vmalloc.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/rbtree.h>
  24. #include <linux/radix-tree.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/pfn.h>
  27. #include <linux/kmemleak.h>
  28. #include <linux/atomic.h>
  29. #include <linux/compiler.h>
  30. #include <linux/llist.h>
  31. #include <asm/uaccess.h>
  32. #include <asm/tlbflush.h>
  33. #include <asm/shmparam.h>
  34. struct vfree_deferred {
  35. struct llist_head list;
  36. struct work_struct wq;
  37. };
  38. static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  39. static void __vunmap(const void *, int);
  40. static void free_work(struct work_struct *w)
  41. {
  42. struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  43. struct llist_node *llnode = llist_del_all(&p->list);
  44. while (llnode) {
  45. void *p = llnode;
  46. llnode = llist_next(llnode);
  47. __vunmap(p, 1);
  48. }
  49. }
  50. /*** Page table manipulation functions ***/
  51. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  52. {
  53. pte_t *pte;
  54. pte = pte_offset_kernel(pmd, addr);
  55. do {
  56. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  57. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  58. } while (pte++, addr += PAGE_SIZE, addr != end);
  59. }
  60. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  61. {
  62. pmd_t *pmd;
  63. unsigned long next;
  64. pmd = pmd_offset(pud, addr);
  65. do {
  66. next = pmd_addr_end(addr, end);
  67. if (pmd_none_or_clear_bad(pmd))
  68. continue;
  69. vunmap_pte_range(pmd, addr, next);
  70. } while (pmd++, addr = next, addr != end);
  71. }
  72. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  73. {
  74. pud_t *pud;
  75. unsigned long next;
  76. pud = pud_offset(pgd, addr);
  77. do {
  78. next = pud_addr_end(addr, end);
  79. if (pud_none_or_clear_bad(pud))
  80. continue;
  81. vunmap_pmd_range(pud, addr, next);
  82. } while (pud++, addr = next, addr != end);
  83. }
  84. static void vunmap_page_range(unsigned long addr, unsigned long end)
  85. {
  86. pgd_t *pgd;
  87. unsigned long next;
  88. BUG_ON(addr >= end);
  89. pgd = pgd_offset_k(addr);
  90. do {
  91. next = pgd_addr_end(addr, end);
  92. if (pgd_none_or_clear_bad(pgd))
  93. continue;
  94. vunmap_pud_range(pgd, addr, next);
  95. } while (pgd++, addr = next, addr != end);
  96. }
  97. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  98. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  99. {
  100. pte_t *pte;
  101. /*
  102. * nr is a running index into the array which helps higher level
  103. * callers keep track of where we're up to.
  104. */
  105. pte = pte_alloc_kernel(pmd, addr);
  106. if (!pte)
  107. return -ENOMEM;
  108. do {
  109. struct page *page = pages[*nr];
  110. if (WARN_ON(!pte_none(*pte)))
  111. return -EBUSY;
  112. if (WARN_ON(!page))
  113. return -ENOMEM;
  114. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  115. (*nr)++;
  116. } while (pte++, addr += PAGE_SIZE, addr != end);
  117. return 0;
  118. }
  119. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  120. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  121. {
  122. pmd_t *pmd;
  123. unsigned long next;
  124. pmd = pmd_alloc(&init_mm, pud, addr);
  125. if (!pmd)
  126. return -ENOMEM;
  127. do {
  128. next = pmd_addr_end(addr, end);
  129. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  130. return -ENOMEM;
  131. } while (pmd++, addr = next, addr != end);
  132. return 0;
  133. }
  134. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  135. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  136. {
  137. pud_t *pud;
  138. unsigned long next;
  139. pud = pud_alloc(&init_mm, pgd, addr);
  140. if (!pud)
  141. return -ENOMEM;
  142. do {
  143. next = pud_addr_end(addr, end);
  144. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  145. return -ENOMEM;
  146. } while (pud++, addr = next, addr != end);
  147. return 0;
  148. }
  149. /*
  150. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  151. * will have pfns corresponding to the "pages" array.
  152. *
  153. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  154. */
  155. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  156. pgprot_t prot, struct page **pages)
  157. {
  158. pgd_t *pgd;
  159. unsigned long next;
  160. unsigned long addr = start;
  161. int err = 0;
  162. int nr = 0;
  163. BUG_ON(addr >= end);
  164. pgd = pgd_offset_k(addr);
  165. do {
  166. next = pgd_addr_end(addr, end);
  167. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  168. if (err)
  169. return err;
  170. } while (pgd++, addr = next, addr != end);
  171. return nr;
  172. }
  173. static int vmap_page_range(unsigned long start, unsigned long end,
  174. pgprot_t prot, struct page **pages)
  175. {
  176. int ret;
  177. ret = vmap_page_range_noflush(start, end, prot, pages);
  178. flush_cache_vmap(start, end);
  179. return ret;
  180. }
  181. int is_vmalloc_or_module_addr(const void *x)
  182. {
  183. /*
  184. * ARM, x86-64 and sparc64 put modules in a special place,
  185. * and fall back on vmalloc() if that fails. Others
  186. * just put it in the vmalloc space.
  187. */
  188. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  189. unsigned long addr = (unsigned long)x;
  190. if (addr >= MODULES_VADDR && addr < MODULES_END)
  191. return 1;
  192. #endif
  193. return is_vmalloc_addr(x);
  194. }
  195. /*
  196. * Walk a vmap address to the struct page it maps.
  197. */
  198. struct page *vmalloc_to_page(const void *vmalloc_addr)
  199. {
  200. unsigned long addr = (unsigned long) vmalloc_addr;
  201. struct page *page = NULL;
  202. pgd_t *pgd = pgd_offset_k(addr);
  203. /*
  204. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  205. * architectures that do not vmalloc module space
  206. */
  207. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  208. if (!pgd_none(*pgd)) {
  209. pud_t *pud = pud_offset(pgd, addr);
  210. if (!pud_none(*pud)) {
  211. pmd_t *pmd = pmd_offset(pud, addr);
  212. if (!pmd_none(*pmd)) {
  213. pte_t *ptep, pte;
  214. ptep = pte_offset_map(pmd, addr);
  215. pte = *ptep;
  216. if (pte_present(pte))
  217. page = pte_page(pte);
  218. pte_unmap(ptep);
  219. }
  220. }
  221. }
  222. return page;
  223. }
  224. EXPORT_SYMBOL(vmalloc_to_page);
  225. /*
  226. * Map a vmalloc()-space virtual address to the physical page frame number.
  227. */
  228. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  229. {
  230. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  231. }
  232. EXPORT_SYMBOL(vmalloc_to_pfn);
  233. /*** Global kva allocator ***/
  234. #define VM_LAZY_FREE 0x01
  235. #define VM_LAZY_FREEING 0x02
  236. #define VM_VM_AREA 0x04
  237. static DEFINE_SPINLOCK(vmap_area_lock);
  238. /* Export for kexec only */
  239. LIST_HEAD(vmap_area_list);
  240. static struct rb_root vmap_area_root = RB_ROOT;
  241. /* The vmap cache globals are protected by vmap_area_lock */
  242. static struct rb_node *free_vmap_cache;
  243. static unsigned long cached_hole_size;
  244. static unsigned long cached_vstart;
  245. static unsigned long cached_align;
  246. static unsigned long vmap_area_pcpu_hole;
  247. static struct vmap_area *__find_vmap_area(unsigned long addr)
  248. {
  249. struct rb_node *n = vmap_area_root.rb_node;
  250. while (n) {
  251. struct vmap_area *va;
  252. va = rb_entry(n, struct vmap_area, rb_node);
  253. if (addr < va->va_start)
  254. n = n->rb_left;
  255. else if (addr >= va->va_end)
  256. n = n->rb_right;
  257. else
  258. return va;
  259. }
  260. return NULL;
  261. }
  262. static void __insert_vmap_area(struct vmap_area *va)
  263. {
  264. struct rb_node **p = &vmap_area_root.rb_node;
  265. struct rb_node *parent = NULL;
  266. struct rb_node *tmp;
  267. while (*p) {
  268. struct vmap_area *tmp_va;
  269. parent = *p;
  270. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  271. if (va->va_start < tmp_va->va_end)
  272. p = &(*p)->rb_left;
  273. else if (va->va_end > tmp_va->va_start)
  274. p = &(*p)->rb_right;
  275. else
  276. BUG();
  277. }
  278. rb_link_node(&va->rb_node, parent, p);
  279. rb_insert_color(&va->rb_node, &vmap_area_root);
  280. /* address-sort this list */
  281. tmp = rb_prev(&va->rb_node);
  282. if (tmp) {
  283. struct vmap_area *prev;
  284. prev = rb_entry(tmp, struct vmap_area, rb_node);
  285. list_add_rcu(&va->list, &prev->list);
  286. } else
  287. list_add_rcu(&va->list, &vmap_area_list);
  288. }
  289. static void purge_vmap_area_lazy(void);
  290. /*
  291. * Allocate a region of KVA of the specified size and alignment, within the
  292. * vstart and vend.
  293. */
  294. static struct vmap_area *alloc_vmap_area(unsigned long size,
  295. unsigned long align,
  296. unsigned long vstart, unsigned long vend,
  297. int node, gfp_t gfp_mask)
  298. {
  299. struct vmap_area *va;
  300. struct rb_node *n;
  301. unsigned long addr;
  302. int purged = 0;
  303. struct vmap_area *first;
  304. BUG_ON(!size);
  305. BUG_ON(size & ~PAGE_MASK);
  306. BUG_ON(!is_power_of_2(align));
  307. va = kmalloc_node(sizeof(struct vmap_area),
  308. gfp_mask & GFP_RECLAIM_MASK, node);
  309. if (unlikely(!va))
  310. return ERR_PTR(-ENOMEM);
  311. /*
  312. * Only scan the relevant parts containing pointers to other objects
  313. * to avoid false negatives.
  314. */
  315. kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
  316. retry:
  317. spin_lock(&vmap_area_lock);
  318. /*
  319. * Invalidate cache if we have more permissive parameters.
  320. * cached_hole_size notes the largest hole noticed _below_
  321. * the vmap_area cached in free_vmap_cache: if size fits
  322. * into that hole, we want to scan from vstart to reuse
  323. * the hole instead of allocating above free_vmap_cache.
  324. * Note that __free_vmap_area may update free_vmap_cache
  325. * without updating cached_hole_size or cached_align.
  326. */
  327. if (!free_vmap_cache ||
  328. size < cached_hole_size ||
  329. vstart < cached_vstart ||
  330. align < cached_align) {
  331. nocache:
  332. cached_hole_size = 0;
  333. free_vmap_cache = NULL;
  334. }
  335. /* record if we encounter less permissive parameters */
  336. cached_vstart = vstart;
  337. cached_align = align;
  338. /* find starting point for our search */
  339. if (free_vmap_cache) {
  340. first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  341. addr = ALIGN(first->va_end, align);
  342. if (addr < vstart)
  343. goto nocache;
  344. if (addr + size < addr)
  345. goto overflow;
  346. } else {
  347. addr = ALIGN(vstart, align);
  348. if (addr + size < addr)
  349. goto overflow;
  350. n = vmap_area_root.rb_node;
  351. first = NULL;
  352. while (n) {
  353. struct vmap_area *tmp;
  354. tmp = rb_entry(n, struct vmap_area, rb_node);
  355. if (tmp->va_end >= addr) {
  356. first = tmp;
  357. if (tmp->va_start <= addr)
  358. break;
  359. n = n->rb_left;
  360. } else
  361. n = n->rb_right;
  362. }
  363. if (!first)
  364. goto found;
  365. }
  366. /* from the starting point, walk areas until a suitable hole is found */
  367. while (addr + size > first->va_start && addr + size <= vend) {
  368. if (addr + cached_hole_size < first->va_start)
  369. cached_hole_size = first->va_start - addr;
  370. addr = ALIGN(first->va_end, align);
  371. if (addr + size < addr)
  372. goto overflow;
  373. /*
  374. if (list_is_last(&first->list, &vmap_area_list))
  375. goto found;
  376. first = list_entry(first->list.next,
  377. struct vmap_area, list);
  378. */
  379. n = rb_next(&first->rb_node);
  380. if (n)
  381. first = rb_entry(n, struct vmap_area, rb_node);
  382. else
  383. goto found;
  384. }
  385. found:
  386. if (addr + size > vend)
  387. goto overflow;
  388. va->va_start = addr;
  389. va->va_end = addr + size;
  390. va->flags = 0;
  391. __insert_vmap_area(va);
  392. free_vmap_cache = &va->rb_node;
  393. spin_unlock(&vmap_area_lock);
  394. BUG_ON(va->va_start & (align-1));
  395. BUG_ON(va->va_start < vstart);
  396. BUG_ON(va->va_end > vend);
  397. return va;
  398. overflow:
  399. spin_unlock(&vmap_area_lock);
  400. if (!purged) {
  401. purge_vmap_area_lazy();
  402. purged = 1;
  403. goto retry;
  404. }
  405. if (printk_ratelimit())
  406. printk(KERN_WARNING
  407. "vmap allocation for size %lu failed: "
  408. "use vmalloc=<size> to increase size.\n", size);
  409. kfree(va);
  410. return ERR_PTR(-EBUSY);
  411. }
  412. static void __free_vmap_area(struct vmap_area *va)
  413. {
  414. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  415. if (free_vmap_cache) {
  416. if (va->va_end < cached_vstart) {
  417. free_vmap_cache = NULL;
  418. } else {
  419. struct vmap_area *cache;
  420. cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  421. if (va->va_start <= cache->va_start) {
  422. free_vmap_cache = rb_prev(&va->rb_node);
  423. /*
  424. * We don't try to update cached_hole_size or
  425. * cached_align, but it won't go very wrong.
  426. */
  427. }
  428. }
  429. }
  430. rb_erase(&va->rb_node, &vmap_area_root);
  431. RB_CLEAR_NODE(&va->rb_node);
  432. list_del_rcu(&va->list);
  433. /*
  434. * Track the highest possible candidate for pcpu area
  435. * allocation. Areas outside of vmalloc area can be returned
  436. * here too, consider only end addresses which fall inside
  437. * vmalloc area proper.
  438. */
  439. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  440. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  441. kfree_rcu(va, rcu_head);
  442. }
  443. /*
  444. * Free a region of KVA allocated by alloc_vmap_area
  445. */
  446. static void free_vmap_area(struct vmap_area *va)
  447. {
  448. spin_lock(&vmap_area_lock);
  449. __free_vmap_area(va);
  450. spin_unlock(&vmap_area_lock);
  451. }
  452. /*
  453. * Clear the pagetable entries of a given vmap_area
  454. */
  455. static void unmap_vmap_area(struct vmap_area *va)
  456. {
  457. vunmap_page_range(va->va_start, va->va_end);
  458. }
  459. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  460. {
  461. /*
  462. * Unmap page tables and force a TLB flush immediately if
  463. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  464. * bugs similarly to those in linear kernel virtual address
  465. * space after a page has been freed.
  466. *
  467. * All the lazy freeing logic is still retained, in order to
  468. * minimise intrusiveness of this debugging feature.
  469. *
  470. * This is going to be *slow* (linear kernel virtual address
  471. * debugging doesn't do a broadcast TLB flush so it is a lot
  472. * faster).
  473. */
  474. #ifdef CONFIG_DEBUG_PAGEALLOC
  475. vunmap_page_range(start, end);
  476. flush_tlb_kernel_range(start, end);
  477. #endif
  478. }
  479. /*
  480. * lazy_max_pages is the maximum amount of virtual address space we gather up
  481. * before attempting to purge with a TLB flush.
  482. *
  483. * There is a tradeoff here: a larger number will cover more kernel page tables
  484. * and take slightly longer to purge, but it will linearly reduce the number of
  485. * global TLB flushes that must be performed. It would seem natural to scale
  486. * this number up linearly with the number of CPUs (because vmapping activity
  487. * could also scale linearly with the number of CPUs), however it is likely
  488. * that in practice, workloads might be constrained in other ways that mean
  489. * vmap activity will not scale linearly with CPUs. Also, I want to be
  490. * conservative and not introduce a big latency on huge systems, so go with
  491. * a less aggressive log scale. It will still be an improvement over the old
  492. * code, and it will be simple to change the scale factor if we find that it
  493. * becomes a problem on bigger systems.
  494. */
  495. static unsigned long lazy_max_pages(void)
  496. {
  497. unsigned int log;
  498. log = fls(num_online_cpus());
  499. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  500. }
  501. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  502. /* for per-CPU blocks */
  503. static void purge_fragmented_blocks_allcpus(void);
  504. /*
  505. * called before a call to iounmap() if the caller wants vm_area_struct's
  506. * immediately freed.
  507. */
  508. void set_iounmap_nonlazy(void)
  509. {
  510. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  511. }
  512. /*
  513. * Purges all lazily-freed vmap areas.
  514. *
  515. * If sync is 0 then don't purge if there is already a purge in progress.
  516. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  517. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  518. * their own TLB flushing).
  519. * Returns with *start = min(*start, lowest purged address)
  520. * *end = max(*end, highest purged address)
  521. */
  522. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  523. int sync, int force_flush)
  524. {
  525. static DEFINE_SPINLOCK(purge_lock);
  526. LIST_HEAD(valist);
  527. struct vmap_area *va;
  528. struct vmap_area *n_va;
  529. int nr = 0;
  530. /*
  531. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  532. * should not expect such behaviour. This just simplifies locking for
  533. * the case that isn't actually used at the moment anyway.
  534. */
  535. if (!sync && !force_flush) {
  536. if (!spin_trylock(&purge_lock))
  537. return;
  538. } else
  539. spin_lock(&purge_lock);
  540. if (sync)
  541. purge_fragmented_blocks_allcpus();
  542. rcu_read_lock();
  543. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  544. if (va->flags & VM_LAZY_FREE) {
  545. if (va->va_start < *start)
  546. *start = va->va_start;
  547. if (va->va_end > *end)
  548. *end = va->va_end;
  549. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  550. list_add_tail(&va->purge_list, &valist);
  551. va->flags |= VM_LAZY_FREEING;
  552. va->flags &= ~VM_LAZY_FREE;
  553. }
  554. }
  555. rcu_read_unlock();
  556. if (nr)
  557. atomic_sub(nr, &vmap_lazy_nr);
  558. if (nr || force_flush)
  559. flush_tlb_kernel_range(*start, *end);
  560. if (nr) {
  561. spin_lock(&vmap_area_lock);
  562. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  563. __free_vmap_area(va);
  564. spin_unlock(&vmap_area_lock);
  565. }
  566. spin_unlock(&purge_lock);
  567. }
  568. /*
  569. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  570. * is already purging.
  571. */
  572. static void try_purge_vmap_area_lazy(void)
  573. {
  574. unsigned long start = ULONG_MAX, end = 0;
  575. __purge_vmap_area_lazy(&start, &end, 0, 0);
  576. }
  577. /*
  578. * Kick off a purge of the outstanding lazy areas.
  579. */
  580. static void purge_vmap_area_lazy(void)
  581. {
  582. unsigned long start = ULONG_MAX, end = 0;
  583. __purge_vmap_area_lazy(&start, &end, 1, 0);
  584. }
  585. /*
  586. * Free a vmap area, caller ensuring that the area has been unmapped
  587. * and flush_cache_vunmap had been called for the correct range
  588. * previously.
  589. */
  590. static void free_vmap_area_noflush(struct vmap_area *va)
  591. {
  592. va->flags |= VM_LAZY_FREE;
  593. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  594. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  595. try_purge_vmap_area_lazy();
  596. }
  597. /*
  598. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  599. * called for the correct range previously.
  600. */
  601. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  602. {
  603. unmap_vmap_area(va);
  604. free_vmap_area_noflush(va);
  605. }
  606. /*
  607. * Free and unmap a vmap area
  608. */
  609. static void free_unmap_vmap_area(struct vmap_area *va)
  610. {
  611. flush_cache_vunmap(va->va_start, va->va_end);
  612. free_unmap_vmap_area_noflush(va);
  613. }
  614. static struct vmap_area *find_vmap_area(unsigned long addr)
  615. {
  616. struct vmap_area *va;
  617. spin_lock(&vmap_area_lock);
  618. va = __find_vmap_area(addr);
  619. spin_unlock(&vmap_area_lock);
  620. return va;
  621. }
  622. static void free_unmap_vmap_area_addr(unsigned long addr)
  623. {
  624. struct vmap_area *va;
  625. va = find_vmap_area(addr);
  626. BUG_ON(!va);
  627. free_unmap_vmap_area(va);
  628. }
  629. /*** Per cpu kva allocator ***/
  630. /*
  631. * vmap space is limited especially on 32 bit architectures. Ensure there is
  632. * room for at least 16 percpu vmap blocks per CPU.
  633. */
  634. /*
  635. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  636. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  637. * instead (we just need a rough idea)
  638. */
  639. #if BITS_PER_LONG == 32
  640. #define VMALLOC_SPACE (128UL*1024*1024)
  641. #else
  642. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  643. #endif
  644. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  645. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  646. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  647. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  648. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  649. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  650. #define VMAP_BBMAP_BITS \
  651. VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  652. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  653. VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
  654. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  655. static bool vmap_initialized __read_mostly = false;
  656. struct vmap_block_queue {
  657. spinlock_t lock;
  658. struct list_head free;
  659. };
  660. struct vmap_block {
  661. spinlock_t lock;
  662. struct vmap_area *va;
  663. unsigned long free, dirty;
  664. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  665. struct list_head free_list;
  666. struct rcu_head rcu_head;
  667. struct list_head purge;
  668. };
  669. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  670. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  671. /*
  672. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  673. * in the free path. Could get rid of this if we change the API to return a
  674. * "cookie" from alloc, to be passed to free. But no big deal yet.
  675. */
  676. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  677. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  678. /*
  679. * We should probably have a fallback mechanism to allocate virtual memory
  680. * out of partially filled vmap blocks. However vmap block sizing should be
  681. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  682. * big problem.
  683. */
  684. static unsigned long addr_to_vb_idx(unsigned long addr)
  685. {
  686. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  687. addr /= VMAP_BLOCK_SIZE;
  688. return addr;
  689. }
  690. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  691. {
  692. struct vmap_block_queue *vbq;
  693. struct vmap_block *vb;
  694. struct vmap_area *va;
  695. unsigned long vb_idx;
  696. int node, err;
  697. node = numa_node_id();
  698. vb = kmalloc_node(sizeof(struct vmap_block),
  699. gfp_mask & GFP_RECLAIM_MASK, node);
  700. if (unlikely(!vb))
  701. return ERR_PTR(-ENOMEM);
  702. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  703. VMALLOC_START, VMALLOC_END,
  704. node, gfp_mask);
  705. if (IS_ERR(va)) {
  706. kfree(vb);
  707. return ERR_CAST(va);
  708. }
  709. err = radix_tree_preload(gfp_mask);
  710. if (unlikely(err)) {
  711. kfree(vb);
  712. free_vmap_area(va);
  713. return ERR_PTR(err);
  714. }
  715. spin_lock_init(&vb->lock);
  716. vb->va = va;
  717. vb->free = VMAP_BBMAP_BITS;
  718. vb->dirty = 0;
  719. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  720. INIT_LIST_HEAD(&vb->free_list);
  721. vb_idx = addr_to_vb_idx(va->va_start);
  722. spin_lock(&vmap_block_tree_lock);
  723. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  724. spin_unlock(&vmap_block_tree_lock);
  725. BUG_ON(err);
  726. radix_tree_preload_end();
  727. vbq = &get_cpu_var(vmap_block_queue);
  728. spin_lock(&vbq->lock);
  729. list_add_rcu(&vb->free_list, &vbq->free);
  730. spin_unlock(&vbq->lock);
  731. put_cpu_var(vmap_block_queue);
  732. return vb;
  733. }
  734. static void free_vmap_block(struct vmap_block *vb)
  735. {
  736. struct vmap_block *tmp;
  737. unsigned long vb_idx;
  738. vb_idx = addr_to_vb_idx(vb->va->va_start);
  739. spin_lock(&vmap_block_tree_lock);
  740. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  741. spin_unlock(&vmap_block_tree_lock);
  742. BUG_ON(tmp != vb);
  743. free_vmap_area_noflush(vb->va);
  744. kfree_rcu(vb, rcu_head);
  745. }
  746. static void purge_fragmented_blocks(int cpu)
  747. {
  748. LIST_HEAD(purge);
  749. struct vmap_block *vb;
  750. struct vmap_block *n_vb;
  751. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  752. rcu_read_lock();
  753. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  754. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  755. continue;
  756. spin_lock(&vb->lock);
  757. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  758. vb->free = 0; /* prevent further allocs after releasing lock */
  759. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  760. bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
  761. spin_lock(&vbq->lock);
  762. list_del_rcu(&vb->free_list);
  763. spin_unlock(&vbq->lock);
  764. spin_unlock(&vb->lock);
  765. list_add_tail(&vb->purge, &purge);
  766. } else
  767. spin_unlock(&vb->lock);
  768. }
  769. rcu_read_unlock();
  770. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  771. list_del(&vb->purge);
  772. free_vmap_block(vb);
  773. }
  774. }
  775. static void purge_fragmented_blocks_allcpus(void)
  776. {
  777. int cpu;
  778. for_each_possible_cpu(cpu)
  779. purge_fragmented_blocks(cpu);
  780. }
  781. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  782. {
  783. struct vmap_block_queue *vbq;
  784. struct vmap_block *vb;
  785. unsigned long addr = 0;
  786. unsigned int order;
  787. int purge = 0;
  788. BUG_ON(size & ~PAGE_MASK);
  789. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  790. if (WARN_ON(size == 0)) {
  791. /*
  792. * Allocating 0 bytes isn't what caller wants since
  793. * get_order(0) returns funny result. Just warn and terminate
  794. * early.
  795. */
  796. return NULL;
  797. }
  798. order = get_order(size);
  799. again:
  800. rcu_read_lock();
  801. vbq = &get_cpu_var(vmap_block_queue);
  802. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  803. int i;
  804. spin_lock(&vb->lock);
  805. if (vb->free < 1UL << order) {
  806. /* free left too small, handle as fragmented scenario */
  807. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)
  808. purge = 1;
  809. goto next;
  810. }
  811. i = VMAP_BBMAP_BITS - vb->free;
  812. addr = vb->va->va_start + (i << PAGE_SHIFT);
  813. BUG_ON(addr_to_vb_idx(addr) !=
  814. addr_to_vb_idx(vb->va->va_start));
  815. vb->free -= 1UL << order;
  816. if (vb->free == 0) {
  817. spin_lock(&vbq->lock);
  818. list_del_rcu(&vb->free_list);
  819. spin_unlock(&vbq->lock);
  820. }
  821. spin_unlock(&vb->lock);
  822. break;
  823. next:
  824. spin_unlock(&vb->lock);
  825. }
  826. if (purge)
  827. purge_fragmented_blocks(smp_processor_id());
  828. put_cpu_var(vmap_block_queue);
  829. rcu_read_unlock();
  830. if (!addr) {
  831. vb = new_vmap_block(gfp_mask);
  832. if (IS_ERR(vb))
  833. return vb;
  834. goto again;
  835. }
  836. return (void *)addr;
  837. }
  838. static void vb_free(const void *addr, unsigned long size)
  839. {
  840. unsigned long offset;
  841. unsigned long vb_idx;
  842. unsigned int order;
  843. struct vmap_block *vb;
  844. BUG_ON(size & ~PAGE_MASK);
  845. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  846. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  847. order = get_order(size);
  848. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  849. vb_idx = addr_to_vb_idx((unsigned long)addr);
  850. rcu_read_lock();
  851. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  852. rcu_read_unlock();
  853. BUG_ON(!vb);
  854. vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
  855. spin_lock(&vb->lock);
  856. BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
  857. vb->dirty += 1UL << order;
  858. if (vb->dirty == VMAP_BBMAP_BITS) {
  859. BUG_ON(vb->free);
  860. spin_unlock(&vb->lock);
  861. free_vmap_block(vb);
  862. } else
  863. spin_unlock(&vb->lock);
  864. }
  865. /**
  866. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  867. *
  868. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  869. * to amortize TLB flushing overheads. What this means is that any page you
  870. * have now, may, in a former life, have been mapped into kernel virtual
  871. * address by the vmap layer and so there might be some CPUs with TLB entries
  872. * still referencing that page (additional to the regular 1:1 kernel mapping).
  873. *
  874. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  875. * be sure that none of the pages we have control over will have any aliases
  876. * from the vmap layer.
  877. */
  878. void vm_unmap_aliases(void)
  879. {
  880. unsigned long start = ULONG_MAX, end = 0;
  881. int cpu;
  882. int flush = 0;
  883. if (unlikely(!vmap_initialized))
  884. return;
  885. for_each_possible_cpu(cpu) {
  886. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  887. struct vmap_block *vb;
  888. rcu_read_lock();
  889. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  890. int i, j;
  891. spin_lock(&vb->lock);
  892. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  893. if (i < VMAP_BBMAP_BITS) {
  894. unsigned long s, e;
  895. j = find_last_bit(vb->dirty_map,
  896. VMAP_BBMAP_BITS);
  897. j = j + 1; /* need exclusive index */
  898. s = vb->va->va_start + (i << PAGE_SHIFT);
  899. e = vb->va->va_start + (j << PAGE_SHIFT);
  900. flush = 1;
  901. if (s < start)
  902. start = s;
  903. if (e > end)
  904. end = e;
  905. }
  906. spin_unlock(&vb->lock);
  907. }
  908. rcu_read_unlock();
  909. }
  910. __purge_vmap_area_lazy(&start, &end, 1, flush);
  911. }
  912. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  913. /**
  914. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  915. * @mem: the pointer returned by vm_map_ram
  916. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  917. */
  918. void vm_unmap_ram(const void *mem, unsigned int count)
  919. {
  920. unsigned long size = count << PAGE_SHIFT;
  921. unsigned long addr = (unsigned long)mem;
  922. BUG_ON(!addr);
  923. BUG_ON(addr < VMALLOC_START);
  924. BUG_ON(addr > VMALLOC_END);
  925. BUG_ON(addr & (PAGE_SIZE-1));
  926. debug_check_no_locks_freed(mem, size);
  927. vmap_debug_free_range(addr, addr+size);
  928. if (likely(count <= VMAP_MAX_ALLOC))
  929. vb_free(mem, size);
  930. else
  931. free_unmap_vmap_area_addr(addr);
  932. }
  933. EXPORT_SYMBOL(vm_unmap_ram);
  934. /**
  935. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  936. * @pages: an array of pointers to the pages to be mapped
  937. * @count: number of pages
  938. * @node: prefer to allocate data structures on this node
  939. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  940. *
  941. * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
  942. * faster than vmap so it's good. But if you mix long-life and short-life
  943. * objects with vm_map_ram(), it could consume lots of address space through
  944. * fragmentation (especially on a 32bit machine). You could see failures in
  945. * the end. Please use this function for short-lived objects.
  946. *
  947. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  948. */
  949. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  950. {
  951. unsigned long size = count << PAGE_SHIFT;
  952. unsigned long addr;
  953. void *mem;
  954. if (likely(count <= VMAP_MAX_ALLOC)) {
  955. mem = vb_alloc(size, GFP_KERNEL);
  956. if (IS_ERR(mem))
  957. return NULL;
  958. addr = (unsigned long)mem;
  959. } else {
  960. struct vmap_area *va;
  961. va = alloc_vmap_area(size, PAGE_SIZE,
  962. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  963. if (IS_ERR(va))
  964. return NULL;
  965. addr = va->va_start;
  966. mem = (void *)addr;
  967. }
  968. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  969. vm_unmap_ram(mem, count);
  970. return NULL;
  971. }
  972. return mem;
  973. }
  974. EXPORT_SYMBOL(vm_map_ram);
  975. static struct vm_struct *vmlist __initdata;
  976. /**
  977. * vm_area_add_early - add vmap area early during boot
  978. * @vm: vm_struct to add
  979. *
  980. * This function is used to add fixed kernel vm area to vmlist before
  981. * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
  982. * should contain proper values and the other fields should be zero.
  983. *
  984. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  985. */
  986. void __init vm_area_add_early(struct vm_struct *vm)
  987. {
  988. struct vm_struct *tmp, **p;
  989. BUG_ON(vmap_initialized);
  990. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  991. if (tmp->addr >= vm->addr) {
  992. BUG_ON(tmp->addr < vm->addr + vm->size);
  993. break;
  994. } else
  995. BUG_ON(tmp->addr + tmp->size > vm->addr);
  996. }
  997. vm->next = *p;
  998. *p = vm;
  999. }
  1000. /**
  1001. * vm_area_register_early - register vmap area early during boot
  1002. * @vm: vm_struct to register
  1003. * @align: requested alignment
  1004. *
  1005. * This function is used to register kernel vm area before
  1006. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  1007. * proper values on entry and other fields should be zero. On return,
  1008. * vm->addr contains the allocated address.
  1009. *
  1010. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  1011. */
  1012. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  1013. {
  1014. static size_t vm_init_off __initdata;
  1015. unsigned long addr;
  1016. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  1017. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  1018. vm->addr = (void *)addr;
  1019. vm_area_add_early(vm);
  1020. }
  1021. void __init vmalloc_init(void)
  1022. {
  1023. struct vmap_area *va;
  1024. struct vm_struct *tmp;
  1025. int i;
  1026. for_each_possible_cpu(i) {
  1027. struct vmap_block_queue *vbq;
  1028. struct vfree_deferred *p;
  1029. vbq = &per_cpu(vmap_block_queue, i);
  1030. spin_lock_init(&vbq->lock);
  1031. INIT_LIST_HEAD(&vbq->free);
  1032. p = &per_cpu(vfree_deferred, i);
  1033. init_llist_head(&p->list);
  1034. INIT_WORK(&p->wq, free_work);
  1035. }
  1036. /* Import existing vmlist entries. */
  1037. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1038. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  1039. va->flags = VM_VM_AREA;
  1040. va->va_start = (unsigned long)tmp->addr;
  1041. va->va_end = va->va_start + tmp->size;
  1042. va->vm = tmp;
  1043. __insert_vmap_area(va);
  1044. }
  1045. vmap_area_pcpu_hole = VMALLOC_END;
  1046. vmap_initialized = true;
  1047. }
  1048. /**
  1049. * map_kernel_range_noflush - map kernel VM area with the specified pages
  1050. * @addr: start of the VM area to map
  1051. * @size: size of the VM area to map
  1052. * @prot: page protection flags to use
  1053. * @pages: pages to map
  1054. *
  1055. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1056. * specify should have been allocated using get_vm_area() and its
  1057. * friends.
  1058. *
  1059. * NOTE:
  1060. * This function does NOT do any cache flushing. The caller is
  1061. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  1062. * before calling this function.
  1063. *
  1064. * RETURNS:
  1065. * The number of pages mapped on success, -errno on failure.
  1066. */
  1067. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  1068. pgprot_t prot, struct page **pages)
  1069. {
  1070. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  1071. }
  1072. /**
  1073. * unmap_kernel_range_noflush - unmap kernel VM area
  1074. * @addr: start of the VM area to unmap
  1075. * @size: size of the VM area to unmap
  1076. *
  1077. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1078. * specify should have been allocated using get_vm_area() and its
  1079. * friends.
  1080. *
  1081. * NOTE:
  1082. * This function does NOT do any cache flushing. The caller is
  1083. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  1084. * before calling this function and flush_tlb_kernel_range() after.
  1085. */
  1086. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  1087. {
  1088. vunmap_page_range(addr, addr + size);
  1089. }
  1090. EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
  1091. /**
  1092. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1093. * @addr: start of the VM area to unmap
  1094. * @size: size of the VM area to unmap
  1095. *
  1096. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1097. * the unmapping and tlb after.
  1098. */
  1099. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1100. {
  1101. unsigned long end = addr + size;
  1102. flush_cache_vunmap(addr, end);
  1103. vunmap_page_range(addr, end);
  1104. flush_tlb_kernel_range(addr, end);
  1105. }
  1106. EXPORT_SYMBOL_GPL(unmap_kernel_range);
  1107. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
  1108. {
  1109. unsigned long addr = (unsigned long)area->addr;
  1110. unsigned long end = addr + get_vm_area_size(area);
  1111. int err;
  1112. err = vmap_page_range(addr, end, prot, pages);
  1113. return err > 0 ? 0 : err;
  1114. }
  1115. EXPORT_SYMBOL_GPL(map_vm_area);
  1116. static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1117. unsigned long flags, const void *caller)
  1118. {
  1119. spin_lock(&vmap_area_lock);
  1120. vm->flags = flags;
  1121. vm->addr = (void *)va->va_start;
  1122. vm->size = va->va_end - va->va_start;
  1123. vm->caller = caller;
  1124. va->vm = vm;
  1125. va->flags |= VM_VM_AREA;
  1126. spin_unlock(&vmap_area_lock);
  1127. }
  1128. static void clear_vm_uninitialized_flag(struct vm_struct *vm)
  1129. {
  1130. /*
  1131. * Before removing VM_UNINITIALIZED,
  1132. * we should make sure that vm has proper values.
  1133. * Pair with smp_rmb() in show_numa_info().
  1134. */
  1135. smp_wmb();
  1136. vm->flags &= ~VM_UNINITIALIZED;
  1137. }
  1138. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1139. unsigned long align, unsigned long flags, unsigned long start,
  1140. unsigned long end, int node, gfp_t gfp_mask, const void *caller)
  1141. {
  1142. struct vmap_area *va;
  1143. struct vm_struct *area;
  1144. BUG_ON(in_interrupt());
  1145. if (flags & VM_IOREMAP)
  1146. align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
  1147. size = PAGE_ALIGN(size);
  1148. if (unlikely(!size))
  1149. return NULL;
  1150. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1151. if (unlikely(!area))
  1152. return NULL;
  1153. /*
  1154. * We always allocate a guard page.
  1155. */
  1156. size += PAGE_SIZE;
  1157. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1158. if (IS_ERR(va)) {
  1159. kfree(area);
  1160. return NULL;
  1161. }
  1162. setup_vmalloc_vm(area, va, flags, caller);
  1163. return area;
  1164. }
  1165. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1166. unsigned long start, unsigned long end)
  1167. {
  1168. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1169. GFP_KERNEL, __builtin_return_address(0));
  1170. }
  1171. EXPORT_SYMBOL_GPL(__get_vm_area);
  1172. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1173. unsigned long start, unsigned long end,
  1174. const void *caller)
  1175. {
  1176. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1177. GFP_KERNEL, caller);
  1178. }
  1179. /**
  1180. * get_vm_area - reserve a contiguous kernel virtual area
  1181. * @size: size of the area
  1182. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1183. *
  1184. * Search an area of @size in the kernel virtual mapping area,
  1185. * and reserved it for out purposes. Returns the area descriptor
  1186. * on success or %NULL on failure.
  1187. */
  1188. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1189. {
  1190. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1191. NUMA_NO_NODE, GFP_KERNEL,
  1192. __builtin_return_address(0));
  1193. }
  1194. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1195. const void *caller)
  1196. {
  1197. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1198. NUMA_NO_NODE, GFP_KERNEL, caller);
  1199. }
  1200. /**
  1201. * find_vm_area - find a continuous kernel virtual area
  1202. * @addr: base address
  1203. *
  1204. * Search for the kernel VM area starting at @addr, and return it.
  1205. * It is up to the caller to do all required locking to keep the returned
  1206. * pointer valid.
  1207. */
  1208. struct vm_struct *find_vm_area(const void *addr)
  1209. {
  1210. struct vmap_area *va;
  1211. va = find_vmap_area((unsigned long)addr);
  1212. if (va && va->flags & VM_VM_AREA)
  1213. return va->vm;
  1214. return NULL;
  1215. }
  1216. /**
  1217. * remove_vm_area - find and remove a continuous kernel virtual area
  1218. * @addr: base address
  1219. *
  1220. * Search for the kernel VM area starting at @addr, and remove it.
  1221. * This function returns the found VM area, but using it is NOT safe
  1222. * on SMP machines, except for its size or flags.
  1223. */
  1224. struct vm_struct *remove_vm_area(const void *addr)
  1225. {
  1226. struct vmap_area *va;
  1227. va = find_vmap_area((unsigned long)addr);
  1228. if (va && va->flags & VM_VM_AREA) {
  1229. struct vm_struct *vm = va->vm;
  1230. spin_lock(&vmap_area_lock);
  1231. va->vm = NULL;
  1232. va->flags &= ~VM_VM_AREA;
  1233. spin_unlock(&vmap_area_lock);
  1234. vmap_debug_free_range(va->va_start, va->va_end);
  1235. free_unmap_vmap_area(va);
  1236. vm->size -= PAGE_SIZE;
  1237. return vm;
  1238. }
  1239. return NULL;
  1240. }
  1241. static void __vunmap(const void *addr, int deallocate_pages)
  1242. {
  1243. struct vm_struct *area;
  1244. if (!addr)
  1245. return;
  1246. if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
  1247. addr))
  1248. return;
  1249. area = remove_vm_area(addr);
  1250. if (unlikely(!area)) {
  1251. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1252. addr);
  1253. return;
  1254. }
  1255. debug_check_no_locks_freed(addr, area->size);
  1256. debug_check_no_obj_freed(addr, area->size);
  1257. if (deallocate_pages) {
  1258. int i;
  1259. for (i = 0; i < area->nr_pages; i++) {
  1260. struct page *page = area->pages[i];
  1261. BUG_ON(!page);
  1262. __free_page(page);
  1263. }
  1264. if (area->flags & VM_VPAGES)
  1265. vfree(area->pages);
  1266. else
  1267. kfree(area->pages);
  1268. }
  1269. kfree(area);
  1270. return;
  1271. }
  1272. /**
  1273. * vfree - release memory allocated by vmalloc()
  1274. * @addr: memory base address
  1275. *
  1276. * Free the virtually continuous memory area starting at @addr, as
  1277. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1278. * NULL, no operation is performed.
  1279. *
  1280. * Must not be called in NMI context (strictly speaking, only if we don't
  1281. * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
  1282. * conventions for vfree() arch-depenedent would be a really bad idea)
  1283. *
  1284. * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
  1285. */
  1286. void vfree(const void *addr)
  1287. {
  1288. BUG_ON(in_nmi());
  1289. kmemleak_free(addr);
  1290. if (!addr)
  1291. return;
  1292. if (unlikely(in_interrupt())) {
  1293. struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
  1294. if (llist_add((struct llist_node *)addr, &p->list))
  1295. schedule_work(&p->wq);
  1296. } else
  1297. __vunmap(addr, 1);
  1298. }
  1299. EXPORT_SYMBOL(vfree);
  1300. /**
  1301. * vunmap - release virtual mapping obtained by vmap()
  1302. * @addr: memory base address
  1303. *
  1304. * Free the virtually contiguous memory area starting at @addr,
  1305. * which was created from the page array passed to vmap().
  1306. *
  1307. * Must not be called in interrupt context.
  1308. */
  1309. void vunmap(const void *addr)
  1310. {
  1311. BUG_ON(in_interrupt());
  1312. might_sleep();
  1313. if (addr)
  1314. __vunmap(addr, 0);
  1315. }
  1316. EXPORT_SYMBOL(vunmap);
  1317. /**
  1318. * vmap - map an array of pages into virtually contiguous space
  1319. * @pages: array of page pointers
  1320. * @count: number of pages to map
  1321. * @flags: vm_area->flags
  1322. * @prot: page protection for the mapping
  1323. *
  1324. * Maps @count pages from @pages into contiguous kernel virtual
  1325. * space.
  1326. */
  1327. void *vmap(struct page **pages, unsigned int count,
  1328. unsigned long flags, pgprot_t prot)
  1329. {
  1330. struct vm_struct *area;
  1331. might_sleep();
  1332. if (count > totalram_pages)
  1333. return NULL;
  1334. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1335. __builtin_return_address(0));
  1336. if (!area)
  1337. return NULL;
  1338. if (map_vm_area(area, prot, pages)) {
  1339. vunmap(area->addr);
  1340. return NULL;
  1341. }
  1342. return area->addr;
  1343. }
  1344. EXPORT_SYMBOL(vmap);
  1345. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1346. gfp_t gfp_mask, pgprot_t prot,
  1347. int node, const void *caller);
  1348. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1349. pgprot_t prot, int node)
  1350. {
  1351. const int order = 0;
  1352. struct page **pages;
  1353. unsigned int nr_pages, array_size, i;
  1354. const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1355. const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
  1356. nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
  1357. array_size = (nr_pages * sizeof(struct page *));
  1358. area->nr_pages = nr_pages;
  1359. /* Please note that the recursion is strictly bounded. */
  1360. if (array_size > PAGE_SIZE) {
  1361. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1362. PAGE_KERNEL, node, area->caller);
  1363. area->flags |= VM_VPAGES;
  1364. } else {
  1365. pages = kmalloc_node(array_size, nested_gfp, node);
  1366. }
  1367. area->pages = pages;
  1368. if (!area->pages) {
  1369. remove_vm_area(area->addr);
  1370. kfree(area);
  1371. return NULL;
  1372. }
  1373. for (i = 0; i < area->nr_pages; i++) {
  1374. struct page *page;
  1375. if (node == NUMA_NO_NODE)
  1376. page = alloc_page(alloc_mask);
  1377. else
  1378. page = alloc_pages_node(node, alloc_mask, order);
  1379. if (unlikely(!page)) {
  1380. /* Successfully allocated i pages, free them in __vunmap() */
  1381. area->nr_pages = i;
  1382. goto fail;
  1383. }
  1384. area->pages[i] = page;
  1385. if (gfp_mask & __GFP_WAIT)
  1386. cond_resched();
  1387. }
  1388. if (map_vm_area(area, prot, pages))
  1389. goto fail;
  1390. return area->addr;
  1391. fail:
  1392. warn_alloc_failed(gfp_mask, order,
  1393. "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
  1394. (area->nr_pages*PAGE_SIZE), area->size);
  1395. vfree(area->addr);
  1396. return NULL;
  1397. }
  1398. /**
  1399. * __vmalloc_node_range - allocate virtually contiguous memory
  1400. * @size: allocation size
  1401. * @align: desired alignment
  1402. * @start: vm area range start
  1403. * @end: vm area range end
  1404. * @gfp_mask: flags for the page level allocator
  1405. * @prot: protection mask for the allocated pages
  1406. * @node: node to use for allocation or NUMA_NO_NODE
  1407. * @caller: caller's return address
  1408. *
  1409. * Allocate enough pages to cover @size from the page level
  1410. * allocator with @gfp_mask flags. Map them into contiguous
  1411. * kernel virtual space, using a pagetable protection of @prot.
  1412. */
  1413. void *__vmalloc_node_range(unsigned long size, unsigned long align,
  1414. unsigned long start, unsigned long end, gfp_t gfp_mask,
  1415. pgprot_t prot, int node, const void *caller)
  1416. {
  1417. struct vm_struct *area;
  1418. void *addr;
  1419. unsigned long real_size = size;
  1420. size = PAGE_ALIGN(size);
  1421. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1422. goto fail;
  1423. area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED,
  1424. start, end, node, gfp_mask, caller);
  1425. if (!area)
  1426. goto fail;
  1427. addr = __vmalloc_area_node(area, gfp_mask, prot, node);
  1428. if (!addr)
  1429. return NULL;
  1430. /*
  1431. * In this function, newly allocated vm_struct has VM_UNINITIALIZED
  1432. * flag. It means that vm_struct is not fully initialized.
  1433. * Now, it is fully initialized, so remove this flag here.
  1434. */
  1435. clear_vm_uninitialized_flag(area);
  1436. /*
  1437. * A ref_count = 2 is needed because vm_struct allocated in
  1438. * __get_vm_area_node() contains a reference to the virtual address of
  1439. * the vmalloc'ed block.
  1440. */
  1441. kmemleak_alloc(addr, real_size, 2, gfp_mask);
  1442. return addr;
  1443. fail:
  1444. warn_alloc_failed(gfp_mask, 0,
  1445. "vmalloc: allocation failure: %lu bytes\n",
  1446. real_size);
  1447. return NULL;
  1448. }
  1449. /**
  1450. * __vmalloc_node - allocate virtually contiguous memory
  1451. * @size: allocation size
  1452. * @align: desired alignment
  1453. * @gfp_mask: flags for the page level allocator
  1454. * @prot: protection mask for the allocated pages
  1455. * @node: node to use for allocation or NUMA_NO_NODE
  1456. * @caller: caller's return address
  1457. *
  1458. * Allocate enough pages to cover @size from the page level
  1459. * allocator with @gfp_mask flags. Map them into contiguous
  1460. * kernel virtual space, using a pagetable protection of @prot.
  1461. */
  1462. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1463. gfp_t gfp_mask, pgprot_t prot,
  1464. int node, const void *caller)
  1465. {
  1466. return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
  1467. gfp_mask, prot, node, caller);
  1468. }
  1469. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1470. {
  1471. return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
  1472. __builtin_return_address(0));
  1473. }
  1474. EXPORT_SYMBOL(__vmalloc);
  1475. static inline void *__vmalloc_node_flags(unsigned long size,
  1476. int node, gfp_t flags)
  1477. {
  1478. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1479. node, __builtin_return_address(0));
  1480. }
  1481. /**
  1482. * vmalloc - allocate virtually contiguous memory
  1483. * @size: allocation size
  1484. * Allocate enough pages to cover @size from the page level
  1485. * allocator and map them into contiguous kernel virtual space.
  1486. *
  1487. * For tight control over page level allocator and protection flags
  1488. * use __vmalloc() instead.
  1489. */
  1490. void *vmalloc(unsigned long size)
  1491. {
  1492. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1493. GFP_KERNEL | __GFP_HIGHMEM);
  1494. }
  1495. EXPORT_SYMBOL(vmalloc);
  1496. /**
  1497. * vzalloc - allocate virtually contiguous memory with zero fill
  1498. * @size: allocation size
  1499. * Allocate enough pages to cover @size from the page level
  1500. * allocator and map them into contiguous kernel virtual space.
  1501. * The memory allocated is set to zero.
  1502. *
  1503. * For tight control over page level allocator and protection flags
  1504. * use __vmalloc() instead.
  1505. */
  1506. void *vzalloc(unsigned long size)
  1507. {
  1508. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1509. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1510. }
  1511. EXPORT_SYMBOL(vzalloc);
  1512. /**
  1513. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1514. * @size: allocation size
  1515. *
  1516. * The resulting memory area is zeroed so it can be mapped to userspace
  1517. * without leaking data.
  1518. */
  1519. void *vmalloc_user(unsigned long size)
  1520. {
  1521. struct vm_struct *area;
  1522. void *ret;
  1523. ret = __vmalloc_node(size, SHMLBA,
  1524. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1525. PAGE_KERNEL, NUMA_NO_NODE,
  1526. __builtin_return_address(0));
  1527. if (ret) {
  1528. area = find_vm_area(ret);
  1529. area->flags |= VM_USERMAP;
  1530. }
  1531. return ret;
  1532. }
  1533. EXPORT_SYMBOL(vmalloc_user);
  1534. /**
  1535. * vmalloc_node - allocate memory on a specific node
  1536. * @size: allocation size
  1537. * @node: numa node
  1538. *
  1539. * Allocate enough pages to cover @size from the page level
  1540. * allocator and map them into contiguous kernel virtual space.
  1541. *
  1542. * For tight control over page level allocator and protection flags
  1543. * use __vmalloc() instead.
  1544. */
  1545. void *vmalloc_node(unsigned long size, int node)
  1546. {
  1547. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1548. node, __builtin_return_address(0));
  1549. }
  1550. EXPORT_SYMBOL(vmalloc_node);
  1551. /**
  1552. * vzalloc_node - allocate memory on a specific node with zero fill
  1553. * @size: allocation size
  1554. * @node: numa node
  1555. *
  1556. * Allocate enough pages to cover @size from the page level
  1557. * allocator and map them into contiguous kernel virtual space.
  1558. * The memory allocated is set to zero.
  1559. *
  1560. * For tight control over page level allocator and protection flags
  1561. * use __vmalloc_node() instead.
  1562. */
  1563. void *vzalloc_node(unsigned long size, int node)
  1564. {
  1565. return __vmalloc_node_flags(size, node,
  1566. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1567. }
  1568. EXPORT_SYMBOL(vzalloc_node);
  1569. #ifndef PAGE_KERNEL_EXEC
  1570. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1571. #endif
  1572. /**
  1573. * vmalloc_exec - allocate virtually contiguous, executable memory
  1574. * @size: allocation size
  1575. *
  1576. * Kernel-internal function to allocate enough pages to cover @size
  1577. * the page level allocator and map them into contiguous and
  1578. * executable kernel virtual space.
  1579. *
  1580. * For tight control over page level allocator and protection flags
  1581. * use __vmalloc() instead.
  1582. */
  1583. void *vmalloc_exec(unsigned long size)
  1584. {
  1585. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1586. NUMA_NO_NODE, __builtin_return_address(0));
  1587. }
  1588. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1589. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1590. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1591. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1592. #else
  1593. #define GFP_VMALLOC32 GFP_KERNEL
  1594. #endif
  1595. /**
  1596. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1597. * @size: allocation size
  1598. *
  1599. * Allocate enough 32bit PA addressable pages to cover @size from the
  1600. * page level allocator and map them into contiguous kernel virtual space.
  1601. */
  1602. void *vmalloc_32(unsigned long size)
  1603. {
  1604. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1605. NUMA_NO_NODE, __builtin_return_address(0));
  1606. }
  1607. EXPORT_SYMBOL(vmalloc_32);
  1608. /**
  1609. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1610. * @size: allocation size
  1611. *
  1612. * The resulting memory area is 32bit addressable and zeroed so it can be
  1613. * mapped to userspace without leaking data.
  1614. */
  1615. void *vmalloc_32_user(unsigned long size)
  1616. {
  1617. struct vm_struct *area;
  1618. void *ret;
  1619. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1620. NUMA_NO_NODE, __builtin_return_address(0));
  1621. if (ret) {
  1622. area = find_vm_area(ret);
  1623. area->flags |= VM_USERMAP;
  1624. }
  1625. return ret;
  1626. }
  1627. EXPORT_SYMBOL(vmalloc_32_user);
  1628. /*
  1629. * small helper routine , copy contents to buf from addr.
  1630. * If the page is not present, fill zero.
  1631. */
  1632. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1633. {
  1634. struct page *p;
  1635. int copied = 0;
  1636. while (count) {
  1637. unsigned long offset, length;
  1638. offset = (unsigned long)addr & ~PAGE_MASK;
  1639. length = PAGE_SIZE - offset;
  1640. if (length > count)
  1641. length = count;
  1642. p = vmalloc_to_page(addr);
  1643. /*
  1644. * To do safe access to this _mapped_ area, we need
  1645. * lock. But adding lock here means that we need to add
  1646. * overhead of vmalloc()/vfree() calles for this _debug_
  1647. * interface, rarely used. Instead of that, we'll use
  1648. * kmap() and get small overhead in this access function.
  1649. */
  1650. if (p) {
  1651. /*
  1652. * we can expect USER0 is not used (see vread/vwrite's
  1653. * function description)
  1654. */
  1655. void *map = kmap_atomic(p);
  1656. memcpy(buf, map + offset, length);
  1657. kunmap_atomic(map);
  1658. } else
  1659. memset(buf, 0, length);
  1660. addr += length;
  1661. buf += length;
  1662. copied += length;
  1663. count -= length;
  1664. }
  1665. return copied;
  1666. }
  1667. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1668. {
  1669. struct page *p;
  1670. int copied = 0;
  1671. while (count) {
  1672. unsigned long offset, length;
  1673. offset = (unsigned long)addr & ~PAGE_MASK;
  1674. length = PAGE_SIZE - offset;
  1675. if (length > count)
  1676. length = count;
  1677. p = vmalloc_to_page(addr);
  1678. /*
  1679. * To do safe access to this _mapped_ area, we need
  1680. * lock. But adding lock here means that we need to add
  1681. * overhead of vmalloc()/vfree() calles for this _debug_
  1682. * interface, rarely used. Instead of that, we'll use
  1683. * kmap() and get small overhead in this access function.
  1684. */
  1685. if (p) {
  1686. /*
  1687. * we can expect USER0 is not used (see vread/vwrite's
  1688. * function description)
  1689. */
  1690. void *map = kmap_atomic(p);
  1691. memcpy(map + offset, buf, length);
  1692. kunmap_atomic(map);
  1693. }
  1694. addr += length;
  1695. buf += length;
  1696. copied += length;
  1697. count -= length;
  1698. }
  1699. return copied;
  1700. }
  1701. /**
  1702. * vread() - read vmalloc area in a safe way.
  1703. * @buf: buffer for reading data
  1704. * @addr: vm address.
  1705. * @count: number of bytes to be read.
  1706. *
  1707. * Returns # of bytes which addr and buf should be increased.
  1708. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1709. * includes any intersect with alive vmalloc area.
  1710. *
  1711. * This function checks that addr is a valid vmalloc'ed area, and
  1712. * copy data from that area to a given buffer. If the given memory range
  1713. * of [addr...addr+count) includes some valid address, data is copied to
  1714. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1715. * IOREMAP area is treated as memory hole and no copy is done.
  1716. *
  1717. * If [addr...addr+count) doesn't includes any intersects with alive
  1718. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1719. *
  1720. * Note: In usual ops, vread() is never necessary because the caller
  1721. * should know vmalloc() area is valid and can use memcpy().
  1722. * This is for routines which have to access vmalloc area without
  1723. * any informaion, as /dev/kmem.
  1724. *
  1725. */
  1726. long vread(char *buf, char *addr, unsigned long count)
  1727. {
  1728. struct vmap_area *va;
  1729. struct vm_struct *vm;
  1730. char *vaddr, *buf_start = buf;
  1731. unsigned long buflen = count;
  1732. unsigned long n;
  1733. /* Don't allow overflow */
  1734. if ((unsigned long) addr + count < count)
  1735. count = -(unsigned long) addr;
  1736. spin_lock(&vmap_area_lock);
  1737. list_for_each_entry(va, &vmap_area_list, list) {
  1738. if (!count)
  1739. break;
  1740. if (!(va->flags & VM_VM_AREA))
  1741. continue;
  1742. vm = va->vm;
  1743. vaddr = (char *) vm->addr;
  1744. if (addr >= vaddr + get_vm_area_size(vm))
  1745. continue;
  1746. while (addr < vaddr) {
  1747. if (count == 0)
  1748. goto finished;
  1749. *buf = '\0';
  1750. buf++;
  1751. addr++;
  1752. count--;
  1753. }
  1754. n = vaddr + get_vm_area_size(vm) - addr;
  1755. if (n > count)
  1756. n = count;
  1757. if (!(vm->flags & VM_IOREMAP))
  1758. aligned_vread(buf, addr, n);
  1759. else /* IOREMAP area is treated as memory hole */
  1760. memset(buf, 0, n);
  1761. buf += n;
  1762. addr += n;
  1763. count -= n;
  1764. }
  1765. finished:
  1766. spin_unlock(&vmap_area_lock);
  1767. if (buf == buf_start)
  1768. return 0;
  1769. /* zero-fill memory holes */
  1770. if (buf != buf_start + buflen)
  1771. memset(buf, 0, buflen - (buf - buf_start));
  1772. return buflen;
  1773. }
  1774. /**
  1775. * vwrite() - write vmalloc area in a safe way.
  1776. * @buf: buffer for source data
  1777. * @addr: vm address.
  1778. * @count: number of bytes to be read.
  1779. *
  1780. * Returns # of bytes which addr and buf should be incresed.
  1781. * (same number to @count).
  1782. * If [addr...addr+count) doesn't includes any intersect with valid
  1783. * vmalloc area, returns 0.
  1784. *
  1785. * This function checks that addr is a valid vmalloc'ed area, and
  1786. * copy data from a buffer to the given addr. If specified range of
  1787. * [addr...addr+count) includes some valid address, data is copied from
  1788. * proper area of @buf. If there are memory holes, no copy to hole.
  1789. * IOREMAP area is treated as memory hole and no copy is done.
  1790. *
  1791. * If [addr...addr+count) doesn't includes any intersects with alive
  1792. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1793. *
  1794. * Note: In usual ops, vwrite() is never necessary because the caller
  1795. * should know vmalloc() area is valid and can use memcpy().
  1796. * This is for routines which have to access vmalloc area without
  1797. * any informaion, as /dev/kmem.
  1798. */
  1799. long vwrite(char *buf, char *addr, unsigned long count)
  1800. {
  1801. struct vmap_area *va;
  1802. struct vm_struct *vm;
  1803. char *vaddr;
  1804. unsigned long n, buflen;
  1805. int copied = 0;
  1806. /* Don't allow overflow */
  1807. if ((unsigned long) addr + count < count)
  1808. count = -(unsigned long) addr;
  1809. buflen = count;
  1810. spin_lock(&vmap_area_lock);
  1811. list_for_each_entry(va, &vmap_area_list, list) {
  1812. if (!count)
  1813. break;
  1814. if (!(va->flags & VM_VM_AREA))
  1815. continue;
  1816. vm = va->vm;
  1817. vaddr = (char *) vm->addr;
  1818. if (addr >= vaddr + get_vm_area_size(vm))
  1819. continue;
  1820. while (addr < vaddr) {
  1821. if (count == 0)
  1822. goto finished;
  1823. buf++;
  1824. addr++;
  1825. count--;
  1826. }
  1827. n = vaddr + get_vm_area_size(vm) - addr;
  1828. if (n > count)
  1829. n = count;
  1830. if (!(vm->flags & VM_IOREMAP)) {
  1831. aligned_vwrite(buf, addr, n);
  1832. copied++;
  1833. }
  1834. buf += n;
  1835. addr += n;
  1836. count -= n;
  1837. }
  1838. finished:
  1839. spin_unlock(&vmap_area_lock);
  1840. if (!copied)
  1841. return 0;
  1842. return buflen;
  1843. }
  1844. /**
  1845. * remap_vmalloc_range_partial - map vmalloc pages to userspace
  1846. * @vma: vma to cover
  1847. * @uaddr: target user address to start at
  1848. * @kaddr: virtual address of vmalloc kernel memory
  1849. * @size: size of map area
  1850. *
  1851. * Returns: 0 for success, -Exxx on failure
  1852. *
  1853. * This function checks that @kaddr is a valid vmalloc'ed area,
  1854. * and that it is big enough to cover the range starting at
  1855. * @uaddr in @vma. Will return failure if that criteria isn't
  1856. * met.
  1857. *
  1858. * Similar to remap_pfn_range() (see mm/memory.c)
  1859. */
  1860. int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
  1861. void *kaddr, unsigned long size)
  1862. {
  1863. struct vm_struct *area;
  1864. size = PAGE_ALIGN(size);
  1865. if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
  1866. return -EINVAL;
  1867. area = find_vm_area(kaddr);
  1868. if (!area)
  1869. return -EINVAL;
  1870. if (!(area->flags & VM_USERMAP))
  1871. return -EINVAL;
  1872. if (kaddr + size > area->addr + area->size)
  1873. return -EINVAL;
  1874. do {
  1875. struct page *page = vmalloc_to_page(kaddr);
  1876. int ret;
  1877. ret = vm_insert_page(vma, uaddr, page);
  1878. if (ret)
  1879. return ret;
  1880. uaddr += PAGE_SIZE;
  1881. kaddr += PAGE_SIZE;
  1882. size -= PAGE_SIZE;
  1883. } while (size > 0);
  1884. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  1885. return 0;
  1886. }
  1887. EXPORT_SYMBOL(remap_vmalloc_range_partial);
  1888. /**
  1889. * remap_vmalloc_range - map vmalloc pages to userspace
  1890. * @vma: vma to cover (map full range of vma)
  1891. * @addr: vmalloc memory
  1892. * @pgoff: number of pages into addr before first page to map
  1893. *
  1894. * Returns: 0 for success, -Exxx on failure
  1895. *
  1896. * This function checks that addr is a valid vmalloc'ed area, and
  1897. * that it is big enough to cover the vma. Will return failure if
  1898. * that criteria isn't met.
  1899. *
  1900. * Similar to remap_pfn_range() (see mm/memory.c)
  1901. */
  1902. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1903. unsigned long pgoff)
  1904. {
  1905. return remap_vmalloc_range_partial(vma, vma->vm_start,
  1906. addr + (pgoff << PAGE_SHIFT),
  1907. vma->vm_end - vma->vm_start);
  1908. }
  1909. EXPORT_SYMBOL(remap_vmalloc_range);
  1910. /*
  1911. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1912. * have one.
  1913. */
  1914. void __weak vmalloc_sync_all(void)
  1915. {
  1916. }
  1917. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1918. {
  1919. pte_t ***p = data;
  1920. if (p) {
  1921. *(*p) = pte;
  1922. (*p)++;
  1923. }
  1924. return 0;
  1925. }
  1926. /**
  1927. * alloc_vm_area - allocate a range of kernel address space
  1928. * @size: size of the area
  1929. * @ptes: returns the PTEs for the address space
  1930. *
  1931. * Returns: NULL on failure, vm_struct on success
  1932. *
  1933. * This function reserves a range of kernel address space, and
  1934. * allocates pagetables to map that range. No actual mappings
  1935. * are created.
  1936. *
  1937. * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
  1938. * allocated for the VM area are returned.
  1939. */
  1940. struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
  1941. {
  1942. struct vm_struct *area;
  1943. area = get_vm_area_caller(size, VM_IOREMAP,
  1944. __builtin_return_address(0));
  1945. if (area == NULL)
  1946. return NULL;
  1947. /*
  1948. * This ensures that page tables are constructed for this region
  1949. * of kernel virtual address space and mapped into init_mm.
  1950. */
  1951. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1952. size, f, ptes ? &ptes : NULL)) {
  1953. free_vm_area(area);
  1954. return NULL;
  1955. }
  1956. return area;
  1957. }
  1958. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1959. void free_vm_area(struct vm_struct *area)
  1960. {
  1961. struct vm_struct *ret;
  1962. ret = remove_vm_area(area->addr);
  1963. BUG_ON(ret != area);
  1964. kfree(area);
  1965. }
  1966. EXPORT_SYMBOL_GPL(free_vm_area);
  1967. #ifdef CONFIG_SMP
  1968. static struct vmap_area *node_to_va(struct rb_node *n)
  1969. {
  1970. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  1971. }
  1972. /**
  1973. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  1974. * @end: target address
  1975. * @pnext: out arg for the next vmap_area
  1976. * @pprev: out arg for the previous vmap_area
  1977. *
  1978. * Returns: %true if either or both of next and prev are found,
  1979. * %false if no vmap_area exists
  1980. *
  1981. * Find vmap_areas end addresses of which enclose @end. ie. if not
  1982. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  1983. */
  1984. static bool pvm_find_next_prev(unsigned long end,
  1985. struct vmap_area **pnext,
  1986. struct vmap_area **pprev)
  1987. {
  1988. struct rb_node *n = vmap_area_root.rb_node;
  1989. struct vmap_area *va = NULL;
  1990. while (n) {
  1991. va = rb_entry(n, struct vmap_area, rb_node);
  1992. if (end < va->va_end)
  1993. n = n->rb_left;
  1994. else if (end > va->va_end)
  1995. n = n->rb_right;
  1996. else
  1997. break;
  1998. }
  1999. if (!va)
  2000. return false;
  2001. if (va->va_end > end) {
  2002. *pnext = va;
  2003. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2004. } else {
  2005. *pprev = va;
  2006. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  2007. }
  2008. return true;
  2009. }
  2010. /**
  2011. * pvm_determine_end - find the highest aligned address between two vmap_areas
  2012. * @pnext: in/out arg for the next vmap_area
  2013. * @pprev: in/out arg for the previous vmap_area
  2014. * @align: alignment
  2015. *
  2016. * Returns: determined end address
  2017. *
  2018. * Find the highest aligned address between *@pnext and *@pprev below
  2019. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  2020. * down address is between the end addresses of the two vmap_areas.
  2021. *
  2022. * Please note that the address returned by this function may fall
  2023. * inside *@pnext vmap_area. The caller is responsible for checking
  2024. * that.
  2025. */
  2026. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  2027. struct vmap_area **pprev,
  2028. unsigned long align)
  2029. {
  2030. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2031. unsigned long addr;
  2032. if (*pnext)
  2033. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  2034. else
  2035. addr = vmalloc_end;
  2036. while (*pprev && (*pprev)->va_end > addr) {
  2037. *pnext = *pprev;
  2038. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2039. }
  2040. return addr;
  2041. }
  2042. /**
  2043. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  2044. * @offsets: array containing offset of each area
  2045. * @sizes: array containing size of each area
  2046. * @nr_vms: the number of areas to allocate
  2047. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  2048. *
  2049. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  2050. * vm_structs on success, %NULL on failure
  2051. *
  2052. * Percpu allocator wants to use congruent vm areas so that it can
  2053. * maintain the offsets among percpu areas. This function allocates
  2054. * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
  2055. * be scattered pretty far, distance between two areas easily going up
  2056. * to gigabytes. To avoid interacting with regular vmallocs, these
  2057. * areas are allocated from top.
  2058. *
  2059. * Despite its complicated look, this allocator is rather simple. It
  2060. * does everything top-down and scans areas from the end looking for
  2061. * matching slot. While scanning, if any of the areas overlaps with
  2062. * existing vmap_area, the base address is pulled down to fit the
  2063. * area. Scanning is repeated till all the areas fit and then all
  2064. * necessary data structres are inserted and the result is returned.
  2065. */
  2066. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  2067. const size_t *sizes, int nr_vms,
  2068. size_t align)
  2069. {
  2070. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  2071. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2072. struct vmap_area **vas, *prev, *next;
  2073. struct vm_struct **vms;
  2074. int area, area2, last_area, term_area;
  2075. unsigned long base, start, end, last_end;
  2076. bool purged = false;
  2077. /* verify parameters and allocate data structures */
  2078. BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
  2079. for (last_area = 0, area = 0; area < nr_vms; area++) {
  2080. start = offsets[area];
  2081. end = start + sizes[area];
  2082. /* is everything aligned properly? */
  2083. BUG_ON(!IS_ALIGNED(offsets[area], align));
  2084. BUG_ON(!IS_ALIGNED(sizes[area], align));
  2085. /* detect the area with the highest address */
  2086. if (start > offsets[last_area])
  2087. last_area = area;
  2088. for (area2 = 0; area2 < nr_vms; area2++) {
  2089. unsigned long start2 = offsets[area2];
  2090. unsigned long end2 = start2 + sizes[area2];
  2091. if (area2 == area)
  2092. continue;
  2093. BUG_ON(start2 >= start && start2 < end);
  2094. BUG_ON(end2 <= end && end2 > start);
  2095. }
  2096. }
  2097. last_end = offsets[last_area] + sizes[last_area];
  2098. if (vmalloc_end - vmalloc_start < last_end) {
  2099. WARN_ON(true);
  2100. return NULL;
  2101. }
  2102. vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
  2103. vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
  2104. if (!vas || !vms)
  2105. goto err_free2;
  2106. for (area = 0; area < nr_vms; area++) {
  2107. vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
  2108. vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
  2109. if (!vas[area] || !vms[area])
  2110. goto err_free;
  2111. }
  2112. retry:
  2113. spin_lock(&vmap_area_lock);
  2114. /* start scanning - we scan from the top, begin with the last area */
  2115. area = term_area = last_area;
  2116. start = offsets[area];
  2117. end = start + sizes[area];
  2118. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  2119. base = vmalloc_end - last_end;
  2120. goto found;
  2121. }
  2122. base = pvm_determine_end(&next, &prev, align) - end;
  2123. while (true) {
  2124. BUG_ON(next && next->va_end <= base + end);
  2125. BUG_ON(prev && prev->va_end > base + end);
  2126. /*
  2127. * base might have underflowed, add last_end before
  2128. * comparing.
  2129. */
  2130. if (base + last_end < vmalloc_start + last_end) {
  2131. spin_unlock(&vmap_area_lock);
  2132. if (!purged) {
  2133. purge_vmap_area_lazy();
  2134. purged = true;
  2135. goto retry;
  2136. }
  2137. goto err_free;
  2138. }
  2139. /*
  2140. * If next overlaps, move base downwards so that it's
  2141. * right below next and then recheck.
  2142. */
  2143. if (next && next->va_start < base + end) {
  2144. base = pvm_determine_end(&next, &prev, align) - end;
  2145. term_area = area;
  2146. continue;
  2147. }
  2148. /*
  2149. * If prev overlaps, shift down next and prev and move
  2150. * base so that it's right below new next and then
  2151. * recheck.
  2152. */
  2153. if (prev && prev->va_end > base + start) {
  2154. next = prev;
  2155. prev = node_to_va(rb_prev(&next->rb_node));
  2156. base = pvm_determine_end(&next, &prev, align) - end;
  2157. term_area = area;
  2158. continue;
  2159. }
  2160. /*
  2161. * This area fits, move on to the previous one. If
  2162. * the previous one is the terminal one, we're done.
  2163. */
  2164. area = (area + nr_vms - 1) % nr_vms;
  2165. if (area == term_area)
  2166. break;
  2167. start = offsets[area];
  2168. end = start + sizes[area];
  2169. pvm_find_next_prev(base + end, &next, &prev);
  2170. }
  2171. found:
  2172. /* we've found a fitting base, insert all va's */
  2173. for (area = 0; area < nr_vms; area++) {
  2174. struct vmap_area *va = vas[area];
  2175. va->va_start = base + offsets[area];
  2176. va->va_end = va->va_start + sizes[area];
  2177. __insert_vmap_area(va);
  2178. }
  2179. vmap_area_pcpu_hole = base + offsets[last_area];
  2180. spin_unlock(&vmap_area_lock);
  2181. /* insert all vm's */
  2182. for (area = 0; area < nr_vms; area++)
  2183. setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2184. pcpu_get_vm_areas);
  2185. kfree(vas);
  2186. return vms;
  2187. err_free:
  2188. for (area = 0; area < nr_vms; area++) {
  2189. kfree(vas[area]);
  2190. kfree(vms[area]);
  2191. }
  2192. err_free2:
  2193. kfree(vas);
  2194. kfree(vms);
  2195. return NULL;
  2196. }
  2197. /**
  2198. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2199. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2200. * @nr_vms: the number of allocated areas
  2201. *
  2202. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2203. */
  2204. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2205. {
  2206. int i;
  2207. for (i = 0; i < nr_vms; i++)
  2208. free_vm_area(vms[i]);
  2209. kfree(vms);
  2210. }
  2211. #endif /* CONFIG_SMP */
  2212. #ifdef CONFIG_PROC_FS
  2213. static void *s_start(struct seq_file *m, loff_t *pos)
  2214. __acquires(&vmap_area_lock)
  2215. {
  2216. loff_t n = *pos;
  2217. struct vmap_area *va;
  2218. spin_lock(&vmap_area_lock);
  2219. va = list_entry((&vmap_area_list)->next, typeof(*va), list);
  2220. while (n > 0 && &va->list != &vmap_area_list) {
  2221. n--;
  2222. va = list_entry(va->list.next, typeof(*va), list);
  2223. }
  2224. if (!n && &va->list != &vmap_area_list)
  2225. return va;
  2226. return NULL;
  2227. }
  2228. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2229. {
  2230. struct vmap_area *va = p, *next;
  2231. ++*pos;
  2232. next = list_entry(va->list.next, typeof(*va), list);
  2233. if (&next->list != &vmap_area_list)
  2234. return next;
  2235. return NULL;
  2236. }
  2237. static void s_stop(struct seq_file *m, void *p)
  2238. __releases(&vmap_area_lock)
  2239. {
  2240. spin_unlock(&vmap_area_lock);
  2241. }
  2242. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2243. {
  2244. if (IS_ENABLED(CONFIG_NUMA)) {
  2245. unsigned int nr, *counters = m->private;
  2246. if (!counters)
  2247. return;
  2248. /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
  2249. smp_rmb();
  2250. if (v->flags & VM_UNINITIALIZED)
  2251. return;
  2252. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2253. for (nr = 0; nr < v->nr_pages; nr++)
  2254. counters[page_to_nid(v->pages[nr])]++;
  2255. for_each_node_state(nr, N_HIGH_MEMORY)
  2256. if (counters[nr])
  2257. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2258. }
  2259. }
  2260. static int s_show(struct seq_file *m, void *p)
  2261. {
  2262. struct vmap_area *va = p;
  2263. struct vm_struct *v;
  2264. /*
  2265. * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
  2266. * behalf of vmap area is being tear down or vm_map_ram allocation.
  2267. */
  2268. if (!(va->flags & VM_VM_AREA))
  2269. return 0;
  2270. v = va->vm;
  2271. seq_printf(m, "0x%pK-0x%pK %7ld",
  2272. v->addr, v->addr + v->size, v->size);
  2273. if (v->caller)
  2274. seq_printf(m, " %pS", v->caller);
  2275. if (v->nr_pages)
  2276. seq_printf(m, " pages=%d", v->nr_pages);
  2277. if (v->phys_addr)
  2278. seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
  2279. if (v->flags & VM_IOREMAP)
  2280. seq_puts(m, " ioremap");
  2281. if (v->flags & VM_ALLOC)
  2282. seq_puts(m, " vmalloc");
  2283. if (v->flags & VM_MAP)
  2284. seq_puts(m, " vmap");
  2285. if (v->flags & VM_USERMAP)
  2286. seq_puts(m, " user");
  2287. if (v->flags & VM_VPAGES)
  2288. seq_puts(m, " vpages");
  2289. show_numa_info(m, v);
  2290. seq_putc(m, '\n');
  2291. return 0;
  2292. }
  2293. static const struct seq_operations vmalloc_op = {
  2294. .start = s_start,
  2295. .next = s_next,
  2296. .stop = s_stop,
  2297. .show = s_show,
  2298. };
  2299. static int vmalloc_open(struct inode *inode, struct file *file)
  2300. {
  2301. if (IS_ENABLED(CONFIG_NUMA))
  2302. return seq_open_private(file, &vmalloc_op,
  2303. nr_node_ids * sizeof(unsigned int));
  2304. else
  2305. return seq_open(file, &vmalloc_op);
  2306. }
  2307. static const struct file_operations proc_vmalloc_operations = {
  2308. .open = vmalloc_open,
  2309. .read = seq_read,
  2310. .llseek = seq_lseek,
  2311. .release = seq_release_private,
  2312. };
  2313. static int __init proc_vmalloc_init(void)
  2314. {
  2315. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2316. return 0;
  2317. }
  2318. module_init(proc_vmalloc_init);
  2319. void get_vmalloc_info(struct vmalloc_info *vmi)
  2320. {
  2321. struct vmap_area *va;
  2322. unsigned long free_area_size;
  2323. unsigned long prev_end;
  2324. vmi->used = 0;
  2325. vmi->largest_chunk = 0;
  2326. prev_end = VMALLOC_START;
  2327. rcu_read_lock();
  2328. if (list_empty(&vmap_area_list)) {
  2329. vmi->largest_chunk = VMALLOC_TOTAL;
  2330. goto out;
  2331. }
  2332. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  2333. unsigned long addr = va->va_start;
  2334. /*
  2335. * Some archs keep another range for modules in vmalloc space
  2336. */
  2337. if (addr < VMALLOC_START)
  2338. continue;
  2339. if (addr >= VMALLOC_END)
  2340. break;
  2341. if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
  2342. continue;
  2343. vmi->used += (va->va_end - va->va_start);
  2344. free_area_size = addr - prev_end;
  2345. if (vmi->largest_chunk < free_area_size)
  2346. vmi->largest_chunk = free_area_size;
  2347. prev_end = va->va_end;
  2348. }
  2349. if (VMALLOC_END - prev_end > vmi->largest_chunk)
  2350. vmi->largest_chunk = VMALLOC_END - prev_end;
  2351. out:
  2352. rcu_read_unlock();
  2353. }
  2354. #endif