uaccess.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510
  1. /*
  2. * include/asm-xtensa/uaccess.h
  3. *
  4. * User space memory access functions
  5. *
  6. * These routines provide basic accessing functions to the user memory
  7. * space for the kernel. This header file provides functions such as:
  8. *
  9. * This file is subject to the terms and conditions of the GNU General Public
  10. * License. See the file "COPYING" in the main directory of this archive
  11. * for more details.
  12. *
  13. * Copyright (C) 2001 - 2005 Tensilica Inc.
  14. */
  15. #ifndef _XTENSA_UACCESS_H
  16. #define _XTENSA_UACCESS_H
  17. #include <linux/errno.h>
  18. #ifndef __ASSEMBLY__
  19. #include <linux/prefetch.h>
  20. #endif
  21. #include <asm/types.h>
  22. #define VERIFY_READ 0
  23. #define VERIFY_WRITE 1
  24. #ifdef __ASSEMBLY__
  25. #include <asm/current.h>
  26. #include <asm/asm-offsets.h>
  27. #include <asm/processor.h>
  28. /*
  29. * These assembly macros mirror the C macros that follow below. They
  30. * should always have identical functionality. See
  31. * arch/xtensa/kernel/sys.S for usage.
  32. */
  33. #define KERNEL_DS 0
  34. #define USER_DS 1
  35. #define get_ds (KERNEL_DS)
  36. /*
  37. * get_fs reads current->thread.current_ds into a register.
  38. * On Entry:
  39. * <ad> anything
  40. * <sp> stack
  41. * On Exit:
  42. * <ad> contains current->thread.current_ds
  43. */
  44. .macro get_fs ad, sp
  45. GET_CURRENT(\ad,\sp)
  46. #if THREAD_CURRENT_DS > 1020
  47. addi \ad, \ad, TASK_THREAD
  48. l32i \ad, \ad, THREAD_CURRENT_DS - TASK_THREAD
  49. #else
  50. l32i \ad, \ad, THREAD_CURRENT_DS
  51. #endif
  52. .endm
  53. /*
  54. * set_fs sets current->thread.current_ds to some value.
  55. * On Entry:
  56. * <at> anything (temp register)
  57. * <av> value to write
  58. * <sp> stack
  59. * On Exit:
  60. * <at> destroyed (actually, current)
  61. * <av> preserved, value to write
  62. */
  63. .macro set_fs at, av, sp
  64. GET_CURRENT(\at,\sp)
  65. s32i \av, \at, THREAD_CURRENT_DS
  66. .endm
  67. /*
  68. * kernel_ok determines whether we should bypass addr/size checking.
  69. * See the equivalent C-macro version below for clarity.
  70. * On success, kernel_ok branches to a label indicated by parameter
  71. * <success>. This implies that the macro falls through to the next
  72. * insruction on an error.
  73. *
  74. * Note that while this macro can be used independently, we designed
  75. * in for optimal use in the access_ok macro below (i.e., we fall
  76. * through on error).
  77. *
  78. * On Entry:
  79. * <at> anything (temp register)
  80. * <success> label to branch to on success; implies
  81. * fall-through macro on error
  82. * <sp> stack pointer
  83. * On Exit:
  84. * <at> destroyed (actually, current->thread.current_ds)
  85. */
  86. #if ((KERNEL_DS != 0) || (USER_DS == 0))
  87. # error Assembly macro kernel_ok fails
  88. #endif
  89. .macro kernel_ok at, sp, success
  90. get_fs \at, \sp
  91. beqz \at, \success
  92. .endm
  93. /*
  94. * user_ok determines whether the access to user-space memory is allowed.
  95. * See the equivalent C-macro version below for clarity.
  96. *
  97. * On error, user_ok branches to a label indicated by parameter
  98. * <error>. This implies that the macro falls through to the next
  99. * instruction on success.
  100. *
  101. * Note that while this macro can be used independently, we designed
  102. * in for optimal use in the access_ok macro below (i.e., we fall
  103. * through on success).
  104. *
  105. * On Entry:
  106. * <aa> register containing memory address
  107. * <as> register containing memory size
  108. * <at> temp register
  109. * <error> label to branch to on error; implies fall-through
  110. * macro on success
  111. * On Exit:
  112. * <aa> preserved
  113. * <as> preserved
  114. * <at> destroyed (actually, (TASK_SIZE + 1 - size))
  115. */
  116. .macro user_ok aa, as, at, error
  117. movi \at, __XTENSA_UL_CONST(TASK_SIZE)
  118. bgeu \as, \at, \error
  119. sub \at, \at, \as
  120. bgeu \aa, \at, \error
  121. .endm
  122. /*
  123. * access_ok determines whether a memory access is allowed. See the
  124. * equivalent C-macro version below for clarity.
  125. *
  126. * On error, access_ok branches to a label indicated by parameter
  127. * <error>. This implies that the macro falls through to the next
  128. * instruction on success.
  129. *
  130. * Note that we assume success is the common case, and we optimize the
  131. * branch fall-through case on success.
  132. *
  133. * On Entry:
  134. * <aa> register containing memory address
  135. * <as> register containing memory size
  136. * <at> temp register
  137. * <sp>
  138. * <error> label to branch to on error; implies fall-through
  139. * macro on success
  140. * On Exit:
  141. * <aa> preserved
  142. * <as> preserved
  143. * <at> destroyed
  144. */
  145. .macro access_ok aa, as, at, sp, error
  146. kernel_ok \at, \sp, .Laccess_ok_\@
  147. user_ok \aa, \as, \at, \error
  148. .Laccess_ok_\@:
  149. .endm
  150. #else /* __ASSEMBLY__ not defined */
  151. #include <linux/sched.h>
  152. /*
  153. * The fs value determines whether argument validity checking should
  154. * be performed or not. If get_fs() == USER_DS, checking is
  155. * performed, with get_fs() == KERNEL_DS, checking is bypassed.
  156. *
  157. * For historical reasons (Data Segment Register?), these macros are
  158. * grossly misnamed.
  159. */
  160. #define KERNEL_DS ((mm_segment_t) { 0 })
  161. #define USER_DS ((mm_segment_t) { 1 })
  162. #define get_ds() (KERNEL_DS)
  163. #define get_fs() (current->thread.current_ds)
  164. #define set_fs(val) (current->thread.current_ds = (val))
  165. #define segment_eq(a,b) ((a).seg == (b).seg)
  166. #define __kernel_ok (segment_eq(get_fs(), KERNEL_DS))
  167. #define __user_ok(addr,size) \
  168. (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size)))
  169. #define __access_ok(addr,size) (__kernel_ok || __user_ok((addr),(size)))
  170. #define access_ok(type,addr,size) __access_ok((unsigned long)(addr),(size))
  171. /*
  172. * These are the main single-value transfer routines. They
  173. * automatically use the right size if we just have the right pointer
  174. * type.
  175. *
  176. * This gets kind of ugly. We want to return _two_ values in
  177. * "get_user()" and yet we don't want to do any pointers, because that
  178. * is too much of a performance impact. Thus we have a few rather ugly
  179. * macros here, and hide all the uglyness from the user.
  180. *
  181. * Careful to not
  182. * (a) re-use the arguments for side effects (sizeof is ok)
  183. * (b) require any knowledge of processes at this stage
  184. */
  185. #define put_user(x,ptr) __put_user_check((x),(ptr),sizeof(*(ptr)))
  186. #define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr)))
  187. /*
  188. * The "__xxx" versions of the user access functions are versions that
  189. * do not verify the address space, that must have been done previously
  190. * with a separate "access_ok()" call (this is used when we do multiple
  191. * accesses to the same area of user memory).
  192. */
  193. #define __put_user(x,ptr) __put_user_nocheck((x),(ptr),sizeof(*(ptr)))
  194. #define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr)))
  195. extern long __put_user_bad(void);
  196. #define __put_user_nocheck(x,ptr,size) \
  197. ({ \
  198. long __pu_err; \
  199. __put_user_size((x),(ptr),(size),__pu_err); \
  200. __pu_err; \
  201. })
  202. #define __put_user_check(x,ptr,size) \
  203. ({ \
  204. long __pu_err = -EFAULT; \
  205. __typeof__(*(ptr)) *__pu_addr = (ptr); \
  206. if (access_ok(VERIFY_WRITE,__pu_addr,size)) \
  207. __put_user_size((x),__pu_addr,(size),__pu_err); \
  208. __pu_err; \
  209. })
  210. #define __put_user_size(x,ptr,size,retval) \
  211. do { \
  212. int __cb; \
  213. retval = 0; \
  214. switch (size) { \
  215. case 1: __put_user_asm(x,ptr,retval,1,"s8i",__cb); break; \
  216. case 2: __put_user_asm(x,ptr,retval,2,"s16i",__cb); break; \
  217. case 4: __put_user_asm(x,ptr,retval,4,"s32i",__cb); break; \
  218. case 8: { \
  219. __typeof__(*ptr) __v64 = x; \
  220. retval = __copy_to_user(ptr,&__v64,8); \
  221. break; \
  222. } \
  223. default: __put_user_bad(); \
  224. } \
  225. } while (0)
  226. /*
  227. * Consider a case of a user single load/store would cause both an
  228. * unaligned exception and an MMU-related exception (unaligned
  229. * exceptions happen first):
  230. *
  231. * User code passes a bad variable ptr to a system call.
  232. * Kernel tries to access the variable.
  233. * Unaligned exception occurs.
  234. * Unaligned exception handler tries to make aligned accesses.
  235. * Double exception occurs for MMU-related cause (e.g., page not mapped).
  236. * do_page_fault() thinks the fault address belongs to the kernel, not the
  237. * user, and panics.
  238. *
  239. * The kernel currently prohibits user unaligned accesses. We use the
  240. * __check_align_* macros to check for unaligned addresses before
  241. * accessing user space so we don't crash the kernel. Both
  242. * __put_user_asm and __get_user_asm use these alignment macros, so
  243. * macro-specific labels such as 0f, 1f, %0, %2, and %3 must stay in
  244. * sync.
  245. */
  246. #define __check_align_1 ""
  247. #define __check_align_2 \
  248. " _bbci.l %3, 0, 1f \n" \
  249. " movi %0, %4 \n" \
  250. " _j 2f \n"
  251. #define __check_align_4 \
  252. " _bbsi.l %3, 0, 0f \n" \
  253. " _bbci.l %3, 1, 1f \n" \
  254. "0: movi %0, %4 \n" \
  255. " _j 2f \n"
  256. /*
  257. * We don't tell gcc that we are accessing memory, but this is OK
  258. * because we do not write to any memory gcc knows about, so there
  259. * are no aliasing issues.
  260. *
  261. * WARNING: If you modify this macro at all, verify that the
  262. * __check_align_* macros still work.
  263. */
  264. #define __put_user_asm(x, addr, err, align, insn, cb) \
  265. __asm__ __volatile__( \
  266. __check_align_##align \
  267. "1: "insn" %2, %3, 0 \n" \
  268. "2: \n" \
  269. " .section .fixup,\"ax\" \n" \
  270. " .align 4 \n" \
  271. "4: \n" \
  272. " .long 2b \n" \
  273. "5: \n" \
  274. " l32r %1, 4b \n" \
  275. " movi %0, %4 \n" \
  276. " jx %1 \n" \
  277. " .previous \n" \
  278. " .section __ex_table,\"a\" \n" \
  279. " .long 1b, 5b \n" \
  280. " .previous" \
  281. :"=r" (err), "=r" (cb) \
  282. :"r" ((int)(x)), "r" (addr), "i" (-EFAULT), "0" (err))
  283. #define __get_user_nocheck(x,ptr,size) \
  284. ({ \
  285. long __gu_err, __gu_val; \
  286. __get_user_size(__gu_val,(ptr),(size),__gu_err); \
  287. (x) = (__typeof__(*(ptr)))__gu_val; \
  288. __gu_err; \
  289. })
  290. #define __get_user_check(x,ptr,size) \
  291. ({ \
  292. long __gu_err = -EFAULT, __gu_val = 0; \
  293. const __typeof__(*(ptr)) *__gu_addr = (ptr); \
  294. if (access_ok(VERIFY_READ,__gu_addr,size)) \
  295. __get_user_size(__gu_val,__gu_addr,(size),__gu_err); \
  296. (x) = (__typeof__(*(ptr)))__gu_val; \
  297. __gu_err; \
  298. })
  299. extern long __get_user_bad(void);
  300. #define __get_user_size(x,ptr,size,retval) \
  301. do { \
  302. int __cb; \
  303. retval = 0; \
  304. switch (size) { \
  305. case 1: __get_user_asm(x,ptr,retval,1,"l8ui",__cb); break; \
  306. case 2: __get_user_asm(x,ptr,retval,2,"l16ui",__cb); break; \
  307. case 4: __get_user_asm(x,ptr,retval,4,"l32i",__cb); break; \
  308. case 8: retval = __copy_from_user(&x,ptr,8); break; \
  309. default: (x) = __get_user_bad(); \
  310. } \
  311. } while (0)
  312. /*
  313. * WARNING: If you modify this macro at all, verify that the
  314. * __check_align_* macros still work.
  315. */
  316. #define __get_user_asm(x, addr, err, align, insn, cb) \
  317. __asm__ __volatile__( \
  318. __check_align_##align \
  319. "1: "insn" %2, %3, 0 \n" \
  320. "2: \n" \
  321. " .section .fixup,\"ax\" \n" \
  322. " .align 4 \n" \
  323. "4: \n" \
  324. " .long 2b \n" \
  325. "5: \n" \
  326. " l32r %1, 4b \n" \
  327. " movi %2, 0 \n" \
  328. " movi %0, %4 \n" \
  329. " jx %1 \n" \
  330. " .previous \n" \
  331. " .section __ex_table,\"a\" \n" \
  332. " .long 1b, 5b \n" \
  333. " .previous" \
  334. :"=r" (err), "=r" (cb), "=r" (x) \
  335. :"r" (addr), "i" (-EFAULT), "0" (err))
  336. /*
  337. * Copy to/from user space
  338. */
  339. /*
  340. * We use a generic, arbitrary-sized copy subroutine. The Xtensa
  341. * architecture would cause heavy code bloat if we tried to inline
  342. * these functions and provide __constant_copy_* equivalents like the
  343. * i386 versions. __xtensa_copy_user is quite efficient. See the
  344. * .fixup section of __xtensa_copy_user for a discussion on the
  345. * X_zeroing equivalents for Xtensa.
  346. */
  347. extern unsigned __xtensa_copy_user(void *to, const void *from, unsigned n);
  348. #define __copy_user(to,from,size) __xtensa_copy_user(to,from,size)
  349. static inline unsigned long
  350. __generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n)
  351. {
  352. return __copy_user(to,from,n);
  353. }
  354. static inline unsigned long
  355. __generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n)
  356. {
  357. return __copy_user(to,from,n);
  358. }
  359. static inline unsigned long
  360. __generic_copy_to_user(void *to, const void *from, unsigned long n)
  361. {
  362. prefetch(from);
  363. if (access_ok(VERIFY_WRITE, to, n))
  364. return __copy_user(to,from,n);
  365. return n;
  366. }
  367. static inline unsigned long
  368. __generic_copy_from_user(void *to, const void *from, unsigned long n)
  369. {
  370. prefetchw(to);
  371. if (access_ok(VERIFY_READ, from, n))
  372. return __copy_user(to,from,n);
  373. else
  374. memset(to, 0, n);
  375. return n;
  376. }
  377. #define copy_to_user(to,from,n) __generic_copy_to_user((to),(from),(n))
  378. #define copy_from_user(to,from,n) __generic_copy_from_user((to),(from),(n))
  379. #define __copy_to_user(to,from,n) \
  380. __generic_copy_to_user_nocheck((to),(from),(n))
  381. #define __copy_from_user(to,from,n) \
  382. __generic_copy_from_user_nocheck((to),(from),(n))
  383. #define __copy_to_user_inatomic __copy_to_user
  384. #define __copy_from_user_inatomic __copy_from_user
  385. /*
  386. * We need to return the number of bytes not cleared. Our memset()
  387. * returns zero if a problem occurs while accessing user-space memory.
  388. * In that event, return no memory cleared. Otherwise, zero for
  389. * success.
  390. */
  391. static inline unsigned long
  392. __xtensa_clear_user(void *addr, unsigned long size)
  393. {
  394. if ( ! memset(addr, 0, size) )
  395. return size;
  396. return 0;
  397. }
  398. static inline unsigned long
  399. clear_user(void *addr, unsigned long size)
  400. {
  401. if (access_ok(VERIFY_WRITE, addr, size))
  402. return __xtensa_clear_user(addr, size);
  403. return size ? -EFAULT : 0;
  404. }
  405. #define __clear_user __xtensa_clear_user
  406. extern long __strncpy_user(char *, const char *, long);
  407. #define __strncpy_from_user __strncpy_user
  408. static inline long
  409. strncpy_from_user(char *dst, const char *src, long count)
  410. {
  411. if (access_ok(VERIFY_READ, src, 1))
  412. return __strncpy_from_user(dst, src, count);
  413. return -EFAULT;
  414. }
  415. #define strlen_user(str) strnlen_user((str), TASK_SIZE - 1)
  416. /*
  417. * Return the size of a string (including the ending 0!)
  418. */
  419. extern long __strnlen_user(const char *, long);
  420. static inline long strnlen_user(const char *str, long len)
  421. {
  422. unsigned long top = __kernel_ok ? ~0UL : TASK_SIZE - 1;
  423. if ((unsigned long)str > top)
  424. return 0;
  425. return __strnlen_user(str, len);
  426. }
  427. struct exception_table_entry
  428. {
  429. unsigned long insn, fixup;
  430. };
  431. /* Returns 0 if exception not found and fixup.unit otherwise. */
  432. extern unsigned long search_exception_table(unsigned long addr);
  433. extern void sort_exception_table(void);
  434. /* Returns the new pc */
  435. #define fixup_exception(map_reg, fixup_unit, pc) \
  436. ({ \
  437. fixup_unit; \
  438. })
  439. #endif /* __ASSEMBLY__ */
  440. #endif /* _XTENSA_UACCESS_H */