security.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/dcache.h>
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/kernel.h>
  18. #include <linux/security.h>
  19. #include <linux/integrity.h>
  20. #include <linux/ima.h>
  21. #include <linux/evm.h>
  22. #include <linux/fsnotify.h>
  23. #include <linux/mman.h>
  24. #include <linux/mount.h>
  25. #include <linux/personality.h>
  26. #include <linux/backing-dev.h>
  27. #include <net/flow.h>
  28. #define MAX_LSM_EVM_XATTR 2
  29. /* Boot-time LSM user choice */
  30. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  31. CONFIG_DEFAULT_SECURITY;
  32. static struct security_operations *security_ops;
  33. static struct security_operations default_security_ops = {
  34. .name = "default",
  35. };
  36. static inline int __init verify(struct security_operations *ops)
  37. {
  38. /* verify the security_operations structure exists */
  39. if (!ops)
  40. return -EINVAL;
  41. security_fixup_ops(ops);
  42. return 0;
  43. }
  44. static void __init do_security_initcalls(void)
  45. {
  46. initcall_t *call;
  47. call = __security_initcall_start;
  48. while (call < __security_initcall_end) {
  49. (*call) ();
  50. call++;
  51. }
  52. }
  53. /**
  54. * security_init - initializes the security framework
  55. *
  56. * This should be called early in the kernel initialization sequence.
  57. */
  58. int __init security_init(void)
  59. {
  60. printk(KERN_INFO "Security Framework initialized\n");
  61. security_fixup_ops(&default_security_ops);
  62. security_ops = &default_security_ops;
  63. do_security_initcalls();
  64. return 0;
  65. }
  66. void reset_security_ops(void)
  67. {
  68. security_ops = &default_security_ops;
  69. }
  70. /* Save user chosen LSM */
  71. static int __init choose_lsm(char *str)
  72. {
  73. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  74. return 1;
  75. }
  76. __setup("security=", choose_lsm);
  77. /**
  78. * security_module_enable - Load given security module on boot ?
  79. * @ops: a pointer to the struct security_operations that is to be checked.
  80. *
  81. * Each LSM must pass this method before registering its own operations
  82. * to avoid security registration races. This method may also be used
  83. * to check if your LSM is currently loaded during kernel initialization.
  84. *
  85. * Return true if:
  86. * -The passed LSM is the one chosen by user at boot time,
  87. * -or the passed LSM is configured as the default and the user did not
  88. * choose an alternate LSM at boot time.
  89. * Otherwise, return false.
  90. */
  91. int __init security_module_enable(struct security_operations *ops)
  92. {
  93. return !strcmp(ops->name, chosen_lsm);
  94. }
  95. /**
  96. * register_security - registers a security framework with the kernel
  97. * @ops: a pointer to the struct security_options that is to be registered
  98. *
  99. * This function allows a security module to register itself with the
  100. * kernel security subsystem. Some rudimentary checking is done on the @ops
  101. * value passed to this function. You'll need to check first if your LSM
  102. * is allowed to register its @ops by calling security_module_enable(@ops).
  103. *
  104. * If there is already a security module registered with the kernel,
  105. * an error will be returned. Otherwise %0 is returned on success.
  106. */
  107. int __init register_security(struct security_operations *ops)
  108. {
  109. if (verify(ops)) {
  110. printk(KERN_DEBUG "%s could not verify "
  111. "security_operations structure.\n", __func__);
  112. return -EINVAL;
  113. }
  114. if (security_ops != &default_security_ops)
  115. return -EAGAIN;
  116. security_ops = ops;
  117. return 0;
  118. }
  119. /* Security operations */
  120. int security_binder_set_context_mgr(struct task_struct *mgr)
  121. {
  122. return security_ops->binder_set_context_mgr(mgr);
  123. }
  124. int security_binder_transaction(struct task_struct *from, struct task_struct *to)
  125. {
  126. return security_ops->binder_transaction(from, to);
  127. }
  128. int security_binder_transfer_binder(struct task_struct *from, struct task_struct *to)
  129. {
  130. return security_ops->binder_transfer_binder(from, to);
  131. }
  132. int security_binder_transfer_file(struct task_struct *from, struct task_struct *to, struct file *file)
  133. {
  134. return security_ops->binder_transfer_file(from, to, file);
  135. }
  136. int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
  137. {
  138. #ifdef CONFIG_SECURITY_YAMA_STACKED
  139. int rc;
  140. rc = yama_ptrace_access_check(child, mode);
  141. if (rc)
  142. return rc;
  143. #endif
  144. return security_ops->ptrace_access_check(child, mode);
  145. }
  146. int security_ptrace_traceme(struct task_struct *parent)
  147. {
  148. #ifdef CONFIG_SECURITY_YAMA_STACKED
  149. int rc;
  150. rc = yama_ptrace_traceme(parent);
  151. if (rc)
  152. return rc;
  153. #endif
  154. return security_ops->ptrace_traceme(parent);
  155. }
  156. int security_capget(struct task_struct *target,
  157. kernel_cap_t *effective,
  158. kernel_cap_t *inheritable,
  159. kernel_cap_t *permitted)
  160. {
  161. return security_ops->capget(target, effective, inheritable, permitted);
  162. }
  163. int security_capset(struct cred *new, const struct cred *old,
  164. const kernel_cap_t *effective,
  165. const kernel_cap_t *inheritable,
  166. const kernel_cap_t *permitted)
  167. {
  168. return security_ops->capset(new, old,
  169. effective, inheritable, permitted);
  170. }
  171. int security_capable(const struct cred *cred, struct user_namespace *ns,
  172. int cap)
  173. {
  174. return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
  175. }
  176. int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
  177. int cap)
  178. {
  179. return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
  180. }
  181. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  182. {
  183. return security_ops->quotactl(cmds, type, id, sb);
  184. }
  185. int security_quota_on(struct dentry *dentry)
  186. {
  187. return security_ops->quota_on(dentry);
  188. }
  189. int security_syslog(int type)
  190. {
  191. return security_ops->syslog(type);
  192. }
  193. int security_settime(const struct timespec *ts, const struct timezone *tz)
  194. {
  195. return security_ops->settime(ts, tz);
  196. }
  197. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  198. {
  199. return security_ops->vm_enough_memory(mm, pages);
  200. }
  201. int security_bprm_set_creds(struct linux_binprm *bprm)
  202. {
  203. return security_ops->bprm_set_creds(bprm);
  204. }
  205. int security_bprm_check(struct linux_binprm *bprm)
  206. {
  207. int ret;
  208. ret = security_ops->bprm_check_security(bprm);
  209. if (ret)
  210. return ret;
  211. return ima_bprm_check(bprm);
  212. }
  213. void security_bprm_committing_creds(struct linux_binprm *bprm)
  214. {
  215. security_ops->bprm_committing_creds(bprm);
  216. }
  217. void security_bprm_committed_creds(struct linux_binprm *bprm)
  218. {
  219. security_ops->bprm_committed_creds(bprm);
  220. }
  221. int security_bprm_secureexec(struct linux_binprm *bprm)
  222. {
  223. return security_ops->bprm_secureexec(bprm);
  224. }
  225. int security_sb_alloc(struct super_block *sb)
  226. {
  227. return security_ops->sb_alloc_security(sb);
  228. }
  229. void security_sb_free(struct super_block *sb)
  230. {
  231. security_ops->sb_free_security(sb);
  232. }
  233. int security_sb_copy_data(char *orig, char *copy)
  234. {
  235. return security_ops->sb_copy_data(orig, copy);
  236. }
  237. EXPORT_SYMBOL(security_sb_copy_data);
  238. int security_sb_remount(struct super_block *sb, void *data)
  239. {
  240. return security_ops->sb_remount(sb, data);
  241. }
  242. int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
  243. {
  244. return security_ops->sb_kern_mount(sb, flags, data);
  245. }
  246. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  247. {
  248. return security_ops->sb_show_options(m, sb);
  249. }
  250. int security_sb_statfs(struct dentry *dentry)
  251. {
  252. return security_ops->sb_statfs(dentry);
  253. }
  254. int security_sb_mount(const char *dev_name, struct path *path,
  255. const char *type, unsigned long flags, void *data)
  256. {
  257. return security_ops->sb_mount(dev_name, path, type, flags, data);
  258. }
  259. int security_sb_umount(struct vfsmount *mnt, int flags)
  260. {
  261. return security_ops->sb_umount(mnt, flags);
  262. }
  263. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  264. {
  265. return security_ops->sb_pivotroot(old_path, new_path);
  266. }
  267. int security_sb_set_mnt_opts(struct super_block *sb,
  268. struct security_mnt_opts *opts,
  269. unsigned long kern_flags,
  270. unsigned long *set_kern_flags)
  271. {
  272. return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
  273. set_kern_flags);
  274. }
  275. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  276. int security_sb_clone_mnt_opts(const struct super_block *oldsb,
  277. struct super_block *newsb)
  278. {
  279. return security_ops->sb_clone_mnt_opts(oldsb, newsb);
  280. }
  281. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  282. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  283. {
  284. return security_ops->sb_parse_opts_str(options, opts);
  285. }
  286. EXPORT_SYMBOL(security_sb_parse_opts_str);
  287. int security_inode_alloc(struct inode *inode)
  288. {
  289. inode->i_security = NULL;
  290. return security_ops->inode_alloc_security(inode);
  291. }
  292. void security_inode_free(struct inode *inode)
  293. {
  294. integrity_inode_free(inode);
  295. security_ops->inode_free_security(inode);
  296. }
  297. int security_dentry_init_security(struct dentry *dentry, int mode,
  298. struct qstr *name, void **ctx,
  299. u32 *ctxlen)
  300. {
  301. return security_ops->dentry_init_security(dentry, mode, name,
  302. ctx, ctxlen);
  303. }
  304. EXPORT_SYMBOL(security_dentry_init_security);
  305. int security_inode_init_security(struct inode *inode, struct inode *dir,
  306. const struct qstr *qstr,
  307. const initxattrs initxattrs, void *fs_data)
  308. {
  309. struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
  310. struct xattr *lsm_xattr, *evm_xattr, *xattr;
  311. int ret;
  312. if (unlikely(IS_PRIVATE(inode)))
  313. return 0;
  314. if (!initxattrs)
  315. return security_ops->inode_init_security(inode, dir, qstr,
  316. NULL, NULL, NULL);
  317. memset(new_xattrs, 0, sizeof(new_xattrs));
  318. lsm_xattr = new_xattrs;
  319. ret = security_ops->inode_init_security(inode, dir, qstr,
  320. &lsm_xattr->name,
  321. &lsm_xattr->value,
  322. &lsm_xattr->value_len);
  323. if (ret)
  324. goto out;
  325. evm_xattr = lsm_xattr + 1;
  326. ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
  327. if (ret)
  328. goto out;
  329. ret = initxattrs(inode, new_xattrs, fs_data);
  330. out:
  331. for (xattr = new_xattrs; xattr->value != NULL; xattr++)
  332. kfree(xattr->value);
  333. return (ret == -EOPNOTSUPP) ? 0 : ret;
  334. }
  335. EXPORT_SYMBOL(security_inode_init_security);
  336. int security_old_inode_init_security(struct inode *inode, struct inode *dir,
  337. const struct qstr *qstr, const char **name,
  338. void **value, size_t *len)
  339. {
  340. if (unlikely(IS_PRIVATE(inode)))
  341. return -EOPNOTSUPP;
  342. return security_ops->inode_init_security(inode, dir, qstr, name, value,
  343. len);
  344. }
  345. EXPORT_SYMBOL(security_old_inode_init_security);
  346. #ifdef CONFIG_SECURITY_PATH
  347. int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
  348. unsigned int dev)
  349. {
  350. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  351. return 0;
  352. return security_ops->path_mknod(dir, dentry, mode, dev);
  353. }
  354. EXPORT_SYMBOL(security_path_mknod);
  355. int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
  356. {
  357. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  358. return 0;
  359. return security_ops->path_mkdir(dir, dentry, mode);
  360. }
  361. EXPORT_SYMBOL(security_path_mkdir);
  362. int security_path_rmdir(struct path *dir, struct dentry *dentry)
  363. {
  364. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  365. return 0;
  366. return security_ops->path_rmdir(dir, dentry);
  367. }
  368. int security_path_unlink(struct path *dir, struct dentry *dentry)
  369. {
  370. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  371. return 0;
  372. return security_ops->path_unlink(dir, dentry);
  373. }
  374. EXPORT_SYMBOL(security_path_unlink);
  375. int security_path_symlink(struct path *dir, struct dentry *dentry,
  376. const char *old_name)
  377. {
  378. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  379. return 0;
  380. return security_ops->path_symlink(dir, dentry, old_name);
  381. }
  382. int security_path_link(struct dentry *old_dentry, struct path *new_dir,
  383. struct dentry *new_dentry)
  384. {
  385. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  386. return 0;
  387. return security_ops->path_link(old_dentry, new_dir, new_dentry);
  388. }
  389. int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
  390. struct path *new_dir, struct dentry *new_dentry,
  391. unsigned int flags)
  392. {
  393. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  394. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  395. return 0;
  396. if (flags & RENAME_EXCHANGE) {
  397. int err = security_ops->path_rename(new_dir, new_dentry,
  398. old_dir, old_dentry);
  399. if (err)
  400. return err;
  401. }
  402. return security_ops->path_rename(old_dir, old_dentry, new_dir,
  403. new_dentry);
  404. }
  405. EXPORT_SYMBOL(security_path_rename);
  406. int security_path_truncate(struct path *path)
  407. {
  408. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  409. return 0;
  410. return security_ops->path_truncate(path);
  411. }
  412. int security_path_chmod(struct path *path, umode_t mode)
  413. {
  414. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  415. return 0;
  416. return security_ops->path_chmod(path, mode);
  417. }
  418. int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
  419. {
  420. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  421. return 0;
  422. return security_ops->path_chown(path, uid, gid);
  423. }
  424. int security_path_chroot(struct path *path)
  425. {
  426. return security_ops->path_chroot(path);
  427. }
  428. #endif
  429. int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
  430. {
  431. if (unlikely(IS_PRIVATE(dir)))
  432. return 0;
  433. return security_ops->inode_create(dir, dentry, mode);
  434. }
  435. EXPORT_SYMBOL_GPL(security_inode_create);
  436. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  437. struct dentry *new_dentry)
  438. {
  439. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  440. return 0;
  441. return security_ops->inode_link(old_dentry, dir, new_dentry);
  442. }
  443. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  444. {
  445. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  446. return 0;
  447. return security_ops->inode_unlink(dir, dentry);
  448. }
  449. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  450. const char *old_name)
  451. {
  452. if (unlikely(IS_PRIVATE(dir)))
  453. return 0;
  454. return security_ops->inode_symlink(dir, dentry, old_name);
  455. }
  456. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  457. {
  458. if (unlikely(IS_PRIVATE(dir)))
  459. return 0;
  460. return security_ops->inode_mkdir(dir, dentry, mode);
  461. }
  462. EXPORT_SYMBOL_GPL(security_inode_mkdir);
  463. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  464. {
  465. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  466. return 0;
  467. return security_ops->inode_rmdir(dir, dentry);
  468. }
  469. int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
  470. {
  471. if (unlikely(IS_PRIVATE(dir)))
  472. return 0;
  473. return security_ops->inode_mknod(dir, dentry, mode, dev);
  474. }
  475. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  476. struct inode *new_dir, struct dentry *new_dentry,
  477. unsigned int flags)
  478. {
  479. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  480. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  481. return 0;
  482. if (flags & RENAME_EXCHANGE) {
  483. int err = security_ops->inode_rename(new_dir, new_dentry,
  484. old_dir, old_dentry);
  485. if (err)
  486. return err;
  487. }
  488. return security_ops->inode_rename(old_dir, old_dentry,
  489. new_dir, new_dentry);
  490. }
  491. int security_inode_readlink(struct dentry *dentry)
  492. {
  493. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  494. return 0;
  495. return security_ops->inode_readlink(dentry);
  496. }
  497. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  498. {
  499. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  500. return 0;
  501. return security_ops->inode_follow_link(dentry, nd);
  502. }
  503. int security_inode_permission(struct inode *inode, int mask)
  504. {
  505. if (unlikely(IS_PRIVATE(inode)))
  506. return 0;
  507. return security_ops->inode_permission(inode, mask);
  508. }
  509. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  510. {
  511. int ret;
  512. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  513. return 0;
  514. ret = security_ops->inode_setattr(dentry, attr);
  515. if (ret)
  516. return ret;
  517. return evm_inode_setattr(dentry, attr);
  518. }
  519. EXPORT_SYMBOL_GPL(security_inode_setattr);
  520. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  521. {
  522. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  523. return 0;
  524. return security_ops->inode_getattr(mnt, dentry);
  525. }
  526. int security_inode_setxattr(struct dentry *dentry, const char *name,
  527. const void *value, size_t size, int flags)
  528. {
  529. int ret;
  530. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  531. return 0;
  532. ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
  533. if (ret)
  534. return ret;
  535. ret = ima_inode_setxattr(dentry, name, value, size);
  536. if (ret)
  537. return ret;
  538. return evm_inode_setxattr(dentry, name, value, size);
  539. }
  540. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  541. const void *value, size_t size, int flags)
  542. {
  543. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  544. return;
  545. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  546. evm_inode_post_setxattr(dentry, name, value, size);
  547. }
  548. int security_inode_getxattr(struct dentry *dentry, const char *name)
  549. {
  550. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  551. return 0;
  552. return security_ops->inode_getxattr(dentry, name);
  553. }
  554. int security_inode_listxattr(struct dentry *dentry)
  555. {
  556. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  557. return 0;
  558. return security_ops->inode_listxattr(dentry);
  559. }
  560. int security_inode_removexattr(struct dentry *dentry, const char *name)
  561. {
  562. int ret;
  563. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  564. return 0;
  565. ret = security_ops->inode_removexattr(dentry, name);
  566. if (ret)
  567. return ret;
  568. ret = ima_inode_removexattr(dentry, name);
  569. if (ret)
  570. return ret;
  571. return evm_inode_removexattr(dentry, name);
  572. }
  573. int security_inode_need_killpriv(struct dentry *dentry)
  574. {
  575. return security_ops->inode_need_killpriv(dentry);
  576. }
  577. int security_inode_killpriv(struct dentry *dentry)
  578. {
  579. return security_ops->inode_killpriv(dentry);
  580. }
  581. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  582. {
  583. if (unlikely(IS_PRIVATE(inode)))
  584. return -EOPNOTSUPP;
  585. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  586. }
  587. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  588. {
  589. if (unlikely(IS_PRIVATE(inode)))
  590. return -EOPNOTSUPP;
  591. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  592. }
  593. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  594. {
  595. if (unlikely(IS_PRIVATE(inode)))
  596. return 0;
  597. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  598. }
  599. EXPORT_SYMBOL(security_inode_listsecurity);
  600. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  601. {
  602. security_ops->inode_getsecid(inode, secid);
  603. }
  604. int security_file_permission(struct file *file, int mask)
  605. {
  606. int ret;
  607. ret = security_ops->file_permission(file, mask);
  608. if (ret)
  609. return ret;
  610. return fsnotify_perm(file, mask);
  611. }
  612. int security_file_alloc(struct file *file)
  613. {
  614. return security_ops->file_alloc_security(file);
  615. }
  616. void security_file_free(struct file *file)
  617. {
  618. security_ops->file_free_security(file);
  619. }
  620. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  621. {
  622. return security_ops->file_ioctl(file, cmd, arg);
  623. }
  624. static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
  625. {
  626. /*
  627. * Does we have PROT_READ and does the application expect
  628. * it to imply PROT_EXEC? If not, nothing to talk about...
  629. */
  630. if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
  631. return prot;
  632. if (!(current->personality & READ_IMPLIES_EXEC))
  633. return prot;
  634. /*
  635. * if that's an anonymous mapping, let it.
  636. */
  637. if (!file)
  638. return prot | PROT_EXEC;
  639. /*
  640. * ditto if it's not on noexec mount, except that on !MMU we need
  641. * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
  642. */
  643. if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
  644. #ifndef CONFIG_MMU
  645. unsigned long caps = 0;
  646. struct address_space *mapping = file->f_mapping;
  647. if (mapping && mapping->backing_dev_info)
  648. caps = mapping->backing_dev_info->capabilities;
  649. if (!(caps & BDI_CAP_EXEC_MAP))
  650. return prot;
  651. #endif
  652. return prot | PROT_EXEC;
  653. }
  654. /* anything on noexec mount won't get PROT_EXEC */
  655. return prot;
  656. }
  657. int security_mmap_file(struct file *file, unsigned long prot,
  658. unsigned long flags)
  659. {
  660. int ret;
  661. ret = security_ops->mmap_file(file, prot,
  662. mmap_prot(file, prot), flags);
  663. if (ret)
  664. return ret;
  665. return ima_file_mmap(file, prot);
  666. }
  667. int security_mmap_addr(unsigned long addr)
  668. {
  669. return security_ops->mmap_addr(addr);
  670. }
  671. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  672. unsigned long prot)
  673. {
  674. return security_ops->file_mprotect(vma, reqprot, prot);
  675. }
  676. int security_file_lock(struct file *file, unsigned int cmd)
  677. {
  678. return security_ops->file_lock(file, cmd);
  679. }
  680. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  681. {
  682. return security_ops->file_fcntl(file, cmd, arg);
  683. }
  684. void security_file_set_fowner(struct file *file)
  685. {
  686. security_ops->file_set_fowner(file);
  687. }
  688. int security_file_send_sigiotask(struct task_struct *tsk,
  689. struct fown_struct *fown, int sig)
  690. {
  691. return security_ops->file_send_sigiotask(tsk, fown, sig);
  692. }
  693. int security_file_receive(struct file *file)
  694. {
  695. return security_ops->file_receive(file);
  696. }
  697. int security_file_open(struct file *file, const struct cred *cred)
  698. {
  699. int ret;
  700. ret = security_ops->file_open(file, cred);
  701. if (ret)
  702. return ret;
  703. return fsnotify_perm(file, MAY_OPEN);
  704. }
  705. int security_task_create(unsigned long clone_flags)
  706. {
  707. return security_ops->task_create(clone_flags);
  708. }
  709. void security_task_free(struct task_struct *task)
  710. {
  711. #ifdef CONFIG_SECURITY_YAMA_STACKED
  712. yama_task_free(task);
  713. #endif
  714. security_ops->task_free(task);
  715. }
  716. int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
  717. {
  718. return security_ops->cred_alloc_blank(cred, gfp);
  719. }
  720. void security_cred_free(struct cred *cred)
  721. {
  722. security_ops->cred_free(cred);
  723. }
  724. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  725. {
  726. return security_ops->cred_prepare(new, old, gfp);
  727. }
  728. void security_transfer_creds(struct cred *new, const struct cred *old)
  729. {
  730. security_ops->cred_transfer(new, old);
  731. }
  732. int security_kernel_act_as(struct cred *new, u32 secid)
  733. {
  734. return security_ops->kernel_act_as(new, secid);
  735. }
  736. int security_kernel_create_files_as(struct cred *new, struct inode *inode)
  737. {
  738. return security_ops->kernel_create_files_as(new, inode);
  739. }
  740. int security_kernel_fw_from_file(struct file *file, char *buf, size_t size)
  741. {
  742. int ret;
  743. ret = security_ops->kernel_fw_from_file(file, buf, size);
  744. if (ret)
  745. return ret;
  746. return ima_fw_from_file(file, buf, size);
  747. }
  748. EXPORT_SYMBOL_GPL(security_kernel_fw_from_file);
  749. int security_kernel_module_request(char *kmod_name)
  750. {
  751. return security_ops->kernel_module_request(kmod_name);
  752. }
  753. int security_kernel_module_from_file(struct file *file)
  754. {
  755. int ret;
  756. ret = security_ops->kernel_module_from_file(file);
  757. if (ret)
  758. return ret;
  759. return ima_module_check(file);
  760. }
  761. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  762. int flags)
  763. {
  764. return security_ops->task_fix_setuid(new, old, flags);
  765. }
  766. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  767. {
  768. return security_ops->task_setpgid(p, pgid);
  769. }
  770. int security_task_getpgid(struct task_struct *p)
  771. {
  772. return security_ops->task_getpgid(p);
  773. }
  774. int security_task_getsid(struct task_struct *p)
  775. {
  776. return security_ops->task_getsid(p);
  777. }
  778. void security_task_getsecid(struct task_struct *p, u32 *secid)
  779. {
  780. security_ops->task_getsecid(p, secid);
  781. }
  782. EXPORT_SYMBOL(security_task_getsecid);
  783. int security_task_setnice(struct task_struct *p, int nice)
  784. {
  785. return security_ops->task_setnice(p, nice);
  786. }
  787. int security_task_setioprio(struct task_struct *p, int ioprio)
  788. {
  789. return security_ops->task_setioprio(p, ioprio);
  790. }
  791. int security_task_getioprio(struct task_struct *p)
  792. {
  793. return security_ops->task_getioprio(p);
  794. }
  795. int security_task_setrlimit(struct task_struct *p, unsigned int resource,
  796. struct rlimit *new_rlim)
  797. {
  798. return security_ops->task_setrlimit(p, resource, new_rlim);
  799. }
  800. int security_task_setscheduler(struct task_struct *p)
  801. {
  802. return security_ops->task_setscheduler(p);
  803. }
  804. int security_task_getscheduler(struct task_struct *p)
  805. {
  806. return security_ops->task_getscheduler(p);
  807. }
  808. int security_task_movememory(struct task_struct *p)
  809. {
  810. return security_ops->task_movememory(p);
  811. }
  812. int security_task_kill(struct task_struct *p, struct siginfo *info,
  813. int sig, u32 secid)
  814. {
  815. return security_ops->task_kill(p, info, sig, secid);
  816. }
  817. int security_task_wait(struct task_struct *p)
  818. {
  819. return security_ops->task_wait(p);
  820. }
  821. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  822. unsigned long arg4, unsigned long arg5)
  823. {
  824. #ifdef CONFIG_SECURITY_YAMA_STACKED
  825. int rc;
  826. rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
  827. if (rc != -ENOSYS)
  828. return rc;
  829. #endif
  830. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  831. }
  832. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  833. {
  834. security_ops->task_to_inode(p, inode);
  835. }
  836. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  837. {
  838. return security_ops->ipc_permission(ipcp, flag);
  839. }
  840. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  841. {
  842. security_ops->ipc_getsecid(ipcp, secid);
  843. }
  844. int security_msg_msg_alloc(struct msg_msg *msg)
  845. {
  846. return security_ops->msg_msg_alloc_security(msg);
  847. }
  848. void security_msg_msg_free(struct msg_msg *msg)
  849. {
  850. security_ops->msg_msg_free_security(msg);
  851. }
  852. int security_msg_queue_alloc(struct msg_queue *msq)
  853. {
  854. return security_ops->msg_queue_alloc_security(msq);
  855. }
  856. void security_msg_queue_free(struct msg_queue *msq)
  857. {
  858. security_ops->msg_queue_free_security(msq);
  859. }
  860. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  861. {
  862. return security_ops->msg_queue_associate(msq, msqflg);
  863. }
  864. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  865. {
  866. return security_ops->msg_queue_msgctl(msq, cmd);
  867. }
  868. int security_msg_queue_msgsnd(struct msg_queue *msq,
  869. struct msg_msg *msg, int msqflg)
  870. {
  871. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  872. }
  873. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  874. struct task_struct *target, long type, int mode)
  875. {
  876. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  877. }
  878. int security_shm_alloc(struct shmid_kernel *shp)
  879. {
  880. return security_ops->shm_alloc_security(shp);
  881. }
  882. void security_shm_free(struct shmid_kernel *shp)
  883. {
  884. security_ops->shm_free_security(shp);
  885. }
  886. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  887. {
  888. return security_ops->shm_associate(shp, shmflg);
  889. }
  890. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  891. {
  892. return security_ops->shm_shmctl(shp, cmd);
  893. }
  894. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  895. {
  896. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  897. }
  898. int security_sem_alloc(struct sem_array *sma)
  899. {
  900. return security_ops->sem_alloc_security(sma);
  901. }
  902. void security_sem_free(struct sem_array *sma)
  903. {
  904. security_ops->sem_free_security(sma);
  905. }
  906. int security_sem_associate(struct sem_array *sma, int semflg)
  907. {
  908. return security_ops->sem_associate(sma, semflg);
  909. }
  910. int security_sem_semctl(struct sem_array *sma, int cmd)
  911. {
  912. return security_ops->sem_semctl(sma, cmd);
  913. }
  914. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  915. unsigned nsops, int alter)
  916. {
  917. return security_ops->sem_semop(sma, sops, nsops, alter);
  918. }
  919. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  920. {
  921. if (unlikely(inode && IS_PRIVATE(inode)))
  922. return;
  923. security_ops->d_instantiate(dentry, inode);
  924. }
  925. EXPORT_SYMBOL(security_d_instantiate);
  926. int security_getprocattr(struct task_struct *p, char *name, char **value)
  927. {
  928. return security_ops->getprocattr(p, name, value);
  929. }
  930. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  931. {
  932. return security_ops->setprocattr(p, name, value, size);
  933. }
  934. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  935. {
  936. return security_ops->netlink_send(sk, skb);
  937. }
  938. int security_ismaclabel(const char *name)
  939. {
  940. return security_ops->ismaclabel(name);
  941. }
  942. EXPORT_SYMBOL(security_ismaclabel);
  943. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  944. {
  945. return security_ops->secid_to_secctx(secid, secdata, seclen);
  946. }
  947. EXPORT_SYMBOL(security_secid_to_secctx);
  948. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  949. {
  950. return security_ops->secctx_to_secid(secdata, seclen, secid);
  951. }
  952. EXPORT_SYMBOL(security_secctx_to_secid);
  953. void security_release_secctx(char *secdata, u32 seclen)
  954. {
  955. security_ops->release_secctx(secdata, seclen);
  956. }
  957. EXPORT_SYMBOL(security_release_secctx);
  958. int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
  959. {
  960. return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
  961. }
  962. EXPORT_SYMBOL(security_inode_notifysecctx);
  963. int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
  964. {
  965. return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
  966. }
  967. EXPORT_SYMBOL(security_inode_setsecctx);
  968. int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
  969. {
  970. return security_ops->inode_getsecctx(inode, ctx, ctxlen);
  971. }
  972. EXPORT_SYMBOL(security_inode_getsecctx);
  973. #ifdef CONFIG_SECURITY_NETWORK
  974. int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
  975. {
  976. return security_ops->unix_stream_connect(sock, other, newsk);
  977. }
  978. EXPORT_SYMBOL(security_unix_stream_connect);
  979. int security_unix_may_send(struct socket *sock, struct socket *other)
  980. {
  981. return security_ops->unix_may_send(sock, other);
  982. }
  983. EXPORT_SYMBOL(security_unix_may_send);
  984. int security_socket_create(int family, int type, int protocol, int kern)
  985. {
  986. return security_ops->socket_create(family, type, protocol, kern);
  987. }
  988. int security_socket_post_create(struct socket *sock, int family,
  989. int type, int protocol, int kern)
  990. {
  991. return security_ops->socket_post_create(sock, family, type,
  992. protocol, kern);
  993. }
  994. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  995. {
  996. return security_ops->socket_bind(sock, address, addrlen);
  997. }
  998. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  999. {
  1000. return security_ops->socket_connect(sock, address, addrlen);
  1001. }
  1002. int security_socket_listen(struct socket *sock, int backlog)
  1003. {
  1004. return security_ops->socket_listen(sock, backlog);
  1005. }
  1006. int security_socket_accept(struct socket *sock, struct socket *newsock)
  1007. {
  1008. return security_ops->socket_accept(sock, newsock);
  1009. }
  1010. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  1011. {
  1012. return security_ops->socket_sendmsg(sock, msg, size);
  1013. }
  1014. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  1015. int size, int flags)
  1016. {
  1017. return security_ops->socket_recvmsg(sock, msg, size, flags);
  1018. }
  1019. int security_socket_getsockname(struct socket *sock)
  1020. {
  1021. return security_ops->socket_getsockname(sock);
  1022. }
  1023. int security_socket_getpeername(struct socket *sock)
  1024. {
  1025. return security_ops->socket_getpeername(sock);
  1026. }
  1027. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  1028. {
  1029. return security_ops->socket_getsockopt(sock, level, optname);
  1030. }
  1031. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  1032. {
  1033. return security_ops->socket_setsockopt(sock, level, optname);
  1034. }
  1035. int security_socket_shutdown(struct socket *sock, int how)
  1036. {
  1037. return security_ops->socket_shutdown(sock, how);
  1038. }
  1039. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1040. {
  1041. return security_ops->socket_sock_rcv_skb(sk, skb);
  1042. }
  1043. EXPORT_SYMBOL(security_sock_rcv_skb);
  1044. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  1045. int __user *optlen, unsigned len)
  1046. {
  1047. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  1048. }
  1049. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  1050. {
  1051. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  1052. }
  1053. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  1054. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  1055. {
  1056. return security_ops->sk_alloc_security(sk, family, priority);
  1057. }
  1058. void security_sk_free(struct sock *sk)
  1059. {
  1060. security_ops->sk_free_security(sk);
  1061. }
  1062. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  1063. {
  1064. security_ops->sk_clone_security(sk, newsk);
  1065. }
  1066. EXPORT_SYMBOL(security_sk_clone);
  1067. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  1068. {
  1069. security_ops->sk_getsecid(sk, &fl->flowi_secid);
  1070. }
  1071. EXPORT_SYMBOL(security_sk_classify_flow);
  1072. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  1073. {
  1074. security_ops->req_classify_flow(req, fl);
  1075. }
  1076. EXPORT_SYMBOL(security_req_classify_flow);
  1077. void security_sock_graft(struct sock *sk, struct socket *parent)
  1078. {
  1079. security_ops->sock_graft(sk, parent);
  1080. }
  1081. EXPORT_SYMBOL(security_sock_graft);
  1082. int security_inet_conn_request(struct sock *sk,
  1083. struct sk_buff *skb, struct request_sock *req)
  1084. {
  1085. return security_ops->inet_conn_request(sk, skb, req);
  1086. }
  1087. EXPORT_SYMBOL(security_inet_conn_request);
  1088. void security_inet_csk_clone(struct sock *newsk,
  1089. const struct request_sock *req)
  1090. {
  1091. security_ops->inet_csk_clone(newsk, req);
  1092. }
  1093. void security_inet_conn_established(struct sock *sk,
  1094. struct sk_buff *skb)
  1095. {
  1096. security_ops->inet_conn_established(sk, skb);
  1097. }
  1098. int security_secmark_relabel_packet(u32 secid)
  1099. {
  1100. return security_ops->secmark_relabel_packet(secid);
  1101. }
  1102. EXPORT_SYMBOL(security_secmark_relabel_packet);
  1103. void security_secmark_refcount_inc(void)
  1104. {
  1105. security_ops->secmark_refcount_inc();
  1106. }
  1107. EXPORT_SYMBOL(security_secmark_refcount_inc);
  1108. void security_secmark_refcount_dec(void)
  1109. {
  1110. security_ops->secmark_refcount_dec();
  1111. }
  1112. EXPORT_SYMBOL(security_secmark_refcount_dec);
  1113. int security_tun_dev_alloc_security(void **security)
  1114. {
  1115. return security_ops->tun_dev_alloc_security(security);
  1116. }
  1117. EXPORT_SYMBOL(security_tun_dev_alloc_security);
  1118. void security_tun_dev_free_security(void *security)
  1119. {
  1120. security_ops->tun_dev_free_security(security);
  1121. }
  1122. EXPORT_SYMBOL(security_tun_dev_free_security);
  1123. int security_tun_dev_create(void)
  1124. {
  1125. return security_ops->tun_dev_create();
  1126. }
  1127. EXPORT_SYMBOL(security_tun_dev_create);
  1128. int security_tun_dev_attach_queue(void *security)
  1129. {
  1130. return security_ops->tun_dev_attach_queue(security);
  1131. }
  1132. EXPORT_SYMBOL(security_tun_dev_attach_queue);
  1133. int security_tun_dev_attach(struct sock *sk, void *security)
  1134. {
  1135. return security_ops->tun_dev_attach(sk, security);
  1136. }
  1137. EXPORT_SYMBOL(security_tun_dev_attach);
  1138. int security_tun_dev_open(void *security)
  1139. {
  1140. return security_ops->tun_dev_open(security);
  1141. }
  1142. EXPORT_SYMBOL(security_tun_dev_open);
  1143. void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
  1144. {
  1145. security_ops->skb_owned_by(skb, sk);
  1146. }
  1147. #endif /* CONFIG_SECURITY_NETWORK */
  1148. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  1149. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
  1150. struct xfrm_user_sec_ctx *sec_ctx,
  1151. gfp_t gfp)
  1152. {
  1153. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx, gfp);
  1154. }
  1155. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  1156. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  1157. struct xfrm_sec_ctx **new_ctxp)
  1158. {
  1159. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  1160. }
  1161. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  1162. {
  1163. security_ops->xfrm_policy_free_security(ctx);
  1164. }
  1165. EXPORT_SYMBOL(security_xfrm_policy_free);
  1166. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  1167. {
  1168. return security_ops->xfrm_policy_delete_security(ctx);
  1169. }
  1170. int security_xfrm_state_alloc(struct xfrm_state *x,
  1171. struct xfrm_user_sec_ctx *sec_ctx)
  1172. {
  1173. return security_ops->xfrm_state_alloc(x, sec_ctx);
  1174. }
  1175. EXPORT_SYMBOL(security_xfrm_state_alloc);
  1176. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  1177. struct xfrm_sec_ctx *polsec, u32 secid)
  1178. {
  1179. return security_ops->xfrm_state_alloc_acquire(x, polsec, secid);
  1180. }
  1181. int security_xfrm_state_delete(struct xfrm_state *x)
  1182. {
  1183. return security_ops->xfrm_state_delete_security(x);
  1184. }
  1185. EXPORT_SYMBOL(security_xfrm_state_delete);
  1186. void security_xfrm_state_free(struct xfrm_state *x)
  1187. {
  1188. security_ops->xfrm_state_free_security(x);
  1189. }
  1190. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  1191. {
  1192. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  1193. }
  1194. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  1195. struct xfrm_policy *xp,
  1196. const struct flowi *fl)
  1197. {
  1198. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  1199. }
  1200. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  1201. {
  1202. return security_ops->xfrm_decode_session(skb, secid, 1);
  1203. }
  1204. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  1205. {
  1206. int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
  1207. BUG_ON(rc);
  1208. }
  1209. EXPORT_SYMBOL(security_skb_classify_flow);
  1210. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  1211. #ifdef CONFIG_KEYS
  1212. int security_key_alloc(struct key *key, const struct cred *cred,
  1213. unsigned long flags)
  1214. {
  1215. return security_ops->key_alloc(key, cred, flags);
  1216. }
  1217. void security_key_free(struct key *key)
  1218. {
  1219. security_ops->key_free(key);
  1220. }
  1221. int security_key_permission(key_ref_t key_ref,
  1222. const struct cred *cred, unsigned perm)
  1223. {
  1224. return security_ops->key_permission(key_ref, cred, perm);
  1225. }
  1226. int security_key_getsecurity(struct key *key, char **_buffer)
  1227. {
  1228. return security_ops->key_getsecurity(key, _buffer);
  1229. }
  1230. #endif /* CONFIG_KEYS */
  1231. #ifdef CONFIG_AUDIT
  1232. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  1233. {
  1234. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  1235. }
  1236. int security_audit_rule_known(struct audit_krule *krule)
  1237. {
  1238. return security_ops->audit_rule_known(krule);
  1239. }
  1240. void security_audit_rule_free(void *lsmrule)
  1241. {
  1242. security_ops->audit_rule_free(lsmrule);
  1243. }
  1244. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  1245. struct audit_context *actx)
  1246. {
  1247. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  1248. }
  1249. #endif /* CONFIG_AUDIT */