elevator.c 24 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@kernel.dk> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/module.h>
  31. #include <linux/slab.h>
  32. #include <linux/init.h>
  33. #include <linux/compiler.h>
  34. #include <linux/blktrace_api.h>
  35. #include <linux/hash.h>
  36. #include <linux/uaccess.h>
  37. #include <linux/pm_runtime.h>
  38. #include <trace/events/block.h>
  39. #include "blk.h"
  40. #include "blk-cgroup.h"
  41. static DEFINE_SPINLOCK(elv_list_lock);
  42. static LIST_HEAD(elv_list);
  43. /*
  44. * Merge hash stuff.
  45. */
  46. #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq))
  47. /*
  48. * Query io scheduler to see if the current process issuing bio may be
  49. * merged with rq.
  50. */
  51. static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
  52. {
  53. struct request_queue *q = rq->q;
  54. struct elevator_queue *e = q->elevator;
  55. if (e->type->ops.elevator_allow_merge_fn)
  56. return e->type->ops.elevator_allow_merge_fn(q, rq, bio);
  57. return 1;
  58. }
  59. /*
  60. * can we safely merge with this request?
  61. */
  62. bool elv_rq_merge_ok(struct request *rq, struct bio *bio)
  63. {
  64. if (!blk_rq_merge_ok(rq, bio))
  65. return 0;
  66. if (!elv_iosched_allow_merge(rq, bio))
  67. return 0;
  68. return 1;
  69. }
  70. EXPORT_SYMBOL(elv_rq_merge_ok);
  71. static struct elevator_type *elevator_find(const char *name)
  72. {
  73. struct elevator_type *e;
  74. list_for_each_entry(e, &elv_list, list) {
  75. if (!strcmp(e->elevator_name, name))
  76. return e;
  77. }
  78. return NULL;
  79. }
  80. static void elevator_put(struct elevator_type *e)
  81. {
  82. module_put(e->elevator_owner);
  83. }
  84. static struct elevator_type *elevator_get(const char *name, bool try_loading)
  85. {
  86. struct elevator_type *e;
  87. spin_lock(&elv_list_lock);
  88. e = elevator_find(name);
  89. if (!e && try_loading) {
  90. spin_unlock(&elv_list_lock);
  91. request_module("%s-iosched", name);
  92. spin_lock(&elv_list_lock);
  93. e = elevator_find(name);
  94. }
  95. if (e && !try_module_get(e->elevator_owner))
  96. e = NULL;
  97. spin_unlock(&elv_list_lock);
  98. return e;
  99. }
  100. static char chosen_elevator[ELV_NAME_MAX];
  101. static int __init elevator_setup(char *str)
  102. {
  103. /*
  104. * Be backwards-compatible with previous kernels, so users
  105. * won't get the wrong elevator.
  106. */
  107. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  108. return 1;
  109. }
  110. __setup("elevator=", elevator_setup);
  111. /* called during boot to load the elevator chosen by the elevator param */
  112. void __init load_default_elevator_module(void)
  113. {
  114. struct elevator_type *e;
  115. if (!chosen_elevator[0])
  116. return;
  117. spin_lock(&elv_list_lock);
  118. e = elevator_find(chosen_elevator);
  119. spin_unlock(&elv_list_lock);
  120. if (!e)
  121. request_module("%s-iosched", chosen_elevator);
  122. }
  123. static struct kobj_type elv_ktype;
  124. struct elevator_queue *elevator_alloc(struct request_queue *q,
  125. struct elevator_type *e)
  126. {
  127. struct elevator_queue *eq;
  128. eq = kzalloc_node(sizeof(*eq), GFP_KERNEL, q->node);
  129. if (unlikely(!eq))
  130. goto err;
  131. eq->type = e;
  132. kobject_init(&eq->kobj, &elv_ktype);
  133. mutex_init(&eq->sysfs_lock);
  134. hash_init(eq->hash);
  135. return eq;
  136. err:
  137. kfree(eq);
  138. elevator_put(e);
  139. return NULL;
  140. }
  141. EXPORT_SYMBOL(elevator_alloc);
  142. static void elevator_release(struct kobject *kobj)
  143. {
  144. struct elevator_queue *e;
  145. e = container_of(kobj, struct elevator_queue, kobj);
  146. elevator_put(e->type);
  147. kfree(e);
  148. }
  149. int elevator_init(struct request_queue *q, char *name)
  150. {
  151. struct elevator_type *e = NULL;
  152. int err;
  153. /*
  154. * q->sysfs_lock must be held to provide mutual exclusion between
  155. * elevator_switch() and here.
  156. */
  157. lockdep_assert_held(&q->sysfs_lock);
  158. if (unlikely(q->elevator))
  159. return 0;
  160. INIT_LIST_HEAD(&q->queue_head);
  161. q->last_merge = NULL;
  162. q->end_sector = 0;
  163. q->boundary_rq = NULL;
  164. if (name) {
  165. e = elevator_get(name, true);
  166. if (!e)
  167. return -EINVAL;
  168. }
  169. /*
  170. * Use the default elevator specified by config boot param or
  171. * config option. Don't try to load modules as we could be running
  172. * off async and request_module() isn't allowed from async.
  173. */
  174. if (!e && *chosen_elevator) {
  175. e = elevator_get(chosen_elevator, false);
  176. if (!e)
  177. printk(KERN_ERR "I/O scheduler %s not found\n",
  178. chosen_elevator);
  179. }
  180. if (!e) {
  181. e = elevator_get(CONFIG_DEFAULT_IOSCHED, false);
  182. if (!e) {
  183. printk(KERN_ERR
  184. "Default I/O scheduler not found. " \
  185. "Using noop.\n");
  186. e = elevator_get("noop", false);
  187. }
  188. }
  189. err = e->ops.elevator_init_fn(q, e);
  190. if (err)
  191. elevator_put(e);
  192. return err;
  193. }
  194. EXPORT_SYMBOL(elevator_init);
  195. void elevator_exit(struct elevator_queue *e)
  196. {
  197. mutex_lock(&e->sysfs_lock);
  198. if (e->type->ops.elevator_exit_fn)
  199. e->type->ops.elevator_exit_fn(e);
  200. mutex_unlock(&e->sysfs_lock);
  201. kobject_put(&e->kobj);
  202. }
  203. EXPORT_SYMBOL(elevator_exit);
  204. static inline void __elv_rqhash_del(struct request *rq)
  205. {
  206. hash_del(&rq->hash);
  207. rq->cmd_flags &= ~REQ_HASHED;
  208. }
  209. static void elv_rqhash_del(struct request_queue *q, struct request *rq)
  210. {
  211. if (ELV_ON_HASH(rq))
  212. __elv_rqhash_del(rq);
  213. }
  214. static void elv_rqhash_add(struct request_queue *q, struct request *rq)
  215. {
  216. struct elevator_queue *e = q->elevator;
  217. BUG_ON(ELV_ON_HASH(rq));
  218. hash_add(e->hash, &rq->hash, rq_hash_key(rq));
  219. rq->cmd_flags |= REQ_HASHED;
  220. }
  221. static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
  222. {
  223. __elv_rqhash_del(rq);
  224. elv_rqhash_add(q, rq);
  225. }
  226. static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
  227. {
  228. struct elevator_queue *e = q->elevator;
  229. struct hlist_node *next;
  230. struct request *rq;
  231. hash_for_each_possible_safe(e->hash, rq, next, hash, offset) {
  232. BUG_ON(!ELV_ON_HASH(rq));
  233. if (unlikely(!rq_mergeable(rq))) {
  234. __elv_rqhash_del(rq);
  235. continue;
  236. }
  237. if (rq_hash_key(rq) == offset)
  238. return rq;
  239. }
  240. return NULL;
  241. }
  242. /*
  243. * RB-tree support functions for inserting/lookup/removal of requests
  244. * in a sorted RB tree.
  245. */
  246. void elv_rb_add(struct rb_root *root, struct request *rq)
  247. {
  248. struct rb_node **p = &root->rb_node;
  249. struct rb_node *parent = NULL;
  250. struct request *__rq;
  251. while (*p) {
  252. parent = *p;
  253. __rq = rb_entry(parent, struct request, rb_node);
  254. if (blk_rq_pos(rq) < blk_rq_pos(__rq))
  255. p = &(*p)->rb_left;
  256. else if (blk_rq_pos(rq) >= blk_rq_pos(__rq))
  257. p = &(*p)->rb_right;
  258. }
  259. rb_link_node(&rq->rb_node, parent, p);
  260. rb_insert_color(&rq->rb_node, root);
  261. }
  262. EXPORT_SYMBOL(elv_rb_add);
  263. void elv_rb_del(struct rb_root *root, struct request *rq)
  264. {
  265. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  266. rb_erase(&rq->rb_node, root);
  267. RB_CLEAR_NODE(&rq->rb_node);
  268. }
  269. EXPORT_SYMBOL(elv_rb_del);
  270. struct request *elv_rb_find(struct rb_root *root, sector_t sector)
  271. {
  272. struct rb_node *n = root->rb_node;
  273. struct request *rq;
  274. while (n) {
  275. rq = rb_entry(n, struct request, rb_node);
  276. if (sector < blk_rq_pos(rq))
  277. n = n->rb_left;
  278. else if (sector > blk_rq_pos(rq))
  279. n = n->rb_right;
  280. else
  281. return rq;
  282. }
  283. return NULL;
  284. }
  285. EXPORT_SYMBOL(elv_rb_find);
  286. /*
  287. * Insert rq into dispatch queue of q. Queue lock must be held on
  288. * entry. rq is sort instead into the dispatch queue. To be used by
  289. * specific elevators.
  290. */
  291. void elv_dispatch_sort(struct request_queue *q, struct request *rq)
  292. {
  293. sector_t boundary;
  294. struct list_head *entry;
  295. int stop_flags;
  296. if (q->last_merge == rq)
  297. q->last_merge = NULL;
  298. elv_rqhash_del(q, rq);
  299. q->nr_sorted--;
  300. boundary = q->end_sector;
  301. stop_flags = REQ_SOFTBARRIER | REQ_STARTED;
  302. list_for_each_prev(entry, &q->queue_head) {
  303. struct request *pos = list_entry_rq(entry);
  304. if ((rq->cmd_flags & REQ_DISCARD) !=
  305. (pos->cmd_flags & REQ_DISCARD))
  306. break;
  307. if (rq_data_dir(rq) != rq_data_dir(pos))
  308. break;
  309. if (pos->cmd_flags & stop_flags)
  310. break;
  311. if (blk_rq_pos(rq) >= boundary) {
  312. if (blk_rq_pos(pos) < boundary)
  313. continue;
  314. } else {
  315. if (blk_rq_pos(pos) >= boundary)
  316. break;
  317. }
  318. if (blk_rq_pos(rq) >= blk_rq_pos(pos))
  319. break;
  320. }
  321. list_add(&rq->queuelist, entry);
  322. }
  323. EXPORT_SYMBOL(elv_dispatch_sort);
  324. /*
  325. * Insert rq into dispatch queue of q. Queue lock must be held on
  326. * entry. rq is added to the back of the dispatch queue. To be used by
  327. * specific elevators.
  328. */
  329. void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
  330. {
  331. if (q->last_merge == rq)
  332. q->last_merge = NULL;
  333. elv_rqhash_del(q, rq);
  334. q->nr_sorted--;
  335. q->end_sector = rq_end_sector(rq);
  336. q->boundary_rq = rq;
  337. list_add_tail(&rq->queuelist, &q->queue_head);
  338. }
  339. EXPORT_SYMBOL(elv_dispatch_add_tail);
  340. int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
  341. {
  342. struct elevator_queue *e = q->elevator;
  343. struct request *__rq;
  344. int ret;
  345. /*
  346. * Levels of merges:
  347. * nomerges: No merges at all attempted
  348. * noxmerges: Only simple one-hit cache try
  349. * merges: All merge tries attempted
  350. */
  351. if (blk_queue_nomerges(q))
  352. return ELEVATOR_NO_MERGE;
  353. /*
  354. * First try one-hit cache.
  355. */
  356. if (q->last_merge && elv_rq_merge_ok(q->last_merge, bio)) {
  357. ret = blk_try_merge(q->last_merge, bio);
  358. if (ret != ELEVATOR_NO_MERGE) {
  359. *req = q->last_merge;
  360. return ret;
  361. }
  362. }
  363. if (blk_queue_noxmerges(q))
  364. return ELEVATOR_NO_MERGE;
  365. /*
  366. * See if our hash lookup can find a potential backmerge.
  367. */
  368. __rq = elv_rqhash_find(q, bio->bi_iter.bi_sector);
  369. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  370. *req = __rq;
  371. return ELEVATOR_BACK_MERGE;
  372. }
  373. if (e->type->ops.elevator_merge_fn)
  374. return e->type->ops.elevator_merge_fn(q, req, bio);
  375. return ELEVATOR_NO_MERGE;
  376. }
  377. /*
  378. * Attempt to do an insertion back merge. Only check for the case where
  379. * we can append 'rq' to an existing request, so we can throw 'rq' away
  380. * afterwards.
  381. *
  382. * Returns true if we merged, false otherwise
  383. */
  384. static bool elv_attempt_insert_merge(struct request_queue *q,
  385. struct request *rq)
  386. {
  387. struct request *__rq;
  388. bool ret;
  389. if (blk_queue_nomerges(q))
  390. return false;
  391. /*
  392. * First try one-hit cache.
  393. */
  394. if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq))
  395. return true;
  396. if (blk_queue_noxmerges(q))
  397. return false;
  398. ret = false;
  399. /*
  400. * See if our hash lookup can find a potential backmerge.
  401. */
  402. while (1) {
  403. __rq = elv_rqhash_find(q, blk_rq_pos(rq));
  404. if (!__rq || !blk_attempt_req_merge(q, __rq, rq))
  405. break;
  406. /* The merged request could be merged with others, try again */
  407. ret = true;
  408. rq = __rq;
  409. }
  410. return ret;
  411. }
  412. void elv_merged_request(struct request_queue *q, struct request *rq, int type)
  413. {
  414. struct elevator_queue *e = q->elevator;
  415. if (e->type->ops.elevator_merged_fn)
  416. e->type->ops.elevator_merged_fn(q, rq, type);
  417. if (type == ELEVATOR_BACK_MERGE)
  418. elv_rqhash_reposition(q, rq);
  419. q->last_merge = rq;
  420. }
  421. void elv_merge_requests(struct request_queue *q, struct request *rq,
  422. struct request *next)
  423. {
  424. struct elevator_queue *e = q->elevator;
  425. const int next_sorted = next->cmd_flags & REQ_SORTED;
  426. if (next_sorted && e->type->ops.elevator_merge_req_fn)
  427. e->type->ops.elevator_merge_req_fn(q, rq, next);
  428. elv_rqhash_reposition(q, rq);
  429. if (next_sorted) {
  430. elv_rqhash_del(q, next);
  431. q->nr_sorted--;
  432. }
  433. q->last_merge = rq;
  434. }
  435. void elv_bio_merged(struct request_queue *q, struct request *rq,
  436. struct bio *bio)
  437. {
  438. struct elevator_queue *e = q->elevator;
  439. if (e->type->ops.elevator_bio_merged_fn)
  440. e->type->ops.elevator_bio_merged_fn(q, rq, bio);
  441. }
  442. #ifdef CONFIG_PM_RUNTIME
  443. static void blk_pm_requeue_request(struct request *rq)
  444. {
  445. if (rq->q->dev && !(rq->cmd_flags & REQ_PM))
  446. rq->q->nr_pending--;
  447. }
  448. static void blk_pm_add_request(struct request_queue *q, struct request *rq)
  449. {
  450. if (q->dev && !(rq->cmd_flags & REQ_PM) && q->nr_pending++ == 0 &&
  451. (q->rpm_status == RPM_SUSPENDED || q->rpm_status == RPM_SUSPENDING))
  452. pm_request_resume(q->dev);
  453. }
  454. #else
  455. static inline void blk_pm_requeue_request(struct request *rq) {}
  456. static inline void blk_pm_add_request(struct request_queue *q,
  457. struct request *rq)
  458. {
  459. }
  460. #endif
  461. void elv_requeue_request(struct request_queue *q, struct request *rq)
  462. {
  463. /*
  464. * it already went through dequeue, we need to decrement the
  465. * in_flight count again
  466. */
  467. if (blk_account_rq(rq)) {
  468. q->in_flight[rq_is_sync(rq)]--;
  469. if (rq->cmd_flags & REQ_SORTED)
  470. elv_deactivate_rq(q, rq);
  471. }
  472. rq->cmd_flags &= ~REQ_STARTED;
  473. blk_pm_requeue_request(rq);
  474. __elv_add_request(q, rq, ELEVATOR_INSERT_REQUEUE);
  475. }
  476. void elv_drain_elevator(struct request_queue *q)
  477. {
  478. static int printed;
  479. lockdep_assert_held(q->queue_lock);
  480. while (q->elevator->type->ops.elevator_dispatch_fn(q, 1))
  481. ;
  482. if (q->nr_sorted && printed++ < 10) {
  483. printk(KERN_ERR "%s: forced dispatching is broken "
  484. "(nr_sorted=%u), please report this\n",
  485. q->elevator->type->elevator_name, q->nr_sorted);
  486. }
  487. }
  488. void __elv_add_request(struct request_queue *q, struct request *rq, int where)
  489. {
  490. trace_block_rq_insert(q, rq);
  491. blk_pm_add_request(q, rq);
  492. rq->q = q;
  493. if (rq->cmd_flags & REQ_SOFTBARRIER) {
  494. /* barriers are scheduling boundary, update end_sector */
  495. if (rq->cmd_type == REQ_TYPE_FS) {
  496. q->end_sector = rq_end_sector(rq);
  497. q->boundary_rq = rq;
  498. }
  499. } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
  500. (where == ELEVATOR_INSERT_SORT ||
  501. where == ELEVATOR_INSERT_SORT_MERGE))
  502. where = ELEVATOR_INSERT_BACK;
  503. switch (where) {
  504. case ELEVATOR_INSERT_REQUEUE:
  505. case ELEVATOR_INSERT_FRONT:
  506. rq->cmd_flags |= REQ_SOFTBARRIER;
  507. list_add(&rq->queuelist, &q->queue_head);
  508. break;
  509. case ELEVATOR_INSERT_BACK:
  510. rq->cmd_flags |= REQ_SOFTBARRIER;
  511. elv_drain_elevator(q);
  512. list_add_tail(&rq->queuelist, &q->queue_head);
  513. /*
  514. * We kick the queue here for the following reasons.
  515. * - The elevator might have returned NULL previously
  516. * to delay requests and returned them now. As the
  517. * queue wasn't empty before this request, ll_rw_blk
  518. * won't run the queue on return, resulting in hang.
  519. * - Usually, back inserted requests won't be merged
  520. * with anything. There's no point in delaying queue
  521. * processing.
  522. */
  523. __blk_run_queue(q);
  524. break;
  525. case ELEVATOR_INSERT_SORT_MERGE:
  526. /*
  527. * If we succeed in merging this request with one in the
  528. * queue already, we are done - rq has now been freed,
  529. * so no need to do anything further.
  530. */
  531. if (elv_attempt_insert_merge(q, rq))
  532. break;
  533. case ELEVATOR_INSERT_SORT:
  534. BUG_ON(rq->cmd_type != REQ_TYPE_FS);
  535. rq->cmd_flags |= REQ_SORTED;
  536. q->nr_sorted++;
  537. if (rq_mergeable(rq)) {
  538. elv_rqhash_add(q, rq);
  539. if (!q->last_merge)
  540. q->last_merge = rq;
  541. }
  542. /*
  543. * Some ioscheds (cfq) run q->request_fn directly, so
  544. * rq cannot be accessed after calling
  545. * elevator_add_req_fn.
  546. */
  547. q->elevator->type->ops.elevator_add_req_fn(q, rq);
  548. break;
  549. case ELEVATOR_INSERT_FLUSH:
  550. rq->cmd_flags |= REQ_SOFTBARRIER;
  551. blk_insert_flush(rq);
  552. break;
  553. default:
  554. printk(KERN_ERR "%s: bad insertion point %d\n",
  555. __func__, where);
  556. BUG();
  557. }
  558. }
  559. EXPORT_SYMBOL(__elv_add_request);
  560. void elv_add_request(struct request_queue *q, struct request *rq, int where)
  561. {
  562. unsigned long flags;
  563. spin_lock_irqsave(q->queue_lock, flags);
  564. __elv_add_request(q, rq, where);
  565. spin_unlock_irqrestore(q->queue_lock, flags);
  566. }
  567. EXPORT_SYMBOL(elv_add_request);
  568. struct request *elv_latter_request(struct request_queue *q, struct request *rq)
  569. {
  570. struct elevator_queue *e = q->elevator;
  571. if (e->type->ops.elevator_latter_req_fn)
  572. return e->type->ops.elevator_latter_req_fn(q, rq);
  573. return NULL;
  574. }
  575. struct request *elv_former_request(struct request_queue *q, struct request *rq)
  576. {
  577. struct elevator_queue *e = q->elevator;
  578. if (e->type->ops.elevator_former_req_fn)
  579. return e->type->ops.elevator_former_req_fn(q, rq);
  580. return NULL;
  581. }
  582. int elv_set_request(struct request_queue *q, struct request *rq,
  583. struct bio *bio, gfp_t gfp_mask)
  584. {
  585. struct elevator_queue *e = q->elevator;
  586. if (e->type->ops.elevator_set_req_fn)
  587. return e->type->ops.elevator_set_req_fn(q, rq, bio, gfp_mask);
  588. return 0;
  589. }
  590. void elv_put_request(struct request_queue *q, struct request *rq)
  591. {
  592. struct elevator_queue *e = q->elevator;
  593. if (e->type->ops.elevator_put_req_fn)
  594. e->type->ops.elevator_put_req_fn(rq);
  595. }
  596. int elv_may_queue(struct request_queue *q, int rw)
  597. {
  598. struct elevator_queue *e = q->elevator;
  599. if (e->type->ops.elevator_may_queue_fn)
  600. return e->type->ops.elevator_may_queue_fn(q, rw);
  601. return ELV_MQUEUE_MAY;
  602. }
  603. void elv_completed_request(struct request_queue *q, struct request *rq)
  604. {
  605. struct elevator_queue *e = q->elevator;
  606. /*
  607. * request is released from the driver, io must be done
  608. */
  609. if (blk_account_rq(rq)) {
  610. q->in_flight[rq_is_sync(rq)]--;
  611. if ((rq->cmd_flags & REQ_SORTED) &&
  612. e->type->ops.elevator_completed_req_fn)
  613. e->type->ops.elevator_completed_req_fn(q, rq);
  614. }
  615. }
  616. #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
  617. static ssize_t
  618. elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  619. {
  620. struct elv_fs_entry *entry = to_elv(attr);
  621. struct elevator_queue *e;
  622. ssize_t error;
  623. if (!entry->show)
  624. return -EIO;
  625. e = container_of(kobj, struct elevator_queue, kobj);
  626. mutex_lock(&e->sysfs_lock);
  627. error = e->type ? entry->show(e, page) : -ENOENT;
  628. mutex_unlock(&e->sysfs_lock);
  629. return error;
  630. }
  631. static ssize_t
  632. elv_attr_store(struct kobject *kobj, struct attribute *attr,
  633. const char *page, size_t length)
  634. {
  635. struct elv_fs_entry *entry = to_elv(attr);
  636. struct elevator_queue *e;
  637. ssize_t error;
  638. if (!entry->store)
  639. return -EIO;
  640. e = container_of(kobj, struct elevator_queue, kobj);
  641. mutex_lock(&e->sysfs_lock);
  642. error = e->type ? entry->store(e, page, length) : -ENOENT;
  643. mutex_unlock(&e->sysfs_lock);
  644. return error;
  645. }
  646. static const struct sysfs_ops elv_sysfs_ops = {
  647. .show = elv_attr_show,
  648. .store = elv_attr_store,
  649. };
  650. static struct kobj_type elv_ktype = {
  651. .sysfs_ops = &elv_sysfs_ops,
  652. .release = elevator_release,
  653. };
  654. int elv_register_queue(struct request_queue *q)
  655. {
  656. struct elevator_queue *e = q->elevator;
  657. int error;
  658. error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
  659. if (!error) {
  660. struct elv_fs_entry *attr = e->type->elevator_attrs;
  661. if (attr) {
  662. while (attr->attr.name) {
  663. if (sysfs_create_file(&e->kobj, &attr->attr))
  664. break;
  665. attr++;
  666. }
  667. }
  668. kobject_uevent(&e->kobj, KOBJ_ADD);
  669. e->registered = 1;
  670. }
  671. return error;
  672. }
  673. EXPORT_SYMBOL(elv_register_queue);
  674. void elv_unregister_queue(struct request_queue *q)
  675. {
  676. if (q) {
  677. struct elevator_queue *e = q->elevator;
  678. kobject_uevent(&e->kobj, KOBJ_REMOVE);
  679. kobject_del(&e->kobj);
  680. e->registered = 0;
  681. }
  682. }
  683. EXPORT_SYMBOL(elv_unregister_queue);
  684. int elv_register(struct elevator_type *e)
  685. {
  686. char *def = "";
  687. /* create icq_cache if requested */
  688. if (e->icq_size) {
  689. if (WARN_ON(e->icq_size < sizeof(struct io_cq)) ||
  690. WARN_ON(e->icq_align < __alignof__(struct io_cq)))
  691. return -EINVAL;
  692. snprintf(e->icq_cache_name, sizeof(e->icq_cache_name),
  693. "%s_io_cq", e->elevator_name);
  694. e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size,
  695. e->icq_align, 0, NULL);
  696. if (!e->icq_cache)
  697. return -ENOMEM;
  698. }
  699. /* register, don't allow duplicate names */
  700. spin_lock(&elv_list_lock);
  701. if (elevator_find(e->elevator_name)) {
  702. spin_unlock(&elv_list_lock);
  703. if (e->icq_cache)
  704. kmem_cache_destroy(e->icq_cache);
  705. return -EBUSY;
  706. }
  707. list_add_tail(&e->list, &elv_list);
  708. spin_unlock(&elv_list_lock);
  709. /* print pretty message */
  710. if (!strcmp(e->elevator_name, chosen_elevator) ||
  711. (!*chosen_elevator &&
  712. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  713. def = " (default)";
  714. printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
  715. def);
  716. return 0;
  717. }
  718. EXPORT_SYMBOL_GPL(elv_register);
  719. void elv_unregister(struct elevator_type *e)
  720. {
  721. /* unregister */
  722. spin_lock(&elv_list_lock);
  723. list_del_init(&e->list);
  724. spin_unlock(&elv_list_lock);
  725. /*
  726. * Destroy icq_cache if it exists. icq's are RCU managed. Make
  727. * sure all RCU operations are complete before proceeding.
  728. */
  729. if (e->icq_cache) {
  730. rcu_barrier();
  731. kmem_cache_destroy(e->icq_cache);
  732. e->icq_cache = NULL;
  733. }
  734. }
  735. EXPORT_SYMBOL_GPL(elv_unregister);
  736. /*
  737. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  738. * we don't free the old io scheduler, before we have allocated what we
  739. * need for the new one. this way we have a chance of going back to the old
  740. * one, if the new one fails init for some reason.
  741. */
  742. static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
  743. {
  744. struct elevator_queue *old = q->elevator;
  745. bool registered = old->registered;
  746. int err;
  747. /*
  748. * Turn on BYPASS and drain all requests w/ elevator private data.
  749. * Block layer doesn't call into a quiesced elevator - all requests
  750. * are directly put on the dispatch list without elevator data
  751. * using INSERT_BACK. All requests have SOFTBARRIER set and no
  752. * merge happens either.
  753. */
  754. blk_queue_bypass_start(q);
  755. /* unregister and clear all auxiliary data of the old elevator */
  756. if (registered)
  757. elv_unregister_queue(q);
  758. spin_lock_irq(q->queue_lock);
  759. ioc_clear_queue(q);
  760. spin_unlock_irq(q->queue_lock);
  761. /* allocate, init and register new elevator */
  762. err = new_e->ops.elevator_init_fn(q, new_e);
  763. if (err)
  764. goto fail_init;
  765. if (registered) {
  766. err = elv_register_queue(q);
  767. if (err)
  768. goto fail_register;
  769. }
  770. /* done, kill the old one and finish */
  771. elevator_exit(old);
  772. blk_queue_bypass_end(q);
  773. blk_add_trace_msg(q, "elv switch: %s", new_e->elevator_name);
  774. return 0;
  775. fail_register:
  776. elevator_exit(q->elevator);
  777. fail_init:
  778. /* switch failed, restore and re-register old elevator */
  779. q->elevator = old;
  780. elv_register_queue(q);
  781. blk_queue_bypass_end(q);
  782. return err;
  783. }
  784. /*
  785. * Switch this queue to the given IO scheduler.
  786. */
  787. static int __elevator_change(struct request_queue *q, const char *name)
  788. {
  789. char elevator_name[ELV_NAME_MAX];
  790. struct elevator_type *e;
  791. if (!q->elevator)
  792. return -ENXIO;
  793. strlcpy(elevator_name, name, sizeof(elevator_name));
  794. e = elevator_get(strstrip(elevator_name), true);
  795. if (!e) {
  796. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  797. return -EINVAL;
  798. }
  799. if (!strcmp(elevator_name, q->elevator->type->elevator_name)) {
  800. elevator_put(e);
  801. return 0;
  802. }
  803. return elevator_switch(q, e);
  804. }
  805. int elevator_change(struct request_queue *q, const char *name)
  806. {
  807. int ret;
  808. /* Protect q->elevator from elevator_init() */
  809. mutex_lock(&q->sysfs_lock);
  810. ret = __elevator_change(q, name);
  811. mutex_unlock(&q->sysfs_lock);
  812. return ret;
  813. }
  814. EXPORT_SYMBOL(elevator_change);
  815. ssize_t elv_iosched_store(struct request_queue *q, const char *name,
  816. size_t count)
  817. {
  818. int ret;
  819. if (!q->elevator)
  820. return count;
  821. ret = __elevator_change(q, name);
  822. if (!ret)
  823. return count;
  824. printk(KERN_ERR "elevator: switch to %s failed\n", name);
  825. return ret;
  826. }
  827. ssize_t elv_iosched_show(struct request_queue *q, char *name)
  828. {
  829. struct elevator_queue *e = q->elevator;
  830. struct elevator_type *elv;
  831. struct elevator_type *__e;
  832. int len = 0;
  833. if (!q->elevator || !blk_queue_stackable(q))
  834. return sprintf(name, "none\n");
  835. elv = e->type;
  836. spin_lock(&elv_list_lock);
  837. list_for_each_entry(__e, &elv_list, list) {
  838. if (!strcmp(elv->elevator_name, __e->elevator_name))
  839. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  840. else
  841. len += sprintf(name+len, "%s ", __e->elevator_name);
  842. }
  843. spin_unlock(&elv_list_lock);
  844. len += sprintf(len+name, "\n");
  845. return len;
  846. }
  847. struct request *elv_rb_former_request(struct request_queue *q,
  848. struct request *rq)
  849. {
  850. struct rb_node *rbprev = rb_prev(&rq->rb_node);
  851. if (rbprev)
  852. return rb_entry_rq(rbprev);
  853. return NULL;
  854. }
  855. EXPORT_SYMBOL(elv_rb_former_request);
  856. struct request *elv_rb_latter_request(struct request_queue *q,
  857. struct request *rq)
  858. {
  859. struct rb_node *rbnext = rb_next(&rq->rb_node);
  860. if (rbnext)
  861. return rb_entry_rq(rbnext);
  862. return NULL;
  863. }
  864. EXPORT_SYMBOL(elv_rb_latter_request);