slub.c 133 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/notifier.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kmemcheck.h>
  23. #include <linux/cpu.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/mempolicy.h>
  26. #include <linux/ctype.h>
  27. #include <linux/debugobjects.h>
  28. #include <linux/kallsyms.h>
  29. #include <linux/memory.h>
  30. #include <linux/math64.h>
  31. #include <linux/fault-inject.h>
  32. #include <linux/stacktrace.h>
  33. #include <linux/prefetch.h>
  34. #include <linux/memcontrol.h>
  35. #include <trace/events/kmem.h>
  36. #include <asm/sections.h>
  37. #include "internal.h"
  38. #ifdef CONFIG_ARM64
  39. #ifdef CONFIG_MTK_MEMCFG
  40. #define MTK_COMPACT_SLUB_TRACK
  41. #endif
  42. #endif
  43. /*
  44. * Lock order:
  45. * 1. slab_mutex (Global Mutex)
  46. * 2. node->list_lock
  47. * 3. slab_lock(page) (Only on some arches and for debugging)
  48. *
  49. * slab_mutex
  50. *
  51. * The role of the slab_mutex is to protect the list of all the slabs
  52. * and to synchronize major metadata changes to slab cache structures.
  53. *
  54. * The slab_lock is only used for debugging and on arches that do not
  55. * have the ability to do a cmpxchg_double. It only protects the second
  56. * double word in the page struct. Meaning
  57. * A. page->freelist -> List of object free in a page
  58. * B. page->counters -> Counters of objects
  59. * C. page->frozen -> frozen state
  60. *
  61. * If a slab is frozen then it is exempt from list management. It is not
  62. * on any list. The processor that froze the slab is the one who can
  63. * perform list operations on the page. Other processors may put objects
  64. * onto the freelist but the processor that froze the slab is the only
  65. * one that can retrieve the objects from the page's freelist.
  66. *
  67. * The list_lock protects the partial and full list on each node and
  68. * the partial slab counter. If taken then no new slabs may be added or
  69. * removed from the lists nor make the number of partial slabs be modified.
  70. * (Note that the total number of slabs is an atomic value that may be
  71. * modified without taking the list lock).
  72. *
  73. * The list_lock is a centralized lock and thus we avoid taking it as
  74. * much as possible. As long as SLUB does not have to handle partial
  75. * slabs, operations can continue without any centralized lock. F.e.
  76. * allocating a long series of objects that fill up slabs does not require
  77. * the list lock.
  78. * Interrupts are disabled during allocation and deallocation in order to
  79. * make the slab allocator safe to use in the context of an irq. In addition
  80. * interrupts are disabled to ensure that the processor does not change
  81. * while handling per_cpu slabs, due to kernel preemption.
  82. *
  83. * SLUB assigns one slab for allocation to each processor.
  84. * Allocations only occur from these slabs called cpu slabs.
  85. *
  86. * Slabs with free elements are kept on a partial list and during regular
  87. * operations no list for full slabs is used. If an object in a full slab is
  88. * freed then the slab will show up again on the partial lists.
  89. * We track full slabs for debugging purposes though because otherwise we
  90. * cannot scan all objects.
  91. *
  92. * Slabs are freed when they become empty. Teardown and setup is
  93. * minimal so we rely on the page allocators per cpu caches for
  94. * fast frees and allocs.
  95. *
  96. * Overloading of page flags that are otherwise used for LRU management.
  97. *
  98. * PageActive The slab is frozen and exempt from list processing.
  99. * This means that the slab is dedicated to a purpose
  100. * such as satisfying allocations for a specific
  101. * processor. Objects may be freed in the slab while
  102. * it is frozen but slab_free will then skip the usual
  103. * list operations. It is up to the processor holding
  104. * the slab to integrate the slab into the slab lists
  105. * when the slab is no longer needed.
  106. *
  107. * One use of this flag is to mark slabs that are
  108. * used for allocations. Then such a slab becomes a cpu
  109. * slab. The cpu slab may be equipped with an additional
  110. * freelist that allows lockless access to
  111. * free objects in addition to the regular freelist
  112. * that requires the slab lock.
  113. *
  114. * PageError Slab requires special handling due to debug
  115. * options set. This moves slab handling out of
  116. * the fast path and disables lockless freelists.
  117. */
  118. static inline int kmem_cache_debug(struct kmem_cache *s)
  119. {
  120. #ifdef CONFIG_SLUB_DEBUG
  121. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  122. #else
  123. return 0;
  124. #endif
  125. }
  126. static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
  127. {
  128. #ifdef CONFIG_SLUB_CPU_PARTIAL
  129. return !kmem_cache_debug(s);
  130. #else
  131. return false;
  132. #endif
  133. }
  134. /*
  135. * Issues still to be resolved:
  136. *
  137. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  138. *
  139. * - Variable sizing of the per node arrays
  140. */
  141. /* Enable to test recovery from slab corruption on boot */
  142. #undef SLUB_RESILIENCY_TEST
  143. /* Enable to log cmpxchg failures */
  144. #undef SLUB_DEBUG_CMPXCHG
  145. /*
  146. * Mininum number of partial slabs. These will be left on the partial
  147. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  148. */
  149. #define MIN_PARTIAL 5
  150. /*
  151. * Maximum number of desirable partial slabs.
  152. * The existence of more partial slabs makes kmem_cache_shrink
  153. * sort the partial list by the number of objects in use.
  154. */
  155. #define MAX_PARTIAL 10
  156. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  157. SLAB_POISON | SLAB_STORE_USER)
  158. /*
  159. * Debugging flags that require metadata to be stored in the slab. These get
  160. * disabled when slub_debug=O is used and a cache's min order increases with
  161. * metadata.
  162. */
  163. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  164. #define OO_SHIFT 16
  165. #define OO_MASK ((1 << OO_SHIFT) - 1)
  166. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  167. /* Internal SLUB flags */
  168. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  169. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  170. #ifdef CONFIG_SMP
  171. static struct notifier_block slab_notifier;
  172. #endif
  173. /*
  174. * Tracking user of a slab.
  175. */
  176. #define TRACK_ADDRS_COUNT 8
  177. #ifdef MTK_COMPACT_SLUB_TRACK
  178. struct track {
  179. unsigned long addr; /* Called from address */
  180. #ifdef CONFIG_STACKTRACE
  181. u32 addrs[TRACK_ADDRS_COUNT];
  182. /* we store the offset after MODULES_VADDR for kernel module and kernel text address */
  183. #endif
  184. int cpu; /* Was running on cpu */
  185. int pid; /* Pid context */
  186. unsigned long when; /* When did the operation occur */
  187. };
  188. #else
  189. struct track {
  190. unsigned long addr; /* Called from address */
  191. #ifdef CONFIG_STACKTRACE
  192. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  193. #endif
  194. int cpu; /* Was running on cpu */
  195. int pid; /* Pid context */
  196. unsigned long when; /* When did the operation occur */
  197. };
  198. #endif
  199. enum track_item { TRACK_ALLOC, TRACK_FREE };
  200. #ifdef CONFIG_SYSFS
  201. static int sysfs_slab_add(struct kmem_cache *);
  202. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  203. static void memcg_propagate_slab_attrs(struct kmem_cache *s);
  204. #else
  205. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  206. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  207. { return 0; }
  208. static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
  209. #endif
  210. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  211. {
  212. #ifdef CONFIG_SLUB_STATS
  213. /*
  214. * The rmw is racy on a preemptible kernel but this is acceptable, so
  215. * avoid this_cpu_add()'s irq-disable overhead.
  216. */
  217. raw_cpu_inc(s->cpu_slab->stat[si]);
  218. #endif
  219. }
  220. /********************************************************************
  221. * Core slab cache functions
  222. *******************************************************************/
  223. /* Verify that a pointer has an address that is valid within a slab page */
  224. static inline int check_valid_pointer(struct kmem_cache *s,
  225. struct page *page, const void *object)
  226. {
  227. void *base;
  228. if (!object)
  229. return 1;
  230. base = page_address(page);
  231. if (object < base || object >= base + page->objects * s->size ||
  232. (object - base) % s->size) {
  233. return 0;
  234. }
  235. return 1;
  236. }
  237. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  238. {
  239. return *(void **)(object + s->offset);
  240. }
  241. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  242. {
  243. prefetch(object + s->offset);
  244. }
  245. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  246. {
  247. void *p;
  248. #ifdef CONFIG_DEBUG_PAGEALLOC
  249. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  250. #else
  251. p = get_freepointer(s, object);
  252. #endif
  253. return p;
  254. }
  255. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  256. {
  257. *(void **)(object + s->offset) = fp;
  258. }
  259. /* Loop over all objects in a slab */
  260. #define for_each_object(__p, __s, __addr, __objects) \
  261. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  262. __p += (__s)->size)
  263. #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
  264. for (__p = (__addr), __idx = 1; __idx <= __objects;\
  265. __p += (__s)->size, __idx++)
  266. /* Determine object index from a given position */
  267. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  268. {
  269. return (p - addr) / s->size;
  270. }
  271. static inline size_t slab_ksize(const struct kmem_cache *s)
  272. {
  273. #ifdef CONFIG_SLUB_DEBUG
  274. /*
  275. * Debugging requires use of the padding between object
  276. * and whatever may come after it.
  277. */
  278. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  279. return s->object_size;
  280. #endif
  281. /*
  282. * If we have the need to store the freelist pointer
  283. * back there or track user information then we can
  284. * only use the space before that information.
  285. */
  286. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  287. return s->inuse;
  288. /*
  289. * Else we can use all the padding etc for the allocation
  290. */
  291. return s->size;
  292. }
  293. static inline int order_objects(int order, unsigned long size, int reserved)
  294. {
  295. return ((PAGE_SIZE << order) - reserved) / size;
  296. }
  297. static inline struct kmem_cache_order_objects oo_make(int order,
  298. unsigned long size, int reserved)
  299. {
  300. struct kmem_cache_order_objects x = {
  301. (order << OO_SHIFT) + order_objects(order, size, reserved)
  302. };
  303. return x;
  304. }
  305. static inline int oo_order(struct kmem_cache_order_objects x)
  306. {
  307. return x.x >> OO_SHIFT;
  308. }
  309. static inline int oo_objects(struct kmem_cache_order_objects x)
  310. {
  311. return x.x & OO_MASK;
  312. }
  313. /*
  314. * Per slab locking using the pagelock
  315. */
  316. static __always_inline void slab_lock(struct page *page)
  317. {
  318. bit_spin_lock(PG_locked, &page->flags);
  319. }
  320. static __always_inline void slab_unlock(struct page *page)
  321. {
  322. __bit_spin_unlock(PG_locked, &page->flags);
  323. }
  324. static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
  325. {
  326. struct page tmp;
  327. tmp.counters = counters_new;
  328. /*
  329. * page->counters can cover frozen/inuse/objects as well
  330. * as page->_count. If we assign to ->counters directly
  331. * we run the risk of losing updates to page->_count, so
  332. * be careful and only assign to the fields we need.
  333. */
  334. page->frozen = tmp.frozen;
  335. page->inuse = tmp.inuse;
  336. page->objects = tmp.objects;
  337. }
  338. /* Interrupts must be disabled (for the fallback code to work right) */
  339. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  340. void *freelist_old, unsigned long counters_old,
  341. void *freelist_new, unsigned long counters_new,
  342. const char *n)
  343. {
  344. VM_BUG_ON(!irqs_disabled());
  345. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  346. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  347. if (s->flags & __CMPXCHG_DOUBLE) {
  348. if (cmpxchg_double(&page->freelist, &page->counters,
  349. freelist_old, counters_old,
  350. freelist_new, counters_new))
  351. return 1;
  352. } else
  353. #endif
  354. {
  355. slab_lock(page);
  356. if (page->freelist == freelist_old &&
  357. page->counters == counters_old) {
  358. page->freelist = freelist_new;
  359. set_page_slub_counters(page, counters_new);
  360. slab_unlock(page);
  361. return 1;
  362. }
  363. slab_unlock(page);
  364. }
  365. cpu_relax();
  366. stat(s, CMPXCHG_DOUBLE_FAIL);
  367. #ifdef SLUB_DEBUG_CMPXCHG
  368. pr_info("%s %s: cmpxchg double redo ", n, s->name);
  369. #endif
  370. return 0;
  371. }
  372. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  373. void *freelist_old, unsigned long counters_old,
  374. void *freelist_new, unsigned long counters_new,
  375. const char *n)
  376. {
  377. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  378. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  379. if (s->flags & __CMPXCHG_DOUBLE) {
  380. if (cmpxchg_double(&page->freelist, &page->counters,
  381. freelist_old, counters_old,
  382. freelist_new, counters_new))
  383. return 1;
  384. } else
  385. #endif
  386. {
  387. unsigned long flags;
  388. local_irq_save(flags);
  389. slab_lock(page);
  390. if (page->freelist == freelist_old &&
  391. page->counters == counters_old) {
  392. page->freelist = freelist_new;
  393. set_page_slub_counters(page, counters_new);
  394. slab_unlock(page);
  395. local_irq_restore(flags);
  396. return 1;
  397. }
  398. slab_unlock(page);
  399. local_irq_restore(flags);
  400. }
  401. cpu_relax();
  402. stat(s, CMPXCHG_DOUBLE_FAIL);
  403. #ifdef SLUB_DEBUG_CMPXCHG
  404. pr_info("%s %s: cmpxchg double redo ", n, s->name);
  405. #endif
  406. return 0;
  407. }
  408. #ifdef CONFIG_SLUB_DEBUG
  409. /*
  410. * Determine a map of object in use on a page.
  411. *
  412. * Node listlock must be held to guarantee that the page does
  413. * not vanish from under us.
  414. */
  415. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  416. {
  417. void *p;
  418. void *addr = page_address(page);
  419. for (p = page->freelist; p; p = get_freepointer(s, p))
  420. set_bit(slab_index(p, s, addr), map);
  421. }
  422. /*
  423. * Debug settings:
  424. */
  425. #ifdef CONFIG_SLUB_DEBUG_ON
  426. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  427. #else
  428. static int slub_debug;
  429. #endif
  430. static char *slub_debug_slabs;
  431. static int disable_higher_order_debug;
  432. /*
  433. * Object debugging
  434. */
  435. static void print_section(char *text, u8 *addr, unsigned int length)
  436. {
  437. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  438. length, 1);
  439. }
  440. static struct track *get_track(struct kmem_cache *s, void *object,
  441. enum track_item alloc)
  442. {
  443. struct track *p;
  444. if (s->offset)
  445. p = object + s->offset + sizeof(void *);
  446. else
  447. p = object + s->inuse;
  448. return p + alloc;
  449. }
  450. #ifdef MTK_COMPACT_SLUB_TRACK
  451. static void set_track(struct kmem_cache *s, void *object,
  452. enum track_item alloc, unsigned long addr)
  453. {
  454. struct track *p = get_track(s, object, alloc);
  455. if (addr) {
  456. #ifdef CONFIG_STACKTRACE
  457. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  458. struct stack_trace trace;
  459. int i;
  460. memset(addrs, 0, sizeof(addrs));
  461. trace.nr_entries = 0;
  462. trace.max_entries = TRACK_ADDRS_COUNT;
  463. trace.entries = addrs;
  464. trace.skip = 3;
  465. save_stack_trace(&trace);
  466. /* See rant in lockdep.c */
  467. if (trace.nr_entries != 0 &&
  468. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  469. trace.nr_entries--;
  470. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  471. addrs[i] = 0;
  472. for (i = 0; i < TRACK_ADDRS_COUNT; i++) {
  473. if (addrs[i])
  474. p->addrs[i] = addrs[i] - MODULES_VADDR;
  475. else
  476. p->addrs[i] = 0;
  477. }
  478. #endif
  479. p->addr = addr;
  480. p->cpu = smp_processor_id();
  481. p->pid = current->pid;
  482. p->when = jiffies;
  483. } else
  484. memset(p, 0, sizeof(struct track));
  485. }
  486. #else
  487. static void set_track(struct kmem_cache *s, void *object,
  488. enum track_item alloc, unsigned long addr)
  489. {
  490. struct track *p = get_track(s, object, alloc);
  491. if (addr) {
  492. #ifdef CONFIG_STACKTRACE
  493. struct stack_trace trace;
  494. int i;
  495. trace.nr_entries = 0;
  496. trace.max_entries = TRACK_ADDRS_COUNT;
  497. trace.entries = p->addrs;
  498. trace.skip = 3;
  499. save_stack_trace(&trace);
  500. /* See rant in lockdep.c */
  501. if (trace.nr_entries != 0 &&
  502. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  503. trace.nr_entries--;
  504. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  505. p->addrs[i] = 0;
  506. #endif
  507. p->addr = addr;
  508. p->cpu = smp_processor_id();
  509. p->pid = current->pid;
  510. p->when = jiffies;
  511. } else
  512. memset(p, 0, sizeof(struct track));
  513. }
  514. #endif
  515. static void init_tracking(struct kmem_cache *s, void *object)
  516. {
  517. if (!(s->flags & SLAB_STORE_USER))
  518. return;
  519. set_track(s, object, TRACK_FREE, 0UL);
  520. set_track(s, object, TRACK_ALLOC, 0UL);
  521. }
  522. #ifdef MTK_COMPACT_SLUB_TRACK
  523. static void print_track(const char *s, struct track *t)
  524. {
  525. if (!t->addr)
  526. return;
  527. pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  528. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  529. #ifdef CONFIG_STACKTRACE
  530. {
  531. int i;
  532. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  533. /* we store the offset after MODULES_VADDR for kernel module and kernel text address */
  534. for (i = 0; i < TRACK_ADDRS_COUNT; i++) {
  535. if (t->addrs[i])
  536. addrs[i] = MODULES_VADDR + t->addrs[i];
  537. else
  538. addrs[i] = 0;
  539. }
  540. for (i = 0; i < TRACK_ADDRS_COUNT; i++) {
  541. if (addrs[i])
  542. pr_err("\t%pS\n", (void *)addrs[i]);
  543. else
  544. break;
  545. }
  546. }
  547. #endif
  548. }
  549. #else
  550. static void print_track(const char *s, struct track *t)
  551. {
  552. if (!t->addr)
  553. return;
  554. pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  555. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  556. #ifdef CONFIG_STACKTRACE
  557. {
  558. int i;
  559. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  560. if (t->addrs[i])
  561. pr_err("\t%pS\n", (void *)t->addrs[i]);
  562. else
  563. break;
  564. }
  565. #endif
  566. }
  567. #endif
  568. static void print_tracking(struct kmem_cache *s, void *object)
  569. {
  570. if (!(s->flags & SLAB_STORE_USER))
  571. return;
  572. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  573. print_track("Freed", get_track(s, object, TRACK_FREE));
  574. }
  575. static void print_page_info(struct page *page)
  576. {
  577. pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  578. page, page->objects, page->inuse, page->freelist, page->flags);
  579. }
  580. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  581. {
  582. struct va_format vaf;
  583. va_list args;
  584. va_start(args, fmt);
  585. vaf.fmt = fmt;
  586. vaf.va = &args;
  587. pr_err("=============================================================================\n");
  588. pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
  589. pr_err("-----------------------------------------------------------------------------\n\n");
  590. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  591. va_end(args);
  592. }
  593. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  594. {
  595. struct va_format vaf;
  596. va_list args;
  597. va_start(args, fmt);
  598. vaf.fmt = fmt;
  599. vaf.va = &args;
  600. pr_err("FIX %s: %pV\n", s->name, &vaf);
  601. va_end(args);
  602. }
  603. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  604. {
  605. unsigned int off; /* Offset of last byte */
  606. u8 *addr = page_address(page);
  607. print_tracking(s, p);
  608. print_page_info(page);
  609. pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  610. p, p - addr, get_freepointer(s, p));
  611. if (p > addr + 16)
  612. print_section("Bytes b4 ", p - 16, 16);
  613. print_section("Object ", p, min_t(unsigned long, s->object_size,
  614. PAGE_SIZE));
  615. if (s->flags & SLAB_RED_ZONE)
  616. print_section("Redzone ", p + s->object_size,
  617. s->inuse - s->object_size);
  618. if (s->offset)
  619. off = s->offset + sizeof(void *);
  620. else
  621. off = s->inuse;
  622. if (s->flags & SLAB_STORE_USER)
  623. off += 2 * sizeof(struct track);
  624. if (off != s->size)
  625. /* Beginning of the filler is the free pointer */
  626. print_section("Padding ", p + off, s->size - off);
  627. dump_stack();
  628. }
  629. static void object_err(struct kmem_cache *s, struct page *page,
  630. u8 *object, char *reason)
  631. {
  632. slab_bug(s, "%s", reason);
  633. print_trailer(s, page, object);
  634. BUG();
  635. }
  636. static void slab_err(struct kmem_cache *s, struct page *page,
  637. const char *fmt, ...)
  638. {
  639. va_list args;
  640. char buf[100];
  641. va_start(args, fmt);
  642. vsnprintf(buf, sizeof(buf), fmt, args);
  643. va_end(args);
  644. slab_bug(s, "%s", buf);
  645. print_page_info(page);
  646. dump_stack();
  647. BUG();
  648. }
  649. static void init_object(struct kmem_cache *s, void *object, u8 val)
  650. {
  651. u8 *p = object;
  652. if (s->flags & __OBJECT_POISON) {
  653. memset(p, POISON_FREE, s->object_size - 1);
  654. p[s->object_size - 1] = POISON_END;
  655. }
  656. if (s->flags & SLAB_RED_ZONE)
  657. memset(p + s->object_size, val, s->inuse - s->object_size);
  658. }
  659. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  660. void *from, void *to)
  661. {
  662. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  663. memset(from, data, to - from);
  664. }
  665. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  666. u8 *object, char *what,
  667. u8 *start, unsigned int value, unsigned int bytes)
  668. {
  669. u8 *fault;
  670. u8 *end;
  671. fault = memchr_inv(start, value, bytes);
  672. if (!fault)
  673. return 1;
  674. end = start + bytes;
  675. while (end > fault && end[-1] == value)
  676. end--;
  677. slab_bug(s, "%s overwritten", what);
  678. pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  679. fault, end - 1, fault[0], value);
  680. print_trailer(s, page, object);
  681. BUG();
  682. restore_bytes(s, what, value, fault, end);
  683. return 0;
  684. }
  685. /*
  686. * Object layout:
  687. *
  688. * object address
  689. * Bytes of the object to be managed.
  690. * If the freepointer may overlay the object then the free
  691. * pointer is the first word of the object.
  692. *
  693. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  694. * 0xa5 (POISON_END)
  695. *
  696. * object + s->object_size
  697. * Padding to reach word boundary. This is also used for Redzoning.
  698. * Padding is extended by another word if Redzoning is enabled and
  699. * object_size == inuse.
  700. *
  701. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  702. * 0xcc (RED_ACTIVE) for objects in use.
  703. *
  704. * object + s->inuse
  705. * Meta data starts here.
  706. *
  707. * A. Free pointer (if we cannot overwrite object on free)
  708. * B. Tracking data for SLAB_STORE_USER
  709. * C. Padding to reach required alignment boundary or at mininum
  710. * one word if debugging is on to be able to detect writes
  711. * before the word boundary.
  712. *
  713. * Padding is done using 0x5a (POISON_INUSE)
  714. *
  715. * object + s->size
  716. * Nothing is used beyond s->size.
  717. *
  718. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  719. * ignored. And therefore no slab options that rely on these boundaries
  720. * may be used with merged slabcaches.
  721. */
  722. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  723. {
  724. unsigned long off = s->inuse; /* The end of info */
  725. if (s->offset)
  726. /* Freepointer is placed after the object. */
  727. off += sizeof(void *);
  728. if (s->flags & SLAB_STORE_USER)
  729. /* We also have user information there */
  730. off += 2 * sizeof(struct track);
  731. if (s->size == off)
  732. return 1;
  733. return check_bytes_and_report(s, page, p, "Object padding",
  734. p + off, POISON_INUSE, s->size - off);
  735. }
  736. /* Check the pad bytes at the end of a slab page */
  737. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  738. {
  739. u8 *start;
  740. u8 *fault;
  741. u8 *end;
  742. int length;
  743. int remainder;
  744. if (!(s->flags & SLAB_POISON))
  745. return 1;
  746. start = page_address(page);
  747. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  748. end = start + length;
  749. remainder = length % s->size;
  750. if (!remainder)
  751. return 1;
  752. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  753. if (!fault)
  754. return 1;
  755. while (end > fault && end[-1] == POISON_INUSE)
  756. end--;
  757. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  758. print_section("Padding ", end - remainder, remainder);
  759. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  760. return 0;
  761. }
  762. static int check_object(struct kmem_cache *s, struct page *page,
  763. void *object, u8 val)
  764. {
  765. u8 *p = object;
  766. u8 *endobject = object + s->object_size;
  767. if (s->flags & SLAB_RED_ZONE) {
  768. if (!check_bytes_and_report(s, page, object, "Redzone",
  769. endobject, val, s->inuse - s->object_size))
  770. return 0;
  771. } else {
  772. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  773. check_bytes_and_report(s, page, p, "Alignment padding",
  774. endobject, POISON_INUSE,
  775. s->inuse - s->object_size);
  776. }
  777. }
  778. if (s->flags & SLAB_POISON) {
  779. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  780. (!check_bytes_and_report(s, page, p, "Poison", p,
  781. POISON_FREE, s->object_size - 1) ||
  782. !check_bytes_and_report(s, page, p, "Poison",
  783. p + s->object_size - 1, POISON_END, 1)))
  784. return 0;
  785. /*
  786. * check_pad_bytes cleans up on its own.
  787. */
  788. check_pad_bytes(s, page, p);
  789. }
  790. if (!s->offset && val == SLUB_RED_ACTIVE)
  791. /*
  792. * Object and freepointer overlap. Cannot check
  793. * freepointer while object is allocated.
  794. */
  795. return 1;
  796. /* Check free pointer validity */
  797. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  798. object_err(s, page, p, "Freepointer corrupt");
  799. /*
  800. * No choice but to zap it and thus lose the remainder
  801. * of the free objects in this slab. May cause
  802. * another error because the object count is now wrong.
  803. */
  804. set_freepointer(s, p, NULL);
  805. return 0;
  806. }
  807. return 1;
  808. }
  809. static int check_slab(struct kmem_cache *s, struct page *page)
  810. {
  811. int maxobj;
  812. VM_BUG_ON(!irqs_disabled());
  813. if (!PageSlab(page)) {
  814. slab_err(s, page, "Not a valid slab page");
  815. return 0;
  816. }
  817. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  818. if (page->objects > maxobj) {
  819. slab_err(s, page, "objects %u > max %u",
  820. s->name, page->objects, maxobj);
  821. return 0;
  822. }
  823. if (page->inuse > page->objects) {
  824. slab_err(s, page, "inuse %u > max %u",
  825. s->name, page->inuse, page->objects);
  826. return 0;
  827. }
  828. /* Slab_pad_check fixes things up after itself */
  829. slab_pad_check(s, page);
  830. return 1;
  831. }
  832. /*
  833. * Determine if a certain object on a page is on the freelist. Must hold the
  834. * slab lock to guarantee that the chains are in a consistent state.
  835. */
  836. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  837. {
  838. int nr = 0;
  839. void *fp;
  840. void *object = NULL;
  841. unsigned long max_objects;
  842. fp = page->freelist;
  843. while (fp && nr <= page->objects) {
  844. if (fp == search)
  845. return 1;
  846. if (!check_valid_pointer(s, page, fp)) {
  847. if (object) {
  848. object_err(s, page, object,
  849. "Freechain corrupt");
  850. set_freepointer(s, object, NULL);
  851. } else {
  852. slab_err(s, page, "Freepointer corrupt");
  853. page->freelist = NULL;
  854. page->inuse = page->objects;
  855. slab_fix(s, "Freelist cleared");
  856. return 0;
  857. }
  858. break;
  859. }
  860. object = fp;
  861. fp = get_freepointer(s, object);
  862. nr++;
  863. }
  864. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  865. if (max_objects > MAX_OBJS_PER_PAGE)
  866. max_objects = MAX_OBJS_PER_PAGE;
  867. if (page->objects != max_objects) {
  868. slab_err(s, page, "Wrong number of objects. Found %d but "
  869. "should be %d", page->objects, max_objects);
  870. page->objects = max_objects;
  871. slab_fix(s, "Number of objects adjusted.");
  872. }
  873. if (page->inuse != page->objects - nr) {
  874. slab_err(s, page, "Wrong object count. Counter is %d but "
  875. "counted were %d", page->inuse, page->objects - nr);
  876. page->inuse = page->objects - nr;
  877. slab_fix(s, "Object count adjusted.");
  878. }
  879. return search == NULL;
  880. }
  881. static void trace(struct kmem_cache *s, struct page *page, void *object,
  882. int alloc)
  883. {
  884. if (s->flags & SLAB_TRACE) {
  885. pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  886. s->name,
  887. alloc ? "alloc" : "free",
  888. object, page->inuse,
  889. page->freelist);
  890. if (!alloc)
  891. print_section("Object ", (void *)object,
  892. s->object_size);
  893. dump_stack();
  894. }
  895. }
  896. /*
  897. * Tracking of fully allocated slabs for debugging purposes.
  898. */
  899. static void add_full(struct kmem_cache *s,
  900. struct kmem_cache_node *n, struct page *page)
  901. {
  902. if (!(s->flags & SLAB_STORE_USER))
  903. return;
  904. lockdep_assert_held(&n->list_lock);
  905. list_add(&page->lru, &n->full);
  906. }
  907. static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
  908. {
  909. if (!(s->flags & SLAB_STORE_USER))
  910. return;
  911. lockdep_assert_held(&n->list_lock);
  912. list_del(&page->lru);
  913. }
  914. /* Tracking of the number of slabs for debugging purposes */
  915. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  916. {
  917. struct kmem_cache_node *n = get_node(s, node);
  918. return atomic_long_read(&n->nr_slabs);
  919. }
  920. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  921. {
  922. return atomic_long_read(&n->nr_slabs);
  923. }
  924. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  925. {
  926. struct kmem_cache_node *n = get_node(s, node);
  927. /*
  928. * May be called early in order to allocate a slab for the
  929. * kmem_cache_node structure. Solve the chicken-egg
  930. * dilemma by deferring the increment of the count during
  931. * bootstrap (see early_kmem_cache_node_alloc).
  932. */
  933. if (likely(n)) {
  934. atomic_long_inc(&n->nr_slabs);
  935. atomic_long_add(objects, &n->total_objects);
  936. }
  937. }
  938. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  939. {
  940. struct kmem_cache_node *n = get_node(s, node);
  941. atomic_long_dec(&n->nr_slabs);
  942. atomic_long_sub(objects, &n->total_objects);
  943. }
  944. /* Object debug checks for alloc/free paths */
  945. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  946. void *object)
  947. {
  948. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  949. return;
  950. init_object(s, object, SLUB_RED_INACTIVE);
  951. init_tracking(s, object);
  952. }
  953. static noinline int alloc_debug_processing(struct kmem_cache *s,
  954. struct page *page,
  955. void *object, unsigned long addr)
  956. {
  957. if (!check_slab(s, page))
  958. goto bad;
  959. if (!check_valid_pointer(s, page, object)) {
  960. object_err(s, page, object, "Freelist Pointer check fails");
  961. goto bad;
  962. }
  963. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  964. goto bad;
  965. /* Success perform special debug activities for allocs */
  966. if (s->flags & SLAB_STORE_USER)
  967. set_track(s, object, TRACK_ALLOC, addr);
  968. trace(s, page, object, 1);
  969. init_object(s, object, SLUB_RED_ACTIVE);
  970. return 1;
  971. bad:
  972. if (PageSlab(page)) {
  973. /*
  974. * If this is a slab page then lets do the best we can
  975. * to avoid issues in the future. Marking all objects
  976. * as used avoids touching the remaining objects.
  977. */
  978. slab_fix(s, "Marking all objects used");
  979. page->inuse = page->objects;
  980. page->freelist = NULL;
  981. }
  982. return 0;
  983. }
  984. static noinline struct kmem_cache_node *free_debug_processing(
  985. struct kmem_cache *s, struct page *page, void *object,
  986. unsigned long addr, unsigned long *flags)
  987. {
  988. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  989. spin_lock_irqsave(&n->list_lock, *flags);
  990. slab_lock(page);
  991. if (!check_slab(s, page))
  992. goto fail;
  993. if (!check_valid_pointer(s, page, object)) {
  994. slab_err(s, page, "Invalid object pointer 0x%p", object);
  995. goto fail;
  996. }
  997. if (on_freelist(s, page, object)) {
  998. object_err(s, page, object, "Object already free");
  999. goto fail;
  1000. }
  1001. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  1002. goto out;
  1003. if (unlikely(s != page->slab_cache)) {
  1004. if (!PageSlab(page)) {
  1005. slab_err(s, page, "Attempt to free object(0x%p) "
  1006. "outside of slab", object);
  1007. } else if (!page->slab_cache) {
  1008. pr_err("SLUB <none>: no slab for object 0x%p.\n",
  1009. object);
  1010. dump_stack();
  1011. } else
  1012. object_err(s, page, object,
  1013. "page slab pointer corrupt.");
  1014. goto fail;
  1015. }
  1016. if (s->flags & SLAB_STORE_USER)
  1017. set_track(s, object, TRACK_FREE, addr);
  1018. trace(s, page, object, 0);
  1019. init_object(s, object, SLUB_RED_INACTIVE);
  1020. out:
  1021. slab_unlock(page);
  1022. /*
  1023. * Keep node_lock to preserve integrity
  1024. * until the object is actually freed
  1025. */
  1026. return n;
  1027. fail:
  1028. slab_unlock(page);
  1029. spin_unlock_irqrestore(&n->list_lock, *flags);
  1030. slab_fix(s, "Object at 0x%p not freed", object);
  1031. return NULL;
  1032. }
  1033. static int __init setup_slub_debug(char *str)
  1034. {
  1035. slub_debug = DEBUG_DEFAULT_FLAGS;
  1036. if (*str++ != '=' || !*str)
  1037. /*
  1038. * No options specified. Switch on full debugging.
  1039. */
  1040. goto out;
  1041. if (*str == ',')
  1042. /*
  1043. * No options but restriction on slabs. This means full
  1044. * debugging for slabs matching a pattern.
  1045. */
  1046. goto check_slabs;
  1047. if (tolower(*str) == 'o') {
  1048. /*
  1049. * Avoid enabling debugging on caches if its minimum order
  1050. * would increase as a result.
  1051. */
  1052. disable_higher_order_debug = 1;
  1053. goto out;
  1054. }
  1055. slub_debug = 0;
  1056. if (*str == '-')
  1057. /*
  1058. * Switch off all debugging measures.
  1059. */
  1060. goto out;
  1061. /*
  1062. * Determine which debug features should be switched on
  1063. */
  1064. for (; *str && *str != ','; str++) {
  1065. switch (tolower(*str)) {
  1066. case 'f':
  1067. slub_debug |= SLAB_DEBUG_FREE;
  1068. break;
  1069. case 'z':
  1070. slub_debug |= SLAB_RED_ZONE;
  1071. break;
  1072. case 'p':
  1073. slub_debug |= SLAB_POISON;
  1074. break;
  1075. case 'u':
  1076. slub_debug |= SLAB_STORE_USER;
  1077. break;
  1078. case 't':
  1079. slub_debug |= SLAB_TRACE;
  1080. break;
  1081. case 'a':
  1082. slub_debug |= SLAB_FAILSLAB;
  1083. break;
  1084. default:
  1085. pr_err("slub_debug option '%c' unknown. skipped\n",
  1086. *str);
  1087. }
  1088. }
  1089. check_slabs:
  1090. if (*str == ',')
  1091. slub_debug_slabs = str + 1;
  1092. out:
  1093. return 1;
  1094. }
  1095. __setup("slub_debug", setup_slub_debug);
  1096. unsigned long kmem_cache_flags(unsigned long object_size,
  1097. unsigned long flags, const char *name,
  1098. void (*ctor)(void *))
  1099. {
  1100. /*
  1101. * Enable debugging if selected on the kernel commandline.
  1102. */
  1103. if (slub_debug && (!slub_debug_slabs || (name &&
  1104. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
  1105. flags |= slub_debug;
  1106. return flags;
  1107. }
  1108. #else
  1109. static inline void setup_object_debug(struct kmem_cache *s,
  1110. struct page *page, void *object) {}
  1111. static inline int alloc_debug_processing(struct kmem_cache *s,
  1112. struct page *page, void *object, unsigned long addr) { return 0; }
  1113. static inline struct kmem_cache_node *free_debug_processing(
  1114. struct kmem_cache *s, struct page *page, void *object,
  1115. unsigned long addr, unsigned long *flags) { return NULL; }
  1116. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1117. { return 1; }
  1118. static inline int check_object(struct kmem_cache *s, struct page *page,
  1119. void *object, u8 val) { return 1; }
  1120. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1121. struct page *page) {}
  1122. static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1123. struct page *page) {}
  1124. unsigned long kmem_cache_flags(unsigned long object_size,
  1125. unsigned long flags, const char *name,
  1126. void (*ctor)(void *))
  1127. {
  1128. return flags;
  1129. }
  1130. #define slub_debug 0
  1131. #define disable_higher_order_debug 0
  1132. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1133. { return 0; }
  1134. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1135. { return 0; }
  1136. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1137. int objects) {}
  1138. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1139. int objects) {}
  1140. #endif /* CONFIG_SLUB_DEBUG */
  1141. /*
  1142. * Hooks for other subsystems that check memory allocations. In a typical
  1143. * production configuration these hooks all should produce no code at all.
  1144. */
  1145. static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
  1146. {
  1147. kmemleak_alloc(ptr, size, 1, flags);
  1148. }
  1149. static inline void kfree_hook(const void *x)
  1150. {
  1151. kmemleak_free(x);
  1152. }
  1153. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1154. {
  1155. flags &= gfp_allowed_mask;
  1156. lockdep_trace_alloc(flags);
  1157. might_sleep_if(flags & __GFP_WAIT);
  1158. return should_failslab(s->object_size, flags, s->flags);
  1159. }
  1160. static inline void slab_post_alloc_hook(struct kmem_cache *s,
  1161. gfp_t flags, void *object)
  1162. {
  1163. flags &= gfp_allowed_mask;
  1164. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  1165. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  1166. }
  1167. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  1168. {
  1169. kmemleak_free_recursive(x, s->flags);
  1170. /*
  1171. * Trouble is that we may no longer disable interrupts in the fast path
  1172. * So in order to make the debug calls that expect irqs to be
  1173. * disabled we need to disable interrupts temporarily.
  1174. */
  1175. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  1176. {
  1177. unsigned long flags;
  1178. local_irq_save(flags);
  1179. kmemcheck_slab_free(s, x, s->object_size);
  1180. debug_check_no_locks_freed(x, s->object_size);
  1181. local_irq_restore(flags);
  1182. }
  1183. #endif
  1184. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1185. debug_check_no_obj_freed(x, s->object_size);
  1186. }
  1187. /*
  1188. * Slab allocation and freeing
  1189. */
  1190. static inline struct page *alloc_slab_page(struct kmem_cache *s,
  1191. gfp_t flags, int node, struct kmem_cache_order_objects oo)
  1192. {
  1193. struct page *page;
  1194. int order = oo_order(oo);
  1195. flags |= __GFP_NOTRACK;
  1196. if (memcg_charge_slab(s, flags, order))
  1197. return NULL;
  1198. if (node == NUMA_NO_NODE)
  1199. page = alloc_pages(flags, order);
  1200. else
  1201. page = alloc_pages_exact_node(node, flags, order);
  1202. if (!page)
  1203. memcg_uncharge_slab(s, order);
  1204. return page;
  1205. }
  1206. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1207. {
  1208. struct page *page;
  1209. struct kmem_cache_order_objects oo = s->oo;
  1210. gfp_t alloc_gfp;
  1211. flags &= gfp_allowed_mask;
  1212. if (flags & __GFP_WAIT)
  1213. local_irq_enable();
  1214. flags |= s->allocflags;
  1215. /*
  1216. * Let the initial higher-order allocation fail under memory pressure
  1217. * so we fall-back to the minimum order allocation.
  1218. */
  1219. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1220. page = alloc_slab_page(s, alloc_gfp, node, oo);
  1221. if (unlikely(!page)) {
  1222. oo = s->min;
  1223. alloc_gfp = flags;
  1224. /*
  1225. * Allocation may have failed due to fragmentation.
  1226. * Try a lower order alloc if possible
  1227. */
  1228. page = alloc_slab_page(s, alloc_gfp, node, oo);
  1229. if (page)
  1230. stat(s, ORDER_FALLBACK);
  1231. }
  1232. if (kmemcheck_enabled && page
  1233. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1234. int pages = 1 << oo_order(oo);
  1235. kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
  1236. /*
  1237. * Objects from caches that have a constructor don't get
  1238. * cleared when they're allocated, so we need to do it here.
  1239. */
  1240. if (s->ctor)
  1241. kmemcheck_mark_uninitialized_pages(page, pages);
  1242. else
  1243. kmemcheck_mark_unallocated_pages(page, pages);
  1244. }
  1245. if (flags & __GFP_WAIT)
  1246. local_irq_disable();
  1247. if (!page)
  1248. return NULL;
  1249. page->objects = oo_objects(oo);
  1250. mod_zone_page_state(page_zone(page),
  1251. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1252. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1253. 1 << oo_order(oo));
  1254. return page;
  1255. }
  1256. static void setup_object(struct kmem_cache *s, struct page *page,
  1257. void *object)
  1258. {
  1259. setup_object_debug(s, page, object);
  1260. if (unlikely(s->ctor))
  1261. s->ctor(object);
  1262. }
  1263. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1264. {
  1265. struct page *page;
  1266. void *start;
  1267. void *p;
  1268. int order;
  1269. int idx;
  1270. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1271. page = allocate_slab(s,
  1272. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1273. if (!page)
  1274. goto out;
  1275. order = compound_order(page);
  1276. inc_slabs_node(s, page_to_nid(page), page->objects);
  1277. page->slab_cache = s;
  1278. __SetPageSlab(page);
  1279. if (page->pfmemalloc)
  1280. SetPageSlabPfmemalloc(page);
  1281. start = page_address(page);
  1282. if (unlikely(s->flags & SLAB_POISON))
  1283. memset(start, POISON_INUSE, PAGE_SIZE << order);
  1284. for_each_object_idx(p, idx, s, start, page->objects) {
  1285. setup_object(s, page, p);
  1286. if (likely(idx < page->objects))
  1287. set_freepointer(s, p, p + s->size);
  1288. else
  1289. set_freepointer(s, p, NULL);
  1290. }
  1291. page->freelist = start;
  1292. page->inuse = page->objects;
  1293. page->frozen = 1;
  1294. out:
  1295. return page;
  1296. }
  1297. static void __free_slab(struct kmem_cache *s, struct page *page)
  1298. {
  1299. int order = compound_order(page);
  1300. int pages = 1 << order;
  1301. if (kmem_cache_debug(s)) {
  1302. void *p;
  1303. slab_pad_check(s, page);
  1304. for_each_object(p, s, page_address(page),
  1305. page->objects)
  1306. check_object(s, page, p, SLUB_RED_INACTIVE);
  1307. }
  1308. kmemcheck_free_shadow(page, compound_order(page));
  1309. mod_zone_page_state(page_zone(page),
  1310. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1311. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1312. -pages);
  1313. __ClearPageSlabPfmemalloc(page);
  1314. __ClearPageSlab(page);
  1315. page_mapcount_reset(page);
  1316. if (current->reclaim_state)
  1317. current->reclaim_state->reclaimed_slab += pages;
  1318. __free_pages(page, order);
  1319. memcg_uncharge_slab(s, order);
  1320. }
  1321. #define need_reserve_slab_rcu \
  1322. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1323. static void rcu_free_slab(struct rcu_head *h)
  1324. {
  1325. struct page *page;
  1326. if (need_reserve_slab_rcu)
  1327. page = virt_to_head_page(h);
  1328. else
  1329. page = container_of((struct list_head *)h, struct page, lru);
  1330. __free_slab(page->slab_cache, page);
  1331. }
  1332. static void free_slab(struct kmem_cache *s, struct page *page)
  1333. {
  1334. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1335. struct rcu_head *head;
  1336. if (need_reserve_slab_rcu) {
  1337. int order = compound_order(page);
  1338. int offset = (PAGE_SIZE << order) - s->reserved;
  1339. VM_BUG_ON(s->reserved != sizeof(*head));
  1340. head = page_address(page) + offset;
  1341. } else {
  1342. /*
  1343. * RCU free overloads the RCU head over the LRU
  1344. */
  1345. head = (void *)&page->lru;
  1346. }
  1347. call_rcu(head, rcu_free_slab);
  1348. } else
  1349. __free_slab(s, page);
  1350. }
  1351. static void discard_slab(struct kmem_cache *s, struct page *page)
  1352. {
  1353. dec_slabs_node(s, page_to_nid(page), page->objects);
  1354. free_slab(s, page);
  1355. }
  1356. /*
  1357. * Management of partially allocated slabs.
  1358. */
  1359. static inline void
  1360. __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
  1361. {
  1362. n->nr_partial++;
  1363. if (tail == DEACTIVATE_TO_TAIL)
  1364. list_add_tail(&page->lru, &n->partial);
  1365. else
  1366. list_add(&page->lru, &n->partial);
  1367. }
  1368. static inline void add_partial(struct kmem_cache_node *n,
  1369. struct page *page, int tail)
  1370. {
  1371. lockdep_assert_held(&n->list_lock);
  1372. __add_partial(n, page, tail);
  1373. }
  1374. static inline void
  1375. __remove_partial(struct kmem_cache_node *n, struct page *page)
  1376. {
  1377. list_del(&page->lru);
  1378. n->nr_partial--;
  1379. }
  1380. static inline void remove_partial(struct kmem_cache_node *n,
  1381. struct page *page)
  1382. {
  1383. lockdep_assert_held(&n->list_lock);
  1384. __remove_partial(n, page);
  1385. }
  1386. /*
  1387. * Remove slab from the partial list, freeze it and
  1388. * return the pointer to the freelist.
  1389. *
  1390. * Returns a list of objects or NULL if it fails.
  1391. */
  1392. static inline void *acquire_slab(struct kmem_cache *s,
  1393. struct kmem_cache_node *n, struct page *page,
  1394. int mode, int *objects)
  1395. {
  1396. void *freelist;
  1397. unsigned long counters;
  1398. struct page new;
  1399. lockdep_assert_held(&n->list_lock);
  1400. /*
  1401. * Zap the freelist and set the frozen bit.
  1402. * The old freelist is the list of objects for the
  1403. * per cpu allocation list.
  1404. */
  1405. freelist = page->freelist;
  1406. counters = page->counters;
  1407. new.counters = counters;
  1408. *objects = new.objects - new.inuse;
  1409. if (mode) {
  1410. new.inuse = page->objects;
  1411. new.freelist = NULL;
  1412. } else {
  1413. new.freelist = freelist;
  1414. }
  1415. VM_BUG_ON(new.frozen);
  1416. new.frozen = 1;
  1417. if (!__cmpxchg_double_slab(s, page,
  1418. freelist, counters,
  1419. new.freelist, new.counters,
  1420. "acquire_slab"))
  1421. return NULL;
  1422. remove_partial(n, page);
  1423. WARN_ON(!freelist);
  1424. return freelist;
  1425. }
  1426. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1427. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1428. /*
  1429. * Try to allocate a partial slab from a specific node.
  1430. */
  1431. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1432. struct kmem_cache_cpu *c, gfp_t flags)
  1433. {
  1434. struct page *page, *page2;
  1435. void *object = NULL;
  1436. int available = 0;
  1437. int objects;
  1438. /*
  1439. * Racy check. If we mistakenly see no partial slabs then we
  1440. * just allocate an empty slab. If we mistakenly try to get a
  1441. * partial slab and there is none available then get_partials()
  1442. * will return NULL.
  1443. */
  1444. if (!n || !n->nr_partial)
  1445. return NULL;
  1446. spin_lock(&n->list_lock);
  1447. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1448. void *t;
  1449. if (!pfmemalloc_match(page, flags))
  1450. continue;
  1451. t = acquire_slab(s, n, page, object == NULL, &objects);
  1452. if (!t)
  1453. break;
  1454. available += objects;
  1455. if (!object) {
  1456. c->page = page;
  1457. stat(s, ALLOC_FROM_PARTIAL);
  1458. object = t;
  1459. } else {
  1460. put_cpu_partial(s, page, 0);
  1461. stat(s, CPU_PARTIAL_NODE);
  1462. }
  1463. if (!kmem_cache_has_cpu_partial(s)
  1464. || available > s->cpu_partial / 2)
  1465. break;
  1466. }
  1467. spin_unlock(&n->list_lock);
  1468. return object;
  1469. }
  1470. /*
  1471. * Get a page from somewhere. Search in increasing NUMA distances.
  1472. */
  1473. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1474. struct kmem_cache_cpu *c)
  1475. {
  1476. #ifdef CONFIG_NUMA
  1477. struct zonelist *zonelist;
  1478. struct zoneref *z;
  1479. struct zone *zone;
  1480. enum zone_type high_zoneidx = gfp_zone(flags);
  1481. void *object;
  1482. unsigned int cpuset_mems_cookie;
  1483. /*
  1484. * The defrag ratio allows a configuration of the tradeoffs between
  1485. * inter node defragmentation and node local allocations. A lower
  1486. * defrag_ratio increases the tendency to do local allocations
  1487. * instead of attempting to obtain partial slabs from other nodes.
  1488. *
  1489. * If the defrag_ratio is set to 0 then kmalloc() always
  1490. * returns node local objects. If the ratio is higher then kmalloc()
  1491. * may return off node objects because partial slabs are obtained
  1492. * from other nodes and filled up.
  1493. *
  1494. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1495. * defrag_ratio = 1000) then every (well almost) allocation will
  1496. * first attempt to defrag slab caches on other nodes. This means
  1497. * scanning over all nodes to look for partial slabs which may be
  1498. * expensive if we do it every time we are trying to find a slab
  1499. * with available objects.
  1500. */
  1501. if (!s->remote_node_defrag_ratio ||
  1502. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1503. return NULL;
  1504. do {
  1505. cpuset_mems_cookie = read_mems_allowed_begin();
  1506. zonelist = node_zonelist(mempolicy_slab_node(), flags);
  1507. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1508. struct kmem_cache_node *n;
  1509. n = get_node(s, zone_to_nid(zone));
  1510. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1511. n->nr_partial > s->min_partial) {
  1512. object = get_partial_node(s, n, c, flags);
  1513. if (object) {
  1514. /*
  1515. * Don't check read_mems_allowed_retry()
  1516. * here - if mems_allowed was updated in
  1517. * parallel, that was a harmless race
  1518. * between allocation and the cpuset
  1519. * update
  1520. */
  1521. return object;
  1522. }
  1523. }
  1524. }
  1525. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  1526. #endif
  1527. return NULL;
  1528. }
  1529. /*
  1530. * Get a partial page, lock it and return it.
  1531. */
  1532. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1533. struct kmem_cache_cpu *c)
  1534. {
  1535. void *object;
  1536. int searchnode = node;
  1537. if (node == NUMA_NO_NODE)
  1538. searchnode = numa_mem_id();
  1539. else if (!node_present_pages(node))
  1540. searchnode = node_to_mem_node(node);
  1541. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1542. if (object || node != NUMA_NO_NODE)
  1543. return object;
  1544. return get_any_partial(s, flags, c);
  1545. }
  1546. #ifdef CONFIG_PREEMPT
  1547. /*
  1548. * Calculate the next globally unique transaction for disambiguiation
  1549. * during cmpxchg. The transactions start with the cpu number and are then
  1550. * incremented by CONFIG_NR_CPUS.
  1551. */
  1552. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1553. #else
  1554. /*
  1555. * No preemption supported therefore also no need to check for
  1556. * different cpus.
  1557. */
  1558. #define TID_STEP 1
  1559. #endif
  1560. static inline unsigned long next_tid(unsigned long tid)
  1561. {
  1562. return tid + TID_STEP;
  1563. }
  1564. static inline unsigned int tid_to_cpu(unsigned long tid)
  1565. {
  1566. return tid % TID_STEP;
  1567. }
  1568. static inline unsigned long tid_to_event(unsigned long tid)
  1569. {
  1570. return tid / TID_STEP;
  1571. }
  1572. static inline unsigned int init_tid(int cpu)
  1573. {
  1574. return cpu;
  1575. }
  1576. static inline void note_cmpxchg_failure(const char *n,
  1577. const struct kmem_cache *s, unsigned long tid)
  1578. {
  1579. #ifdef SLUB_DEBUG_CMPXCHG
  1580. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1581. pr_info("%s %s: cmpxchg redo ", n, s->name);
  1582. #ifdef CONFIG_PREEMPT
  1583. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1584. pr_warn("due to cpu change %d -> %d\n",
  1585. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1586. else
  1587. #endif
  1588. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1589. pr_warn("due to cpu running other code. Event %ld->%ld\n",
  1590. tid_to_event(tid), tid_to_event(actual_tid));
  1591. else
  1592. pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1593. actual_tid, tid, next_tid(tid));
  1594. #endif
  1595. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1596. }
  1597. static void init_kmem_cache_cpus(struct kmem_cache *s)
  1598. {
  1599. int cpu;
  1600. for_each_possible_cpu(cpu)
  1601. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1602. }
  1603. /*
  1604. * Remove the cpu slab
  1605. */
  1606. static void deactivate_slab(struct kmem_cache *s, struct page *page,
  1607. void *freelist)
  1608. {
  1609. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1610. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1611. int lock = 0;
  1612. enum slab_modes l = M_NONE, m = M_NONE;
  1613. void *nextfree;
  1614. int tail = DEACTIVATE_TO_HEAD;
  1615. struct page new;
  1616. struct page old;
  1617. if (page->freelist) {
  1618. stat(s, DEACTIVATE_REMOTE_FREES);
  1619. tail = DEACTIVATE_TO_TAIL;
  1620. }
  1621. /*
  1622. * Stage one: Free all available per cpu objects back
  1623. * to the page freelist while it is still frozen. Leave the
  1624. * last one.
  1625. *
  1626. * There is no need to take the list->lock because the page
  1627. * is still frozen.
  1628. */
  1629. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1630. void *prior;
  1631. unsigned long counters;
  1632. do {
  1633. prior = page->freelist;
  1634. counters = page->counters;
  1635. set_freepointer(s, freelist, prior);
  1636. new.counters = counters;
  1637. new.inuse--;
  1638. VM_BUG_ON(!new.frozen);
  1639. } while (!__cmpxchg_double_slab(s, page,
  1640. prior, counters,
  1641. freelist, new.counters,
  1642. "drain percpu freelist"));
  1643. freelist = nextfree;
  1644. }
  1645. /*
  1646. * Stage two: Ensure that the page is unfrozen while the
  1647. * list presence reflects the actual number of objects
  1648. * during unfreeze.
  1649. *
  1650. * We setup the list membership and then perform a cmpxchg
  1651. * with the count. If there is a mismatch then the page
  1652. * is not unfrozen but the page is on the wrong list.
  1653. *
  1654. * Then we restart the process which may have to remove
  1655. * the page from the list that we just put it on again
  1656. * because the number of objects in the slab may have
  1657. * changed.
  1658. */
  1659. redo:
  1660. old.freelist = page->freelist;
  1661. old.counters = page->counters;
  1662. VM_BUG_ON(!old.frozen);
  1663. /* Determine target state of the slab */
  1664. new.counters = old.counters;
  1665. if (freelist) {
  1666. new.inuse--;
  1667. set_freepointer(s, freelist, old.freelist);
  1668. new.freelist = freelist;
  1669. } else
  1670. new.freelist = old.freelist;
  1671. new.frozen = 0;
  1672. if (!new.inuse && n->nr_partial >= s->min_partial)
  1673. m = M_FREE;
  1674. else if (new.freelist) {
  1675. m = M_PARTIAL;
  1676. if (!lock) {
  1677. lock = 1;
  1678. /*
  1679. * Taking the spinlock removes the possiblity
  1680. * that acquire_slab() will see a slab page that
  1681. * is frozen
  1682. */
  1683. spin_lock(&n->list_lock);
  1684. }
  1685. } else {
  1686. m = M_FULL;
  1687. if (kmem_cache_debug(s) && !lock) {
  1688. lock = 1;
  1689. /*
  1690. * This also ensures that the scanning of full
  1691. * slabs from diagnostic functions will not see
  1692. * any frozen slabs.
  1693. */
  1694. spin_lock(&n->list_lock);
  1695. }
  1696. }
  1697. if (l != m) {
  1698. if (l == M_PARTIAL)
  1699. remove_partial(n, page);
  1700. else if (l == M_FULL)
  1701. remove_full(s, n, page);
  1702. if (m == M_PARTIAL) {
  1703. add_partial(n, page, tail);
  1704. stat(s, tail);
  1705. } else if (m == M_FULL) {
  1706. stat(s, DEACTIVATE_FULL);
  1707. add_full(s, n, page);
  1708. }
  1709. }
  1710. l = m;
  1711. if (!__cmpxchg_double_slab(s, page,
  1712. old.freelist, old.counters,
  1713. new.freelist, new.counters,
  1714. "unfreezing slab"))
  1715. goto redo;
  1716. if (lock)
  1717. spin_unlock(&n->list_lock);
  1718. if (m == M_FREE) {
  1719. stat(s, DEACTIVATE_EMPTY);
  1720. discard_slab(s, page);
  1721. stat(s, FREE_SLAB);
  1722. }
  1723. }
  1724. /*
  1725. * Unfreeze all the cpu partial slabs.
  1726. *
  1727. * This function must be called with interrupts disabled
  1728. * for the cpu using c (or some other guarantee must be there
  1729. * to guarantee no concurrent accesses).
  1730. */
  1731. static void unfreeze_partials(struct kmem_cache *s,
  1732. struct kmem_cache_cpu *c)
  1733. {
  1734. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1735. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1736. struct page *page, *discard_page = NULL;
  1737. while ((page = c->partial)) {
  1738. struct page new;
  1739. struct page old;
  1740. c->partial = page->next;
  1741. n2 = get_node(s, page_to_nid(page));
  1742. if (n != n2) {
  1743. if (n)
  1744. spin_unlock(&n->list_lock);
  1745. n = n2;
  1746. spin_lock(&n->list_lock);
  1747. }
  1748. do {
  1749. old.freelist = page->freelist;
  1750. old.counters = page->counters;
  1751. VM_BUG_ON(!old.frozen);
  1752. new.counters = old.counters;
  1753. new.freelist = old.freelist;
  1754. new.frozen = 0;
  1755. } while (!__cmpxchg_double_slab(s, page,
  1756. old.freelist, old.counters,
  1757. new.freelist, new.counters,
  1758. "unfreezing slab"));
  1759. if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
  1760. page->next = discard_page;
  1761. discard_page = page;
  1762. } else {
  1763. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1764. stat(s, FREE_ADD_PARTIAL);
  1765. }
  1766. }
  1767. if (n)
  1768. spin_unlock(&n->list_lock);
  1769. while (discard_page) {
  1770. page = discard_page;
  1771. discard_page = discard_page->next;
  1772. stat(s, DEACTIVATE_EMPTY);
  1773. discard_slab(s, page);
  1774. stat(s, FREE_SLAB);
  1775. }
  1776. #endif
  1777. }
  1778. /*
  1779. * Put a page that was just frozen (in __slab_free) into a partial page
  1780. * slot if available. This is done without interrupts disabled and without
  1781. * preemption disabled. The cmpxchg is racy and may put the partial page
  1782. * onto a random cpus partial slot.
  1783. *
  1784. * If we did not find a slot then simply move all the partials to the
  1785. * per node partial list.
  1786. */
  1787. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1788. {
  1789. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1790. struct page *oldpage;
  1791. int pages;
  1792. int pobjects;
  1793. do {
  1794. pages = 0;
  1795. pobjects = 0;
  1796. oldpage = this_cpu_read(s->cpu_slab->partial);
  1797. if (oldpage) {
  1798. pobjects = oldpage->pobjects;
  1799. pages = oldpage->pages;
  1800. if (drain && pobjects > s->cpu_partial) {
  1801. unsigned long flags;
  1802. /*
  1803. * partial array is full. Move the existing
  1804. * set to the per node partial list.
  1805. */
  1806. local_irq_save(flags);
  1807. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1808. local_irq_restore(flags);
  1809. oldpage = NULL;
  1810. pobjects = 0;
  1811. pages = 0;
  1812. stat(s, CPU_PARTIAL_DRAIN);
  1813. }
  1814. }
  1815. pages++;
  1816. pobjects += page->objects - page->inuse;
  1817. page->pages = pages;
  1818. page->pobjects = pobjects;
  1819. page->next = oldpage;
  1820. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
  1821. != oldpage);
  1822. #endif
  1823. }
  1824. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1825. {
  1826. stat(s, CPUSLAB_FLUSH);
  1827. deactivate_slab(s, c->page, c->freelist);
  1828. c->tid = next_tid(c->tid);
  1829. c->page = NULL;
  1830. c->freelist = NULL;
  1831. }
  1832. /*
  1833. * Flush cpu slab.
  1834. *
  1835. * Called from IPI handler with interrupts disabled.
  1836. */
  1837. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1838. {
  1839. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1840. if (likely(c)) {
  1841. if (c->page)
  1842. flush_slab(s, c);
  1843. unfreeze_partials(s, c);
  1844. }
  1845. }
  1846. static void flush_cpu_slab(void *d)
  1847. {
  1848. struct kmem_cache *s = d;
  1849. __flush_cpu_slab(s, smp_processor_id());
  1850. }
  1851. static bool has_cpu_slab(int cpu, void *info)
  1852. {
  1853. struct kmem_cache *s = info;
  1854. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1855. return c->page || c->partial;
  1856. }
  1857. static void flush_all(struct kmem_cache *s)
  1858. {
  1859. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1860. }
  1861. /*
  1862. * Check if the objects in a per cpu structure fit numa
  1863. * locality expectations.
  1864. */
  1865. static inline int node_match(struct page *page, int node)
  1866. {
  1867. #ifdef CONFIG_NUMA
  1868. if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
  1869. return 0;
  1870. #endif
  1871. return 1;
  1872. }
  1873. #ifdef CONFIG_SLUB_DEBUG
  1874. static int count_free(struct page *page)
  1875. {
  1876. return page->objects - page->inuse;
  1877. }
  1878. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1879. {
  1880. return atomic_long_read(&n->total_objects);
  1881. }
  1882. #endif /* CONFIG_SLUB_DEBUG */
  1883. #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
  1884. static unsigned long count_partial(struct kmem_cache_node *n,
  1885. int (*get_count)(struct page *))
  1886. {
  1887. unsigned long flags;
  1888. unsigned long x = 0;
  1889. struct page *page;
  1890. spin_lock_irqsave(&n->list_lock, flags);
  1891. list_for_each_entry(page, &n->partial, lru)
  1892. x += get_count(page);
  1893. spin_unlock_irqrestore(&n->list_lock, flags);
  1894. return x;
  1895. }
  1896. #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
  1897. static noinline void
  1898. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1899. {
  1900. #ifdef CONFIG_SLUB_DEBUG
  1901. static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
  1902. DEFAULT_RATELIMIT_BURST);
  1903. int node;
  1904. struct kmem_cache_node *n;
  1905. if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
  1906. return;
  1907. pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1908. nid, gfpflags);
  1909. pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
  1910. s->name, s->object_size, s->size, oo_order(s->oo),
  1911. oo_order(s->min));
  1912. if (oo_order(s->min) > get_order(s->object_size))
  1913. pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
  1914. s->name);
  1915. for_each_kmem_cache_node(s, node, n) {
  1916. unsigned long nr_slabs;
  1917. unsigned long nr_objs;
  1918. unsigned long nr_free;
  1919. nr_free = count_partial(n, count_free);
  1920. nr_slabs = node_nr_slabs(n);
  1921. nr_objs = node_nr_objs(n);
  1922. pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1923. node, nr_slabs, nr_objs, nr_free);
  1924. }
  1925. #endif
  1926. }
  1927. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1928. int node, struct kmem_cache_cpu **pc)
  1929. {
  1930. void *freelist;
  1931. struct kmem_cache_cpu *c = *pc;
  1932. struct page *page;
  1933. freelist = get_partial(s, flags, node, c);
  1934. if (freelist)
  1935. return freelist;
  1936. page = new_slab(s, flags, node);
  1937. if (page) {
  1938. c = raw_cpu_ptr(s->cpu_slab);
  1939. if (c->page)
  1940. flush_slab(s, c);
  1941. /*
  1942. * No other reference to the page yet so we can
  1943. * muck around with it freely without cmpxchg
  1944. */
  1945. freelist = page->freelist;
  1946. page->freelist = NULL;
  1947. stat(s, ALLOC_SLAB);
  1948. c->page = page;
  1949. *pc = c;
  1950. } else
  1951. freelist = NULL;
  1952. return freelist;
  1953. }
  1954. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1955. {
  1956. if (unlikely(PageSlabPfmemalloc(page)))
  1957. return gfp_pfmemalloc_allowed(gfpflags);
  1958. return true;
  1959. }
  1960. /*
  1961. * Check the page->freelist of a page and either transfer the freelist to the
  1962. * per cpu freelist or deactivate the page.
  1963. *
  1964. * The page is still frozen if the return value is not NULL.
  1965. *
  1966. * If this function returns NULL then the page has been unfrozen.
  1967. *
  1968. * This function must be called with interrupt disabled.
  1969. */
  1970. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1971. {
  1972. struct page new;
  1973. unsigned long counters;
  1974. void *freelist;
  1975. do {
  1976. freelist = page->freelist;
  1977. counters = page->counters;
  1978. new.counters = counters;
  1979. VM_BUG_ON(!new.frozen);
  1980. new.inuse = page->objects;
  1981. new.frozen = freelist != NULL;
  1982. } while (!__cmpxchg_double_slab(s, page,
  1983. freelist, counters,
  1984. NULL, new.counters,
  1985. "get_freelist"));
  1986. return freelist;
  1987. }
  1988. /*
  1989. * Slow path. The lockless freelist is empty or we need to perform
  1990. * debugging duties.
  1991. *
  1992. * Processing is still very fast if new objects have been freed to the
  1993. * regular freelist. In that case we simply take over the regular freelist
  1994. * as the lockless freelist and zap the regular freelist.
  1995. *
  1996. * If that is not working then we fall back to the partial lists. We take the
  1997. * first element of the freelist as the object to allocate now and move the
  1998. * rest of the freelist to the lockless freelist.
  1999. *
  2000. * And if we were unable to get a new slab from the partial slab lists then
  2001. * we need to allocate a new slab. This is the slowest path since it involves
  2002. * a call to the page allocator and the setup of a new slab.
  2003. */
  2004. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  2005. unsigned long addr, struct kmem_cache_cpu *c)
  2006. {
  2007. void *freelist;
  2008. struct page *page;
  2009. unsigned long flags;
  2010. local_irq_save(flags);
  2011. #ifdef CONFIG_PREEMPT
  2012. /*
  2013. * We may have been preempted and rescheduled on a different
  2014. * cpu before disabling interrupts. Need to reload cpu area
  2015. * pointer.
  2016. */
  2017. c = this_cpu_ptr(s->cpu_slab);
  2018. #endif
  2019. page = c->page;
  2020. if (!page)
  2021. goto new_slab;
  2022. redo:
  2023. if (unlikely(!node_match(page, node))) {
  2024. int searchnode = node;
  2025. if (node != NUMA_NO_NODE && !node_present_pages(node))
  2026. searchnode = node_to_mem_node(node);
  2027. if (unlikely(!node_match(page, searchnode))) {
  2028. stat(s, ALLOC_NODE_MISMATCH);
  2029. deactivate_slab(s, page, c->freelist);
  2030. c->page = NULL;
  2031. c->freelist = NULL;
  2032. goto new_slab;
  2033. }
  2034. }
  2035. /*
  2036. * By rights, we should be searching for a slab page that was
  2037. * PFMEMALLOC but right now, we are losing the pfmemalloc
  2038. * information when the page leaves the per-cpu allocator
  2039. */
  2040. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  2041. deactivate_slab(s, page, c->freelist);
  2042. c->page = NULL;
  2043. c->freelist = NULL;
  2044. goto new_slab;
  2045. }
  2046. /* must check again c->freelist in case of cpu migration or IRQ */
  2047. freelist = c->freelist;
  2048. if (freelist)
  2049. goto load_freelist;
  2050. freelist = get_freelist(s, page);
  2051. if (!freelist) {
  2052. c->page = NULL;
  2053. stat(s, DEACTIVATE_BYPASS);
  2054. goto new_slab;
  2055. }
  2056. stat(s, ALLOC_REFILL);
  2057. load_freelist:
  2058. /*
  2059. * freelist is pointing to the list of objects to be used.
  2060. * page is pointing to the page from which the objects are obtained.
  2061. * That page must be frozen for per cpu allocations to work.
  2062. */
  2063. VM_BUG_ON(!c->page->frozen);
  2064. c->freelist = get_freepointer(s, freelist);
  2065. c->tid = next_tid(c->tid);
  2066. local_irq_restore(flags);
  2067. return freelist;
  2068. new_slab:
  2069. if (c->partial) {
  2070. page = c->page = c->partial;
  2071. c->partial = page->next;
  2072. stat(s, CPU_PARTIAL_ALLOC);
  2073. c->freelist = NULL;
  2074. goto redo;
  2075. }
  2076. freelist = new_slab_objects(s, gfpflags, node, &c);
  2077. if (unlikely(!freelist)) {
  2078. slab_out_of_memory(s, gfpflags, node);
  2079. local_irq_restore(flags);
  2080. return NULL;
  2081. }
  2082. page = c->page;
  2083. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  2084. goto load_freelist;
  2085. /* Only entered in the debug case */
  2086. if (kmem_cache_debug(s) &&
  2087. !alloc_debug_processing(s, page, freelist, addr))
  2088. goto new_slab; /* Slab failed checks. Next slab needed */
  2089. deactivate_slab(s, page, get_freepointer(s, freelist));
  2090. c->page = NULL;
  2091. c->freelist = NULL;
  2092. local_irq_restore(flags);
  2093. return freelist;
  2094. }
  2095. /*
  2096. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  2097. * have the fastpath folded into their functions. So no function call
  2098. * overhead for requests that can be satisfied on the fastpath.
  2099. *
  2100. * The fastpath works by first checking if the lockless freelist can be used.
  2101. * If not then __slab_alloc is called for slow processing.
  2102. *
  2103. * Otherwise we can simply pick the next object from the lockless free list.
  2104. */
  2105. static __always_inline void *slab_alloc_node(struct kmem_cache *s,
  2106. gfp_t gfpflags, int node, unsigned long addr)
  2107. {
  2108. void **object;
  2109. struct kmem_cache_cpu *c;
  2110. struct page *page;
  2111. unsigned long tid;
  2112. if (slab_pre_alloc_hook(s, gfpflags))
  2113. return NULL;
  2114. s = memcg_kmem_get_cache(s, gfpflags);
  2115. redo:
  2116. /*
  2117. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  2118. * enabled. We may switch back and forth between cpus while
  2119. * reading from one cpu area. That does not matter as long
  2120. * as we end up on the original cpu again when doing the cmpxchg.
  2121. *
  2122. * Preemption is disabled for the retrieval of the tid because that
  2123. * must occur from the current processor. We cannot allow rescheduling
  2124. * on a different processor between the determination of the pointer
  2125. * and the retrieval of the tid.
  2126. */
  2127. preempt_disable();
  2128. c = this_cpu_ptr(s->cpu_slab);
  2129. /*
  2130. * The transaction ids are globally unique per cpu and per operation on
  2131. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  2132. * occurs on the right processor and that there was no operation on the
  2133. * linked list in between.
  2134. */
  2135. tid = c->tid;
  2136. preempt_enable();
  2137. object = c->freelist;
  2138. page = c->page;
  2139. if (unlikely(!object || !node_match(page, node))) {
  2140. object = __slab_alloc(s, gfpflags, node, addr, c);
  2141. stat(s, ALLOC_SLOWPATH);
  2142. } else {
  2143. void *next_object = get_freepointer_safe(s, object);
  2144. /*
  2145. * The cmpxchg will only match if there was no additional
  2146. * operation and if we are on the right processor.
  2147. *
  2148. * The cmpxchg does the following atomically (without lock
  2149. * semantics!)
  2150. * 1. Relocate first pointer to the current per cpu area.
  2151. * 2. Verify that tid and freelist have not been changed
  2152. * 3. If they were not changed replace tid and freelist
  2153. *
  2154. * Since this is without lock semantics the protection is only
  2155. * against code executing on this cpu *not* from access by
  2156. * other cpus.
  2157. */
  2158. if (unlikely(!this_cpu_cmpxchg_double(
  2159. s->cpu_slab->freelist, s->cpu_slab->tid,
  2160. object, tid,
  2161. next_object, next_tid(tid)))) {
  2162. note_cmpxchg_failure("slab_alloc", s, tid);
  2163. goto redo;
  2164. }
  2165. prefetch_freepointer(s, next_object);
  2166. stat(s, ALLOC_FASTPATH);
  2167. }
  2168. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2169. memset(object, 0, s->object_size);
  2170. slab_post_alloc_hook(s, gfpflags, object);
  2171. return object;
  2172. }
  2173. static __always_inline void *slab_alloc(struct kmem_cache *s,
  2174. gfp_t gfpflags, unsigned long addr)
  2175. {
  2176. return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
  2177. }
  2178. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2179. {
  2180. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2181. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
  2182. s->size, gfpflags);
  2183. return ret;
  2184. }
  2185. EXPORT_SYMBOL(kmem_cache_alloc);
  2186. #ifdef CONFIG_TRACING
  2187. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2188. {
  2189. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2190. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2191. return ret;
  2192. }
  2193. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2194. #endif
  2195. #ifdef CONFIG_NUMA
  2196. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2197. {
  2198. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2199. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2200. s->object_size, s->size, gfpflags, node);
  2201. return ret;
  2202. }
  2203. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2204. #ifdef CONFIG_TRACING
  2205. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2206. gfp_t gfpflags,
  2207. int node, size_t size)
  2208. {
  2209. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2210. trace_kmalloc_node(_RET_IP_, ret,
  2211. size, s->size, gfpflags, node);
  2212. return ret;
  2213. }
  2214. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2215. #endif
  2216. #endif
  2217. /*
  2218. * Slow patch handling. This may still be called frequently since objects
  2219. * have a longer lifetime than the cpu slabs in most processing loads.
  2220. *
  2221. * So we still attempt to reduce cache line usage. Just take the slab
  2222. * lock and free the item. If there is no additional partial page
  2223. * handling required then we can return immediately.
  2224. */
  2225. static void __slab_free(struct kmem_cache *s, struct page *page,
  2226. void *x, unsigned long addr)
  2227. {
  2228. void *prior;
  2229. void **object = (void *)x;
  2230. int was_frozen;
  2231. struct page new;
  2232. unsigned long counters;
  2233. struct kmem_cache_node *n = NULL;
  2234. unsigned long uninitialized_var(flags);
  2235. stat(s, FREE_SLOWPATH);
  2236. if (kmem_cache_debug(s) &&
  2237. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2238. return;
  2239. do {
  2240. if (unlikely(n)) {
  2241. spin_unlock_irqrestore(&n->list_lock, flags);
  2242. n = NULL;
  2243. }
  2244. prior = page->freelist;
  2245. counters = page->counters;
  2246. set_freepointer(s, object, prior);
  2247. new.counters = counters;
  2248. was_frozen = new.frozen;
  2249. new.inuse--;
  2250. if ((!new.inuse || !prior) && !was_frozen) {
  2251. if (kmem_cache_has_cpu_partial(s) && !prior) {
  2252. /*
  2253. * Slab was on no list before and will be
  2254. * partially empty
  2255. * We can defer the list move and instead
  2256. * freeze it.
  2257. */
  2258. new.frozen = 1;
  2259. } else { /* Needs to be taken off a list */
  2260. n = get_node(s, page_to_nid(page));
  2261. /*
  2262. * Speculatively acquire the list_lock.
  2263. * If the cmpxchg does not succeed then we may
  2264. * drop the list_lock without any processing.
  2265. *
  2266. * Otherwise the list_lock will synchronize with
  2267. * other processors updating the list of slabs.
  2268. */
  2269. spin_lock_irqsave(&n->list_lock, flags);
  2270. }
  2271. }
  2272. } while (!cmpxchg_double_slab(s, page,
  2273. prior, counters,
  2274. object, new.counters,
  2275. "__slab_free"));
  2276. if (likely(!n)) {
  2277. /*
  2278. * If we just froze the page then put it onto the
  2279. * per cpu partial list.
  2280. */
  2281. if (new.frozen && !was_frozen) {
  2282. put_cpu_partial(s, page, 1);
  2283. stat(s, CPU_PARTIAL_FREE);
  2284. }
  2285. /*
  2286. * The list lock was not taken therefore no list
  2287. * activity can be necessary.
  2288. */
  2289. if (was_frozen)
  2290. stat(s, FREE_FROZEN);
  2291. return;
  2292. }
  2293. if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
  2294. goto slab_empty;
  2295. /*
  2296. * Objects left in the slab. If it was not on the partial list before
  2297. * then add it.
  2298. */
  2299. if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
  2300. if (kmem_cache_debug(s))
  2301. remove_full(s, n, page);
  2302. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2303. stat(s, FREE_ADD_PARTIAL);
  2304. }
  2305. spin_unlock_irqrestore(&n->list_lock, flags);
  2306. return;
  2307. slab_empty:
  2308. if (prior) {
  2309. /*
  2310. * Slab on the partial list.
  2311. */
  2312. remove_partial(n, page);
  2313. stat(s, FREE_REMOVE_PARTIAL);
  2314. } else {
  2315. /* Slab must be on the full list */
  2316. remove_full(s, n, page);
  2317. }
  2318. spin_unlock_irqrestore(&n->list_lock, flags);
  2319. stat(s, FREE_SLAB);
  2320. discard_slab(s, page);
  2321. }
  2322. /*
  2323. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2324. * can perform fastpath freeing without additional function calls.
  2325. *
  2326. * The fastpath is only possible if we are freeing to the current cpu slab
  2327. * of this processor. This typically the case if we have just allocated
  2328. * the item before.
  2329. *
  2330. * If fastpath is not possible then fall back to __slab_free where we deal
  2331. * with all sorts of special processing.
  2332. */
  2333. static __always_inline void slab_free(struct kmem_cache *s,
  2334. struct page *page, void *x, unsigned long addr)
  2335. {
  2336. void **object = (void *)x;
  2337. struct kmem_cache_cpu *c;
  2338. unsigned long tid;
  2339. slab_free_hook(s, x);
  2340. redo:
  2341. /*
  2342. * Determine the currently cpus per cpu slab.
  2343. * The cpu may change afterward. However that does not matter since
  2344. * data is retrieved via this pointer. If we are on the same cpu
  2345. * during the cmpxchg then the free will succedd.
  2346. */
  2347. preempt_disable();
  2348. c = this_cpu_ptr(s->cpu_slab);
  2349. tid = c->tid;
  2350. preempt_enable();
  2351. if (likely(page == c->page)) {
  2352. set_freepointer(s, object, c->freelist);
  2353. if (unlikely(!this_cpu_cmpxchg_double(
  2354. s->cpu_slab->freelist, s->cpu_slab->tid,
  2355. c->freelist, tid,
  2356. object, next_tid(tid)))) {
  2357. note_cmpxchg_failure("slab_free", s, tid);
  2358. goto redo;
  2359. }
  2360. stat(s, FREE_FASTPATH);
  2361. } else
  2362. __slab_free(s, page, x, addr);
  2363. }
  2364. void kmem_cache_free(struct kmem_cache *s, void *x)
  2365. {
  2366. s = cache_from_obj(s, x);
  2367. if (!s)
  2368. return;
  2369. slab_free(s, virt_to_head_page(x), x, _RET_IP_);
  2370. trace_kmem_cache_free(_RET_IP_, x);
  2371. }
  2372. EXPORT_SYMBOL(kmem_cache_free);
  2373. /*
  2374. * Object placement in a slab is made very easy because we always start at
  2375. * offset 0. If we tune the size of the object to the alignment then we can
  2376. * get the required alignment by putting one properly sized object after
  2377. * another.
  2378. *
  2379. * Notice that the allocation order determines the sizes of the per cpu
  2380. * caches. Each processor has always one slab available for allocations.
  2381. * Increasing the allocation order reduces the number of times that slabs
  2382. * must be moved on and off the partial lists and is therefore a factor in
  2383. * locking overhead.
  2384. */
  2385. /*
  2386. * Mininum / Maximum order of slab pages. This influences locking overhead
  2387. * and slab fragmentation. A higher order reduces the number of partial slabs
  2388. * and increases the number of allocations possible without having to
  2389. * take the list_lock.
  2390. */
  2391. static int slub_min_order;
  2392. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2393. static int slub_min_objects;
  2394. /*
  2395. * Calculate the order of allocation given an slab object size.
  2396. *
  2397. * The order of allocation has significant impact on performance and other
  2398. * system components. Generally order 0 allocations should be preferred since
  2399. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2400. * be problematic to put into order 0 slabs because there may be too much
  2401. * unused space left. We go to a higher order if more than 1/16th of the slab
  2402. * would be wasted.
  2403. *
  2404. * In order to reach satisfactory performance we must ensure that a minimum
  2405. * number of objects is in one slab. Otherwise we may generate too much
  2406. * activity on the partial lists which requires taking the list_lock. This is
  2407. * less a concern for large slabs though which are rarely used.
  2408. *
  2409. * slub_max_order specifies the order where we begin to stop considering the
  2410. * number of objects in a slab as critical. If we reach slub_max_order then
  2411. * we try to keep the page order as low as possible. So we accept more waste
  2412. * of space in favor of a small page order.
  2413. *
  2414. * Higher order allocations also allow the placement of more objects in a
  2415. * slab and thereby reduce object handling overhead. If the user has
  2416. * requested a higher mininum order then we start with that one instead of
  2417. * the smallest order which will fit the object.
  2418. */
  2419. static inline int slab_order(int size, int min_objects,
  2420. int max_order, int fract_leftover, int reserved)
  2421. {
  2422. int order;
  2423. int rem;
  2424. int min_order = slub_min_order;
  2425. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2426. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2427. for (order = max(min_order,
  2428. fls(min_objects * size - 1) - PAGE_SHIFT);
  2429. order <= max_order; order++) {
  2430. unsigned long slab_size = PAGE_SIZE << order;
  2431. if (slab_size < min_objects * size + reserved)
  2432. continue;
  2433. rem = (slab_size - reserved) % size;
  2434. if (rem <= slab_size / fract_leftover)
  2435. break;
  2436. }
  2437. return order;
  2438. }
  2439. static inline int calculate_order(int size, int reserved)
  2440. {
  2441. int order;
  2442. int min_objects;
  2443. int fraction;
  2444. int max_objects;
  2445. /*
  2446. * Attempt to find best configuration for a slab. This
  2447. * works by first attempting to generate a layout with
  2448. * the best configuration and backing off gradually.
  2449. *
  2450. * First we reduce the acceptable waste in a slab. Then
  2451. * we reduce the minimum objects required in a slab.
  2452. */
  2453. min_objects = slub_min_objects;
  2454. if (!min_objects)
  2455. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2456. max_objects = order_objects(slub_max_order, size, reserved);
  2457. min_objects = min(min_objects, max_objects);
  2458. while (min_objects > 1) {
  2459. fraction = 16;
  2460. while (fraction >= 4) {
  2461. order = slab_order(size, min_objects,
  2462. slub_max_order, fraction, reserved);
  2463. if (order <= slub_max_order)
  2464. return order;
  2465. fraction /= 2;
  2466. }
  2467. min_objects--;
  2468. }
  2469. /*
  2470. * We were unable to place multiple objects in a slab. Now
  2471. * lets see if we can place a single object there.
  2472. */
  2473. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2474. if (order <= slub_max_order)
  2475. return order;
  2476. /*
  2477. * Doh this slab cannot be placed using slub_max_order.
  2478. */
  2479. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2480. if (order < MAX_ORDER)
  2481. return order;
  2482. return -ENOSYS;
  2483. }
  2484. static void
  2485. init_kmem_cache_node(struct kmem_cache_node *n)
  2486. {
  2487. n->nr_partial = 0;
  2488. spin_lock_init(&n->list_lock);
  2489. INIT_LIST_HEAD(&n->partial);
  2490. #ifdef CONFIG_SLUB_DEBUG
  2491. atomic_long_set(&n->nr_slabs, 0);
  2492. atomic_long_set(&n->total_objects, 0);
  2493. INIT_LIST_HEAD(&n->full);
  2494. #endif
  2495. }
  2496. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2497. {
  2498. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2499. KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
  2500. /*
  2501. * Must align to double word boundary for the double cmpxchg
  2502. * instructions to work; see __pcpu_double_call_return_bool().
  2503. */
  2504. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2505. 2 * sizeof(void *));
  2506. if (!s->cpu_slab)
  2507. return 0;
  2508. init_kmem_cache_cpus(s);
  2509. return 1;
  2510. }
  2511. static struct kmem_cache *kmem_cache_node;
  2512. /*
  2513. * No kmalloc_node yet so do it by hand. We know that this is the first
  2514. * slab on the node for this slabcache. There are no concurrent accesses
  2515. * possible.
  2516. *
  2517. * Note that this function only works on the kmem_cache_node
  2518. * when allocating for the kmem_cache_node. This is used for bootstrapping
  2519. * memory on a fresh node that has no slab structures yet.
  2520. */
  2521. static void early_kmem_cache_node_alloc(int node)
  2522. {
  2523. struct page *page;
  2524. struct kmem_cache_node *n;
  2525. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2526. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2527. BUG_ON(!page);
  2528. if (page_to_nid(page) != node) {
  2529. pr_err("SLUB: Unable to allocate memory from node %d\n", node);
  2530. pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
  2531. }
  2532. n = page->freelist;
  2533. BUG_ON(!n);
  2534. page->freelist = get_freepointer(kmem_cache_node, n);
  2535. page->inuse = 1;
  2536. page->frozen = 0;
  2537. kmem_cache_node->node[node] = n;
  2538. #ifdef CONFIG_SLUB_DEBUG
  2539. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2540. init_tracking(kmem_cache_node, n);
  2541. #endif
  2542. init_kmem_cache_node(n);
  2543. inc_slabs_node(kmem_cache_node, node, page->objects);
  2544. /*
  2545. * No locks need to be taken here as it has just been
  2546. * initialized and there is no concurrent access.
  2547. */
  2548. __add_partial(n, page, DEACTIVATE_TO_HEAD);
  2549. }
  2550. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2551. {
  2552. int node;
  2553. struct kmem_cache_node *n;
  2554. for_each_kmem_cache_node(s, node, n) {
  2555. kmem_cache_free(kmem_cache_node, n);
  2556. s->node[node] = NULL;
  2557. }
  2558. }
  2559. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2560. {
  2561. int node;
  2562. for_each_node_state(node, N_NORMAL_MEMORY) {
  2563. struct kmem_cache_node *n;
  2564. if (slab_state == DOWN) {
  2565. early_kmem_cache_node_alloc(node);
  2566. continue;
  2567. }
  2568. n = kmem_cache_alloc_node(kmem_cache_node,
  2569. GFP_KERNEL, node);
  2570. if (!n) {
  2571. free_kmem_cache_nodes(s);
  2572. return 0;
  2573. }
  2574. s->node[node] = n;
  2575. init_kmem_cache_node(n);
  2576. }
  2577. return 1;
  2578. }
  2579. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2580. {
  2581. if (min < MIN_PARTIAL)
  2582. min = MIN_PARTIAL;
  2583. else if (min > MAX_PARTIAL)
  2584. min = MAX_PARTIAL;
  2585. s->min_partial = min;
  2586. }
  2587. /*
  2588. * calculate_sizes() determines the order and the distribution of data within
  2589. * a slab object.
  2590. */
  2591. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2592. {
  2593. unsigned long flags = s->flags;
  2594. unsigned long size = s->object_size;
  2595. int order;
  2596. /*
  2597. * Round up object size to the next word boundary. We can only
  2598. * place the free pointer at word boundaries and this determines
  2599. * the possible location of the free pointer.
  2600. */
  2601. size = ALIGN(size, sizeof(void *));
  2602. #ifdef CONFIG_SLUB_DEBUG
  2603. /*
  2604. * Determine if we can poison the object itself. If the user of
  2605. * the slab may touch the object after free or before allocation
  2606. * then we should never poison the object itself.
  2607. */
  2608. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2609. !s->ctor)
  2610. s->flags |= __OBJECT_POISON;
  2611. else
  2612. s->flags &= ~__OBJECT_POISON;
  2613. /*
  2614. * If we are Redzoning then check if there is some space between the
  2615. * end of the object and the free pointer. If not then add an
  2616. * additional word to have some bytes to store Redzone information.
  2617. */
  2618. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2619. size += sizeof(void *);
  2620. #endif
  2621. /*
  2622. * With that we have determined the number of bytes in actual use
  2623. * by the object. This is the potential offset to the free pointer.
  2624. */
  2625. s->inuse = size;
  2626. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2627. s->ctor)) {
  2628. /*
  2629. * Relocate free pointer after the object if it is not
  2630. * permitted to overwrite the first word of the object on
  2631. * kmem_cache_free.
  2632. *
  2633. * This is the case if we do RCU, have a constructor or
  2634. * destructor or are poisoning the objects.
  2635. */
  2636. s->offset = size;
  2637. size += sizeof(void *);
  2638. }
  2639. #ifdef CONFIG_SLUB_DEBUG
  2640. if (flags & SLAB_STORE_USER)
  2641. /*
  2642. * Need to store information about allocs and frees after
  2643. * the object.
  2644. */
  2645. size += 2 * sizeof(struct track);
  2646. if (flags & SLAB_RED_ZONE)
  2647. /*
  2648. * Add some empty padding so that we can catch
  2649. * overwrites from earlier objects rather than let
  2650. * tracking information or the free pointer be
  2651. * corrupted if a user writes before the start
  2652. * of the object.
  2653. */
  2654. size += sizeof(void *);
  2655. #endif
  2656. /*
  2657. * SLUB stores one object immediately after another beginning from
  2658. * offset 0. In order to align the objects we have to simply size
  2659. * each object to conform to the alignment.
  2660. */
  2661. size = ALIGN(size, s->align);
  2662. s->size = size;
  2663. if (forced_order >= 0)
  2664. order = forced_order;
  2665. else
  2666. order = calculate_order(size, s->reserved);
  2667. if (order < 0)
  2668. return 0;
  2669. s->allocflags = 0;
  2670. if (order)
  2671. s->allocflags |= __GFP_COMP;
  2672. if (s->flags & SLAB_CACHE_DMA)
  2673. s->allocflags |= GFP_DMA;
  2674. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2675. s->allocflags |= __GFP_RECLAIMABLE;
  2676. /*
  2677. * Determine the number of objects per slab
  2678. */
  2679. s->oo = oo_make(order, size, s->reserved);
  2680. s->min = oo_make(get_order(size), size, s->reserved);
  2681. if (oo_objects(s->oo) > oo_objects(s->max))
  2682. s->max = s->oo;
  2683. return !!oo_objects(s->oo);
  2684. }
  2685. static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
  2686. {
  2687. s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
  2688. s->reserved = 0;
  2689. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2690. s->reserved = sizeof(struct rcu_head);
  2691. if (!calculate_sizes(s, -1))
  2692. goto error;
  2693. if (disable_higher_order_debug) {
  2694. /*
  2695. * Disable debugging flags that store metadata if the min slab
  2696. * order increased.
  2697. */
  2698. if (get_order(s->size) > get_order(s->object_size)) {
  2699. s->flags &= ~DEBUG_METADATA_FLAGS;
  2700. s->offset = 0;
  2701. if (!calculate_sizes(s, -1))
  2702. goto error;
  2703. }
  2704. }
  2705. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2706. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2707. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2708. /* Enable fast mode */
  2709. s->flags |= __CMPXCHG_DOUBLE;
  2710. #endif
  2711. /*
  2712. * The larger the object size is, the more pages we want on the partial
  2713. * list to avoid pounding the page allocator excessively.
  2714. */
  2715. set_min_partial(s, ilog2(s->size) / 2);
  2716. /*
  2717. * cpu_partial determined the maximum number of objects kept in the
  2718. * per cpu partial lists of a processor.
  2719. *
  2720. * Per cpu partial lists mainly contain slabs that just have one
  2721. * object freed. If they are used for allocation then they can be
  2722. * filled up again with minimal effort. The slab will never hit the
  2723. * per node partial lists and therefore no locking will be required.
  2724. *
  2725. * This setting also determines
  2726. *
  2727. * A) The number of objects from per cpu partial slabs dumped to the
  2728. * per node list when we reach the limit.
  2729. * B) The number of objects in cpu partial slabs to extract from the
  2730. * per node list when we run out of per cpu objects. We only fetch
  2731. * 50% to keep some capacity around for frees.
  2732. */
  2733. if (!kmem_cache_has_cpu_partial(s))
  2734. s->cpu_partial = 0;
  2735. else if (s->size >= PAGE_SIZE)
  2736. s->cpu_partial = 2;
  2737. else if (s->size >= 1024)
  2738. s->cpu_partial = 6;
  2739. else if (s->size >= 256)
  2740. s->cpu_partial = 13;
  2741. else
  2742. s->cpu_partial = 30;
  2743. #ifdef CONFIG_NUMA
  2744. s->remote_node_defrag_ratio = 1000;
  2745. #endif
  2746. if (!init_kmem_cache_nodes(s))
  2747. goto error;
  2748. if (alloc_kmem_cache_cpus(s))
  2749. return 0;
  2750. free_kmem_cache_nodes(s);
  2751. error:
  2752. if (flags & SLAB_PANIC)
  2753. panic("Cannot create slab %s size=%lu realsize=%u "
  2754. "order=%u offset=%u flags=%lx\n",
  2755. s->name, (unsigned long)s->size, s->size,
  2756. oo_order(s->oo), s->offset, flags);
  2757. return -EINVAL;
  2758. }
  2759. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2760. const char *text)
  2761. {
  2762. #ifdef CONFIG_SLUB_DEBUG
  2763. void *addr = page_address(page);
  2764. void *p;
  2765. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2766. sizeof(long), GFP_ATOMIC);
  2767. if (!map)
  2768. return;
  2769. slab_err(s, page, text, s->name);
  2770. slab_lock(page);
  2771. get_map(s, page, map);
  2772. for_each_object(p, s, addr, page->objects) {
  2773. if (!test_bit(slab_index(p, s, addr), map)) {
  2774. pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
  2775. print_tracking(s, p);
  2776. }
  2777. }
  2778. slab_unlock(page);
  2779. kfree(map);
  2780. #endif
  2781. }
  2782. /*
  2783. * Attempt to free all partial slabs on a node.
  2784. * This is called from kmem_cache_close(). We must be the last thread
  2785. * using the cache and therefore we do not need to lock anymore.
  2786. */
  2787. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2788. {
  2789. struct page *page, *h;
  2790. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2791. if (!page->inuse) {
  2792. __remove_partial(n, page);
  2793. discard_slab(s, page);
  2794. } else {
  2795. list_slab_objects(s, page,
  2796. "Objects remaining in %s on kmem_cache_close()");
  2797. }
  2798. }
  2799. }
  2800. /*
  2801. * Release all resources used by a slab cache.
  2802. */
  2803. static inline int kmem_cache_close(struct kmem_cache *s)
  2804. {
  2805. int node;
  2806. struct kmem_cache_node *n;
  2807. flush_all(s);
  2808. /* Attempt to free all objects */
  2809. for_each_kmem_cache_node(s, node, n) {
  2810. free_partial(s, n);
  2811. if (n->nr_partial || slabs_node(s, node))
  2812. return 1;
  2813. }
  2814. free_percpu(s->cpu_slab);
  2815. free_kmem_cache_nodes(s);
  2816. return 0;
  2817. }
  2818. int __kmem_cache_shutdown(struct kmem_cache *s)
  2819. {
  2820. return kmem_cache_close(s);
  2821. }
  2822. /********************************************************************
  2823. * Kmalloc subsystem
  2824. *******************************************************************/
  2825. static int __init setup_slub_min_order(char *str)
  2826. {
  2827. get_option(&str, &slub_min_order);
  2828. return 1;
  2829. }
  2830. __setup("slub_min_order=", setup_slub_min_order);
  2831. static int __init setup_slub_max_order(char *str)
  2832. {
  2833. get_option(&str, &slub_max_order);
  2834. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2835. return 1;
  2836. }
  2837. __setup("slub_max_order=", setup_slub_max_order);
  2838. static int __init setup_slub_min_objects(char *str)
  2839. {
  2840. get_option(&str, &slub_min_objects);
  2841. return 1;
  2842. }
  2843. __setup("slub_min_objects=", setup_slub_min_objects);
  2844. void *__kmalloc(size_t size, gfp_t flags)
  2845. {
  2846. struct kmem_cache *s;
  2847. void *ret;
  2848. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  2849. return kmalloc_large(size, flags);
  2850. s = kmalloc_slab(size, flags);
  2851. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2852. return s;
  2853. ret = slab_alloc(s, flags, _RET_IP_);
  2854. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2855. return ret;
  2856. }
  2857. EXPORT_SYMBOL(__kmalloc);
  2858. #ifdef CONFIG_NUMA
  2859. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2860. {
  2861. struct page *page;
  2862. void *ptr = NULL;
  2863. flags |= __GFP_COMP | __GFP_NOTRACK;
  2864. page = alloc_kmem_pages_node(node, flags, get_order(size));
  2865. if (page)
  2866. ptr = page_address(page);
  2867. kmalloc_large_node_hook(ptr, size, flags);
  2868. return ptr;
  2869. }
  2870. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2871. {
  2872. struct kmem_cache *s;
  2873. void *ret;
  2874. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  2875. ret = kmalloc_large_node(size, flags, node);
  2876. trace_kmalloc_node(_RET_IP_, ret,
  2877. size, PAGE_SIZE << get_order(size),
  2878. flags, node);
  2879. return ret;
  2880. }
  2881. s = kmalloc_slab(size, flags);
  2882. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2883. return s;
  2884. ret = slab_alloc_node(s, flags, node, _RET_IP_);
  2885. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2886. return ret;
  2887. }
  2888. EXPORT_SYMBOL(__kmalloc_node);
  2889. #endif
  2890. size_t ksize(const void *object)
  2891. {
  2892. struct page *page;
  2893. if (unlikely(object == ZERO_SIZE_PTR))
  2894. return 0;
  2895. page = virt_to_head_page(object);
  2896. if (unlikely(!PageSlab(page))) {
  2897. WARN_ON(!PageCompound(page));
  2898. return PAGE_SIZE << compound_order(page);
  2899. }
  2900. return slab_ksize(page->slab_cache);
  2901. }
  2902. EXPORT_SYMBOL(ksize);
  2903. void kfree(const void *x)
  2904. {
  2905. struct page *page;
  2906. void *object = (void *)x;
  2907. trace_kfree(_RET_IP_, x);
  2908. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2909. return;
  2910. page = virt_to_head_page(x);
  2911. if (unlikely(!PageSlab(page))) {
  2912. BUG_ON(!PageCompound(page));
  2913. kfree_hook(x);
  2914. __free_kmem_pages(page, compound_order(page));
  2915. return;
  2916. }
  2917. slab_free(page->slab_cache, page, object, _RET_IP_);
  2918. }
  2919. EXPORT_SYMBOL(kfree);
  2920. /*
  2921. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2922. * the remaining slabs by the number of items in use. The slabs with the
  2923. * most items in use come first. New allocations will then fill those up
  2924. * and thus they can be removed from the partial lists.
  2925. *
  2926. * The slabs with the least items are placed last. This results in them
  2927. * being allocated from last increasing the chance that the last objects
  2928. * are freed in them.
  2929. */
  2930. int __kmem_cache_shrink(struct kmem_cache *s)
  2931. {
  2932. int node;
  2933. int i;
  2934. struct kmem_cache_node *n;
  2935. struct page *page;
  2936. struct page *t;
  2937. int objects = oo_objects(s->max);
  2938. struct list_head *slabs_by_inuse =
  2939. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2940. unsigned long flags;
  2941. if (!slabs_by_inuse)
  2942. return -ENOMEM;
  2943. flush_all(s);
  2944. for_each_kmem_cache_node(s, node, n) {
  2945. if (!n->nr_partial)
  2946. continue;
  2947. for (i = 0; i < objects; i++)
  2948. INIT_LIST_HEAD(slabs_by_inuse + i);
  2949. spin_lock_irqsave(&n->list_lock, flags);
  2950. /*
  2951. * Build lists indexed by the items in use in each slab.
  2952. *
  2953. * Note that concurrent frees may occur while we hold the
  2954. * list_lock. page->inuse here is the upper limit.
  2955. */
  2956. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2957. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2958. if (!page->inuse)
  2959. n->nr_partial--;
  2960. }
  2961. /*
  2962. * Rebuild the partial list with the slabs filled up most
  2963. * first and the least used slabs at the end.
  2964. */
  2965. for (i = objects - 1; i > 0; i--)
  2966. list_splice(slabs_by_inuse + i, n->partial.prev);
  2967. spin_unlock_irqrestore(&n->list_lock, flags);
  2968. /* Release empty slabs */
  2969. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2970. discard_slab(s, page);
  2971. }
  2972. kfree(slabs_by_inuse);
  2973. return 0;
  2974. }
  2975. static int slab_mem_going_offline_callback(void *arg)
  2976. {
  2977. struct kmem_cache *s;
  2978. mutex_lock(&slab_mutex);
  2979. list_for_each_entry(s, &slab_caches, list)
  2980. __kmem_cache_shrink(s);
  2981. mutex_unlock(&slab_mutex);
  2982. return 0;
  2983. }
  2984. static void slab_mem_offline_callback(void *arg)
  2985. {
  2986. struct kmem_cache_node *n;
  2987. struct kmem_cache *s;
  2988. struct memory_notify *marg = arg;
  2989. int offline_node;
  2990. offline_node = marg->status_change_nid_normal;
  2991. /*
  2992. * If the node still has available memory. we need kmem_cache_node
  2993. * for it yet.
  2994. */
  2995. if (offline_node < 0)
  2996. return;
  2997. mutex_lock(&slab_mutex);
  2998. list_for_each_entry(s, &slab_caches, list) {
  2999. n = get_node(s, offline_node);
  3000. if (n) {
  3001. /*
  3002. * if n->nr_slabs > 0, slabs still exist on the node
  3003. * that is going down. We were unable to free them,
  3004. * and offline_pages() function shouldn't call this
  3005. * callback. So, we must fail.
  3006. */
  3007. BUG_ON(slabs_node(s, offline_node));
  3008. s->node[offline_node] = NULL;
  3009. kmem_cache_free(kmem_cache_node, n);
  3010. }
  3011. }
  3012. mutex_unlock(&slab_mutex);
  3013. }
  3014. static int slab_mem_going_online_callback(void *arg)
  3015. {
  3016. struct kmem_cache_node *n;
  3017. struct kmem_cache *s;
  3018. struct memory_notify *marg = arg;
  3019. int nid = marg->status_change_nid_normal;
  3020. int ret = 0;
  3021. /*
  3022. * If the node's memory is already available, then kmem_cache_node is
  3023. * already created. Nothing to do.
  3024. */
  3025. if (nid < 0)
  3026. return 0;
  3027. /*
  3028. * We are bringing a node online. No memory is available yet. We must
  3029. * allocate a kmem_cache_node structure in order to bring the node
  3030. * online.
  3031. */
  3032. mutex_lock(&slab_mutex);
  3033. list_for_each_entry(s, &slab_caches, list) {
  3034. /*
  3035. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3036. * since memory is not yet available from the node that
  3037. * is brought up.
  3038. */
  3039. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3040. if (!n) {
  3041. ret = -ENOMEM;
  3042. goto out;
  3043. }
  3044. init_kmem_cache_node(n);
  3045. s->node[nid] = n;
  3046. }
  3047. out:
  3048. mutex_unlock(&slab_mutex);
  3049. return ret;
  3050. }
  3051. static int slab_memory_callback(struct notifier_block *self,
  3052. unsigned long action, void *arg)
  3053. {
  3054. int ret = 0;
  3055. switch (action) {
  3056. case MEM_GOING_ONLINE:
  3057. ret = slab_mem_going_online_callback(arg);
  3058. break;
  3059. case MEM_GOING_OFFLINE:
  3060. ret = slab_mem_going_offline_callback(arg);
  3061. break;
  3062. case MEM_OFFLINE:
  3063. case MEM_CANCEL_ONLINE:
  3064. slab_mem_offline_callback(arg);
  3065. break;
  3066. case MEM_ONLINE:
  3067. case MEM_CANCEL_OFFLINE:
  3068. break;
  3069. }
  3070. if (ret)
  3071. ret = notifier_from_errno(ret);
  3072. else
  3073. ret = NOTIFY_OK;
  3074. return ret;
  3075. }
  3076. static struct notifier_block slab_memory_callback_nb = {
  3077. .notifier_call = slab_memory_callback,
  3078. .priority = SLAB_CALLBACK_PRI,
  3079. };
  3080. /********************************************************************
  3081. * Basic setup of slabs
  3082. *******************************************************************/
  3083. /*
  3084. * Used for early kmem_cache structures that were allocated using
  3085. * the page allocator. Allocate them properly then fix up the pointers
  3086. * that may be pointing to the wrong kmem_cache structure.
  3087. */
  3088. static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
  3089. {
  3090. int node;
  3091. struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  3092. struct kmem_cache_node *n;
  3093. memcpy(s, static_cache, kmem_cache->object_size);
  3094. /*
  3095. * This runs very early, and only the boot processor is supposed to be
  3096. * up. Even if it weren't true, IRQs are not up so we couldn't fire
  3097. * IPIs around.
  3098. */
  3099. __flush_cpu_slab(s, smp_processor_id());
  3100. for_each_kmem_cache_node(s, node, n) {
  3101. struct page *p;
  3102. list_for_each_entry(p, &n->partial, lru)
  3103. p->slab_cache = s;
  3104. #ifdef CONFIG_SLUB_DEBUG
  3105. list_for_each_entry(p, &n->full, lru)
  3106. p->slab_cache = s;
  3107. #endif
  3108. }
  3109. list_add(&s->list, &slab_caches);
  3110. return s;
  3111. }
  3112. void __init kmem_cache_init(void)
  3113. {
  3114. static __initdata struct kmem_cache boot_kmem_cache,
  3115. boot_kmem_cache_node;
  3116. if (debug_guardpage_minorder())
  3117. slub_max_order = 0;
  3118. kmem_cache_node = &boot_kmem_cache_node;
  3119. kmem_cache = &boot_kmem_cache;
  3120. create_boot_cache(kmem_cache_node, "kmem_cache_node",
  3121. sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
  3122. register_hotmemory_notifier(&slab_memory_callback_nb);
  3123. /* Able to allocate the per node structures */
  3124. slab_state = PARTIAL;
  3125. create_boot_cache(kmem_cache, "kmem_cache",
  3126. offsetof(struct kmem_cache, node) +
  3127. nr_node_ids * sizeof(struct kmem_cache_node *),
  3128. SLAB_HWCACHE_ALIGN);
  3129. kmem_cache = bootstrap(&boot_kmem_cache);
  3130. /*
  3131. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3132. * kmem_cache_node is separately allocated so no need to
  3133. * update any list pointers.
  3134. */
  3135. kmem_cache_node = bootstrap(&boot_kmem_cache_node);
  3136. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3137. create_kmalloc_caches(0);
  3138. #ifdef CONFIG_SMP
  3139. register_cpu_notifier(&slab_notifier);
  3140. #endif
  3141. pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
  3142. cache_line_size(),
  3143. slub_min_order, slub_max_order, slub_min_objects,
  3144. nr_cpu_ids, nr_node_ids);
  3145. }
  3146. void __init kmem_cache_init_late(void)
  3147. {
  3148. }
  3149. struct kmem_cache *
  3150. __kmem_cache_alias(const char *name, size_t size, size_t align,
  3151. unsigned long flags, void (*ctor)(void *))
  3152. {
  3153. struct kmem_cache *s;
  3154. s = find_mergeable(size, align, flags, name, ctor);
  3155. if (s) {
  3156. int i;
  3157. struct kmem_cache *c;
  3158. s->refcount++;
  3159. /*
  3160. * Adjust the object sizes so that we clear
  3161. * the complete object on kzalloc.
  3162. */
  3163. s->object_size = max(s->object_size, (int)size);
  3164. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3165. for_each_memcg_cache_index(i) {
  3166. c = cache_from_memcg_idx(s, i);
  3167. if (!c)
  3168. continue;
  3169. c->object_size = s->object_size;
  3170. c->inuse = max_t(int, c->inuse,
  3171. ALIGN(size, sizeof(void *)));
  3172. }
  3173. if (sysfs_slab_alias(s, name)) {
  3174. s->refcount--;
  3175. s = NULL;
  3176. }
  3177. }
  3178. return s;
  3179. }
  3180. int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
  3181. {
  3182. int err;
  3183. err = kmem_cache_open(s, flags);
  3184. if (err)
  3185. return err;
  3186. /* Mutex is not taken during early boot */
  3187. if (slab_state <= UP)
  3188. return 0;
  3189. memcg_propagate_slab_attrs(s);
  3190. err = sysfs_slab_add(s);
  3191. if (err)
  3192. kmem_cache_close(s);
  3193. return err;
  3194. }
  3195. #ifdef CONFIG_SMP
  3196. /*
  3197. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3198. * necessary.
  3199. */
  3200. static int slab_cpuup_callback(struct notifier_block *nfb,
  3201. unsigned long action, void *hcpu)
  3202. {
  3203. long cpu = (long)hcpu;
  3204. struct kmem_cache *s;
  3205. unsigned long flags;
  3206. switch (action) {
  3207. case CPU_UP_CANCELED:
  3208. case CPU_UP_CANCELED_FROZEN:
  3209. case CPU_DEAD:
  3210. case CPU_DEAD_FROZEN:
  3211. mutex_lock(&slab_mutex);
  3212. list_for_each_entry(s, &slab_caches, list) {
  3213. local_irq_save(flags);
  3214. __flush_cpu_slab(s, cpu);
  3215. local_irq_restore(flags);
  3216. }
  3217. mutex_unlock(&slab_mutex);
  3218. break;
  3219. default:
  3220. break;
  3221. }
  3222. return NOTIFY_OK;
  3223. }
  3224. static struct notifier_block slab_notifier = {
  3225. .notifier_call = slab_cpuup_callback
  3226. };
  3227. #endif
  3228. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3229. {
  3230. struct kmem_cache *s;
  3231. void *ret;
  3232. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  3233. return kmalloc_large(size, gfpflags);
  3234. s = kmalloc_slab(size, gfpflags);
  3235. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3236. return s;
  3237. ret = slab_alloc(s, gfpflags, caller);
  3238. /* Honor the call site pointer we received. */
  3239. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3240. return ret;
  3241. }
  3242. #ifdef CONFIG_NUMA
  3243. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3244. int node, unsigned long caller)
  3245. {
  3246. struct kmem_cache *s;
  3247. void *ret;
  3248. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  3249. ret = kmalloc_large_node(size, gfpflags, node);
  3250. trace_kmalloc_node(caller, ret,
  3251. size, PAGE_SIZE << get_order(size),
  3252. gfpflags, node);
  3253. return ret;
  3254. }
  3255. s = kmalloc_slab(size, gfpflags);
  3256. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3257. return s;
  3258. ret = slab_alloc_node(s, gfpflags, node, caller);
  3259. /* Honor the call site pointer we received. */
  3260. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3261. return ret;
  3262. }
  3263. #endif
  3264. #ifdef CONFIG_SYSFS
  3265. static int count_inuse(struct page *page)
  3266. {
  3267. return page->inuse;
  3268. }
  3269. static int count_total(struct page *page)
  3270. {
  3271. return page->objects;
  3272. }
  3273. #endif
  3274. #ifdef CONFIG_SLUB_DEBUG
  3275. static int validate_slab(struct kmem_cache *s, struct page *page,
  3276. unsigned long *map)
  3277. {
  3278. void *p;
  3279. void *addr = page_address(page);
  3280. if (!check_slab(s, page) ||
  3281. !on_freelist(s, page, NULL))
  3282. return 0;
  3283. /* Now we know that a valid freelist exists */
  3284. bitmap_zero(map, page->objects);
  3285. get_map(s, page, map);
  3286. for_each_object(p, s, addr, page->objects) {
  3287. if (test_bit(slab_index(p, s, addr), map))
  3288. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3289. return 0;
  3290. }
  3291. for_each_object(p, s, addr, page->objects)
  3292. if (!test_bit(slab_index(p, s, addr), map))
  3293. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3294. return 0;
  3295. return 1;
  3296. }
  3297. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3298. unsigned long *map)
  3299. {
  3300. slab_lock(page);
  3301. validate_slab(s, page, map);
  3302. slab_unlock(page);
  3303. }
  3304. static int validate_slab_node(struct kmem_cache *s,
  3305. struct kmem_cache_node *n, unsigned long *map)
  3306. {
  3307. unsigned long count = 0;
  3308. struct page *page;
  3309. unsigned long flags;
  3310. spin_lock_irqsave(&n->list_lock, flags);
  3311. list_for_each_entry(page, &n->partial, lru) {
  3312. validate_slab_slab(s, page, map);
  3313. count++;
  3314. }
  3315. if (count != n->nr_partial)
  3316. pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
  3317. s->name, count, n->nr_partial);
  3318. if (!(s->flags & SLAB_STORE_USER))
  3319. goto out;
  3320. list_for_each_entry(page, &n->full, lru) {
  3321. validate_slab_slab(s, page, map);
  3322. count++;
  3323. }
  3324. if (count != atomic_long_read(&n->nr_slabs))
  3325. pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
  3326. s->name, count, atomic_long_read(&n->nr_slabs));
  3327. out:
  3328. spin_unlock_irqrestore(&n->list_lock, flags);
  3329. return count;
  3330. }
  3331. static long validate_slab_cache(struct kmem_cache *s)
  3332. {
  3333. int node;
  3334. unsigned long count = 0;
  3335. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3336. sizeof(unsigned long), GFP_KERNEL);
  3337. struct kmem_cache_node *n;
  3338. if (!map)
  3339. return -ENOMEM;
  3340. flush_all(s);
  3341. for_each_kmem_cache_node(s, node, n)
  3342. count += validate_slab_node(s, n, map);
  3343. kfree(map);
  3344. return count;
  3345. }
  3346. /*
  3347. * Generate lists of code addresses where slabcache objects are allocated
  3348. * and freed.
  3349. */
  3350. #ifdef CONFIG_MTK_MEMCFG
  3351. #define MTK_MEMCFG_SLABTRACE_CNT 4
  3352. /* MTK_MEMCFG_SLABTRACE_CNT should be always <= TRACK_ADDRS_COUNT */
  3353. #if (MTK_MEMCFG_SLABTRACE_CNT > TRACK_ADDRS_COUNT)
  3354. #error (MTK_MEMCFG_SLABTRACE_CNT > TRACK_ADDRS_COUNT)
  3355. #endif
  3356. #endif
  3357. struct location {
  3358. unsigned long count;
  3359. unsigned long addr;
  3360. #ifdef CONFIG_MTK_MEMCFG
  3361. #ifdef CONFIG_STACKTRACE
  3362. unsigned long addrs[MTK_MEMCFG_SLABTRACE_CNT]; /* Called from address */
  3363. #endif
  3364. #endif
  3365. long long sum_time;
  3366. long min_time;
  3367. long max_time;
  3368. long min_pid;
  3369. long max_pid;
  3370. DECLARE_BITMAP(cpus, NR_CPUS);
  3371. nodemask_t nodes;
  3372. };
  3373. struct loc_track {
  3374. unsigned long max;
  3375. unsigned long count;
  3376. struct location *loc;
  3377. };
  3378. static void free_loc_track(struct loc_track *t)
  3379. {
  3380. if (t->max)
  3381. free_pages((unsigned long)t->loc,
  3382. get_order(sizeof(struct location) * t->max));
  3383. }
  3384. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3385. {
  3386. struct location *l;
  3387. int order;
  3388. order = get_order(sizeof(struct location) * max);
  3389. /*
  3390. if backtrace need more page to store
  3391. we just ignore it in slabtrace
  3392. */
  3393. if (order > 1)
  3394. return 0;
  3395. l = (void *)__get_free_pages(flags, order);
  3396. if (!l)
  3397. return 0;
  3398. if (t->count) {
  3399. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3400. free_loc_track(t);
  3401. }
  3402. t->max = max;
  3403. t->loc = l;
  3404. return 1;
  3405. }
  3406. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3407. const struct track *track)
  3408. {
  3409. long start, end, pos;
  3410. struct location *l;
  3411. unsigned long caddr;
  3412. unsigned long age = jiffies - track->when;
  3413. start = -1;
  3414. end = t->count;
  3415. for ( ; ; ) {
  3416. pos = start + (end - start + 1) / 2;
  3417. /*
  3418. * There is nothing at "end". If we end up there
  3419. * we need to add something to before end.
  3420. */
  3421. if (pos == end)
  3422. break;
  3423. caddr = t->loc[pos].addr;
  3424. if (track->addr == caddr) {
  3425. l = &t->loc[pos];
  3426. l->count++;
  3427. if (track->when) {
  3428. l->sum_time += age;
  3429. if (age < l->min_time)
  3430. l->min_time = age;
  3431. if (age > l->max_time)
  3432. l->max_time = age;
  3433. if (track->pid < l->min_pid)
  3434. l->min_pid = track->pid;
  3435. if (track->pid > l->max_pid)
  3436. l->max_pid = track->pid;
  3437. cpumask_set_cpu(track->cpu,
  3438. to_cpumask(l->cpus));
  3439. }
  3440. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3441. return 1;
  3442. }
  3443. if (track->addr < caddr)
  3444. end = pos;
  3445. else
  3446. start = pos;
  3447. }
  3448. /*
  3449. * Not found. Insert new tracking element.
  3450. */
  3451. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, __GFP_NOMEMALLOC|GFP_NOWAIT|__GFP_NO_KSWAPD))
  3452. return 0;
  3453. l = t->loc + pos;
  3454. if (pos < t->count)
  3455. memmove(l + 1, l,
  3456. (t->count - pos) * sizeof(struct location));
  3457. t->count++;
  3458. l->count = 1;
  3459. l->addr = track->addr;
  3460. l->sum_time = age;
  3461. l->min_time = age;
  3462. l->max_time = age;
  3463. l->min_pid = track->pid;
  3464. l->max_pid = track->pid;
  3465. cpumask_clear(to_cpumask(l->cpus));
  3466. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3467. nodes_clear(l->nodes);
  3468. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3469. return 1;
  3470. }
  3471. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3472. struct page *page, enum track_item alloc,
  3473. unsigned long *map)
  3474. {
  3475. void *addr = page_address(page);
  3476. void *p;
  3477. bitmap_zero(map, page->objects);
  3478. get_map(s, page, map);
  3479. for_each_object(p, s, addr, page->objects)
  3480. if (!test_bit(slab_index(p, s, addr), map))
  3481. add_location(t, s, get_track(s, p, alloc));
  3482. }
  3483. static int list_locations(struct kmem_cache *s, char *buf,
  3484. enum track_item alloc)
  3485. {
  3486. int len = 0;
  3487. unsigned long i;
  3488. struct loc_track t = { 0, 0, NULL };
  3489. int node;
  3490. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3491. sizeof(unsigned long), GFP_KERNEL);
  3492. struct kmem_cache_node *n;
  3493. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3494. __GFP_NOMEMALLOC|GFP_NOWAIT|__GFP_NO_KSWAPD)) {
  3495. kfree(map);
  3496. return sprintf(buf, "Out of memory\n");
  3497. }
  3498. /* Push back cpu slabs */
  3499. flush_all(s);
  3500. for_each_kmem_cache_node(s, node, n) {
  3501. unsigned long flags;
  3502. struct page *page;
  3503. if (!atomic_long_read(&n->nr_slabs))
  3504. continue;
  3505. spin_lock_irqsave(&n->list_lock, flags);
  3506. list_for_each_entry(page, &n->partial, lru)
  3507. process_slab(&t, s, page, alloc, map);
  3508. list_for_each_entry(page, &n->full, lru)
  3509. process_slab(&t, s, page, alloc, map);
  3510. spin_unlock_irqrestore(&n->list_lock, flags);
  3511. }
  3512. for (i = 0; i < t.count; i++) {
  3513. struct location *l = &t.loc[i];
  3514. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3515. break;
  3516. len += sprintf(buf + len, "%7ld ", l->count);
  3517. if (l->addr)
  3518. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3519. else
  3520. len += sprintf(buf + len, "<not-available>");
  3521. if (l->sum_time != l->min_time) {
  3522. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3523. l->min_time,
  3524. (long)div_u64(l->sum_time, l->count),
  3525. l->max_time);
  3526. } else
  3527. len += sprintf(buf + len, " age=%ld",
  3528. l->min_time);
  3529. if (l->min_pid != l->max_pid)
  3530. len += sprintf(buf + len, " pid=%ld-%ld",
  3531. l->min_pid, l->max_pid);
  3532. else
  3533. len += sprintf(buf + len, " pid=%ld",
  3534. l->min_pid);
  3535. if (num_online_cpus() > 1 &&
  3536. !cpumask_empty(to_cpumask(l->cpus)) &&
  3537. len < PAGE_SIZE - 60) {
  3538. len += sprintf(buf + len, " cpus=");
  3539. len += cpulist_scnprintf(buf + len,
  3540. PAGE_SIZE - len - 50,
  3541. to_cpumask(l->cpus));
  3542. }
  3543. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3544. len < PAGE_SIZE - 60) {
  3545. len += sprintf(buf + len, " nodes=");
  3546. len += nodelist_scnprintf(buf + len,
  3547. PAGE_SIZE - len - 50,
  3548. l->nodes);
  3549. }
  3550. len += sprintf(buf + len, "\n");
  3551. }
  3552. free_loc_track(&t);
  3553. kfree(map);
  3554. if (!t.count)
  3555. len += sprintf(buf, "No data\n");
  3556. return len;
  3557. }
  3558. #endif
  3559. #ifdef SLUB_RESILIENCY_TEST
  3560. static void __init resiliency_test(void)
  3561. {
  3562. u8 *p;
  3563. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
  3564. pr_err("SLUB resiliency testing\n");
  3565. pr_err("-----------------------\n");
  3566. pr_err("A. Corruption after allocation\n");
  3567. p = kzalloc(16, GFP_KERNEL);
  3568. p[16] = 0x12;
  3569. pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
  3570. p + 16);
  3571. validate_slab_cache(kmalloc_caches[4]);
  3572. /* Hmmm... The next two are dangerous */
  3573. p = kzalloc(32, GFP_KERNEL);
  3574. p[32 + sizeof(void *)] = 0x34;
  3575. pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
  3576. p);
  3577. pr_err("If allocated object is overwritten then not detectable\n\n");
  3578. validate_slab_cache(kmalloc_caches[5]);
  3579. p = kzalloc(64, GFP_KERNEL);
  3580. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3581. *p = 0x56;
  3582. pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3583. p);
  3584. pr_err("If allocated object is overwritten then not detectable\n\n");
  3585. validate_slab_cache(kmalloc_caches[6]);
  3586. pr_err("\nB. Corruption after free\n");
  3587. p = kzalloc(128, GFP_KERNEL);
  3588. kfree(p);
  3589. *p = 0x78;
  3590. pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3591. validate_slab_cache(kmalloc_caches[7]);
  3592. p = kzalloc(256, GFP_KERNEL);
  3593. kfree(p);
  3594. p[50] = 0x9a;
  3595. pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
  3596. validate_slab_cache(kmalloc_caches[8]);
  3597. p = kzalloc(512, GFP_KERNEL);
  3598. kfree(p);
  3599. p[512] = 0xab;
  3600. pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3601. validate_slab_cache(kmalloc_caches[9]);
  3602. }
  3603. #else
  3604. #ifdef CONFIG_SYSFS
  3605. static void resiliency_test(void) {};
  3606. #endif
  3607. #endif
  3608. #ifdef CONFIG_SYSFS
  3609. enum slab_stat_type {
  3610. SL_ALL, /* All slabs */
  3611. SL_PARTIAL, /* Only partially allocated slabs */
  3612. SL_CPU, /* Only slabs used for cpu caches */
  3613. SL_OBJECTS, /* Determine allocated objects not slabs */
  3614. SL_TOTAL /* Determine object capacity not slabs */
  3615. };
  3616. #define SO_ALL (1 << SL_ALL)
  3617. #define SO_PARTIAL (1 << SL_PARTIAL)
  3618. #define SO_CPU (1 << SL_CPU)
  3619. #define SO_OBJECTS (1 << SL_OBJECTS)
  3620. #define SO_TOTAL (1 << SL_TOTAL)
  3621. static ssize_t show_slab_objects(struct kmem_cache *s,
  3622. char *buf, unsigned long flags)
  3623. {
  3624. unsigned long total = 0;
  3625. int node;
  3626. int x;
  3627. unsigned long *nodes;
  3628. nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3629. if (!nodes)
  3630. return -ENOMEM;
  3631. if (flags & SO_CPU) {
  3632. int cpu;
  3633. for_each_possible_cpu(cpu) {
  3634. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
  3635. cpu);
  3636. int node;
  3637. struct page *page;
  3638. page = ACCESS_ONCE(c->page);
  3639. if (!page)
  3640. continue;
  3641. node = page_to_nid(page);
  3642. if (flags & SO_TOTAL)
  3643. x = page->objects;
  3644. else if (flags & SO_OBJECTS)
  3645. x = page->inuse;
  3646. else
  3647. x = 1;
  3648. total += x;
  3649. nodes[node] += x;
  3650. page = ACCESS_ONCE(c->partial);
  3651. if (page) {
  3652. node = page_to_nid(page);
  3653. if (flags & SO_TOTAL)
  3654. WARN_ON_ONCE(1);
  3655. else if (flags & SO_OBJECTS)
  3656. WARN_ON_ONCE(1);
  3657. else
  3658. x = page->pages;
  3659. total += x;
  3660. nodes[node] += x;
  3661. }
  3662. }
  3663. }
  3664. get_online_mems();
  3665. #ifdef CONFIG_SLUB_DEBUG
  3666. if (flags & SO_ALL) {
  3667. struct kmem_cache_node *n;
  3668. for_each_kmem_cache_node(s, node, n) {
  3669. if (flags & SO_TOTAL)
  3670. x = atomic_long_read(&n->total_objects);
  3671. else if (flags & SO_OBJECTS)
  3672. x = atomic_long_read(&n->total_objects) -
  3673. count_partial(n, count_free);
  3674. else
  3675. x = atomic_long_read(&n->nr_slabs);
  3676. total += x;
  3677. nodes[node] += x;
  3678. }
  3679. } else
  3680. #endif
  3681. if (flags & SO_PARTIAL) {
  3682. struct kmem_cache_node *n;
  3683. for_each_kmem_cache_node(s, node, n) {
  3684. if (flags & SO_TOTAL)
  3685. x = count_partial(n, count_total);
  3686. else if (flags & SO_OBJECTS)
  3687. x = count_partial(n, count_inuse);
  3688. else
  3689. x = n->nr_partial;
  3690. total += x;
  3691. nodes[node] += x;
  3692. }
  3693. }
  3694. x = sprintf(buf, "%lu", total);
  3695. #ifdef CONFIG_NUMA
  3696. for (node = 0; node < nr_node_ids; node++)
  3697. if (nodes[node])
  3698. x += sprintf(buf + x, " N%d=%lu",
  3699. node, nodes[node]);
  3700. #endif
  3701. put_online_mems();
  3702. kfree(nodes);
  3703. return x + sprintf(buf + x, "\n");
  3704. }
  3705. #ifdef CONFIG_SLUB_DEBUG
  3706. static int any_slab_objects(struct kmem_cache *s)
  3707. {
  3708. int node;
  3709. struct kmem_cache_node *n;
  3710. for_each_kmem_cache_node(s, node, n)
  3711. if (atomic_long_read(&n->total_objects))
  3712. return 1;
  3713. return 0;
  3714. }
  3715. #endif
  3716. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3717. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3718. struct slab_attribute {
  3719. struct attribute attr;
  3720. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3721. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3722. };
  3723. #define SLAB_ATTR_RO(_name) \
  3724. static struct slab_attribute _name##_attr = \
  3725. __ATTR(_name, 0400, _name##_show, NULL)
  3726. #define SLAB_ATTR(_name) \
  3727. static struct slab_attribute _name##_attr = \
  3728. __ATTR(_name, 0600, _name##_show, _name##_store)
  3729. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3730. {
  3731. return sprintf(buf, "%d\n", s->size);
  3732. }
  3733. SLAB_ATTR_RO(slab_size);
  3734. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3735. {
  3736. return sprintf(buf, "%d\n", s->align);
  3737. }
  3738. SLAB_ATTR_RO(align);
  3739. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3740. {
  3741. return sprintf(buf, "%d\n", s->object_size);
  3742. }
  3743. SLAB_ATTR_RO(object_size);
  3744. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3745. {
  3746. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3747. }
  3748. SLAB_ATTR_RO(objs_per_slab);
  3749. static ssize_t order_store(struct kmem_cache *s,
  3750. const char *buf, size_t length)
  3751. {
  3752. unsigned long order;
  3753. int err;
  3754. err = kstrtoul(buf, 10, &order);
  3755. if (err)
  3756. return err;
  3757. if (order > slub_max_order || order < slub_min_order)
  3758. return -EINVAL;
  3759. calculate_sizes(s, order);
  3760. return length;
  3761. }
  3762. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3763. {
  3764. return sprintf(buf, "%d\n", oo_order(s->oo));
  3765. }
  3766. SLAB_ATTR(order);
  3767. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3768. {
  3769. return sprintf(buf, "%lu\n", s->min_partial);
  3770. }
  3771. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3772. size_t length)
  3773. {
  3774. unsigned long min;
  3775. int err;
  3776. err = kstrtoul(buf, 10, &min);
  3777. if (err)
  3778. return err;
  3779. set_min_partial(s, min);
  3780. return length;
  3781. }
  3782. SLAB_ATTR(min_partial);
  3783. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3784. {
  3785. return sprintf(buf, "%u\n", s->cpu_partial);
  3786. }
  3787. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3788. size_t length)
  3789. {
  3790. unsigned long objects;
  3791. int err;
  3792. err = kstrtoul(buf, 10, &objects);
  3793. if (err)
  3794. return err;
  3795. if (objects && !kmem_cache_has_cpu_partial(s))
  3796. return -EINVAL;
  3797. s->cpu_partial = objects;
  3798. flush_all(s);
  3799. return length;
  3800. }
  3801. SLAB_ATTR(cpu_partial);
  3802. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3803. {
  3804. if (!s->ctor)
  3805. return 0;
  3806. return sprintf(buf, "%pS\n", s->ctor);
  3807. }
  3808. SLAB_ATTR_RO(ctor);
  3809. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3810. {
  3811. return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
  3812. }
  3813. SLAB_ATTR_RO(aliases);
  3814. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3815. {
  3816. return show_slab_objects(s, buf, SO_PARTIAL);
  3817. }
  3818. SLAB_ATTR_RO(partial);
  3819. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3820. {
  3821. return show_slab_objects(s, buf, SO_CPU);
  3822. }
  3823. SLAB_ATTR_RO(cpu_slabs);
  3824. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3825. {
  3826. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3827. }
  3828. SLAB_ATTR_RO(objects);
  3829. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3830. {
  3831. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3832. }
  3833. SLAB_ATTR_RO(objects_partial);
  3834. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3835. {
  3836. int objects = 0;
  3837. int pages = 0;
  3838. int cpu;
  3839. int len;
  3840. for_each_online_cpu(cpu) {
  3841. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3842. if (page) {
  3843. pages += page->pages;
  3844. objects += page->pobjects;
  3845. }
  3846. }
  3847. len = sprintf(buf, "%d(%d)", objects, pages);
  3848. #ifdef CONFIG_SMP
  3849. for_each_online_cpu(cpu) {
  3850. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3851. if (page && len < PAGE_SIZE - 20)
  3852. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3853. page->pobjects, page->pages);
  3854. }
  3855. #endif
  3856. return len + sprintf(buf + len, "\n");
  3857. }
  3858. SLAB_ATTR_RO(slabs_cpu_partial);
  3859. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3860. {
  3861. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3862. }
  3863. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3864. const char *buf, size_t length)
  3865. {
  3866. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3867. if (buf[0] == '1')
  3868. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3869. return length;
  3870. }
  3871. SLAB_ATTR(reclaim_account);
  3872. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3873. {
  3874. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3875. }
  3876. SLAB_ATTR_RO(hwcache_align);
  3877. #ifdef CONFIG_ZONE_DMA
  3878. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3879. {
  3880. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3881. }
  3882. SLAB_ATTR_RO(cache_dma);
  3883. #endif
  3884. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3885. {
  3886. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3887. }
  3888. SLAB_ATTR_RO(destroy_by_rcu);
  3889. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3890. {
  3891. return sprintf(buf, "%d\n", s->reserved);
  3892. }
  3893. SLAB_ATTR_RO(reserved);
  3894. #ifdef CONFIG_SLUB_DEBUG
  3895. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3896. {
  3897. return show_slab_objects(s, buf, SO_ALL);
  3898. }
  3899. SLAB_ATTR_RO(slabs);
  3900. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3901. {
  3902. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3903. }
  3904. SLAB_ATTR_RO(total_objects);
  3905. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3906. {
  3907. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3908. }
  3909. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3910. const char *buf, size_t length)
  3911. {
  3912. s->flags &= ~SLAB_DEBUG_FREE;
  3913. if (buf[0] == '1') {
  3914. s->flags &= ~__CMPXCHG_DOUBLE;
  3915. s->flags |= SLAB_DEBUG_FREE;
  3916. }
  3917. return length;
  3918. }
  3919. SLAB_ATTR(sanity_checks);
  3920. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3921. {
  3922. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3923. }
  3924. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3925. size_t length)
  3926. {
  3927. /*
  3928. * Tracing a merged cache is going to give confusing results
  3929. * as well as cause other issues like converting a mergeable
  3930. * cache into an umergeable one.
  3931. */
  3932. if (s->refcount > 1)
  3933. return -EINVAL;
  3934. s->flags &= ~SLAB_TRACE;
  3935. if (buf[0] == '1') {
  3936. s->flags &= ~__CMPXCHG_DOUBLE;
  3937. s->flags |= SLAB_TRACE;
  3938. }
  3939. return length;
  3940. }
  3941. SLAB_ATTR(trace);
  3942. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3943. {
  3944. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3945. }
  3946. static ssize_t red_zone_store(struct kmem_cache *s,
  3947. const char *buf, size_t length)
  3948. {
  3949. if (any_slab_objects(s))
  3950. return -EBUSY;
  3951. s->flags &= ~SLAB_RED_ZONE;
  3952. if (buf[0] == '1') {
  3953. s->flags &= ~__CMPXCHG_DOUBLE;
  3954. s->flags |= SLAB_RED_ZONE;
  3955. }
  3956. calculate_sizes(s, -1);
  3957. return length;
  3958. }
  3959. SLAB_ATTR(red_zone);
  3960. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3961. {
  3962. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3963. }
  3964. static ssize_t poison_store(struct kmem_cache *s,
  3965. const char *buf, size_t length)
  3966. {
  3967. if (any_slab_objects(s))
  3968. return -EBUSY;
  3969. s->flags &= ~SLAB_POISON;
  3970. if (buf[0] == '1') {
  3971. s->flags &= ~__CMPXCHG_DOUBLE;
  3972. s->flags |= SLAB_POISON;
  3973. }
  3974. calculate_sizes(s, -1);
  3975. return length;
  3976. }
  3977. SLAB_ATTR(poison);
  3978. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3979. {
  3980. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3981. }
  3982. static ssize_t store_user_store(struct kmem_cache *s,
  3983. const char *buf, size_t length)
  3984. {
  3985. if (any_slab_objects(s))
  3986. return -EBUSY;
  3987. s->flags &= ~SLAB_STORE_USER;
  3988. if (buf[0] == '1') {
  3989. s->flags &= ~__CMPXCHG_DOUBLE;
  3990. s->flags |= SLAB_STORE_USER;
  3991. }
  3992. calculate_sizes(s, -1);
  3993. return length;
  3994. }
  3995. SLAB_ATTR(store_user);
  3996. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3997. {
  3998. return 0;
  3999. }
  4000. static ssize_t validate_store(struct kmem_cache *s,
  4001. const char *buf, size_t length)
  4002. {
  4003. int ret = -EINVAL;
  4004. if (buf[0] == '1') {
  4005. ret = validate_slab_cache(s);
  4006. if (ret >= 0)
  4007. ret = length;
  4008. }
  4009. return ret;
  4010. }
  4011. SLAB_ATTR(validate);
  4012. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4013. {
  4014. if (!(s->flags & SLAB_STORE_USER))
  4015. return -ENOSYS;
  4016. return list_locations(s, buf, TRACK_ALLOC);
  4017. }
  4018. SLAB_ATTR_RO(alloc_calls);
  4019. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4020. {
  4021. if (!(s->flags & SLAB_STORE_USER))
  4022. return -ENOSYS;
  4023. return list_locations(s, buf, TRACK_FREE);
  4024. }
  4025. SLAB_ATTR_RO(free_calls);
  4026. #endif /* CONFIG_SLUB_DEBUG */
  4027. #ifdef CONFIG_FAILSLAB
  4028. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4029. {
  4030. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4031. }
  4032. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4033. size_t length)
  4034. {
  4035. if (s->refcount > 1)
  4036. return -EINVAL;
  4037. s->flags &= ~SLAB_FAILSLAB;
  4038. if (buf[0] == '1')
  4039. s->flags |= SLAB_FAILSLAB;
  4040. return length;
  4041. }
  4042. SLAB_ATTR(failslab);
  4043. #endif
  4044. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4045. {
  4046. return 0;
  4047. }
  4048. static ssize_t shrink_store(struct kmem_cache *s,
  4049. const char *buf, size_t length)
  4050. {
  4051. if (buf[0] == '1') {
  4052. int rc = kmem_cache_shrink(s);
  4053. if (rc)
  4054. return rc;
  4055. } else
  4056. return -EINVAL;
  4057. return length;
  4058. }
  4059. SLAB_ATTR(shrink);
  4060. #ifdef CONFIG_NUMA
  4061. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4062. {
  4063. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4064. }
  4065. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4066. const char *buf, size_t length)
  4067. {
  4068. unsigned long ratio;
  4069. int err;
  4070. err = kstrtoul(buf, 10, &ratio);
  4071. if (err)
  4072. return err;
  4073. if (ratio <= 100)
  4074. s->remote_node_defrag_ratio = ratio * 10;
  4075. return length;
  4076. }
  4077. SLAB_ATTR(remote_node_defrag_ratio);
  4078. #endif
  4079. #ifdef CONFIG_SLUB_STATS
  4080. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4081. {
  4082. unsigned long sum = 0;
  4083. int cpu;
  4084. int len;
  4085. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4086. if (!data)
  4087. return -ENOMEM;
  4088. for_each_online_cpu(cpu) {
  4089. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4090. data[cpu] = x;
  4091. sum += x;
  4092. }
  4093. len = sprintf(buf, "%lu", sum);
  4094. #ifdef CONFIG_SMP
  4095. for_each_online_cpu(cpu) {
  4096. if (data[cpu] && len < PAGE_SIZE - 20)
  4097. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4098. }
  4099. #endif
  4100. kfree(data);
  4101. return len + sprintf(buf + len, "\n");
  4102. }
  4103. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4104. {
  4105. int cpu;
  4106. for_each_online_cpu(cpu)
  4107. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4108. }
  4109. #define STAT_ATTR(si, text) \
  4110. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4111. { \
  4112. return show_stat(s, buf, si); \
  4113. } \
  4114. static ssize_t text##_store(struct kmem_cache *s, \
  4115. const char *buf, size_t length) \
  4116. { \
  4117. if (buf[0] != '0') \
  4118. return -EINVAL; \
  4119. clear_stat(s, si); \
  4120. return length; \
  4121. } \
  4122. SLAB_ATTR(text); \
  4123. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4124. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4125. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4126. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4127. STAT_ATTR(FREE_FROZEN, free_frozen);
  4128. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4129. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4130. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4131. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4132. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4133. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4134. STAT_ATTR(FREE_SLAB, free_slab);
  4135. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4136. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4137. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4138. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4139. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4140. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4141. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4142. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4143. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4144. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4145. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4146. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4147. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4148. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4149. #endif
  4150. static struct attribute *slab_attrs[] = {
  4151. &slab_size_attr.attr,
  4152. &object_size_attr.attr,
  4153. &objs_per_slab_attr.attr,
  4154. &order_attr.attr,
  4155. &min_partial_attr.attr,
  4156. &cpu_partial_attr.attr,
  4157. &objects_attr.attr,
  4158. &objects_partial_attr.attr,
  4159. &partial_attr.attr,
  4160. &cpu_slabs_attr.attr,
  4161. &ctor_attr.attr,
  4162. &aliases_attr.attr,
  4163. &align_attr.attr,
  4164. &hwcache_align_attr.attr,
  4165. &reclaim_account_attr.attr,
  4166. &destroy_by_rcu_attr.attr,
  4167. &shrink_attr.attr,
  4168. &reserved_attr.attr,
  4169. &slabs_cpu_partial_attr.attr,
  4170. #ifdef CONFIG_SLUB_DEBUG
  4171. &total_objects_attr.attr,
  4172. &slabs_attr.attr,
  4173. &sanity_checks_attr.attr,
  4174. &trace_attr.attr,
  4175. &red_zone_attr.attr,
  4176. &poison_attr.attr,
  4177. &store_user_attr.attr,
  4178. &validate_attr.attr,
  4179. &alloc_calls_attr.attr,
  4180. &free_calls_attr.attr,
  4181. #endif
  4182. #ifdef CONFIG_ZONE_DMA
  4183. &cache_dma_attr.attr,
  4184. #endif
  4185. #ifdef CONFIG_NUMA
  4186. &remote_node_defrag_ratio_attr.attr,
  4187. #endif
  4188. #ifdef CONFIG_SLUB_STATS
  4189. &alloc_fastpath_attr.attr,
  4190. &alloc_slowpath_attr.attr,
  4191. &free_fastpath_attr.attr,
  4192. &free_slowpath_attr.attr,
  4193. &free_frozen_attr.attr,
  4194. &free_add_partial_attr.attr,
  4195. &free_remove_partial_attr.attr,
  4196. &alloc_from_partial_attr.attr,
  4197. &alloc_slab_attr.attr,
  4198. &alloc_refill_attr.attr,
  4199. &alloc_node_mismatch_attr.attr,
  4200. &free_slab_attr.attr,
  4201. &cpuslab_flush_attr.attr,
  4202. &deactivate_full_attr.attr,
  4203. &deactivate_empty_attr.attr,
  4204. &deactivate_to_head_attr.attr,
  4205. &deactivate_to_tail_attr.attr,
  4206. &deactivate_remote_frees_attr.attr,
  4207. &deactivate_bypass_attr.attr,
  4208. &order_fallback_attr.attr,
  4209. &cmpxchg_double_fail_attr.attr,
  4210. &cmpxchg_double_cpu_fail_attr.attr,
  4211. &cpu_partial_alloc_attr.attr,
  4212. &cpu_partial_free_attr.attr,
  4213. &cpu_partial_node_attr.attr,
  4214. &cpu_partial_drain_attr.attr,
  4215. #endif
  4216. #ifdef CONFIG_FAILSLAB
  4217. &failslab_attr.attr,
  4218. #endif
  4219. NULL
  4220. };
  4221. static struct attribute_group slab_attr_group = {
  4222. .attrs = slab_attrs,
  4223. };
  4224. static ssize_t slab_attr_show(struct kobject *kobj,
  4225. struct attribute *attr,
  4226. char *buf)
  4227. {
  4228. struct slab_attribute *attribute;
  4229. struct kmem_cache *s;
  4230. int err;
  4231. attribute = to_slab_attr(attr);
  4232. s = to_slab(kobj);
  4233. if (!attribute->show)
  4234. return -EIO;
  4235. err = attribute->show(s, buf);
  4236. return err;
  4237. }
  4238. static ssize_t slab_attr_store(struct kobject *kobj,
  4239. struct attribute *attr,
  4240. const char *buf, size_t len)
  4241. {
  4242. struct slab_attribute *attribute;
  4243. struct kmem_cache *s;
  4244. int err;
  4245. attribute = to_slab_attr(attr);
  4246. s = to_slab(kobj);
  4247. if (!attribute->store)
  4248. return -EIO;
  4249. err = attribute->store(s, buf, len);
  4250. #ifdef CONFIG_MEMCG_KMEM
  4251. if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
  4252. int i;
  4253. mutex_lock(&slab_mutex);
  4254. if (s->max_attr_size < len)
  4255. s->max_attr_size = len;
  4256. /*
  4257. * This is a best effort propagation, so this function's return
  4258. * value will be determined by the parent cache only. This is
  4259. * basically because not all attributes will have a well
  4260. * defined semantics for rollbacks - most of the actions will
  4261. * have permanent effects.
  4262. *
  4263. * Returning the error value of any of the children that fail
  4264. * is not 100 % defined, in the sense that users seeing the
  4265. * error code won't be able to know anything about the state of
  4266. * the cache.
  4267. *
  4268. * Only returning the error code for the parent cache at least
  4269. * has well defined semantics. The cache being written to
  4270. * directly either failed or succeeded, in which case we loop
  4271. * through the descendants with best-effort propagation.
  4272. */
  4273. for_each_memcg_cache_index(i) {
  4274. struct kmem_cache *c = cache_from_memcg_idx(s, i);
  4275. if (c)
  4276. attribute->store(c, buf, len);
  4277. }
  4278. mutex_unlock(&slab_mutex);
  4279. }
  4280. #endif
  4281. return err;
  4282. }
  4283. static void memcg_propagate_slab_attrs(struct kmem_cache *s)
  4284. {
  4285. #ifdef CONFIG_MEMCG_KMEM
  4286. int i;
  4287. char *buffer = NULL;
  4288. struct kmem_cache *root_cache;
  4289. if (is_root_cache(s))
  4290. return;
  4291. root_cache = s->memcg_params->root_cache;
  4292. /*
  4293. * This mean this cache had no attribute written. Therefore, no point
  4294. * in copying default values around
  4295. */
  4296. if (!root_cache->max_attr_size)
  4297. return;
  4298. for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
  4299. char mbuf[64];
  4300. char *buf;
  4301. struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
  4302. if (!attr || !attr->store || !attr->show)
  4303. continue;
  4304. /*
  4305. * It is really bad that we have to allocate here, so we will
  4306. * do it only as a fallback. If we actually allocate, though,
  4307. * we can just use the allocated buffer until the end.
  4308. *
  4309. * Most of the slub attributes will tend to be very small in
  4310. * size, but sysfs allows buffers up to a page, so they can
  4311. * theoretically happen.
  4312. */
  4313. if (buffer)
  4314. buf = buffer;
  4315. else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
  4316. buf = mbuf;
  4317. else {
  4318. buffer = (char *) get_zeroed_page(GFP_KERNEL);
  4319. if (WARN_ON(!buffer))
  4320. continue;
  4321. buf = buffer;
  4322. }
  4323. attr->show(root_cache, buf);
  4324. attr->store(s, buf, strlen(buf));
  4325. }
  4326. if (buffer)
  4327. free_page((unsigned long)buffer);
  4328. #endif
  4329. }
  4330. static void kmem_cache_release(struct kobject *k)
  4331. {
  4332. slab_kmem_cache_release(to_slab(k));
  4333. }
  4334. static const struct sysfs_ops slab_sysfs_ops = {
  4335. .show = slab_attr_show,
  4336. .store = slab_attr_store,
  4337. };
  4338. static struct kobj_type slab_ktype = {
  4339. .sysfs_ops = &slab_sysfs_ops,
  4340. .release = kmem_cache_release,
  4341. };
  4342. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4343. {
  4344. struct kobj_type *ktype = get_ktype(kobj);
  4345. if (ktype == &slab_ktype)
  4346. return 1;
  4347. return 0;
  4348. }
  4349. static const struct kset_uevent_ops slab_uevent_ops = {
  4350. .filter = uevent_filter,
  4351. };
  4352. static struct kset *slab_kset;
  4353. static inline struct kset *cache_kset(struct kmem_cache *s)
  4354. {
  4355. #ifdef CONFIG_MEMCG_KMEM
  4356. if (!is_root_cache(s))
  4357. return s->memcg_params->root_cache->memcg_kset;
  4358. #endif
  4359. return slab_kset;
  4360. }
  4361. #define ID_STR_LENGTH 64
  4362. /* Create a unique string id for a slab cache:
  4363. *
  4364. * Format :[flags-]size
  4365. */
  4366. static char *create_unique_id(struct kmem_cache *s)
  4367. {
  4368. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4369. char *p = name;
  4370. BUG_ON(!name);
  4371. *p++ = ':';
  4372. /*
  4373. * First flags affecting slabcache operations. We will only
  4374. * get here for aliasable slabs so we do not need to support
  4375. * too many flags. The flags here must cover all flags that
  4376. * are matched during merging to guarantee that the id is
  4377. * unique.
  4378. */
  4379. if (s->flags & SLAB_CACHE_DMA)
  4380. *p++ = 'd';
  4381. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4382. *p++ = 'a';
  4383. if (s->flags & SLAB_DEBUG_FREE)
  4384. *p++ = 'F';
  4385. if (!(s->flags & SLAB_NOTRACK))
  4386. *p++ = 't';
  4387. if (p != name + 1)
  4388. *p++ = '-';
  4389. p += sprintf(p, "%07d", s->size);
  4390. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4391. return name;
  4392. }
  4393. static int sysfs_slab_add(struct kmem_cache *s)
  4394. {
  4395. int err;
  4396. const char *name;
  4397. int unmergeable = slab_unmergeable(s);
  4398. if (unmergeable) {
  4399. /*
  4400. * Slabcache can never be merged so we can use the name proper.
  4401. * This is typically the case for debug situations. In that
  4402. * case we can catch duplicate names easily.
  4403. */
  4404. sysfs_remove_link(&slab_kset->kobj, s->name);
  4405. name = s->name;
  4406. } else {
  4407. /*
  4408. * Create a unique name for the slab as a target
  4409. * for the symlinks.
  4410. */
  4411. name = create_unique_id(s);
  4412. }
  4413. s->kobj.kset = cache_kset(s);
  4414. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
  4415. if (err)
  4416. goto out_put_kobj;
  4417. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4418. if (err)
  4419. goto out_del_kobj;
  4420. #ifdef CONFIG_MEMCG_KMEM
  4421. if (is_root_cache(s)) {
  4422. s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
  4423. if (!s->memcg_kset) {
  4424. err = -ENOMEM;
  4425. goto out_del_kobj;
  4426. }
  4427. }
  4428. #endif
  4429. kobject_uevent(&s->kobj, KOBJ_ADD);
  4430. if (!unmergeable) {
  4431. /* Setup first alias */
  4432. sysfs_slab_alias(s, s->name);
  4433. }
  4434. out:
  4435. if (!unmergeable)
  4436. kfree(name);
  4437. return err;
  4438. out_del_kobj:
  4439. kobject_del(&s->kobj);
  4440. out_put_kobj:
  4441. kobject_put(&s->kobj);
  4442. goto out;
  4443. }
  4444. void sysfs_slab_remove(struct kmem_cache *s)
  4445. {
  4446. if (slab_state < FULL)
  4447. /*
  4448. * Sysfs has not been setup yet so no need to remove the
  4449. * cache from sysfs.
  4450. */
  4451. return;
  4452. #ifdef CONFIG_MEMCG_KMEM
  4453. kset_unregister(s->memcg_kset);
  4454. #endif
  4455. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4456. kobject_del(&s->kobj);
  4457. kobject_put(&s->kobj);
  4458. }
  4459. /*
  4460. * Need to buffer aliases during bootup until sysfs becomes
  4461. * available lest we lose that information.
  4462. */
  4463. struct saved_alias {
  4464. struct kmem_cache *s;
  4465. const char *name;
  4466. struct saved_alias *next;
  4467. };
  4468. static struct saved_alias *alias_list;
  4469. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4470. {
  4471. struct saved_alias *al;
  4472. if (slab_state == FULL) {
  4473. /*
  4474. * If we have a leftover link then remove it.
  4475. */
  4476. sysfs_remove_link(&slab_kset->kobj, name);
  4477. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4478. }
  4479. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4480. if (!al)
  4481. return -ENOMEM;
  4482. al->s = s;
  4483. al->name = name;
  4484. al->next = alias_list;
  4485. alias_list = al;
  4486. return 0;
  4487. }
  4488. static int __init slab_sysfs_init(void)
  4489. {
  4490. struct kmem_cache *s;
  4491. int err;
  4492. mutex_lock(&slab_mutex);
  4493. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4494. if (!slab_kset) {
  4495. mutex_unlock(&slab_mutex);
  4496. pr_err("Cannot register slab subsystem.\n");
  4497. return -ENOSYS;
  4498. }
  4499. slab_state = FULL;
  4500. list_for_each_entry(s, &slab_caches, list) {
  4501. err = sysfs_slab_add(s);
  4502. if (err)
  4503. pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
  4504. s->name);
  4505. }
  4506. while (alias_list) {
  4507. struct saved_alias *al = alias_list;
  4508. alias_list = alias_list->next;
  4509. err = sysfs_slab_alias(al->s, al->name);
  4510. if (err)
  4511. pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
  4512. al->name);
  4513. kfree(al);
  4514. }
  4515. mutex_unlock(&slab_mutex);
  4516. resiliency_test();
  4517. return 0;
  4518. }
  4519. __initcall(slab_sysfs_init);
  4520. #endif /* CONFIG_SYSFS */
  4521. /*
  4522. * The /proc/slabinfo ABI
  4523. */
  4524. #ifdef CONFIG_SLABINFO
  4525. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
  4526. {
  4527. unsigned long nr_slabs = 0;
  4528. unsigned long nr_objs = 0;
  4529. unsigned long nr_free = 0;
  4530. int node;
  4531. struct kmem_cache_node *n;
  4532. for_each_kmem_cache_node(s, node, n) {
  4533. nr_slabs += node_nr_slabs(n);
  4534. nr_objs += node_nr_objs(n);
  4535. nr_free += count_partial(n, count_free);
  4536. }
  4537. sinfo->active_objs = nr_objs - nr_free;
  4538. sinfo->num_objs = nr_objs;
  4539. sinfo->active_slabs = nr_slabs;
  4540. sinfo->num_slabs = nr_slabs;
  4541. sinfo->objects_per_slab = oo_objects(s->oo);
  4542. sinfo->cache_order = oo_order(s->oo);
  4543. }
  4544. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
  4545. {
  4546. }
  4547. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  4548. size_t count, loff_t *ppos)
  4549. {
  4550. return -EIO;
  4551. }
  4552. #ifdef CONFIG_MTK_MEMCFG
  4553. static int mtk_memcfg_add_location(struct loc_track *t, struct kmem_cache *s,
  4554. const struct track *track)
  4555. {
  4556. long start, end, pos;
  4557. struct location *l;
  4558. unsigned long (*caddrs)[MTK_MEMCFG_SLABTRACE_CNT]; /* Called from addresses */
  4559. unsigned long taddrs[MTK_MEMCFG_SLABTRACE_CNT]
  4560. = { [0 ... MTK_MEMCFG_SLABTRACE_CNT - 1] = 0,}; /* Called from addresses of track */
  4561. unsigned long age = jiffies - track->when;
  4562. int i, cnt;
  4563. start = -1;
  4564. end = t->count;
  4565. /* find the index of track->addr */
  4566. for (i = 0; i < TRACK_ADDRS_COUNT; i++) {
  4567. #ifdef MTK_COMPACT_SLUB_TRACK
  4568. /* we store the offset after MODULES_VADDR for kernel module and kernel text address */
  4569. if (track->addr == ((MODULES_VADDR + track->addrs[i])) ||
  4570. ((track->addr - 4) == (MODULES_VADDR + track->addrs[i])))
  4571. #else
  4572. if ((track->addr == track->addrs[i]) ||
  4573. (track->addr - 4 == track->addrs[i]))
  4574. #endif
  4575. break;
  4576. }
  4577. cnt = min(MTK_MEMCFG_SLABTRACE_CNT, TRACK_ADDRS_COUNT - i);
  4578. #ifdef MTK_COMPACT_SLUB_TRACK
  4579. {
  4580. int j = 0;
  4581. unsigned long addrs[TRACK_ADDRS_COUNT];
  4582. for (j = 0; j < TRACK_ADDRS_COUNT; j++) {
  4583. /* we store the offset after MODULES_VADDR for kernel module and kernel text address */
  4584. if (track->addrs[j])
  4585. addrs[j] = MODULES_VADDR + track->addrs[j];
  4586. else
  4587. addrs[j] = 0;
  4588. }
  4589. memcpy(taddrs, addrs + i, (cnt * sizeof(unsigned long)));
  4590. }
  4591. #else
  4592. memcpy(taddrs, track->addrs + i, (cnt * sizeof(unsigned long)));
  4593. #endif
  4594. for ( ; ; ) {
  4595. pos = start + (end - start + 1) / 2;
  4596. /*
  4597. * There is nothing at "end". If we end up there
  4598. * we need to add something to before end.
  4599. */
  4600. if (pos == end)
  4601. break;
  4602. caddrs = &(t->loc[pos].addrs);
  4603. if (!memcmp(caddrs, taddrs, MTK_MEMCFG_SLABTRACE_CNT * sizeof(unsigned long))) {
  4604. l = &t->loc[pos];
  4605. l->count++;
  4606. if (track->when) {
  4607. l->sum_time += age;
  4608. if (age < l->min_time)
  4609. l->min_time = age;
  4610. if (age > l->max_time)
  4611. l->max_time = age;
  4612. if (track->pid < l->min_pid)
  4613. l->min_pid = track->pid;
  4614. if (track->pid > l->max_pid)
  4615. l->max_pid = track->pid;
  4616. cpumask_set_cpu(track->cpu,
  4617. to_cpumask(l->cpus));
  4618. }
  4619. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  4620. return 1;
  4621. }
  4622. if (memcmp(caddrs, taddrs, MTK_MEMCFG_SLABTRACE_CNT * sizeof(unsigned long)) < 0)
  4623. end = pos;
  4624. else
  4625. start = pos;
  4626. }
  4627. /*
  4628. * Not found. Insert new tracking element.
  4629. */
  4630. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, __GFP_NOMEMALLOC|GFP_NOWAIT|__GFP_NO_KSWAPD))
  4631. return 0;
  4632. l = t->loc + pos;
  4633. if (pos < t->count)
  4634. memmove(l + 1, l,
  4635. (t->count - pos) * sizeof(struct location));
  4636. t->count++;
  4637. l->count = 1;
  4638. l->addr = track->addr;
  4639. memcpy(l->addrs, taddrs, MTK_MEMCFG_SLABTRACE_CNT * sizeof(unsigned long));
  4640. l->sum_time = age;
  4641. l->min_time = age;
  4642. l->max_time = age;
  4643. l->min_pid = track->pid;
  4644. l->max_pid = track->pid;
  4645. cpumask_clear(to_cpumask(l->cpus));
  4646. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  4647. nodes_clear(l->nodes);
  4648. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  4649. return 1;
  4650. }
  4651. static void mtk_memcfg_process_slab(struct loc_track *t, struct kmem_cache *s,
  4652. struct page *page, enum track_item alloc,
  4653. unsigned long *map)
  4654. {
  4655. void *addr = page_address(page);
  4656. void *p;
  4657. bitmap_zero(map, page->objects);
  4658. get_map(s, page, map);
  4659. for_each_object(p, s, addr, page->objects)
  4660. if (!test_bit(slab_index(p, s, addr), map))
  4661. mtk_memcfg_add_location(t, s, get_track(s, p, alloc));
  4662. }
  4663. static int mtk_memcfg_list_locations(struct kmem_cache *s, struct seq_file *m,
  4664. enum track_item alloc)
  4665. {
  4666. unsigned long i, j;
  4667. struct loc_track t = { 0, 0, NULL };
  4668. int node;
  4669. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  4670. sizeof(unsigned long), GFP_KERNEL);
  4671. struct kmem_cache_node *n;
  4672. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  4673. __GFP_NOMEMALLOC|GFP_NOWAIT|__GFP_NO_KSWAPD)) {
  4674. kfree(map);
  4675. return seq_puts(m, "Out of memory\n");
  4676. }
  4677. /* Push back cpu slabs */
  4678. flush_all(s);
  4679. for_each_kmem_cache_node(s, node, n) {
  4680. unsigned long flags;
  4681. struct page *page;
  4682. if (!atomic_long_read(&n->nr_slabs))
  4683. continue;
  4684. spin_lock_irqsave(&n->list_lock, flags);
  4685. list_for_each_entry(page, &n->partial, lru)
  4686. mtk_memcfg_process_slab(&t, s, page, alloc, map);
  4687. list_for_each_entry(page, &n->full, lru)
  4688. mtk_memcfg_process_slab(&t, s, page, alloc, map);
  4689. spin_unlock_irqrestore(&n->list_lock, flags);
  4690. }
  4691. for (i = 0; i < t.count; i++) {
  4692. struct location *l = &t.loc[i];
  4693. seq_printf(m, "%7ld ", l->count);
  4694. if (l->addr)
  4695. seq_printf(m, "%pS", (void *)l->addr);
  4696. else
  4697. seq_puts(m, "<not-available>");
  4698. for (j = 0; j < MTK_MEMCFG_SLABTRACE_CNT; j++)
  4699. if (l->addrs[j])
  4700. seq_printf(m, " %p", (void *)l->addrs[j]);
  4701. seq_puts(m, "\n");
  4702. }
  4703. free_loc_track(&t);
  4704. kfree(map);
  4705. if (!t.count)
  4706. seq_puts(m, "No data\n");
  4707. return 0;
  4708. }
  4709. static int mtk_memcfg_slabtrace_show(struct seq_file *m, void *p)
  4710. {
  4711. struct kmem_cache *s;
  4712. mutex_lock(&slab_mutex);
  4713. list_for_each_entry(s, &slab_caches, list) {
  4714. seq_printf(m, "========== kmem_cache: %s alloc_calls ==========\n", s->name);
  4715. if (!(s->flags & SLAB_STORE_USER))
  4716. continue;
  4717. else
  4718. mtk_memcfg_list_locations(s, m, TRACK_ALLOC);
  4719. }
  4720. mutex_unlock(&slab_mutex);
  4721. return 0;
  4722. }
  4723. int slabtrace_open(struct inode *inode, struct file *file)
  4724. {
  4725. return single_open(file, mtk_memcfg_slabtrace_show, NULL);
  4726. }
  4727. #endif
  4728. #endif /* CONFIG_SLABINFO */