| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042 |
- #ifndef _LINUX_WAIT_H
- #define _LINUX_WAIT_H
- /*
- * Linux wait queue related types and methods
- */
- #include <linux/list.h>
- #include <linux/stddef.h>
- #include <linux/spinlock.h>
- #include <asm/current.h>
- #include <uapi/linux/wait.h>
- typedef struct __wait_queue wait_queue_t;
- typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int flags, void *key);
- int default_wake_function(wait_queue_t *wait, unsigned mode, int flags, void *key);
- /* __wait_queue::flags */
- #define WQ_FLAG_EXCLUSIVE 0x01
- #define WQ_FLAG_WOKEN 0x02
- struct __wait_queue {
- unsigned int flags;
- void *private;
- wait_queue_func_t func;
- struct list_head task_list;
- };
- struct wait_bit_key {
- void *flags;
- int bit_nr;
- #define WAIT_ATOMIC_T_BIT_NR -1
- unsigned long timeout;
- };
- struct wait_bit_queue {
- struct wait_bit_key key;
- wait_queue_t wait;
- };
- struct __wait_queue_head {
- spinlock_t lock;
- struct list_head task_list;
- };
- typedef struct __wait_queue_head wait_queue_head_t;
- struct task_struct;
- /*
- * Macros for declaration and initialisaton of the datatypes
- */
- #define __WAITQUEUE_INITIALIZER(name, tsk) { \
- .private = tsk, \
- .func = default_wake_function, \
- .task_list = { NULL, NULL } }
- #define DECLARE_WAITQUEUE(name, tsk) \
- wait_queue_t name = __WAITQUEUE_INITIALIZER(name, tsk)
- #define __WAIT_QUEUE_HEAD_INITIALIZER(name) { \
- .lock = __SPIN_LOCK_UNLOCKED(name.lock), \
- .task_list = { &(name).task_list, &(name).task_list } }
- #define DECLARE_WAIT_QUEUE_HEAD(name) \
- wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)
- #define __WAIT_BIT_KEY_INITIALIZER(word, bit) \
- { .flags = word, .bit_nr = bit, }
- #define __WAIT_ATOMIC_T_KEY_INITIALIZER(p) \
- { .flags = p, .bit_nr = WAIT_ATOMIC_T_BIT_NR, }
- extern void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *);
- #define init_waitqueue_head(q) \
- do { \
- static struct lock_class_key __key; \
- \
- __init_waitqueue_head((q), #q, &__key); \
- } while (0)
- #ifdef CONFIG_LOCKDEP
- # define __WAIT_QUEUE_HEAD_INIT_ONSTACK(name) \
- ({ init_waitqueue_head(&name); name; })
- # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) \
- wait_queue_head_t name = __WAIT_QUEUE_HEAD_INIT_ONSTACK(name)
- #else
- # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) DECLARE_WAIT_QUEUE_HEAD(name)
- #endif
- static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p)
- {
- q->flags = 0;
- q->private = p;
- q->func = default_wake_function;
- }
- static inline void
- init_waitqueue_func_entry(wait_queue_t *q, wait_queue_func_t func)
- {
- q->flags = 0;
- q->private = NULL;
- q->func = func;
- }
- static inline int waitqueue_active(wait_queue_head_t *q)
- {
- return !list_empty(&q->task_list);
- }
- extern void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
- extern void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait);
- extern void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
- static inline void __add_wait_queue(wait_queue_head_t *head, wait_queue_t *new)
- {
- list_add(&new->task_list, &head->task_list);
- }
- /*
- * Used for wake-one threads:
- */
- static inline void
- __add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
- {
- wait->flags |= WQ_FLAG_EXCLUSIVE;
- __add_wait_queue(q, wait);
- }
- static inline void __add_wait_queue_tail(wait_queue_head_t *head,
- wait_queue_t *new)
- {
- list_add_tail(&new->task_list, &head->task_list);
- }
- static inline void
- __add_wait_queue_tail_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
- {
- wait->flags |= WQ_FLAG_EXCLUSIVE;
- __add_wait_queue_tail(q, wait);
- }
- static inline void
- __remove_wait_queue(wait_queue_head_t *head, wait_queue_t *old)
- {
- list_del(&old->task_list);
- }
- typedef int wait_bit_action_f(struct wait_bit_key *);
- void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
- void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key);
- void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
- void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr);
- void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr);
- void __wake_up_bit(wait_queue_head_t *, void *, int);
- int __wait_on_bit(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
- int __wait_on_bit_lock(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
- void wake_up_bit(void *, int);
- void wake_up_atomic_t(atomic_t *);
- int out_of_line_wait_on_bit(void *, int, wait_bit_action_f *, unsigned);
- int out_of_line_wait_on_bit_timeout(void *, int, wait_bit_action_f *, unsigned, unsigned long);
- int out_of_line_wait_on_bit_lock(void *, int, wait_bit_action_f *, unsigned);
- int out_of_line_wait_on_atomic_t(atomic_t *, int (*)(atomic_t *), unsigned);
- wait_queue_head_t *bit_waitqueue(void *, int);
- #define wake_up(x) __wake_up(x, TASK_NORMAL, 1, NULL)
- #define wake_up_nr(x, nr) __wake_up(x, TASK_NORMAL, nr, NULL)
- #define wake_up_all(x) __wake_up(x, TASK_NORMAL, 0, NULL)
- #define wake_up_locked(x) __wake_up_locked((x), TASK_NORMAL, 1)
- #define wake_up_all_locked(x) __wake_up_locked((x), TASK_NORMAL, 0)
- #define wake_up_interruptible(x) __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
- #define wake_up_interruptible_nr(x, nr) __wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
- #define wake_up_interruptible_all(x) __wake_up(x, TASK_INTERRUPTIBLE, 0, NULL)
- #define wake_up_interruptible_sync(x) __wake_up_sync((x), TASK_INTERRUPTIBLE, 1)
- /*
- * Wakeup macros to be used to report events to the targets.
- */
- #define wake_up_poll(x, m) \
- __wake_up(x, TASK_NORMAL, 1, (void *) (m))
- #define wake_up_locked_poll(x, m) \
- __wake_up_locked_key((x), TASK_NORMAL, (void *) (m))
- #define wake_up_interruptible_poll(x, m) \
- __wake_up(x, TASK_INTERRUPTIBLE, 1, (void *) (m))
- #define wake_up_interruptible_sync_poll(x, m) \
- __wake_up_sync_key((x), TASK_INTERRUPTIBLE, 1, (void *) (m))
- #define ___wait_cond_timeout(condition) \
- ({ \
- bool __cond = (condition); \
- if (__cond && !__ret) \
- __ret = 1; \
- __cond || !__ret; \
- })
- #define ___wait_is_interruptible(state) \
- (!__builtin_constant_p(state) || \
- state == TASK_INTERRUPTIBLE || state == TASK_KILLABLE) \
- /*
- * The below macro ___wait_event() has an explicit shadow of the __ret
- * variable when used from the wait_event_*() macros.
- *
- * This is so that both can use the ___wait_cond_timeout() construct
- * to wrap the condition.
- *
- * The type inconsistency of the wait_event_*() __ret variable is also
- * on purpose; we use long where we can return timeout values and int
- * otherwise.
- */
- #define ___wait_event(wq, condition, state, exclusive, ret, cmd) \
- ({ \
- __label__ __out; \
- wait_queue_t __wait; \
- long __ret = ret; /* explicit shadow */ \
- \
- INIT_LIST_HEAD(&__wait.task_list); \
- if (exclusive) \
- __wait.flags = WQ_FLAG_EXCLUSIVE; \
- else \
- __wait.flags = 0; \
- \
- for (;;) { \
- long __int = prepare_to_wait_event(&wq, &__wait, state);\
- \
- if (condition) \
- break; \
- \
- if (___wait_is_interruptible(state) && __int) { \
- __ret = __int; \
- if (exclusive) { \
- abort_exclusive_wait(&wq, &__wait, \
- state, NULL); \
- goto __out; \
- } \
- break; \
- } \
- \
- cmd; \
- } \
- finish_wait(&wq, &__wait); \
- __out: __ret; \
- })
- #define __wait_event(wq, condition) \
- (void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0, \
- schedule())
- /**
- * wait_event - sleep until a condition gets true
- * @wq: the waitqueue to wait on
- * @condition: a C expression for the event to wait for
- *
- * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
- * @condition evaluates to true. The @condition is checked each time
- * the waitqueue @wq is woken up.
- *
- * wake_up() has to be called after changing any variable that could
- * change the result of the wait condition.
- */
- #define wait_event(wq, condition) \
- do { \
- if (condition) \
- break; \
- __wait_event(wq, condition); \
- } while (0)
- #define __wait_event_timeout(wq, condition, timeout) \
- ___wait_event(wq, ___wait_cond_timeout(condition), \
- TASK_UNINTERRUPTIBLE, 0, timeout, \
- __ret = schedule_timeout(__ret))
- /**
- * wait_event_timeout - sleep until a condition gets true or a timeout elapses
- * @wq: the waitqueue to wait on
- * @condition: a C expression for the event to wait for
- * @timeout: timeout, in jiffies
- *
- * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
- * @condition evaluates to true. The @condition is checked each time
- * the waitqueue @wq is woken up.
- *
- * wake_up() has to be called after changing any variable that could
- * change the result of the wait condition.
- *
- * Returns:
- * 0 if the @condition evaluated to %false after the @timeout elapsed,
- * 1 if the @condition evaluated to %true after the @timeout elapsed,
- * or the remaining jiffies (at least 1) if the @condition evaluated
- * to %true before the @timeout elapsed.
- */
- #define wait_event_timeout(wq, condition, timeout) \
- ({ \
- long __ret = timeout; \
- if (!___wait_cond_timeout(condition)) \
- __ret = __wait_event_timeout(wq, condition, timeout); \
- __ret; \
- })
- #define __wait_event_cmd(wq, condition, cmd1, cmd2) \
- (void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0, \
- cmd1; schedule(); cmd2)
- /**
- * wait_event_cmd - sleep until a condition gets true
- * @wq: the waitqueue to wait on
- * @condition: a C expression for the event to wait for
- * @cmd1: the command will be executed before sleep
- * @cmd2: the command will be executed after sleep
- *
- * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
- * @condition evaluates to true. The @condition is checked each time
- * the waitqueue @wq is woken up.
- *
- * wake_up() has to be called after changing any variable that could
- * change the result of the wait condition.
- */
- #define wait_event_cmd(wq, condition, cmd1, cmd2) \
- do { \
- if (condition) \
- break; \
- __wait_event_cmd(wq, condition, cmd1, cmd2); \
- } while (0)
- #define __wait_event_interruptible(wq, condition) \
- ___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0, \
- schedule())
- /**
- * wait_event_interruptible - sleep until a condition gets true
- * @wq: the waitqueue to wait on
- * @condition: a C expression for the event to wait for
- *
- * The process is put to sleep (TASK_INTERRUPTIBLE) until the
- * @condition evaluates to true or a signal is received.
- * The @condition is checked each time the waitqueue @wq is woken up.
- *
- * wake_up() has to be called after changing any variable that could
- * change the result of the wait condition.
- *
- * The function will return -ERESTARTSYS if it was interrupted by a
- * signal and 0 if @condition evaluated to true.
- */
- #define wait_event_interruptible(wq, condition) \
- ({ \
- int __ret = 0; \
- if (!(condition)) \
- __ret = __wait_event_interruptible(wq, condition); \
- __ret; \
- })
- #define __wait_event_interruptible_timeout(wq, condition, timeout) \
- ___wait_event(wq, ___wait_cond_timeout(condition), \
- TASK_INTERRUPTIBLE, 0, timeout, \
- __ret = schedule_timeout(__ret))
- /**
- * wait_event_interruptible_timeout - sleep until a condition gets true or a timeout elapses
- * @wq: the waitqueue to wait on
- * @condition: a C expression for the event to wait for
- * @timeout: timeout, in jiffies
- *
- * The process is put to sleep (TASK_INTERRUPTIBLE) until the
- * @condition evaluates to true or a signal is received.
- * The @condition is checked each time the waitqueue @wq is woken up.
- *
- * wake_up() has to be called after changing any variable that could
- * change the result of the wait condition.
- *
- * Returns:
- * 0 if the @condition evaluated to %false after the @timeout elapsed,
- * 1 if the @condition evaluated to %true after the @timeout elapsed,
- * the remaining jiffies (at least 1) if the @condition evaluated
- * to %true before the @timeout elapsed, or -%ERESTARTSYS if it was
- * interrupted by a signal.
- */
- #define wait_event_interruptible_timeout(wq, condition, timeout) \
- ({ \
- long __ret = timeout; \
- if (!___wait_cond_timeout(condition)) \
- __ret = __wait_event_interruptible_timeout(wq, \
- condition, timeout); \
- __ret; \
- })
- #define __wait_event_hrtimeout(wq, condition, timeout, state) \
- ({ \
- int __ret = 0; \
- struct hrtimer_sleeper __t; \
- \
- hrtimer_init_on_stack(&__t.timer, CLOCK_MONOTONIC, \
- HRTIMER_MODE_REL); \
- hrtimer_init_sleeper(&__t, current); \
- if ((timeout).tv64 != KTIME_MAX) \
- hrtimer_start_range_ns(&__t.timer, timeout, \
- current->timer_slack_ns, \
- HRTIMER_MODE_REL); \
- \
- __ret = ___wait_event(wq, condition, state, 0, 0, \
- if (!__t.task) { \
- __ret = -ETIME; \
- break; \
- } \
- schedule()); \
- \
- hrtimer_cancel(&__t.timer); \
- destroy_hrtimer_on_stack(&__t.timer); \
- __ret; \
- })
- /**
- * wait_event_hrtimeout - sleep until a condition gets true or a timeout elapses
- * @wq: the waitqueue to wait on
- * @condition: a C expression for the event to wait for
- * @timeout: timeout, as a ktime_t
- *
- * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
- * @condition evaluates to true or a signal is received.
- * The @condition is checked each time the waitqueue @wq is woken up.
- *
- * wake_up() has to be called after changing any variable that could
- * change the result of the wait condition.
- *
- * The function returns 0 if @condition became true, or -ETIME if the timeout
- * elapsed.
- */
- #define wait_event_hrtimeout(wq, condition, timeout) \
- ({ \
- int __ret = 0; \
- if (!(condition)) \
- __ret = __wait_event_hrtimeout(wq, condition, timeout, \
- TASK_UNINTERRUPTIBLE); \
- __ret; \
- })
- /**
- * wait_event_interruptible_hrtimeout - sleep until a condition gets true or a timeout elapses
- * @wq: the waitqueue to wait on
- * @condition: a C expression for the event to wait for
- * @timeout: timeout, as a ktime_t
- *
- * The process is put to sleep (TASK_INTERRUPTIBLE) until the
- * @condition evaluates to true or a signal is received.
- * The @condition is checked each time the waitqueue @wq is woken up.
- *
- * wake_up() has to be called after changing any variable that could
- * change the result of the wait condition.
- *
- * The function returns 0 if @condition became true, -ERESTARTSYS if it was
- * interrupted by a signal, or -ETIME if the timeout elapsed.
- */
- #define wait_event_interruptible_hrtimeout(wq, condition, timeout) \
- ({ \
- long __ret = 0; \
- if (!(condition)) \
- __ret = __wait_event_hrtimeout(wq, condition, timeout, \
- TASK_INTERRUPTIBLE); \
- __ret; \
- })
- #define __wait_event_interruptible_exclusive(wq, condition) \
- ___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0, \
- schedule())
- #define wait_event_interruptible_exclusive(wq, condition) \
- ({ \
- int __ret = 0; \
- if (!(condition)) \
- __ret = __wait_event_interruptible_exclusive(wq, condition);\
- __ret; \
- })
- #define __wait_event_interruptible_locked(wq, condition, exclusive, irq) \
- ({ \
- int __ret = 0; \
- DEFINE_WAIT(__wait); \
- if (exclusive) \
- __wait.flags |= WQ_FLAG_EXCLUSIVE; \
- do { \
- if (likely(list_empty(&__wait.task_list))) \
- __add_wait_queue_tail(&(wq), &__wait); \
- set_current_state(TASK_INTERRUPTIBLE); \
- if (signal_pending(current)) { \
- __ret = -ERESTARTSYS; \
- break; \
- } \
- if (irq) \
- spin_unlock_irq(&(wq).lock); \
- else \
- spin_unlock(&(wq).lock); \
- schedule(); \
- if (irq) \
- spin_lock_irq(&(wq).lock); \
- else \
- spin_lock(&(wq).lock); \
- } while (!(condition)); \
- __remove_wait_queue(&(wq), &__wait); \
- __set_current_state(TASK_RUNNING); \
- __ret; \
- })
- /**
- * wait_event_interruptible_locked - sleep until a condition gets true
- * @wq: the waitqueue to wait on
- * @condition: a C expression for the event to wait for
- *
- * The process is put to sleep (TASK_INTERRUPTIBLE) until the
- * @condition evaluates to true or a signal is received.
- * The @condition is checked each time the waitqueue @wq is woken up.
- *
- * It must be called with wq.lock being held. This spinlock is
- * unlocked while sleeping but @condition testing is done while lock
- * is held and when this macro exits the lock is held.
- *
- * The lock is locked/unlocked using spin_lock()/spin_unlock()
- * functions which must match the way they are locked/unlocked outside
- * of this macro.
- *
- * wake_up_locked() has to be called after changing any variable that could
- * change the result of the wait condition.
- *
- * The function will return -ERESTARTSYS if it was interrupted by a
- * signal and 0 if @condition evaluated to true.
- */
- #define wait_event_interruptible_locked(wq, condition) \
- ((condition) \
- ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 0))
- /**
- * wait_event_interruptible_locked_irq - sleep until a condition gets true
- * @wq: the waitqueue to wait on
- * @condition: a C expression for the event to wait for
- *
- * The process is put to sleep (TASK_INTERRUPTIBLE) until the
- * @condition evaluates to true or a signal is received.
- * The @condition is checked each time the waitqueue @wq is woken up.
- *
- * It must be called with wq.lock being held. This spinlock is
- * unlocked while sleeping but @condition testing is done while lock
- * is held and when this macro exits the lock is held.
- *
- * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
- * functions which must match the way they are locked/unlocked outside
- * of this macro.
- *
- * wake_up_locked() has to be called after changing any variable that could
- * change the result of the wait condition.
- *
- * The function will return -ERESTARTSYS if it was interrupted by a
- * signal and 0 if @condition evaluated to true.
- */
- #define wait_event_interruptible_locked_irq(wq, condition) \
- ((condition) \
- ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 1))
- /**
- * wait_event_interruptible_exclusive_locked - sleep exclusively until a condition gets true
- * @wq: the waitqueue to wait on
- * @condition: a C expression for the event to wait for
- *
- * The process is put to sleep (TASK_INTERRUPTIBLE) until the
- * @condition evaluates to true or a signal is received.
- * The @condition is checked each time the waitqueue @wq is woken up.
- *
- * It must be called with wq.lock being held. This spinlock is
- * unlocked while sleeping but @condition testing is done while lock
- * is held and when this macro exits the lock is held.
- *
- * The lock is locked/unlocked using spin_lock()/spin_unlock()
- * functions which must match the way they are locked/unlocked outside
- * of this macro.
- *
- * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
- * set thus when other process waits process on the list if this
- * process is awaken further processes are not considered.
- *
- * wake_up_locked() has to be called after changing any variable that could
- * change the result of the wait condition.
- *
- * The function will return -ERESTARTSYS if it was interrupted by a
- * signal and 0 if @condition evaluated to true.
- */
- #define wait_event_interruptible_exclusive_locked(wq, condition) \
- ((condition) \
- ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 0))
- /**
- * wait_event_interruptible_exclusive_locked_irq - sleep until a condition gets true
- * @wq: the waitqueue to wait on
- * @condition: a C expression for the event to wait for
- *
- * The process is put to sleep (TASK_INTERRUPTIBLE) until the
- * @condition evaluates to true or a signal is received.
- * The @condition is checked each time the waitqueue @wq is woken up.
- *
- * It must be called with wq.lock being held. This spinlock is
- * unlocked while sleeping but @condition testing is done while lock
- * is held and when this macro exits the lock is held.
- *
- * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
- * functions which must match the way they are locked/unlocked outside
- * of this macro.
- *
- * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
- * set thus when other process waits process on the list if this
- * process is awaken further processes are not considered.
- *
- * wake_up_locked() has to be called after changing any variable that could
- * change the result of the wait condition.
- *
- * The function will return -ERESTARTSYS if it was interrupted by a
- * signal and 0 if @condition evaluated to true.
- */
- #define wait_event_interruptible_exclusive_locked_irq(wq, condition) \
- ((condition) \
- ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 1))
- #define __wait_event_killable(wq, condition) \
- ___wait_event(wq, condition, TASK_KILLABLE, 0, 0, schedule())
- /**
- * wait_event_killable - sleep until a condition gets true
- * @wq: the waitqueue to wait on
- * @condition: a C expression for the event to wait for
- *
- * The process is put to sleep (TASK_KILLABLE) until the
- * @condition evaluates to true or a signal is received.
- * The @condition is checked each time the waitqueue @wq is woken up.
- *
- * wake_up() has to be called after changing any variable that could
- * change the result of the wait condition.
- *
- * The function will return -ERESTARTSYS if it was interrupted by a
- * signal and 0 if @condition evaluated to true.
- */
- #define wait_event_killable(wq, condition) \
- ({ \
- int __ret = 0; \
- if (!(condition)) \
- __ret = __wait_event_killable(wq, condition); \
- __ret; \
- })
- #define __wait_event_lock_irq(wq, condition, lock, cmd) \
- (void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0, \
- spin_unlock_irq(&lock); \
- cmd; \
- schedule(); \
- spin_lock_irq(&lock))
- /**
- * wait_event_lock_irq_cmd - sleep until a condition gets true. The
- * condition is checked under the lock. This
- * is expected to be called with the lock
- * taken.
- * @wq: the waitqueue to wait on
- * @condition: a C expression for the event to wait for
- * @lock: a locked spinlock_t, which will be released before cmd
- * and schedule() and reacquired afterwards.
- * @cmd: a command which is invoked outside the critical section before
- * sleep
- *
- * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
- * @condition evaluates to true. The @condition is checked each time
- * the waitqueue @wq is woken up.
- *
- * wake_up() has to be called after changing any variable that could
- * change the result of the wait condition.
- *
- * This is supposed to be called while holding the lock. The lock is
- * dropped before invoking the cmd and going to sleep and is reacquired
- * afterwards.
- */
- #define wait_event_lock_irq_cmd(wq, condition, lock, cmd) \
- do { \
- if (condition) \
- break; \
- __wait_event_lock_irq(wq, condition, lock, cmd); \
- } while (0)
- /**
- * wait_event_lock_irq - sleep until a condition gets true. The
- * condition is checked under the lock. This
- * is expected to be called with the lock
- * taken.
- * @wq: the waitqueue to wait on
- * @condition: a C expression for the event to wait for
- * @lock: a locked spinlock_t, which will be released before schedule()
- * and reacquired afterwards.
- *
- * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
- * @condition evaluates to true. The @condition is checked each time
- * the waitqueue @wq is woken up.
- *
- * wake_up() has to be called after changing any variable that could
- * change the result of the wait condition.
- *
- * This is supposed to be called while holding the lock. The lock is
- * dropped before going to sleep and is reacquired afterwards.
- */
- #define wait_event_lock_irq(wq, condition, lock) \
- do { \
- if (condition) \
- break; \
- __wait_event_lock_irq(wq, condition, lock, ); \
- } while (0)
- #define __wait_event_interruptible_lock_irq(wq, condition, lock, cmd) \
- ___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0, \
- spin_unlock_irq(&lock); \
- cmd; \
- schedule(); \
- spin_lock_irq(&lock))
- /**
- * wait_event_interruptible_lock_irq_cmd - sleep until a condition gets true.
- * The condition is checked under the lock. This is expected to
- * be called with the lock taken.
- * @wq: the waitqueue to wait on
- * @condition: a C expression for the event to wait for
- * @lock: a locked spinlock_t, which will be released before cmd and
- * schedule() and reacquired afterwards.
- * @cmd: a command which is invoked outside the critical section before
- * sleep
- *
- * The process is put to sleep (TASK_INTERRUPTIBLE) until the
- * @condition evaluates to true or a signal is received. The @condition is
- * checked each time the waitqueue @wq is woken up.
- *
- * wake_up() has to be called after changing any variable that could
- * change the result of the wait condition.
- *
- * This is supposed to be called while holding the lock. The lock is
- * dropped before invoking the cmd and going to sleep and is reacquired
- * afterwards.
- *
- * The macro will return -ERESTARTSYS if it was interrupted by a signal
- * and 0 if @condition evaluated to true.
- */
- #define wait_event_interruptible_lock_irq_cmd(wq, condition, lock, cmd) \
- ({ \
- int __ret = 0; \
- if (!(condition)) \
- __ret = __wait_event_interruptible_lock_irq(wq, \
- condition, lock, cmd); \
- __ret; \
- })
- /**
- * wait_event_interruptible_lock_irq - sleep until a condition gets true.
- * The condition is checked under the lock. This is expected
- * to be called with the lock taken.
- * @wq: the waitqueue to wait on
- * @condition: a C expression for the event to wait for
- * @lock: a locked spinlock_t, which will be released before schedule()
- * and reacquired afterwards.
- *
- * The process is put to sleep (TASK_INTERRUPTIBLE) until the
- * @condition evaluates to true or signal is received. The @condition is
- * checked each time the waitqueue @wq is woken up.
- *
- * wake_up() has to be called after changing any variable that could
- * change the result of the wait condition.
- *
- * This is supposed to be called while holding the lock. The lock is
- * dropped before going to sleep and is reacquired afterwards.
- *
- * The macro will return -ERESTARTSYS if it was interrupted by a signal
- * and 0 if @condition evaluated to true.
- */
- #define wait_event_interruptible_lock_irq(wq, condition, lock) \
- ({ \
- int __ret = 0; \
- if (!(condition)) \
- __ret = __wait_event_interruptible_lock_irq(wq, \
- condition, lock,); \
- __ret; \
- })
- #define __wait_event_interruptible_lock_irq_timeout(wq, condition, \
- lock, timeout) \
- ___wait_event(wq, ___wait_cond_timeout(condition), \
- TASK_INTERRUPTIBLE, 0, timeout, \
- spin_unlock_irq(&lock); \
- __ret = schedule_timeout(__ret); \
- spin_lock_irq(&lock));
- /**
- * wait_event_interruptible_lock_irq_timeout - sleep until a condition gets
- * true or a timeout elapses. The condition is checked under
- * the lock. This is expected to be called with the lock taken.
- * @wq: the waitqueue to wait on
- * @condition: a C expression for the event to wait for
- * @lock: a locked spinlock_t, which will be released before schedule()
- * and reacquired afterwards.
- * @timeout: timeout, in jiffies
- *
- * The process is put to sleep (TASK_INTERRUPTIBLE) until the
- * @condition evaluates to true or signal is received. The @condition is
- * checked each time the waitqueue @wq is woken up.
- *
- * wake_up() has to be called after changing any variable that could
- * change the result of the wait condition.
- *
- * This is supposed to be called while holding the lock. The lock is
- * dropped before going to sleep and is reacquired afterwards.
- *
- * The function returns 0 if the @timeout elapsed, -ERESTARTSYS if it
- * was interrupted by a signal, and the remaining jiffies otherwise
- * if the condition evaluated to true before the timeout elapsed.
- */
- #define wait_event_interruptible_lock_irq_timeout(wq, condition, lock, \
- timeout) \
- ({ \
- long __ret = timeout; \
- if (!___wait_cond_timeout(condition)) \
- __ret = __wait_event_interruptible_lock_irq_timeout( \
- wq, condition, lock, timeout); \
- __ret; \
- })
- /*
- * Waitqueues which are removed from the waitqueue_head at wakeup time
- */
- void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state);
- void prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state);
- long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state);
- void finish_wait(wait_queue_head_t *q, wait_queue_t *wait);
- void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, unsigned int mode, void *key);
- long wait_woken(wait_queue_t *wait, unsigned mode, long timeout);
- int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
- int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
- int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
- #define DEFINE_WAIT_FUNC(name, function) \
- wait_queue_t name = { \
- .private = current, \
- .func = function, \
- .task_list = LIST_HEAD_INIT((name).task_list), \
- }
- #define DEFINE_WAIT(name) DEFINE_WAIT_FUNC(name, autoremove_wake_function)
- #define DEFINE_WAIT_BIT(name, word, bit) \
- struct wait_bit_queue name = { \
- .key = __WAIT_BIT_KEY_INITIALIZER(word, bit), \
- .wait = { \
- .private = current, \
- .func = wake_bit_function, \
- .task_list = \
- LIST_HEAD_INIT((name).wait.task_list), \
- }, \
- }
- #define init_wait(wait) \
- do { \
- (wait)->private = current; \
- (wait)->func = autoremove_wake_function; \
- INIT_LIST_HEAD(&(wait)->task_list); \
- (wait)->flags = 0; \
- } while (0)
- extern int bit_wait(struct wait_bit_key *);
- extern int bit_wait_io(struct wait_bit_key *);
- extern int bit_wait_timeout(struct wait_bit_key *);
- extern int bit_wait_io_timeout(struct wait_bit_key *);
- /**
- * wait_on_bit - wait for a bit to be cleared
- * @word: the word being waited on, a kernel virtual address
- * @bit: the bit of the word being waited on
- * @mode: the task state to sleep in
- *
- * There is a standard hashed waitqueue table for generic use. This
- * is the part of the hashtable's accessor API that waits on a bit.
- * For instance, if one were to have waiters on a bitflag, one would
- * call wait_on_bit() in threads waiting for the bit to clear.
- * One uses wait_on_bit() where one is waiting for the bit to clear,
- * but has no intention of setting it.
- * Returned value will be zero if the bit was cleared, or non-zero
- * if the process received a signal and the mode permitted wakeup
- * on that signal.
- */
- static inline int
- wait_on_bit(void *word, int bit, unsigned mode)
- {
- if (!test_bit(bit, word))
- return 0;
- return out_of_line_wait_on_bit(word, bit,
- bit_wait,
- mode);
- }
- /**
- * wait_on_bit_io - wait for a bit to be cleared
- * @word: the word being waited on, a kernel virtual address
- * @bit: the bit of the word being waited on
- * @mode: the task state to sleep in
- *
- * Use the standard hashed waitqueue table to wait for a bit
- * to be cleared. This is similar to wait_on_bit(), but calls
- * io_schedule() instead of schedule() for the actual waiting.
- *
- * Returned value will be zero if the bit was cleared, or non-zero
- * if the process received a signal and the mode permitted wakeup
- * on that signal.
- */
- static inline int
- wait_on_bit_io(void *word, int bit, unsigned mode)
- {
- if (!test_bit(bit, word))
- return 0;
- return out_of_line_wait_on_bit(word, bit,
- bit_wait_io,
- mode);
- }
- /**
- * wait_on_bit_action - wait for a bit to be cleared
- * @word: the word being waited on, a kernel virtual address
- * @bit: the bit of the word being waited on
- * @action: the function used to sleep, which may take special actions
- * @mode: the task state to sleep in
- *
- * Use the standard hashed waitqueue table to wait for a bit
- * to be cleared, and allow the waiting action to be specified.
- * This is like wait_on_bit() but allows fine control of how the waiting
- * is done.
- *
- * Returned value will be zero if the bit was cleared, or non-zero
- * if the process received a signal and the mode permitted wakeup
- * on that signal.
- */
- static inline int
- wait_on_bit_action(void *word, int bit, wait_bit_action_f *action, unsigned mode)
- {
- if (!test_bit(bit, word))
- return 0;
- return out_of_line_wait_on_bit(word, bit, action, mode);
- }
- /**
- * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it
- * @word: the word being waited on, a kernel virtual address
- * @bit: the bit of the word being waited on
- * @mode: the task state to sleep in
- *
- * There is a standard hashed waitqueue table for generic use. This
- * is the part of the hashtable's accessor API that waits on a bit
- * when one intends to set it, for instance, trying to lock bitflags.
- * For instance, if one were to have waiters trying to set bitflag
- * and waiting for it to clear before setting it, one would call
- * wait_on_bit() in threads waiting to be able to set the bit.
- * One uses wait_on_bit_lock() where one is waiting for the bit to
- * clear with the intention of setting it, and when done, clearing it.
- *
- * Returns zero if the bit was (eventually) found to be clear and was
- * set. Returns non-zero if a signal was delivered to the process and
- * the @mode allows that signal to wake the process.
- */
- static inline int
- wait_on_bit_lock(void *word, int bit, unsigned mode)
- {
- if (!test_and_set_bit(bit, word))
- return 0;
- return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode);
- }
- /**
- * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it
- * @word: the word being waited on, a kernel virtual address
- * @bit: the bit of the word being waited on
- * @mode: the task state to sleep in
- *
- * Use the standard hashed waitqueue table to wait for a bit
- * to be cleared and then to atomically set it. This is similar
- * to wait_on_bit(), but calls io_schedule() instead of schedule()
- * for the actual waiting.
- *
- * Returns zero if the bit was (eventually) found to be clear and was
- * set. Returns non-zero if a signal was delivered to the process and
- * the @mode allows that signal to wake the process.
- */
- static inline int
- wait_on_bit_lock_io(void *word, int bit, unsigned mode)
- {
- if (!test_and_set_bit(bit, word))
- return 0;
- return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode);
- }
- /**
- * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it
- * @word: the word being waited on, a kernel virtual address
- * @bit: the bit of the word being waited on
- * @action: the function used to sleep, which may take special actions
- * @mode: the task state to sleep in
- *
- * Use the standard hashed waitqueue table to wait for a bit
- * to be cleared and then to set it, and allow the waiting action
- * to be specified.
- * This is like wait_on_bit() but allows fine control of how the waiting
- * is done.
- *
- * Returns zero if the bit was (eventually) found to be clear and was
- * set. Returns non-zero if a signal was delivered to the process and
- * the @mode allows that signal to wake the process.
- */
- static inline int
- wait_on_bit_lock_action(void *word, int bit, wait_bit_action_f *action, unsigned mode)
- {
- if (!test_and_set_bit(bit, word))
- return 0;
- return out_of_line_wait_on_bit_lock(word, bit, action, mode);
- }
- /**
- * wait_on_atomic_t - Wait for an atomic_t to become 0
- * @val: The atomic value being waited on, a kernel virtual address
- * @action: the function used to sleep, which may take special actions
- * @mode: the task state to sleep in
- *
- * Wait for an atomic_t to become 0. We abuse the bit-wait waitqueue table for
- * the purpose of getting a waitqueue, but we set the key to a bit number
- * outside of the target 'word'.
- */
- static inline
- int wait_on_atomic_t(atomic_t *val, int (*action)(atomic_t *), unsigned mode)
- {
- if (atomic_read(val) == 0)
- return 0;
- return out_of_line_wait_on_atomic_t(val, action, mode);
- }
- #endif /* _LINUX_WAIT_H */
|