task_mmu.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720
  1. #include <linux/mm.h>
  2. #include <linux/vmacache.h>
  3. #include <linux/hugetlb.h>
  4. #include <linux/huge_mm.h>
  5. #include <linux/mount.h>
  6. #include <linux/seq_file.h>
  7. #include <linux/highmem.h>
  8. #include <linux/ptrace.h>
  9. #include <linux/slab.h>
  10. #include <linux/pagemap.h>
  11. #include <linux/mempolicy.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/swapops.h>
  15. #include <linux/mmu_notifier.h>
  16. #include <asm/elf.h>
  17. #include <asm/uaccess.h>
  18. #include <asm/tlbflush.h>
  19. #include "internal.h"
  20. void task_mem(struct seq_file *m, struct mm_struct *mm)
  21. {
  22. unsigned long data, text, lib, swap;
  23. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  24. /*
  25. * Note: to minimize their overhead, mm maintains hiwater_vm and
  26. * hiwater_rss only when about to *lower* total_vm or rss. Any
  27. * collector of these hiwater stats must therefore get total_vm
  28. * and rss too, which will usually be the higher. Barriers? not
  29. * worth the effort, such snapshots can always be inconsistent.
  30. */
  31. hiwater_vm = total_vm = mm->total_vm;
  32. if (hiwater_vm < mm->hiwater_vm)
  33. hiwater_vm = mm->hiwater_vm;
  34. hiwater_rss = total_rss = get_mm_rss(mm);
  35. if (hiwater_rss < mm->hiwater_rss)
  36. hiwater_rss = mm->hiwater_rss;
  37. data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  38. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  39. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  40. swap = get_mm_counter(mm, MM_SWAPENTS);
  41. seq_printf(m,
  42. "VmPeak:\t%8lu kB\n"
  43. "VmSize:\t%8lu kB\n"
  44. "VmLck:\t%8lu kB\n"
  45. "VmPin:\t%8lu kB\n"
  46. "VmHWM:\t%8lu kB\n"
  47. "VmRSS:\t%8lu kB\n"
  48. "VmData:\t%8lu kB\n"
  49. "VmStk:\t%8lu kB\n"
  50. "VmExe:\t%8lu kB\n"
  51. "VmLib:\t%8lu kB\n"
  52. "VmPTE:\t%8lu kB\n"
  53. "VmSwap:\t%8lu kB\n",
  54. hiwater_vm << (PAGE_SHIFT-10),
  55. total_vm << (PAGE_SHIFT-10),
  56. mm->locked_vm << (PAGE_SHIFT-10),
  57. mm->pinned_vm << (PAGE_SHIFT-10),
  58. hiwater_rss << (PAGE_SHIFT-10),
  59. total_rss << (PAGE_SHIFT-10),
  60. data << (PAGE_SHIFT-10),
  61. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  62. (PTRS_PER_PTE * sizeof(pte_t) *
  63. atomic_long_read(&mm->nr_ptes)) >> 10,
  64. swap << (PAGE_SHIFT-10));
  65. }
  66. unsigned long task_vsize(struct mm_struct *mm)
  67. {
  68. return PAGE_SIZE * mm->total_vm;
  69. }
  70. unsigned long task_statm(struct mm_struct *mm,
  71. unsigned long *shared, unsigned long *text,
  72. unsigned long *data, unsigned long *resident)
  73. {
  74. *shared = get_mm_counter(mm, MM_FILEPAGES);
  75. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  76. >> PAGE_SHIFT;
  77. *data = mm->total_vm - mm->shared_vm;
  78. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  79. return mm->total_vm;
  80. }
  81. #ifdef CONFIG_NUMA
  82. /*
  83. * Save get_task_policy() for show_numa_map().
  84. */
  85. static void hold_task_mempolicy(struct proc_maps_private *priv)
  86. {
  87. struct task_struct *task = priv->task;
  88. task_lock(task);
  89. priv->task_mempolicy = get_task_policy(task);
  90. mpol_get(priv->task_mempolicy);
  91. task_unlock(task);
  92. }
  93. static void release_task_mempolicy(struct proc_maps_private *priv)
  94. {
  95. mpol_put(priv->task_mempolicy);
  96. }
  97. #else
  98. static void hold_task_mempolicy(struct proc_maps_private *priv)
  99. {
  100. }
  101. static void release_task_mempolicy(struct proc_maps_private *priv)
  102. {
  103. }
  104. #endif
  105. static void seq_print_vma_name(struct seq_file *m, struct vm_area_struct *vma)
  106. {
  107. const char __user *name = vma_get_anon_name(vma);
  108. struct mm_struct *mm = vma->vm_mm;
  109. unsigned long page_start_vaddr;
  110. unsigned long page_offset;
  111. unsigned long num_pages;
  112. unsigned long max_len = NAME_MAX;
  113. int i;
  114. page_start_vaddr = (unsigned long)name & PAGE_MASK;
  115. page_offset = (unsigned long)name - page_start_vaddr;
  116. num_pages = DIV_ROUND_UP(page_offset + max_len, PAGE_SIZE);
  117. seq_puts(m, "[anon:");
  118. for (i = 0; i < num_pages; i++) {
  119. int len;
  120. int write_len;
  121. const char *kaddr;
  122. long pages_pinned;
  123. struct page *page;
  124. pages_pinned = get_user_pages(current, mm, page_start_vaddr,
  125. 1, 0, 0, &page, NULL);
  126. if (pages_pinned < 1) {
  127. seq_puts(m, "<fault>]");
  128. return;
  129. }
  130. kaddr = (const char *)kmap(page);
  131. len = min(max_len, PAGE_SIZE - page_offset);
  132. write_len = strnlen(kaddr + page_offset, len);
  133. seq_write(m, kaddr + page_offset, write_len);
  134. kunmap(page);
  135. put_page(page);
  136. /* if strnlen hit a null terminator then we're done */
  137. if (write_len != len)
  138. break;
  139. max_len -= len;
  140. page_offset = 0;
  141. page_start_vaddr += PAGE_SIZE;
  142. }
  143. seq_putc(m, ']');
  144. }
  145. static void vma_stop(struct proc_maps_private *priv)
  146. {
  147. struct mm_struct *mm = priv->mm;
  148. release_task_mempolicy(priv);
  149. up_read(&mm->mmap_sem);
  150. mmput(mm);
  151. }
  152. static struct vm_area_struct *
  153. m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
  154. {
  155. if (vma == priv->tail_vma)
  156. return NULL;
  157. return vma->vm_next ?: priv->tail_vma;
  158. }
  159. static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
  160. {
  161. if (m->count < m->size) /* vma is copied successfully */
  162. m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
  163. }
  164. static void *m_start(struct seq_file *m, loff_t *ppos)
  165. {
  166. struct proc_maps_private *priv = m->private;
  167. unsigned long last_addr = m->version;
  168. struct mm_struct *mm;
  169. struct vm_area_struct *vma;
  170. unsigned int pos = *ppos;
  171. /* See m_cache_vma(). Zero at the start or after lseek. */
  172. if (last_addr == -1UL)
  173. return NULL;
  174. priv->task = get_proc_task(priv->inode);
  175. if (!priv->task)
  176. return ERR_PTR(-ESRCH);
  177. mm = priv->mm;
  178. if (!mm || !atomic_inc_not_zero(&mm->mm_users))
  179. return NULL;
  180. down_read(&mm->mmap_sem);
  181. hold_task_mempolicy(priv);
  182. priv->tail_vma = get_gate_vma(mm);
  183. if (last_addr) {
  184. vma = find_vma(mm, last_addr);
  185. if (vma && (vma = m_next_vma(priv, vma)))
  186. return vma;
  187. }
  188. m->version = 0;
  189. if (pos < mm->map_count) {
  190. for (vma = mm->mmap; pos; pos--) {
  191. m->version = vma->vm_start;
  192. vma = vma->vm_next;
  193. }
  194. return vma;
  195. }
  196. /* we do not bother to update m->version in this case */
  197. if (pos == mm->map_count && priv->tail_vma)
  198. return priv->tail_vma;
  199. vma_stop(priv);
  200. return NULL;
  201. }
  202. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  203. {
  204. struct proc_maps_private *priv = m->private;
  205. struct vm_area_struct *next;
  206. (*pos)++;
  207. next = m_next_vma(priv, v);
  208. if (!next)
  209. vma_stop(priv);
  210. return next;
  211. }
  212. static void m_stop(struct seq_file *m, void *v)
  213. {
  214. struct proc_maps_private *priv = m->private;
  215. if (!IS_ERR_OR_NULL(v))
  216. vma_stop(priv);
  217. if (priv->task) {
  218. put_task_struct(priv->task);
  219. priv->task = NULL;
  220. }
  221. }
  222. static int proc_maps_open(struct inode *inode, struct file *file,
  223. const struct seq_operations *ops, int psize)
  224. {
  225. struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
  226. if (!priv)
  227. return -ENOMEM;
  228. priv->inode = inode;
  229. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  230. if (IS_ERR(priv->mm)) {
  231. int err = PTR_ERR(priv->mm);
  232. seq_release_private(inode, file);
  233. return err;
  234. }
  235. return 0;
  236. }
  237. static int proc_map_release(struct inode *inode, struct file *file)
  238. {
  239. struct seq_file *seq = file->private_data;
  240. struct proc_maps_private *priv = seq->private;
  241. if (priv->mm)
  242. mmdrop(priv->mm);
  243. return seq_release_private(inode, file);
  244. }
  245. static int do_maps_open(struct inode *inode, struct file *file,
  246. const struct seq_operations *ops)
  247. {
  248. return proc_maps_open(inode, file, ops,
  249. sizeof(struct proc_maps_private));
  250. }
  251. static pid_t pid_of_stack(struct proc_maps_private *priv,
  252. struct vm_area_struct *vma, bool is_pid)
  253. {
  254. struct inode *inode = priv->inode;
  255. struct task_struct *task;
  256. pid_t ret = 0;
  257. rcu_read_lock();
  258. task = pid_task(proc_pid(inode), PIDTYPE_PID);
  259. if (task) {
  260. task = task_of_stack(task, vma, is_pid);
  261. if (task)
  262. ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
  263. }
  264. rcu_read_unlock();
  265. return ret;
  266. }
  267. static void
  268. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  269. {
  270. struct mm_struct *mm = vma->vm_mm;
  271. struct file *file = vma->vm_file;
  272. struct proc_maps_private *priv = m->private;
  273. vm_flags_t flags = vma->vm_flags;
  274. unsigned long ino = 0;
  275. unsigned long long pgoff = 0;
  276. unsigned long start, end;
  277. dev_t dev = 0;
  278. const char *name = NULL;
  279. if (file) {
  280. struct inode *inode = file_inode(vma->vm_file);
  281. dev = inode->i_sb->s_dev;
  282. ino = inode->i_ino;
  283. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  284. }
  285. /* We don't show the stack guard page in /proc/maps */
  286. start = vma->vm_start;
  287. if (stack_guard_page_start(vma, start))
  288. start += PAGE_SIZE;
  289. end = vma->vm_end;
  290. if (stack_guard_page_end(vma, end))
  291. end -= PAGE_SIZE;
  292. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  293. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
  294. start,
  295. end,
  296. flags & VM_READ ? 'r' : '-',
  297. flags & VM_WRITE ? 'w' : '-',
  298. flags & VM_EXEC ? 'x' : '-',
  299. flags & VM_MAYSHARE ? 's' : 'p',
  300. pgoff,
  301. MAJOR(dev), MINOR(dev), ino);
  302. /*
  303. * Print the dentry name for named mappings, and a
  304. * special [heap] marker for the heap:
  305. */
  306. if (file) {
  307. seq_pad(m, ' ');
  308. seq_path(m, &file->f_path, "\n");
  309. goto done;
  310. }
  311. if (vma->vm_ops && vma->vm_ops->name) {
  312. name = vma->vm_ops->name(vma);
  313. if (name)
  314. goto done;
  315. }
  316. name = arch_vma_name(vma);
  317. if (!name) {
  318. pid_t tid;
  319. if (!mm) {
  320. name = "[vdso]";
  321. goto done;
  322. }
  323. if (vma->vm_start <= mm->brk &&
  324. vma->vm_end >= mm->start_brk) {
  325. name = "[heap]";
  326. goto done;
  327. }
  328. tid = pid_of_stack(priv, vma, is_pid);
  329. if (tid != 0) {
  330. /*
  331. * Thread stack in /proc/PID/task/TID/maps or
  332. * the main process stack.
  333. */
  334. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  335. vma->vm_end >= mm->start_stack)) {
  336. name = "[stack]";
  337. } else {
  338. /* Thread stack in /proc/PID/maps */
  339. seq_pad(m, ' ');
  340. seq_printf(m, "[stack:%d]", tid);
  341. }
  342. goto done;
  343. }
  344. if (vma_get_anon_name(vma)) {
  345. seq_pad(m, ' ');
  346. seq_print_vma_name(m, vma);
  347. }
  348. }
  349. done:
  350. if (name) {
  351. seq_pad(m, ' ');
  352. seq_puts(m, name);
  353. }
  354. seq_putc(m, '\n');
  355. }
  356. static int show_map(struct seq_file *m, void *v, int is_pid)
  357. {
  358. show_map_vma(m, v, is_pid);
  359. m_cache_vma(m, v);
  360. return 0;
  361. }
  362. static int show_pid_map(struct seq_file *m, void *v)
  363. {
  364. return show_map(m, v, 1);
  365. }
  366. static int show_tid_map(struct seq_file *m, void *v)
  367. {
  368. return show_map(m, v, 0);
  369. }
  370. static const struct seq_operations proc_pid_maps_op = {
  371. .start = m_start,
  372. .next = m_next,
  373. .stop = m_stop,
  374. .show = show_pid_map
  375. };
  376. static const struct seq_operations proc_tid_maps_op = {
  377. .start = m_start,
  378. .next = m_next,
  379. .stop = m_stop,
  380. .show = show_tid_map
  381. };
  382. static int pid_maps_open(struct inode *inode, struct file *file)
  383. {
  384. return do_maps_open(inode, file, &proc_pid_maps_op);
  385. }
  386. static int tid_maps_open(struct inode *inode, struct file *file)
  387. {
  388. return do_maps_open(inode, file, &proc_tid_maps_op);
  389. }
  390. const struct file_operations proc_pid_maps_operations = {
  391. .open = pid_maps_open,
  392. .read = seq_read,
  393. .llseek = seq_lseek,
  394. .release = proc_map_release,
  395. };
  396. const struct file_operations proc_tid_maps_operations = {
  397. .open = tid_maps_open,
  398. .read = seq_read,
  399. .llseek = seq_lseek,
  400. .release = proc_map_release,
  401. };
  402. /*
  403. * Proportional Set Size(PSS): my share of RSS.
  404. *
  405. * PSS of a process is the count of pages it has in memory, where each
  406. * page is divided by the number of processes sharing it. So if a
  407. * process has 1000 pages all to itself, and 1000 shared with one other
  408. * process, its PSS will be 1500.
  409. *
  410. * To keep (accumulated) division errors low, we adopt a 64bit
  411. * fixed-point pss counter to minimize division errors. So (pss >>
  412. * PSS_SHIFT) would be the real byte count.
  413. *
  414. * A shift of 12 before division means (assuming 4K page size):
  415. * - 1M 3-user-pages add up to 8KB errors;
  416. * - supports mapcount up to 2^24, or 16M;
  417. * - supports PSS up to 2^52 bytes, or 4PB.
  418. */
  419. #define PSS_SHIFT 12
  420. #ifdef CONFIG_PROC_PAGE_MONITOR
  421. struct mem_size_stats {
  422. struct vm_area_struct *vma;
  423. unsigned long resident;
  424. unsigned long shared_clean;
  425. unsigned long shared_dirty;
  426. unsigned long private_clean;
  427. unsigned long private_dirty;
  428. unsigned long referenced;
  429. unsigned long anonymous;
  430. unsigned long anonymous_thp;
  431. unsigned long swap;
  432. unsigned long nonlinear;
  433. u64 pss;
  434. #ifdef CONFIG_SWAP
  435. u64 pswap;
  436. #endif
  437. #ifdef CONFIG_ZNDSWAP
  438. u64 pswap_zndswap;
  439. #endif
  440. };
  441. #ifdef CONFIG_SWAP
  442. static inline unsigned char swap_count(unsigned char ent)
  443. {
  444. return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
  445. }
  446. #endif
  447. static void smaps_pte_entry(pte_t ptent, unsigned long addr,
  448. unsigned long ptent_size, struct mm_walk *walk)
  449. {
  450. struct mem_size_stats *mss = walk->private;
  451. struct vm_area_struct *vma = mss->vma;
  452. pgoff_t pgoff = linear_page_index(vma, addr);
  453. struct page *page = NULL;
  454. int mapcount;
  455. if (pte_present(ptent)) {
  456. page = vm_normal_page(vma, addr, ptent);
  457. } else if (is_swap_pte(ptent)) {
  458. swp_entry_t swpent = pte_to_swp_entry(ptent);
  459. /* M for pswap interface */
  460. if (!non_swap_entry(swpent)) {
  461. #ifdef CONFIG_SWAP
  462. swp_entry_t entry;
  463. struct swap_info_struct *p;
  464. #endif /* CONFIG_SWAP*/
  465. mss->swap += ptent_size;
  466. #ifdef CONFIG_SWAP
  467. entry = pte_to_swp_entry(ptent);
  468. if (non_swap_entry(entry))
  469. return;
  470. p = swap_info_get(entry);
  471. if (p) {
  472. int swapcount = swap_count(p->swap_map[swp_offset(entry)]);
  473. if (swapcount == 0)
  474. swapcount = 1;
  475. #ifdef CONFIG_ZNDSWAP
  476. /* It indicates 2ndswap ONLY */
  477. if (swp_type(entry) == 1UL)
  478. mss->pswap_zndswap += (ptent_size << PSS_SHIFT) / swapcount;
  479. else
  480. mss->pswap += (ptent_size << PSS_SHIFT) / swapcount;
  481. #else
  482. mss->pswap += (ptent_size << PSS_SHIFT) / swapcount;
  483. #endif
  484. swap_info_unlock(p);
  485. }
  486. #endif /* CONFIG_SWAP*/
  487. } else if (is_migration_entry(swpent))
  488. page = migration_entry_to_page(swpent);
  489. } else if (pte_file(ptent)) {
  490. if (pte_to_pgoff(ptent) != pgoff)
  491. mss->nonlinear += ptent_size;
  492. }
  493. if (!page)
  494. return;
  495. if (PageAnon(page))
  496. mss->anonymous += ptent_size;
  497. if (page->index != pgoff)
  498. mss->nonlinear += ptent_size;
  499. mss->resident += ptent_size;
  500. /* Accumulate the size in pages that have been accessed. */
  501. if (pte_young(ptent) || PageReferenced(page))
  502. mss->referenced += ptent_size;
  503. mapcount = page_mapcount(page);
  504. if (mapcount >= 2) {
  505. if (pte_dirty(ptent) || PageDirty(page))
  506. mss->shared_dirty += ptent_size;
  507. else
  508. mss->shared_clean += ptent_size;
  509. mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
  510. } else {
  511. if (pte_dirty(ptent) || PageDirty(page))
  512. mss->private_dirty += ptent_size;
  513. else
  514. mss->private_clean += ptent_size;
  515. mss->pss += (ptent_size << PSS_SHIFT);
  516. }
  517. }
  518. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  519. struct mm_walk *walk)
  520. {
  521. struct mem_size_stats *mss = walk->private;
  522. struct vm_area_struct *vma = mss->vma;
  523. pte_t *pte;
  524. spinlock_t *ptl;
  525. if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  526. smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
  527. spin_unlock(ptl);
  528. mss->anonymous_thp += HPAGE_PMD_SIZE;
  529. return 0;
  530. }
  531. if (pmd_trans_unstable(pmd))
  532. return 0;
  533. /*
  534. * The mmap_sem held all the way back in m_start() is what
  535. * keeps khugepaged out of here and from collapsing things
  536. * in here.
  537. */
  538. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  539. for (; addr != end; pte++, addr += PAGE_SIZE)
  540. smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
  541. pte_unmap_unlock(pte - 1, ptl);
  542. cond_resched();
  543. return 0;
  544. }
  545. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  546. {
  547. /*
  548. * Don't forget to update Documentation/ on changes.
  549. */
  550. static const char mnemonics[BITS_PER_LONG][2] = {
  551. /*
  552. * In case if we meet a flag we don't know about.
  553. */
  554. [0 ... (BITS_PER_LONG-1)] = "??",
  555. [ilog2(VM_READ)] = "rd",
  556. [ilog2(VM_WRITE)] = "wr",
  557. [ilog2(VM_EXEC)] = "ex",
  558. [ilog2(VM_SHARED)] = "sh",
  559. [ilog2(VM_MAYREAD)] = "mr",
  560. [ilog2(VM_MAYWRITE)] = "mw",
  561. [ilog2(VM_MAYEXEC)] = "me",
  562. [ilog2(VM_MAYSHARE)] = "ms",
  563. [ilog2(VM_GROWSDOWN)] = "gd",
  564. [ilog2(VM_PFNMAP)] = "pf",
  565. [ilog2(VM_DENYWRITE)] = "dw",
  566. [ilog2(VM_LOCKED)] = "lo",
  567. [ilog2(VM_IO)] = "io",
  568. [ilog2(VM_SEQ_READ)] = "sr",
  569. [ilog2(VM_RAND_READ)] = "rr",
  570. [ilog2(VM_DONTCOPY)] = "dc",
  571. [ilog2(VM_DONTEXPAND)] = "de",
  572. [ilog2(VM_ACCOUNT)] = "ac",
  573. [ilog2(VM_NORESERVE)] = "nr",
  574. [ilog2(VM_HUGETLB)] = "ht",
  575. [ilog2(VM_NONLINEAR)] = "nl",
  576. [ilog2(VM_ARCH_1)] = "ar",
  577. [ilog2(VM_DONTDUMP)] = "dd",
  578. #ifdef CONFIG_MEM_SOFT_DIRTY
  579. [ilog2(VM_SOFTDIRTY)] = "sd",
  580. #endif
  581. [ilog2(VM_MIXEDMAP)] = "mm",
  582. [ilog2(VM_HUGEPAGE)] = "hg",
  583. [ilog2(VM_NOHUGEPAGE)] = "nh",
  584. [ilog2(VM_MERGEABLE)] = "mg",
  585. };
  586. size_t i;
  587. seq_puts(m, "VmFlags: ");
  588. for (i = 0; i < BITS_PER_LONG; i++) {
  589. if (vma->vm_flags & (1UL << i)) {
  590. seq_printf(m, "%c%c ",
  591. mnemonics[i][0], mnemonics[i][1]);
  592. }
  593. }
  594. seq_putc(m, '\n');
  595. }
  596. static int show_smap(struct seq_file *m, void *v, int is_pid)
  597. {
  598. struct vm_area_struct *vma = v;
  599. struct mem_size_stats mss;
  600. struct mm_walk smaps_walk = {
  601. .pmd_entry = smaps_pte_range,
  602. .mm = vma->vm_mm,
  603. .private = &mss,
  604. };
  605. memset(&mss, 0, sizeof mss);
  606. mss.vma = vma;
  607. /* mmap_sem is held in m_start */
  608. if (vma->vm_mm && !is_vm_hugetlb_page(vma))
  609. walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
  610. show_map_vma(m, vma, is_pid);
  611. if (vma_get_anon_name(vma)) {
  612. seq_puts(m, "Name: ");
  613. seq_print_vma_name(m, vma);
  614. seq_putc(m, '\n');
  615. }
  616. seq_printf(m,
  617. "Size: %8lu kB\n"
  618. "Rss: %8lu kB\n"
  619. "Pss: %8lu kB\n"
  620. "Shared_Clean: %8lu kB\n"
  621. "Shared_Dirty: %8lu kB\n"
  622. "Private_Clean: %8lu kB\n"
  623. "Private_Dirty: %8lu kB\n"
  624. "Referenced: %8lu kB\n"
  625. "Anonymous: %8lu kB\n"
  626. "AnonHugePages: %8lu kB\n"
  627. "Swap: %8lu kB\n"
  628. #ifdef CONFIG_SWAP
  629. "PSwap: %8lu kB\n"
  630. #endif
  631. #ifdef CONFIG_ZNDSWAP
  632. "PSwap_zndswap: %8lu kB\n"
  633. #endif
  634. "KernelPageSize: %8lu kB\n"
  635. "MMUPageSize: %8lu kB\n"
  636. "Locked: %8lu kB\n",
  637. (vma->vm_end - vma->vm_start) >> 10,
  638. mss.resident >> 10,
  639. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  640. mss.shared_clean >> 10,
  641. mss.shared_dirty >> 10,
  642. mss.private_clean >> 10,
  643. mss.private_dirty >> 10,
  644. mss.referenced >> 10,
  645. mss.anonymous >> 10,
  646. mss.anonymous_thp >> 10,
  647. mss.swap >> 10,
  648. #ifdef CONFIG_SWAP
  649. (unsigned long)(mss.pswap >> (10 + PSS_SHIFT)),
  650. #endif
  651. #ifdef CONFIG_ZNDSWAP
  652. (unsigned long)(mss.pswap_zndswap >> (10 + PSS_SHIFT)),
  653. #endif
  654. vma_kernel_pagesize(vma) >> 10,
  655. vma_mmu_pagesize(vma) >> 10,
  656. (vma->vm_flags & VM_LOCKED) ?
  657. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  658. if (vma->vm_flags & VM_NONLINEAR)
  659. seq_printf(m, "Nonlinear: %8lu kB\n",
  660. mss.nonlinear >> 10);
  661. show_smap_vma_flags(m, vma);
  662. m_cache_vma(m, vma);
  663. return 0;
  664. }
  665. static int show_pid_smap(struct seq_file *m, void *v)
  666. {
  667. return show_smap(m, v, 1);
  668. }
  669. static int show_tid_smap(struct seq_file *m, void *v)
  670. {
  671. return show_smap(m, v, 0);
  672. }
  673. static const struct seq_operations proc_pid_smaps_op = {
  674. .start = m_start,
  675. .next = m_next,
  676. .stop = m_stop,
  677. .show = show_pid_smap
  678. };
  679. static const struct seq_operations proc_tid_smaps_op = {
  680. .start = m_start,
  681. .next = m_next,
  682. .stop = m_stop,
  683. .show = show_tid_smap
  684. };
  685. static int pid_smaps_open(struct inode *inode, struct file *file)
  686. {
  687. return do_maps_open(inode, file, &proc_pid_smaps_op);
  688. }
  689. static int tid_smaps_open(struct inode *inode, struct file *file)
  690. {
  691. return do_maps_open(inode, file, &proc_tid_smaps_op);
  692. }
  693. const struct file_operations proc_pid_smaps_operations = {
  694. .open = pid_smaps_open,
  695. .read = seq_read,
  696. .llseek = seq_lseek,
  697. .release = proc_map_release,
  698. };
  699. const struct file_operations proc_tid_smaps_operations = {
  700. .open = tid_smaps_open,
  701. .read = seq_read,
  702. .llseek = seq_lseek,
  703. .release = proc_map_release,
  704. };
  705. /*
  706. * We do not want to have constant page-shift bits sitting in
  707. * pagemap entries and are about to reuse them some time soon.
  708. *
  709. * Here's the "migration strategy":
  710. * 1. when the system boots these bits remain what they are,
  711. * but a warning about future change is printed in log;
  712. * 2. once anyone clears soft-dirty bits via clear_refs file,
  713. * these flag is set to denote, that user is aware of the
  714. * new API and those page-shift bits change their meaning.
  715. * The respective warning is printed in dmesg;
  716. * 3. In a couple of releases we will remove all the mentions
  717. * of page-shift in pagemap entries.
  718. */
  719. static bool soft_dirty_cleared __read_mostly;
  720. enum clear_refs_types {
  721. CLEAR_REFS_ALL = 1,
  722. CLEAR_REFS_ANON,
  723. CLEAR_REFS_MAPPED,
  724. CLEAR_REFS_SOFT_DIRTY,
  725. CLEAR_REFS_MM_HIWATER_RSS,
  726. CLEAR_REFS_LAST,
  727. };
  728. struct clear_refs_private {
  729. struct vm_area_struct *vma;
  730. enum clear_refs_types type;
  731. };
  732. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  733. unsigned long addr, pte_t *pte)
  734. {
  735. #ifdef CONFIG_MEM_SOFT_DIRTY
  736. /*
  737. * The soft-dirty tracker uses #PF-s to catch writes
  738. * to pages, so write-protect the pte as well. See the
  739. * Documentation/vm/soft-dirty.txt for full description
  740. * of how soft-dirty works.
  741. */
  742. pte_t ptent = *pte;
  743. if (pte_present(ptent)) {
  744. ptent = pte_wrprotect(ptent);
  745. ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
  746. } else if (is_swap_pte(ptent)) {
  747. ptent = pte_swp_clear_soft_dirty(ptent);
  748. } else if (pte_file(ptent)) {
  749. ptent = pte_file_clear_soft_dirty(ptent);
  750. }
  751. set_pte_at(vma->vm_mm, addr, pte, ptent);
  752. #endif
  753. }
  754. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  755. unsigned long end, struct mm_walk *walk)
  756. {
  757. struct clear_refs_private *cp = walk->private;
  758. struct vm_area_struct *vma = cp->vma;
  759. pte_t *pte, ptent;
  760. spinlock_t *ptl;
  761. struct page *page;
  762. split_huge_page_pmd(vma, addr, pmd);
  763. if (pmd_trans_unstable(pmd))
  764. return 0;
  765. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  766. for (; addr != end; pte++, addr += PAGE_SIZE) {
  767. ptent = *pte;
  768. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  769. clear_soft_dirty(vma, addr, pte);
  770. continue;
  771. }
  772. if (!pte_present(ptent))
  773. continue;
  774. page = vm_normal_page(vma, addr, ptent);
  775. if (!page)
  776. continue;
  777. /* Clear accessed and referenced bits. */
  778. ptep_test_and_clear_young(vma, addr, pte);
  779. ClearPageReferenced(page);
  780. }
  781. pte_unmap_unlock(pte - 1, ptl);
  782. cond_resched();
  783. return 0;
  784. }
  785. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  786. size_t count, loff_t *ppos)
  787. {
  788. struct task_struct *task;
  789. char buffer[PROC_NUMBUF];
  790. struct mm_struct *mm;
  791. struct vm_area_struct *vma;
  792. enum clear_refs_types type;
  793. int itype;
  794. int rv;
  795. memset(buffer, 0, sizeof(buffer));
  796. if (count > sizeof(buffer) - 1)
  797. count = sizeof(buffer) - 1;
  798. if (copy_from_user(buffer, buf, count))
  799. return -EFAULT;
  800. rv = kstrtoint(strstrip(buffer), 10, &itype);
  801. if (rv < 0)
  802. return rv;
  803. type = (enum clear_refs_types)itype;
  804. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  805. return -EINVAL;
  806. if (type == CLEAR_REFS_SOFT_DIRTY) {
  807. soft_dirty_cleared = true;
  808. pr_warn_once("The pagemap bits 55-60 has changed their meaning!"
  809. " See the linux/Documentation/vm/pagemap.txt for "
  810. "details.\n");
  811. }
  812. task = get_proc_task(file_inode(file));
  813. if (!task)
  814. return -ESRCH;
  815. mm = get_task_mm(task);
  816. if (mm) {
  817. struct clear_refs_private cp = {
  818. .type = type,
  819. };
  820. struct mm_walk clear_refs_walk = {
  821. .pmd_entry = clear_refs_pte_range,
  822. .mm = mm,
  823. .private = &cp,
  824. };
  825. if (type == CLEAR_REFS_MM_HIWATER_RSS) {
  826. /*
  827. * Writing 5 to /proc/pid/clear_refs resets the peak
  828. * resident set size to this mm's current rss value.
  829. */
  830. down_write(&mm->mmap_sem);
  831. reset_mm_hiwater_rss(mm);
  832. up_write(&mm->mmap_sem);
  833. goto out_mm;
  834. }
  835. down_read(&mm->mmap_sem);
  836. if (type == CLEAR_REFS_SOFT_DIRTY) {
  837. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  838. if (!(vma->vm_flags & VM_SOFTDIRTY))
  839. continue;
  840. up_read(&mm->mmap_sem);
  841. down_write(&mm->mmap_sem);
  842. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  843. vma->vm_flags &= ~VM_SOFTDIRTY;
  844. vma_set_page_prot(vma);
  845. }
  846. downgrade_write(&mm->mmap_sem);
  847. break;
  848. }
  849. mmu_notifier_invalidate_range_start(mm, 0, -1);
  850. }
  851. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  852. cp.vma = vma;
  853. if (is_vm_hugetlb_page(vma))
  854. continue;
  855. /*
  856. * Writing 1 to /proc/pid/clear_refs affects all pages.
  857. *
  858. * Writing 2 to /proc/pid/clear_refs only affects
  859. * Anonymous pages.
  860. *
  861. * Writing 3 to /proc/pid/clear_refs only affects file
  862. * mapped pages.
  863. *
  864. * Writing 4 to /proc/pid/clear_refs affects all pages.
  865. */
  866. if (type == CLEAR_REFS_ANON && vma->vm_file)
  867. continue;
  868. if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
  869. continue;
  870. walk_page_range(vma->vm_start, vma->vm_end,
  871. &clear_refs_walk);
  872. }
  873. if (type == CLEAR_REFS_SOFT_DIRTY)
  874. mmu_notifier_invalidate_range_end(mm, 0, -1);
  875. flush_tlb_mm(mm);
  876. up_read(&mm->mmap_sem);
  877. out_mm:
  878. mmput(mm);
  879. }
  880. put_task_struct(task);
  881. return count;
  882. }
  883. const struct file_operations proc_clear_refs_operations = {
  884. .write = clear_refs_write,
  885. .llseek = noop_llseek,
  886. };
  887. typedef struct {
  888. u64 pme;
  889. } pagemap_entry_t;
  890. struct pagemapread {
  891. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  892. pagemap_entry_t *buffer;
  893. bool v2;
  894. };
  895. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  896. #define PAGEMAP_WALK_MASK (PMD_MASK)
  897. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  898. #define PM_STATUS_BITS 3
  899. #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
  900. #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
  901. #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
  902. #define PM_PSHIFT_BITS 6
  903. #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
  904. #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
  905. #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
  906. #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
  907. #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
  908. /* in "new" pagemap pshift bits are occupied with more status bits */
  909. #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
  910. #define __PM_SOFT_DIRTY (1LL)
  911. #define PM_PRESENT PM_STATUS(4LL)
  912. #define PM_SWAP PM_STATUS(2LL)
  913. #define PM_FILE PM_STATUS(1LL)
  914. #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
  915. #define PM_END_OF_BUFFER 1
  916. static inline pagemap_entry_t make_pme(u64 val)
  917. {
  918. return (pagemap_entry_t) { .pme = val };
  919. }
  920. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  921. struct pagemapread *pm)
  922. {
  923. pm->buffer[pm->pos++] = *pme;
  924. if (pm->pos >= pm->len)
  925. return PM_END_OF_BUFFER;
  926. return 0;
  927. }
  928. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  929. struct mm_walk *walk)
  930. {
  931. struct pagemapread *pm = walk->private;
  932. unsigned long addr = start;
  933. int err = 0;
  934. while (addr < end) {
  935. struct vm_area_struct *vma = find_vma(walk->mm, addr);
  936. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
  937. /* End of address space hole, which we mark as non-present. */
  938. unsigned long hole_end;
  939. if (vma)
  940. hole_end = min(end, vma->vm_start);
  941. else
  942. hole_end = end;
  943. for (; addr < hole_end; addr += PAGE_SIZE) {
  944. err = add_to_pagemap(addr, &pme, pm);
  945. if (err)
  946. goto out;
  947. }
  948. if (!vma)
  949. break;
  950. /* Addresses in the VMA. */
  951. if (vma->vm_flags & VM_SOFTDIRTY)
  952. pme.pme |= PM_STATUS2(pm->v2, __PM_SOFT_DIRTY);
  953. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  954. err = add_to_pagemap(addr, &pme, pm);
  955. if (err)
  956. goto out;
  957. }
  958. }
  959. out:
  960. return err;
  961. }
  962. static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  963. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  964. {
  965. u64 frame, flags;
  966. struct page *page = NULL;
  967. int flags2 = 0;
  968. if (pte_present(pte)) {
  969. frame = pte_pfn(pte);
  970. flags = PM_PRESENT;
  971. page = vm_normal_page(vma, addr, pte);
  972. if (pte_soft_dirty(pte))
  973. flags2 |= __PM_SOFT_DIRTY;
  974. } else if (is_swap_pte(pte)) {
  975. swp_entry_t entry;
  976. if (pte_swp_soft_dirty(pte))
  977. flags2 |= __PM_SOFT_DIRTY;
  978. entry = pte_to_swp_entry(pte);
  979. frame = swp_type(entry) |
  980. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  981. flags = PM_SWAP;
  982. if (is_migration_entry(entry))
  983. page = migration_entry_to_page(entry);
  984. } else {
  985. if (vma->vm_flags & VM_SOFTDIRTY)
  986. flags2 |= __PM_SOFT_DIRTY;
  987. *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
  988. return;
  989. }
  990. if (page && !PageAnon(page))
  991. flags |= PM_FILE;
  992. if ((vma->vm_flags & VM_SOFTDIRTY))
  993. flags2 |= __PM_SOFT_DIRTY;
  994. *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
  995. }
  996. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  997. static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  998. pmd_t pmd, int offset, int pmd_flags2)
  999. {
  1000. /*
  1001. * Currently pmd for thp is always present because thp can not be
  1002. * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
  1003. * This if-check is just to prepare for future implementation.
  1004. */
  1005. if (pmd_present(pmd))
  1006. *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
  1007. | PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
  1008. else
  1009. *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
  1010. }
  1011. #else
  1012. static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  1013. pmd_t pmd, int offset, int pmd_flags2)
  1014. {
  1015. }
  1016. #endif
  1017. static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  1018. struct mm_walk *walk)
  1019. {
  1020. struct vm_area_struct *vma;
  1021. struct pagemapread *pm = walk->private;
  1022. spinlock_t *ptl;
  1023. pte_t *pte, *orig_pte;
  1024. int err = 0;
  1025. /* find the first VMA at or above 'addr' */
  1026. vma = find_vma(walk->mm, addr);
  1027. if (vma && pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  1028. int pmd_flags2;
  1029. if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
  1030. pmd_flags2 = __PM_SOFT_DIRTY;
  1031. else
  1032. pmd_flags2 = 0;
  1033. for (; addr != end; addr += PAGE_SIZE) {
  1034. unsigned long offset;
  1035. pagemap_entry_t pme;
  1036. offset = (addr & ~PAGEMAP_WALK_MASK) >>
  1037. PAGE_SHIFT;
  1038. thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
  1039. err = add_to_pagemap(addr, &pme, pm);
  1040. if (err)
  1041. break;
  1042. }
  1043. spin_unlock(ptl);
  1044. return err;
  1045. }
  1046. if (pmd_trans_unstable(pmd))
  1047. return 0;
  1048. while (1) {
  1049. /* End of address space hole, which we mark as non-present. */
  1050. unsigned long hole_end;
  1051. if (vma)
  1052. hole_end = min(end, vma->vm_start);
  1053. else
  1054. hole_end = end;
  1055. for (; addr < hole_end; addr += PAGE_SIZE) {
  1056. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
  1057. err = add_to_pagemap(addr, &pme, pm);
  1058. if (err)
  1059. return err;
  1060. }
  1061. if (!vma || vma->vm_start >= end)
  1062. break;
  1063. /*
  1064. * We can't possibly be in a hugetlb VMA. In general,
  1065. * for a mm_walk with a pmd_entry and a hugetlb_entry,
  1066. * the pmd_entry can only be called on addresses in a
  1067. * hugetlb if the walk starts in a non-hugetlb VMA and
  1068. * spans a hugepage VMA. Since pagemap_read walks are
  1069. * PMD-sized and PMD-aligned, this will never be true.
  1070. */
  1071. BUG_ON(is_vm_hugetlb_page(vma));
  1072. /* Addresses in the VMA. */
  1073. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1074. for (; addr < min(end, vma->vm_end); pte++, addr += PAGE_SIZE) {
  1075. pagemap_entry_t pme;
  1076. pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
  1077. err = add_to_pagemap(addr, &pme, pm);
  1078. if (err)
  1079. break;
  1080. }
  1081. pte_unmap_unlock(orig_pte, ptl);
  1082. if (err)
  1083. return err;
  1084. if (addr == end)
  1085. break;
  1086. vma = find_vma(walk->mm, addr);
  1087. }
  1088. cond_resched();
  1089. return err;
  1090. }
  1091. #ifdef CONFIG_HUGETLB_PAGE
  1092. static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  1093. pte_t pte, int offset, int flags2)
  1094. {
  1095. if (pte_present(pte))
  1096. *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset) |
  1097. PM_STATUS2(pm->v2, flags2) |
  1098. PM_PRESENT);
  1099. else
  1100. *pme = make_pme(PM_NOT_PRESENT(pm->v2) |
  1101. PM_STATUS2(pm->v2, flags2));
  1102. }
  1103. /* This function walks within one hugetlb entry in the single call */
  1104. static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
  1105. unsigned long addr, unsigned long end,
  1106. struct mm_walk *walk)
  1107. {
  1108. struct pagemapread *pm = walk->private;
  1109. struct vm_area_struct *vma;
  1110. int err = 0;
  1111. int flags2;
  1112. pagemap_entry_t pme;
  1113. vma = find_vma(walk->mm, addr);
  1114. WARN_ON_ONCE(!vma);
  1115. if (vma && (vma->vm_flags & VM_SOFTDIRTY))
  1116. flags2 = __PM_SOFT_DIRTY;
  1117. else
  1118. flags2 = 0;
  1119. for (; addr != end; addr += PAGE_SIZE) {
  1120. int offset = (addr & ~hmask) >> PAGE_SHIFT;
  1121. huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
  1122. err = add_to_pagemap(addr, &pme, pm);
  1123. if (err)
  1124. return err;
  1125. }
  1126. cond_resched();
  1127. return err;
  1128. }
  1129. #endif /* HUGETLB_PAGE */
  1130. /*
  1131. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  1132. *
  1133. * For each page in the address space, this file contains one 64-bit entry
  1134. * consisting of the following:
  1135. *
  1136. * Bits 0-54 page frame number (PFN) if present
  1137. * Bits 0-4 swap type if swapped
  1138. * Bits 5-54 swap offset if swapped
  1139. * Bits 55-60 page shift (page size = 1<<page shift)
  1140. * Bit 61 page is file-page or shared-anon
  1141. * Bit 62 page swapped
  1142. * Bit 63 page present
  1143. *
  1144. * If the page is not present but in swap, then the PFN contains an
  1145. * encoding of the swap file number and the page's offset into the
  1146. * swap. Unmapped pages return a null PFN. This allows determining
  1147. * precisely which pages are mapped (or in swap) and comparing mapped
  1148. * pages between processes.
  1149. *
  1150. * Efficient users of this interface will use /proc/pid/maps to
  1151. * determine which areas of memory are actually mapped and llseek to
  1152. * skip over unmapped regions.
  1153. */
  1154. static ssize_t pagemap_read(struct file *file, char __user *buf,
  1155. size_t count, loff_t *ppos)
  1156. {
  1157. struct task_struct *task = get_proc_task(file_inode(file));
  1158. struct mm_struct *mm;
  1159. struct pagemapread pm;
  1160. int ret = -ESRCH;
  1161. struct mm_walk pagemap_walk = {};
  1162. unsigned long src;
  1163. unsigned long svpfn;
  1164. unsigned long start_vaddr;
  1165. unsigned long end_vaddr;
  1166. int copied = 0;
  1167. if (!task)
  1168. goto out;
  1169. ret = -EINVAL;
  1170. /* file position must be aligned */
  1171. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  1172. goto out_task;
  1173. ret = 0;
  1174. if (!count)
  1175. goto out_task;
  1176. pm.v2 = soft_dirty_cleared;
  1177. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  1178. pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
  1179. ret = -ENOMEM;
  1180. if (!pm.buffer)
  1181. goto out_task;
  1182. mm = mm_access(task, PTRACE_MODE_READ);
  1183. ret = PTR_ERR(mm);
  1184. if (!mm || IS_ERR(mm))
  1185. goto out_free;
  1186. pagemap_walk.pmd_entry = pagemap_pte_range;
  1187. pagemap_walk.pte_hole = pagemap_pte_hole;
  1188. #ifdef CONFIG_HUGETLB_PAGE
  1189. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  1190. #endif
  1191. pagemap_walk.mm = mm;
  1192. pagemap_walk.private = &pm;
  1193. src = *ppos;
  1194. svpfn = src / PM_ENTRY_BYTES;
  1195. start_vaddr = svpfn << PAGE_SHIFT;
  1196. end_vaddr = TASK_SIZE_OF(task);
  1197. /* watch out for wraparound */
  1198. if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
  1199. start_vaddr = end_vaddr;
  1200. /*
  1201. * The odds are that this will stop walking way
  1202. * before end_vaddr, because the length of the
  1203. * user buffer is tracked in "pm", and the walk
  1204. * will stop when we hit the end of the buffer.
  1205. */
  1206. ret = 0;
  1207. while (count && (start_vaddr < end_vaddr)) {
  1208. int len;
  1209. unsigned long end;
  1210. pm.pos = 0;
  1211. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1212. /* overflow ? */
  1213. if (end < start_vaddr || end > end_vaddr)
  1214. end = end_vaddr;
  1215. down_read(&mm->mmap_sem);
  1216. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  1217. up_read(&mm->mmap_sem);
  1218. start_vaddr = end;
  1219. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1220. if (copy_to_user(buf, pm.buffer, len)) {
  1221. ret = -EFAULT;
  1222. goto out_mm;
  1223. }
  1224. copied += len;
  1225. buf += len;
  1226. count -= len;
  1227. }
  1228. *ppos += copied;
  1229. if (!ret || ret == PM_END_OF_BUFFER)
  1230. ret = copied;
  1231. out_mm:
  1232. mmput(mm);
  1233. out_free:
  1234. kfree(pm.buffer);
  1235. out_task:
  1236. put_task_struct(task);
  1237. out:
  1238. return ret;
  1239. }
  1240. static int pagemap_open(struct inode *inode, struct file *file)
  1241. {
  1242. /* do not disclose physical addresses: attack vector */
  1243. if (!capable(CAP_SYS_ADMIN))
  1244. return -EPERM;
  1245. pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
  1246. "to stop being page-shift some time soon. See the "
  1247. "linux/Documentation/vm/pagemap.txt for details.\n");
  1248. return 0;
  1249. }
  1250. const struct file_operations proc_pagemap_operations = {
  1251. .llseek = mem_lseek, /* borrow this */
  1252. .read = pagemap_read,
  1253. .open = pagemap_open,
  1254. };
  1255. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1256. #ifdef CONFIG_NUMA
  1257. struct numa_maps {
  1258. struct vm_area_struct *vma;
  1259. unsigned long pages;
  1260. unsigned long anon;
  1261. unsigned long active;
  1262. unsigned long writeback;
  1263. unsigned long mapcount_max;
  1264. unsigned long dirty;
  1265. unsigned long swapcache;
  1266. unsigned long node[MAX_NUMNODES];
  1267. };
  1268. struct numa_maps_private {
  1269. struct proc_maps_private proc_maps;
  1270. struct numa_maps md;
  1271. };
  1272. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1273. unsigned long nr_pages)
  1274. {
  1275. int count = page_mapcount(page);
  1276. md->pages += nr_pages;
  1277. if (pte_dirty || PageDirty(page))
  1278. md->dirty += nr_pages;
  1279. if (PageSwapCache(page))
  1280. md->swapcache += nr_pages;
  1281. if (PageActive(page) || PageUnevictable(page))
  1282. md->active += nr_pages;
  1283. if (PageWriteback(page))
  1284. md->writeback += nr_pages;
  1285. if (PageAnon(page))
  1286. md->anon += nr_pages;
  1287. if (count > md->mapcount_max)
  1288. md->mapcount_max = count;
  1289. md->node[page_to_nid(page)] += nr_pages;
  1290. }
  1291. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1292. unsigned long addr)
  1293. {
  1294. struct page *page;
  1295. int nid;
  1296. if (!pte_present(pte))
  1297. return NULL;
  1298. page = vm_normal_page(vma, addr, pte);
  1299. if (!page)
  1300. return NULL;
  1301. if (PageReserved(page))
  1302. return NULL;
  1303. nid = page_to_nid(page);
  1304. if (!node_isset(nid, node_states[N_MEMORY]))
  1305. return NULL;
  1306. return page;
  1307. }
  1308. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1309. unsigned long end, struct mm_walk *walk)
  1310. {
  1311. struct numa_maps *md;
  1312. spinlock_t *ptl;
  1313. pte_t *orig_pte;
  1314. pte_t *pte;
  1315. md = walk->private;
  1316. if (pmd_trans_huge_lock(pmd, md->vma, &ptl) == 1) {
  1317. pte_t huge_pte = *(pte_t *)pmd;
  1318. struct page *page;
  1319. page = can_gather_numa_stats(huge_pte, md->vma, addr);
  1320. if (page)
  1321. gather_stats(page, md, pte_dirty(huge_pte),
  1322. HPAGE_PMD_SIZE/PAGE_SIZE);
  1323. spin_unlock(ptl);
  1324. return 0;
  1325. }
  1326. if (pmd_trans_unstable(pmd))
  1327. return 0;
  1328. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1329. do {
  1330. struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
  1331. if (!page)
  1332. continue;
  1333. gather_stats(page, md, pte_dirty(*pte), 1);
  1334. } while (pte++, addr += PAGE_SIZE, addr != end);
  1335. pte_unmap_unlock(orig_pte, ptl);
  1336. return 0;
  1337. }
  1338. #ifdef CONFIG_HUGETLB_PAGE
  1339. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1340. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1341. {
  1342. struct numa_maps *md;
  1343. struct page *page;
  1344. if (!pte_present(*pte))
  1345. return 0;
  1346. page = pte_page(*pte);
  1347. if (!page)
  1348. return 0;
  1349. md = walk->private;
  1350. gather_stats(page, md, pte_dirty(*pte), 1);
  1351. return 0;
  1352. }
  1353. #else
  1354. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1355. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1356. {
  1357. return 0;
  1358. }
  1359. #endif
  1360. /*
  1361. * Display pages allocated per node and memory policy via /proc.
  1362. */
  1363. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1364. {
  1365. struct numa_maps_private *numa_priv = m->private;
  1366. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1367. struct vm_area_struct *vma = v;
  1368. struct numa_maps *md = &numa_priv->md;
  1369. struct file *file = vma->vm_file;
  1370. struct mm_struct *mm = vma->vm_mm;
  1371. struct mm_walk walk = {};
  1372. struct mempolicy *pol;
  1373. char buffer[64];
  1374. int nid;
  1375. if (!mm)
  1376. return 0;
  1377. /* Ensure we start with an empty set of numa_maps statistics. */
  1378. memset(md, 0, sizeof(*md));
  1379. md->vma = vma;
  1380. walk.hugetlb_entry = gather_hugetbl_stats;
  1381. walk.pmd_entry = gather_pte_stats;
  1382. walk.private = md;
  1383. walk.mm = mm;
  1384. pol = __get_vma_policy(vma, vma->vm_start);
  1385. if (pol) {
  1386. mpol_to_str(buffer, sizeof(buffer), pol);
  1387. mpol_cond_put(pol);
  1388. } else {
  1389. mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
  1390. }
  1391. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1392. if (file) {
  1393. seq_puts(m, " file=");
  1394. seq_path(m, &file->f_path, "\n\t= ");
  1395. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1396. seq_puts(m, " heap");
  1397. } else {
  1398. pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
  1399. if (tid != 0) {
  1400. /*
  1401. * Thread stack in /proc/PID/task/TID/maps or
  1402. * the main process stack.
  1403. */
  1404. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  1405. vma->vm_end >= mm->start_stack))
  1406. seq_puts(m, " stack");
  1407. else
  1408. seq_printf(m, " stack:%d", tid);
  1409. }
  1410. }
  1411. if (is_vm_hugetlb_page(vma))
  1412. seq_puts(m, " huge");
  1413. walk_page_range(vma->vm_start, vma->vm_end, &walk);
  1414. if (!md->pages)
  1415. goto out;
  1416. if (md->anon)
  1417. seq_printf(m, " anon=%lu", md->anon);
  1418. if (md->dirty)
  1419. seq_printf(m, " dirty=%lu", md->dirty);
  1420. if (md->pages != md->anon && md->pages != md->dirty)
  1421. seq_printf(m, " mapped=%lu", md->pages);
  1422. if (md->mapcount_max > 1)
  1423. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1424. if (md->swapcache)
  1425. seq_printf(m, " swapcache=%lu", md->swapcache);
  1426. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1427. seq_printf(m, " active=%lu", md->active);
  1428. if (md->writeback)
  1429. seq_printf(m, " writeback=%lu", md->writeback);
  1430. for_each_node_state(nid, N_MEMORY)
  1431. if (md->node[nid])
  1432. seq_printf(m, " N%d=%lu", nid, md->node[nid]);
  1433. out:
  1434. seq_putc(m, '\n');
  1435. m_cache_vma(m, vma);
  1436. return 0;
  1437. }
  1438. static int show_pid_numa_map(struct seq_file *m, void *v)
  1439. {
  1440. return show_numa_map(m, v, 1);
  1441. }
  1442. static int show_tid_numa_map(struct seq_file *m, void *v)
  1443. {
  1444. return show_numa_map(m, v, 0);
  1445. }
  1446. static const struct seq_operations proc_pid_numa_maps_op = {
  1447. .start = m_start,
  1448. .next = m_next,
  1449. .stop = m_stop,
  1450. .show = show_pid_numa_map,
  1451. };
  1452. static const struct seq_operations proc_tid_numa_maps_op = {
  1453. .start = m_start,
  1454. .next = m_next,
  1455. .stop = m_stop,
  1456. .show = show_tid_numa_map,
  1457. };
  1458. static int numa_maps_open(struct inode *inode, struct file *file,
  1459. const struct seq_operations *ops)
  1460. {
  1461. return proc_maps_open(inode, file, ops,
  1462. sizeof(struct numa_maps_private));
  1463. }
  1464. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1465. {
  1466. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1467. }
  1468. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1469. {
  1470. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1471. }
  1472. const struct file_operations proc_pid_numa_maps_operations = {
  1473. .open = pid_numa_maps_open,
  1474. .read = seq_read,
  1475. .llseek = seq_lseek,
  1476. .release = proc_map_release,
  1477. };
  1478. const struct file_operations proc_tid_numa_maps_operations = {
  1479. .open = tid_numa_maps_open,
  1480. .read = seq_read,
  1481. .llseek = seq_lseek,
  1482. .release = proc_map_release,
  1483. };
  1484. #endif /* CONFIG_NUMA */