walk *walk);
  987. struct mm_struct *mm;
  988. void *private;
  989. };
  990. int walk_page_range(unsigned long addr, unsigned long end,
  991. struct mm_walk *walk);
  992. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  993. unsigned long end, unsigned long floor, unsigned long ceiling);
  994. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  995. struct vm_area_struct *vma);
  996. void unmap_mapping_range(struct address_space *mapping,
  997. loff_t const holebegin, loff_t const holelen, int even_cows);
  998. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  999. unsigned long *pfn);
  1000. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1001. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1002. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1003. void *buf, int len, int write);
  1004. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1005. loff_t const holebegin, loff_t const holelen)
  1006. {
  1007. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1008. }
  1009. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1010. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1011. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1012. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1013. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1014. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1015. int invalidate_inode_page(struct page *page);
  1016. #ifdef CONFIG_MMU
  1017. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  1018. unsigned long address, unsigned int flags);
  1019. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1020. unsigned long address, unsigned int fault_flags);
  1021. #else
  1022. static inline int handle_mm_fault(struct mm_struct *mm,
  1023. struct vm_area_struct *vma, unsigned long address,
  1024. unsigned int flags)
  1025. {
  1026. /* should never happen if there's no MMU */
  1027. BUG();
  1028. return VM_FAULT_SIGBUS;
  1029. }
  1030. static inline int fixup_user_fault(struct task_struct *tsk,
  1031. struct mm_struct *mm, unsigned long address,
  1032. unsigned int fault_flags)
  1033. {
  1034. /* should never happen if there's no MMU */
  1035. BUG();
  1036. return -EFAULT;
  1037. }
  1038. #endif
  1039. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  1040. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1041. void *buf, int len, int write);
  1042. long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1043. unsigned long start, unsigned long nr_pages,
  1044. unsigned int foll_flags, struct page **pages,
  1045. struct vm_area_struct **vmas, int *nonblocking);
  1046. long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1047. unsigned long start, unsigned long nr_pages,
  1048. int write, int force, struct page **pages,
  1049. struct vm_area_struct **vmas);
  1050. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1051. struct page **pages);
  1052. struct kvec;
  1053. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1054. struct page **pages);
  1055. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1056. struct page *get_dump_page(unsigned long addr);
  1057. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1058. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1059. unsigned int length);
  1060. int __set_page_dirty_nobuffers(struct page *page);
  1061. int __set_page_dirty_no_writeback(struct page *page);
  1062. int redirty_page_for_writepage(struct writeback_control *wbc,
  1063. struct page *page);
  1064. void account_page_dirtied(struct page *page, struct address_space *mapping);
  1065. int set_page_dirty(struct page *page);
  1066. int set_page_dirty_lock(struct page *page);
  1067. int clear_page_dirty_for_io(struct page *page);
  1068. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1069. /* Is the vma a continuation of the stack vma above it? */
  1070. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  1071. {
  1072. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  1073. }
  1074. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  1075. unsigned long addr)
  1076. {
  1077. return (vma->vm_flags & VM_GROWSDOWN) &&
  1078. (vma->vm_start == addr) &&
  1079. !vma_growsdown(vma->vm_prev, addr);
  1080. }
  1081. /* Is the vma a continuation of the stack vma below it? */
  1082. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  1083. {
  1084. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  1085. }
  1086. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  1087. unsigned long addr)
  1088. {
  1089. return (vma->vm_flags & VM_GROWSUP) &&
  1090. (vma->vm_end == addr) &&
  1091. !vma_growsup(vma->vm_next, addr);
  1092. }
  1093. extern struct task_struct *task_of_stack(struct task_struct *task,
  1094. struct vm_area_struct *vma, bool in_group);
  1095. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1096. unsigned long old_addr, struct vm_area_struct *new_vma,
  1097. unsigned long new_addr, unsigned long len,
  1098. bool need_rmap_locks);
  1099. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1100. unsigned long end, pgprot_t newprot,
  1101. int dirty_accountable, int prot_numa);
  1102. extern int mprotect_fixup(struct vm_area_struct *vma,
  1103. struct vm_area_struct **pprev, unsigned long start,
  1104. unsigned long end, unsigned long newflags);
  1105. /*
  1106. * doesn't attempt to fault and will return short.
  1107. */
  1108. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1109. struct page **pages);
  1110. /*
  1111. * per-process(per-mm_struct) statistics.
  1112. */
  1113. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1114. {
  1115. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1116. #ifdef SPLIT_RSS_COUNTING
  1117. /*
  1118. * counter is updated in asynchronous manner and may go to minus.
  1119. * But it's never be expected number for users.
  1120. */
  1121. if (val < 0)
  1122. val = 0;
  1123. #endif
  1124. return (unsigned long)val;
  1125. }
  1126. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1127. {
  1128. atomic_long_add(value, &mm->rss_stat.count[member]);
  1129. }
  1130. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1131. {
  1132. atomic_long_inc(&mm->rss_stat.count[member]);
  1133. }
  1134. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1135. {
  1136. atomic_long_dec(&mm->rss_stat.count[member]);
  1137. }
  1138. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1139. {
  1140. return get_mm_counter(mm, MM_FILEPAGES) +
  1141. get_mm_counter(mm, MM_ANONPAGES);
  1142. }
  1143. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1144. {
  1145. return max(mm->hiwater_rss, get_mm_rss(mm));
  1146. }
  1147. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1148. {
  1149. return max(mm->hiwater_vm, mm->total_vm);
  1150. }
  1151. static inline void update_hiwater_rss(struct mm_struct *mm)
  1152. {
  1153. unsigned long _rss = get_mm_rss(mm);
  1154. if ((mm)->hiwater_rss < _rss)
  1155. (mm)->hiwater_rss = _rss;
  1156. }
  1157. static inline void update_hiwater_vm(struct mm_struct *mm)
  1158. {
  1159. if (mm->hiwater_vm < mm->total_vm)
  1160. mm->hiwater_vm = mm->total_vm;
  1161. }
  1162. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1163. {
  1164. mm->hiwater_rss = get_mm_rss(mm);
  1165. }
  1166. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1167. struct mm_struct *mm)
  1168. {
  1169. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1170. if (*maxrss < hiwater_rss)
  1171. *maxrss = hiwater_rss;
  1172. }
  1173. #if defined(SPLIT_RSS_COUNTING)
  1174. void sync_mm_rss(struct mm_struct *mm);
  1175. #else
  1176. static inline void sync_mm_rss(struct mm_struct *mm)
  1177. {
  1178. }
  1179. #endif
  1180. int vma_wants_writenotify(struct vm_area_struct *vma);
  1181. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1182. spinlock_t **ptl);
  1183. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1184. spinlock_t **ptl)
  1185. {
  1186. pte_t *ptep;
  1187. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1188. return ptep;
  1189. }
  1190. #ifdef __PAGETABLE_PUD_FOLDED
  1191. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1192. unsigned long address)
  1193. {
  1194. return 0;
  1195. }
  1196. #else
  1197. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1198. #endif
  1199. #ifdef __PAGETABLE_PMD_FOLDED
  1200. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1201. unsigned long address)
  1202. {
  1203. return 0;
  1204. }
  1205. #else
  1206. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1207. #endif
  1208. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1209. pmd_t *pmd, unsigned long address);
  1210. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1211. /*
  1212. * The following ifdef needed to get the 4level-fixup.h header to work.
  1213. * Remove it when 4level-fixup.h has been removed.
  1214. */
  1215. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1216. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1217. {
  1218. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1219. NULL: pud_offset(pgd, address);
  1220. }
  1221. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1222. {
  1223. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1224. NULL: pmd_offset(pud, address);
  1225. }
  1226. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1227. #if USE_SPLIT_PTE_PTLOCKS
  1228. #if ALLOC_SPLIT_PTLOCKS
  1229. void __init ptlock_cache_init(void);
  1230. extern bool ptlock_alloc(struct page *page);
  1231. extern void ptlock_free(struct page *page);
  1232. static inline spinlock_t *ptlock_ptr(struct page *page)
  1233. {
  1234. return page->ptl;
  1235. }
  1236. #else /* ALLOC_SPLIT_PTLOCKS */
  1237. static inline void ptlock_cache_init(void)
  1238. {
  1239. }
  1240. static inline bool ptlock_alloc(struct page *page)
  1241. {
  1242. return true;
  1243. }
  1244. static inline void ptlock_free(struct page *page)
  1245. {
  1246. }
  1247. static inline spinlock_t *ptlock_ptr(struct page *page)
  1248. {
  1249. return &page->ptl;
  1250. }
  1251. #endif /* ALLOC_SPLIT_PTLOCKS */
  1252. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1253. {
  1254. return ptlock_ptr(pmd_page(*pmd));
  1255. }
  1256. static inline bool ptlock_init(struct page *page)
  1257. {
  1258. /*
  1259. * prep_new_page() initialize page->private (and therefore page->ptl)
  1260. * with 0. Make sure nobody took it in use in between.
  1261. *
  1262. * It can happen if arch try to use slab for page table allocation:
  1263. * slab code uses page->slab_cache and page->first_page (for tail
  1264. * pages), which share storage with page->ptl.
  1265. */
  1266. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1267. if (!ptlock_alloc(page))
  1268. return false;
  1269. spin_lock_init(ptlock_ptr(page));
  1270. return true;
  1271. }
  1272. /* Reset page->mapping so free_pages_check won't complain. */
  1273. static inline void pte_lock_deinit(struct page *page)
  1274. {
  1275. page->mapping = NULL;
  1276. ptlock_free(page);
  1277. }
  1278. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1279. /*
  1280. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1281. */
  1282. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1283. {
  1284. return &mm->page_table_lock;
  1285. }
  1286. static inline void ptlock_cache_init(void) {}
  1287. static inline bool ptlock_init(struct page *page) { return true; }
  1288. static inline void pte_lock_deinit(struct page *page) {}
  1289. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1290. static inline void pgtable_init(void)
  1291. {
  1292. ptlock_cache_init();
  1293. pgtable_cache_init();
  1294. }
  1295. static inline bool pgtable_page_ctor(struct page *page)
  1296. {
  1297. inc_zone_page_state(page, NR_PAGETABLE);
  1298. return ptlock_init(page);
  1299. }
  1300. static inline void pgtable_page_dtor(struct page *page)
  1301. {
  1302. pte_lock_deinit(page);
  1303. dec_zone_page_state(page, NR_PAGETABLE);
  1304. }
  1305. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1306. ({ \
  1307. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1308. pte_t *__pte = pte_offset_map(pmd, address); \
  1309. *(ptlp) = __ptl; \
  1310. spin_lock(__ptl); \
  1311. __pte; \
  1312. })
  1313. #define pte_unmap_unlock(pte, ptl) do { \
  1314. spin_unlock(ptl); \
  1315. pte_unmap(pte); \
  1316. } while (0)
  1317. #define pte_alloc_map(mm, vma, pmd, address) \
  1318. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1319. pmd, address))? \
  1320. NULL: pte_offset_map(pmd, address))
  1321. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1322. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1323. pmd, address))? \
  1324. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1325. #define pte_alloc_kernel(pmd, address) \
  1326. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1327. NULL: pte_offset_kernel(pmd, address))
  1328. #if USE_SPLIT_PMD_PTLOCKS
  1329. static struct page *pmd_to_page(pmd_t *pmd)
  1330. {
  1331. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1332. return virt_to_page((void *)((unsigned long) pmd & mask));
  1333. }
  1334. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1335. {
  1336. return ptlock_ptr(pmd_to_page(pmd));
  1337. }
  1338. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1339. {
  1340. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1341. page->pmd_huge_pte = NULL;
  1342. #endif
  1343. return ptlock_init(page);
  1344. }
  1345. static inline void pgtable_pmd_page_dtor(struct page *page)
  1346. {
  1347. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1348. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1349. #endif
  1350. ptlock_free(page);
  1351. }
  1352. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1353. #else
  1354. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1355. {
  1356. return &mm->page_table_lock;
  1357. }
  1358. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1359. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1360. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1361. #endif
  1362. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1363. {
  1364. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1365. spin_lock(ptl);
  1366. return ptl;
  1367. }
  1368. extern void free_area_init(unsigned long * zones_size);
  1369. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1370. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1371. extern void free_initmem(void);
  1372. /*
  1373. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1374. * into the buddy system. The freed pages will be poisoned with pattern
  1375. * "poison" if it's within range [0, UCHAR_MAX].
  1376. * Return pages freed into the buddy system.
  1377. */
  1378. extern unsigned long free_reserved_area(void *start, void *end,
  1379. int poison, char *s);
  1380. #ifdef CONFIG_HIGHMEM
  1381. /*
  1382. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1383. * and totalram_pages.
  1384. */
  1385. extern void free_highmem_page(struct page *page);
  1386. #endif
  1387. extern void adjust_managed_page_count(struct page *page, long count);
  1388. extern void mem_init_print_info(const char *str);
  1389. /* Free the reserved page into the buddy system, so it gets managed. */
  1390. static inline void __free_reserved_page(struct page *page)
  1391. {
  1392. ClearPageReserved(page);
  1393. init_page_count(page);
  1394. __free_page(page);
  1395. }
  1396. static inline void free_reserved_page(struct page *page)
  1397. {
  1398. __free_reserved_page(page);
  1399. adjust_managed_page_count(page, 1);
  1400. }
  1401. static inline void mark_page_reserved(struct page *page)
  1402. {
  1403. SetPageReserved(page);
  1404. adjust_managed_page_count(page, -1);
  1405. }
  1406. /*
  1407. * Default method to free all the __init memory into the buddy system.
  1408. * The freed pages will be poisoned with pattern "poison" if it's within
  1409. * range [0, UCHAR_MAX].
  1410. * Return pages freed into the buddy system.
  1411. */
  1412. static inline unsigned long free_initmem_default(int poison)
  1413. {
  1414. extern char __init_begin[], __init_end[];
  1415. return free_reserved_area(&__init_begin, &__init_end,
  1416. poison, "unused kernel");
  1417. }
  1418. static inline unsigned long get_num_physpages(void)
  1419. {
  1420. int nid;
  1421. unsigned long phys_pages = 0;
  1422. for_each_online_node(nid)
  1423. phys_pages += node_present_pages(nid);
  1424. return phys_pages;
  1425. }
  1426. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1427. /*
  1428. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1429. * zones, allocate the backing mem_map and account for memory holes in a more
  1430. * architecture independent manner. This is a substitute for creating the
  1431. * zone_sizes[] and zholes_size[] arrays and passing them to
  1432. * free_area_init_node()
  1433. *
  1434. * An architecture is expected to register range of page frames backed by
  1435. * physical memory with memblock_add[_node]() before calling
  1436. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1437. * usage, an architecture is expected to do something like
  1438. *
  1439. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1440. * max_highmem_pfn};
  1441. * for_each_valid_physical_page_range()
  1442. * memblock_add_node(base, size, nid)
  1443. * free_area_init_nodes(max_zone_pfns);
  1444. *
  1445. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1446. * registered physical page range. Similarly
  1447. * sparse_memory_present_with_active_regions() calls memory_present() for
  1448. * each range when SPARSEMEM is enabled.
  1449. *
  1450. * See mm/page_alloc.c for more information on each function exposed by
  1451. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1452. */
  1453. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1454. unsigned long node_map_pfn_alignment(void);
  1455. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1456. unsigned long end_pfn);
  1457. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1458. unsigned long end_pfn);
  1459. extern void get_pfn_range_for_nid(unsigned int nid,
  1460. unsigned long *start_pfn, unsigned long *end_pfn);
  1461. extern unsigned long find_min_pfn_with_active_regions(void);
  1462. extern void free_bootmem_with_active_regions(int nid,
  1463. unsigned long max_low_pfn);
  1464. extern void sparse_memory_present_with_active_regions(int nid);
  1465. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1466. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1467. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1468. static inline int __early_pfn_to_nid(unsigned long pfn)
  1469. {
  1470. return 0;
  1471. }
  1472. #else
  1473. /* please see mm/page_alloc.c */
  1474. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1475. /* there is a per-arch backend function. */
  1476. extern int __meminit __early_pfn_to_nid(unsigned long pfn);
  1477. #endif
  1478. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1479. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1480. unsigned long, enum memmap_context);
  1481. extern void setup_per_zone_wmarks(void);
  1482. extern int __meminit init_per_zone_wmark_min(void);
  1483. extern void mem_init(void);
  1484. extern void __init mmap_init(void);
  1485. extern void show_mem(unsigned int flags);
  1486. extern void si_meminfo(struct sysinfo * val);
  1487. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1488. extern __printf(3, 4)
  1489. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
  1490. extern void setup_per_cpu_pageset(void);
  1491. extern void zone_pcp_update(struct zone *zone);
  1492. extern void zone_pcp_reset(struct zone *zone);
  1493. /* page_alloc.c */
  1494. extern int min_free_kbytes;
  1495. /* nommu.c */
  1496. extern atomic_long_t mmap_pages_allocated;
  1497. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1498. /* interval_tree.c */
  1499. void vma_interval_tree_insert(struct vm_area_struct *node,
  1500. struct rb_root *root);
  1501. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1502. struct vm_area_struct *prev,
  1503. struct rb_root *root);
  1504. void vma_interval_tree_remove(struct vm_area_struct *node,
  1505. struct rb_root *root);
  1506. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1507. unsigned long start, unsigned long last);
  1508. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1509. unsigned long start, unsigned long last);
  1510. #define vma_interval_tree_foreach(vma, root, start, last) \
  1511. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1512. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1513. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  1514. struct list_head *list)
  1515. {
  1516. list_add_tail(&vma->shared.nonlinear, list);
  1517. }
  1518. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1519. struct rb_root *root);
  1520. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1521. struct rb_root *root);
  1522. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1523. struct rb_root *root, unsigned long start, unsigned long last);
  1524. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1525. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1526. #ifdef CONFIG_DEBUG_VM_RB
  1527. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1528. #endif
  1529. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1530. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1531. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1532. /* mmap.c */
  1533. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1534. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1535. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1536. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1537. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1538. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1539. struct mempolicy *, const char __user *);
  1540. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1541. extern int split_vma(struct mm_struct *,
  1542. struct vm_area_struct *, unsigned long addr, int new_below);
  1543. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1544. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1545. struct rb_node **, struct rb_node *);
  1546. extern void unlink_file_vma(struct vm_area_struct *);
  1547. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1548. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1549. bool *need_rmap_locks);
  1550. extern void exit_mmap(struct mm_struct *);
  1551. static inline int check_data_rlimit(unsigned long rlim,
  1552. unsigned long new,
  1553. unsigned long start,
  1554. unsigned long end_data,
  1555. unsigned long start_data)
  1556. {
  1557. if (rlim < RLIM_INFINITY) {
  1558. if (((new - start) + (end_data - start_data)) > rlim)
  1559. return -ENOSPC;
  1560. }
  1561. return 0;
  1562. }
  1563. extern int mm_take_all_locks(struct mm_struct *mm);
  1564. extern void mm_drop_all_locks(struct mm_struct *mm);
  1565. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1566. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1567. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1568. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1569. unsigned long addr, unsigned long len,
  1570. unsigned long flags,
  1571. const struct vm_special_mapping *spec);
  1572. /* This is an obsolete alternative to _install_special_mapping. */
  1573. extern int install_special_mapping(struct mm_struct *mm,
  1574. unsigned long addr, unsigned long len,
  1575. unsigned long flags, struct page **pages);
  1576. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1577. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1578. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
  1579. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  1580. unsigned long len, unsigned long prot, unsigned long flags,
  1581. unsigned long pgoff, unsigned long *populate);
  1582. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1583. #ifdef CONFIG_MMU
  1584. extern int __mm_populate(unsigned long addr, unsigned long len,
  1585. int ignore_errors);
  1586. static inline void mm_populate(unsigned long addr, unsigned long len)
  1587. {
  1588. /* Ignore errors */
  1589. (void) __mm_populate(addr, len, 1);
  1590. }
  1591. #else
  1592. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1593. #endif
  1594. /* These take the mm semaphore themselves */
  1595. extern unsigned long vm_brk(unsigned long, unsigned long);
  1596. extern int vm_munmap(unsigned long, size_t);
  1597. extern unsigned long vm_mmap(struct file *, unsigned long,
  1598. unsigned long, unsigned long,
  1599. unsigned long, unsigned long);
  1600. struct vm_unmapped_area_info {
  1601. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1602. unsigned long flags;
  1603. unsigned long length;
  1604. unsigned long low_limit;
  1605. unsigned long high_limit;
  1606. unsigned long align_mask;
  1607. unsigned long align_offset;
  1608. };
  1609. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1610. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1611. /*
  1612. * Search for an unmapped address range.
  1613. *
  1614. * We are looking for a range that:
  1615. * - does not intersect with any VMA;
  1616. * - is contained within the [low_limit, high_limit) interval;
  1617. * - is at least the desired size.
  1618. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1619. */
  1620. static inline unsigned long
  1621. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1622. {
  1623. if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
  1624. return unmapped_area(info);
  1625. else
  1626. return unmapped_area_topdown(info);
  1627. }
  1628. /* truncate.c */
  1629. extern void truncate_inode_pages(struct address_space *, loff_t);
  1630. extern void truncate_inode_pages_range(struct address_space *,
  1631. loff_t lstart, loff_t lend);
  1632. extern void truncate_inode_pages_final(struct address_space *);
  1633. /* generic vm_area_ops exported for stackable file systems */
  1634. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1635. extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
  1636. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1637. /* mm/page-writeback.c */
  1638. int write_one_page(struct page *page, int wait);
  1639. void task_dirty_inc(struct task_struct *tsk);
  1640. /* readahead.c */
  1641. #define VM_MAX_READAHEAD 128 /* kbytes */
  1642. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1643. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1644. pgoff_t offset, unsigned long nr_to_read);
  1645. void page_cache_sync_readahead(struct address_space *mapping,
  1646. struct file_ra_state *ra,
  1647. struct file *filp,
  1648. pgoff_t offset,
  1649. unsigned long size);
  1650. void page_cache_async_readahead(struct address_space *mapping,
  1651. struct file_ra_state *ra,
  1652. struct file *filp,
  1653. struct page *pg,
  1654. pgoff_t offset,
  1655. unsigned long size);
  1656. unsigned long max_sane_readahead(unsigned long nr);
  1657. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1658. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1659. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1660. extern int expand_downwards(struct vm_area_struct *vma,
  1661. unsigned long address);
  1662. #if VM_GROWSUP
  1663. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1664. #else
  1665. #define expand_upwards(vma, address) (0)
  1666. #endif
  1667. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1668. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1669. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1670. struct vm_area_struct **pprev);
  1671. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1672. NULL if none. Assume start_addr < end_addr. */
  1673. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1674. {
  1675. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1676. if (vma && end_addr <= vma->vm_start)
  1677. vma = NULL;
  1678. return vma;
  1679. }
  1680. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1681. {
  1682. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1683. }
  1684. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1685. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1686. unsigned long vm_start, unsigned long vm_end)
  1687. {
  1688. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1689. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1690. vma = NULL;
  1691. return vma;
  1692. }
  1693. #ifdef CONFIG_MMU
  1694. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1695. void vma_set_page_prot(struct vm_area_struct *vma);
  1696. #else
  1697. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1698. {
  1699. return __pgprot(0);
  1700. }
  1701. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  1702. {
  1703. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  1704. }
  1705. #endif
  1706. #ifdef CONFIG_NUMA_BALANCING
  1707. unsigned long change_prot_numa(struct vm_area_struct *vma,
  1708. unsigned long start, unsigned long end);
  1709. #endif
  1710. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1711. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1712. unsigned long pfn, unsigned long size, pgprot_t);
  1713. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1714. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1715. unsigned long pfn);
  1716. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1717. unsigned long pfn);
  1718. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  1719. struct page *follow_page_mask(struct vm_area_struct *vma,
  1720. unsigned long address, unsigned int foll_flags,
  1721. unsigned int *page_mask);
  1722. static inline struct page *follow_page(struct vm_area_struct *vma,
  1723. unsigned long address, unsigned int foll_flags)
  1724. {
  1725. unsigned int unused_page_mask;
  1726. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  1727. }
  1728. #define FOLL_WRITE 0x01 /* check pte is writable */
  1729. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1730. #define FOLL_GET 0x04 /* do get_page on page */
  1731. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1732. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1733. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1734. * and return without waiting upon it */
  1735. #define FOLL_MLOCK 0x40 /* mark page as mlocked */
  1736. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1737. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1738. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  1739. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  1740. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  1741. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1742. void *data);
  1743. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1744. unsigned long size, pte_fn_t fn, void *data);
  1745. #ifdef CONFIG_PROC_FS
  1746. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1747. #else
  1748. static inline void vm_stat_account(struct mm_struct *mm,
  1749. unsigned long flags, struct file *file, long pages)
  1750. {
  1751. mm->total_vm += pages;
  1752. }
  1753. #endif /* CONFIG_PROC_FS */
  1754. #ifdef CONFIG_DEBUG_PAGEALLOC
  1755. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1756. #ifdef CONFIG_HIBERNATION
  1757. extern bool kernel_page_present(struct page *page);
  1758. #endif /* CONFIG_HIBERNATION */
  1759. #else
  1760. static inline void
  1761. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1762. #ifdef CONFIG_HIBERNATION
  1763. static inline bool kernel_page_present(struct page *page) { return true; }
  1764. #endif /* CONFIG_HIBERNATION */
  1765. #endif
  1766. #ifdef __HAVE_ARCH_GATE_AREA
  1767. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1768. extern int in_gate_area_no_mm(unsigned long addr);
  1769. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1770. #else
  1771. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  1772. {
  1773. return NULL;
  1774. }
  1775. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  1776. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  1777. {
  1778. return 0;
  1779. }
  1780. #endif /* __HAVE_ARCH_GATE_AREA */
  1781. #ifdef CONFIG_SYSCTL
  1782. extern int sysctl_drop_caches;
  1783. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1784. void __user *, size_t *, loff_t *);
  1785. #endif
  1786. unsigned long shrink_slab(struct shrink_control *shrink,
  1787. unsigned long nr_pages_scanned,
  1788. unsigned long lru_pages);
  1789. void drop_pagecache(void);
  1790. #ifndef CONFIG_MMU
  1791. #define randomize_va_space 0
  1792. #else
  1793. extern int randomize_va_space;
  1794. #endif
  1795. const char * arch_vma_name(struct vm_area_struct *vma);
  1796. void print_vma_addr(char *prefix, unsigned long rip);
  1797. void sparse_mem_maps_populate_node(struct page **map_map,
  1798. unsigned long pnum_begin,
  1799. unsigned long pnum_end,
  1800. unsigned long map_count,
  1801. int nodeid);
  1802. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1803. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1804. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1805. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1806. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1807. void *vmemmap_alloc_block(unsigned long size, int node);
  1808. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1809. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1810. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  1811. int node);
  1812. int vmemmap_populate(unsigned long start, unsigned long end, int node);
  1813. void vmemmap_populate_print_last(void);
  1814. #ifdef CONFIG_MEMORY_HOTPLUG
  1815. void vmemmap_free(unsigned long start, unsigned long end);
  1816. #endif
  1817. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  1818. unsigned long size);
  1819. enum mf_flags {
  1820. MF_COUNT_INCREASED = 1 << 0,
  1821. MF_ACTION_REQUIRED = 1 << 1,
  1822. MF_MUST_KILL = 1 << 2,
  1823. MF_SOFT_OFFLINE = 1 << 3,
  1824. };
  1825. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  1826. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  1827. extern int unpoison_memory(unsigned long pfn);
  1828. extern int sysctl_memory_failure_early_kill;
  1829. extern int sysctl_memory_failure_recovery;
  1830. extern void shake_page(struct page *p, int access);
  1831. extern atomic_long_t num_poisoned_pages;
  1832. extern int soft_offline_page(struct page *page, int flags);
  1833. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1834. extern void clear_huge_page(struct page *page,
  1835. unsigned long addr,
  1836. unsigned int pages_per_huge_page);
  1837. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1838. unsigned long addr, struct vm_area_struct *vma,
  1839. unsigned int pages_per_huge_page);
  1840. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1841. #ifdef CONFIG_DEBUG_PAGEALLOC
  1842. extern unsigned int _debug_guardpage_minorder;
  1843. static inline unsigned int debug_guardpage_minorder(void)
  1844. {
  1845. return _debug_guardpage_minorder;
  1846. }
  1847. static inline bool page_is_guard(struct page *page)
  1848. {
  1849. return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  1850. }
  1851. #else
  1852. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  1853. static inline bool page_is_guard(struct page *page) { return false; }
  1854. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1855. #if MAX_NUMNODES > 1
  1856. void __init setup_nr_node_ids(void);
  1857. #else
  1858. static inline void setup_nr_node_ids(void) {}
  1859. #endif
  1860. #endif /* __KERNEL__ */
  1861. #endif /* _LINUX_MM_H */