ssi.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686
  1. /*
  2. * Renesas R-Car SSIU/SSI support
  3. *
  4. * Copyright (C) 2013 Renesas Solutions Corp.
  5. * Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
  6. *
  7. * Based on fsi.c
  8. * Kuninori Morimoto <morimoto.kuninori@renesas.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/delay.h>
  15. #include "rsnd.h"
  16. #define RSND_SSI_NAME_SIZE 16
  17. /*
  18. * SSICR
  19. */
  20. #define FORCE (1 << 31) /* Fixed */
  21. #define DMEN (1 << 28) /* DMA Enable */
  22. #define UIEN (1 << 27) /* Underflow Interrupt Enable */
  23. #define OIEN (1 << 26) /* Overflow Interrupt Enable */
  24. #define IIEN (1 << 25) /* Idle Mode Interrupt Enable */
  25. #define DIEN (1 << 24) /* Data Interrupt Enable */
  26. #define DWL_8 (0 << 19) /* Data Word Length */
  27. #define DWL_16 (1 << 19) /* Data Word Length */
  28. #define DWL_18 (2 << 19) /* Data Word Length */
  29. #define DWL_20 (3 << 19) /* Data Word Length */
  30. #define DWL_22 (4 << 19) /* Data Word Length */
  31. #define DWL_24 (5 << 19) /* Data Word Length */
  32. #define DWL_32 (6 << 19) /* Data Word Length */
  33. #define SWL_32 (3 << 16) /* R/W System Word Length */
  34. #define SCKD (1 << 15) /* Serial Bit Clock Direction */
  35. #define SWSD (1 << 14) /* Serial WS Direction */
  36. #define SCKP (1 << 13) /* Serial Bit Clock Polarity */
  37. #define SWSP (1 << 12) /* Serial WS Polarity */
  38. #define SDTA (1 << 10) /* Serial Data Alignment */
  39. #define DEL (1 << 8) /* Serial Data Delay */
  40. #define CKDV(v) (v << 4) /* Serial Clock Division Ratio */
  41. #define TRMD (1 << 1) /* Transmit/Receive Mode Select */
  42. #define EN (1 << 0) /* SSI Module Enable */
  43. /*
  44. * SSISR
  45. */
  46. #define UIRQ (1 << 27) /* Underflow Error Interrupt Status */
  47. #define OIRQ (1 << 26) /* Overflow Error Interrupt Status */
  48. #define IIRQ (1 << 25) /* Idle Mode Interrupt Status */
  49. #define DIRQ (1 << 24) /* Data Interrupt Status Flag */
  50. /*
  51. * SSIWSR
  52. */
  53. #define CONT (1 << 8) /* WS Continue Function */
  54. #define SSI_NAME "ssi"
  55. struct rsnd_ssi {
  56. struct clk *clk;
  57. struct rsnd_ssi_platform_info *info; /* rcar_snd.h */
  58. struct rsnd_ssi *parent;
  59. struct rsnd_mod mod;
  60. struct rsnd_dai *rdai;
  61. u32 cr_own;
  62. u32 cr_clk;
  63. u32 cr_etc;
  64. int err;
  65. unsigned int usrcnt;
  66. unsigned int rate;
  67. };
  68. #define for_each_rsnd_ssi(pos, priv, i) \
  69. for (i = 0; \
  70. (i < rsnd_ssi_nr(priv)) && \
  71. ((pos) = ((struct rsnd_ssi *)(priv)->ssi + i)); \
  72. i++)
  73. #define rsnd_ssi_nr(priv) ((priv)->ssi_nr)
  74. #define rsnd_mod_to_ssi(_mod) container_of((_mod), struct rsnd_ssi, mod)
  75. #define rsnd_dma_to_ssi(dma) rsnd_mod_to_ssi(rsnd_dma_to_mod(dma))
  76. #define rsnd_ssi_pio_available(ssi) ((ssi)->info->pio_irq > 0)
  77. #define rsnd_ssi_dma_available(ssi) \
  78. rsnd_dma_available(rsnd_mod_to_dma(&(ssi)->mod))
  79. #define rsnd_ssi_clk_from_parent(ssi) ((ssi)->parent)
  80. #define rsnd_ssi_mode_flags(p) ((p)->info->flags)
  81. #define rsnd_ssi_dai_id(ssi) ((ssi)->info->dai_id)
  82. static int rsnd_ssi_use_busif(struct rsnd_mod *mod)
  83. {
  84. struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
  85. struct rsnd_dai_stream *io = rsnd_mod_to_io(mod);
  86. int use_busif = 0;
  87. if (!(rsnd_ssi_mode_flags(ssi) & RSND_SSI_NO_BUSIF))
  88. use_busif = 1;
  89. if (rsnd_io_to_mod_src(io))
  90. use_busif = 1;
  91. return use_busif;
  92. }
  93. static void rsnd_ssi_status_check(struct rsnd_mod *mod,
  94. u32 bit)
  95. {
  96. struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
  97. struct device *dev = rsnd_priv_to_dev(priv);
  98. u32 status;
  99. int i;
  100. for (i = 0; i < 1024; i++) {
  101. status = rsnd_mod_read(mod, SSISR);
  102. if (status & bit)
  103. return;
  104. udelay(50);
  105. }
  106. dev_warn(dev, "status check failed\n");
  107. }
  108. static int rsnd_ssi_master_clk_start(struct rsnd_ssi *ssi,
  109. struct rsnd_dai_stream *io)
  110. {
  111. struct rsnd_priv *priv = rsnd_mod_to_priv(&ssi->mod);
  112. struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
  113. struct device *dev = rsnd_priv_to_dev(priv);
  114. int i, j, ret;
  115. int adg_clk_div_table[] = {
  116. 1, 6, /* see adg.c */
  117. };
  118. int ssi_clk_mul_table[] = {
  119. 1, 2, 4, 8, 16, 6, 12,
  120. };
  121. unsigned int main_rate;
  122. unsigned int rate = rsnd_src_get_ssi_rate(priv, io, runtime);
  123. /*
  124. * Find best clock, and try to start ADG
  125. */
  126. for (i = 0; i < ARRAY_SIZE(adg_clk_div_table); i++) {
  127. for (j = 0; j < ARRAY_SIZE(ssi_clk_mul_table); j++) {
  128. /*
  129. * this driver is assuming that
  130. * system word is 64fs (= 2 x 32bit)
  131. * see rsnd_ssi_init()
  132. */
  133. main_rate = rate / adg_clk_div_table[i]
  134. * 32 * 2 * ssi_clk_mul_table[j];
  135. ret = rsnd_adg_ssi_clk_try_start(&ssi->mod, main_rate);
  136. if (0 == ret) {
  137. ssi->rate = rate;
  138. ssi->cr_clk = FORCE | SWL_32 |
  139. SCKD | SWSD | CKDV(j);
  140. dev_dbg(dev, "ssi%d outputs %u Hz\n",
  141. rsnd_mod_id(&ssi->mod), rate);
  142. return 0;
  143. }
  144. }
  145. }
  146. dev_err(dev, "unsupported clock rate\n");
  147. return -EIO;
  148. }
  149. static void rsnd_ssi_master_clk_stop(struct rsnd_ssi *ssi)
  150. {
  151. ssi->rate = 0;
  152. ssi->cr_clk = 0;
  153. rsnd_adg_ssi_clk_stop(&ssi->mod);
  154. }
  155. static void rsnd_ssi_hw_start(struct rsnd_ssi *ssi,
  156. struct rsnd_dai *rdai,
  157. struct rsnd_dai_stream *io)
  158. {
  159. struct rsnd_priv *priv = rsnd_mod_to_priv(&ssi->mod);
  160. struct device *dev = rsnd_priv_to_dev(priv);
  161. u32 cr;
  162. if (0 == ssi->usrcnt) {
  163. clk_prepare_enable(ssi->clk);
  164. if (rsnd_dai_is_clk_master(rdai)) {
  165. if (rsnd_ssi_clk_from_parent(ssi))
  166. rsnd_ssi_hw_start(ssi->parent, rdai, io);
  167. else
  168. rsnd_ssi_master_clk_start(ssi, io);
  169. }
  170. }
  171. cr = ssi->cr_own |
  172. ssi->cr_clk |
  173. ssi->cr_etc |
  174. EN;
  175. rsnd_mod_write(&ssi->mod, SSICR, cr);
  176. ssi->usrcnt++;
  177. dev_dbg(dev, "ssi%d hw started\n", rsnd_mod_id(&ssi->mod));
  178. }
  179. static void rsnd_ssi_hw_stop(struct rsnd_ssi *ssi,
  180. struct rsnd_dai *rdai)
  181. {
  182. struct rsnd_priv *priv = rsnd_mod_to_priv(&ssi->mod);
  183. struct device *dev = rsnd_priv_to_dev(priv);
  184. u32 cr;
  185. if (0 == ssi->usrcnt) /* stop might be called without start */
  186. return;
  187. ssi->usrcnt--;
  188. if (0 == ssi->usrcnt) {
  189. /*
  190. * disable all IRQ,
  191. * and, wait all data was sent
  192. */
  193. cr = ssi->cr_own |
  194. ssi->cr_clk;
  195. rsnd_mod_write(&ssi->mod, SSICR, cr | EN);
  196. rsnd_ssi_status_check(&ssi->mod, DIRQ);
  197. /*
  198. * disable SSI,
  199. * and, wait idle state
  200. */
  201. rsnd_mod_write(&ssi->mod, SSICR, cr); /* disabled all */
  202. rsnd_ssi_status_check(&ssi->mod, IIRQ);
  203. if (rsnd_dai_is_clk_master(rdai)) {
  204. if (rsnd_ssi_clk_from_parent(ssi))
  205. rsnd_ssi_hw_stop(ssi->parent, rdai);
  206. else
  207. rsnd_ssi_master_clk_stop(ssi);
  208. }
  209. clk_disable_unprepare(ssi->clk);
  210. }
  211. dev_dbg(dev, "ssi%d hw stopped\n", rsnd_mod_id(&ssi->mod));
  212. }
  213. /*
  214. * SSI mod common functions
  215. */
  216. static int rsnd_ssi_init(struct rsnd_mod *mod,
  217. struct rsnd_dai *rdai)
  218. {
  219. struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
  220. struct rsnd_dai_stream *io = rsnd_mod_to_io(mod);
  221. struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
  222. u32 cr;
  223. cr = FORCE;
  224. /*
  225. * always use 32bit system word for easy clock calculation.
  226. * see also rsnd_ssi_master_clk_enable()
  227. */
  228. cr |= SWL_32;
  229. /*
  230. * init clock settings for SSICR
  231. */
  232. switch (runtime->sample_bits) {
  233. case 16:
  234. cr |= DWL_16;
  235. break;
  236. case 32:
  237. cr |= DWL_24;
  238. break;
  239. default:
  240. return -EIO;
  241. }
  242. if (rdai->bit_clk_inv)
  243. cr |= SCKP;
  244. if (rdai->frm_clk_inv)
  245. cr |= SWSP;
  246. if (rdai->data_alignment)
  247. cr |= SDTA;
  248. if (rdai->sys_delay)
  249. cr |= DEL;
  250. if (rsnd_dai_is_play(rdai, io))
  251. cr |= TRMD;
  252. /*
  253. * set ssi parameter
  254. */
  255. ssi->rdai = rdai;
  256. ssi->cr_own = cr;
  257. ssi->err = -1; /* ignore 1st error */
  258. return 0;
  259. }
  260. static int rsnd_ssi_quit(struct rsnd_mod *mod,
  261. struct rsnd_dai *rdai)
  262. {
  263. struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
  264. struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
  265. struct device *dev = rsnd_priv_to_dev(priv);
  266. if (ssi->err > 0)
  267. dev_warn(dev, "ssi under/over flow err = %d\n", ssi->err);
  268. ssi->rdai = NULL;
  269. ssi->cr_own = 0;
  270. ssi->err = 0;
  271. return 0;
  272. }
  273. static void rsnd_ssi_record_error(struct rsnd_ssi *ssi, u32 status)
  274. {
  275. /* under/over flow error */
  276. if (status & (UIRQ | OIRQ)) {
  277. ssi->err++;
  278. /* clear error status */
  279. rsnd_mod_write(&ssi->mod, SSISR, 0);
  280. }
  281. }
  282. /*
  283. * SSI PIO
  284. */
  285. static irqreturn_t rsnd_ssi_pio_interrupt(int irq, void *data)
  286. {
  287. struct rsnd_ssi *ssi = data;
  288. struct rsnd_mod *mod = &ssi->mod;
  289. struct rsnd_dai_stream *io = rsnd_mod_to_io(mod);
  290. u32 status = rsnd_mod_read(mod, SSISR);
  291. irqreturn_t ret = IRQ_NONE;
  292. if (io && (status & DIRQ)) {
  293. struct rsnd_dai *rdai = ssi->rdai;
  294. struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
  295. u32 *buf = (u32 *)(runtime->dma_area +
  296. rsnd_dai_pointer_offset(io, 0));
  297. rsnd_ssi_record_error(ssi, status);
  298. /*
  299. * 8/16/32 data can be assesse to TDR/RDR register
  300. * directly as 32bit data
  301. * see rsnd_ssi_init()
  302. */
  303. if (rsnd_dai_is_play(rdai, io))
  304. rsnd_mod_write(mod, SSITDR, *buf);
  305. else
  306. *buf = rsnd_mod_read(mod, SSIRDR);
  307. rsnd_dai_pointer_update(io, sizeof(*buf));
  308. ret = IRQ_HANDLED;
  309. }
  310. return ret;
  311. }
  312. static int rsnd_ssi_pio_probe(struct rsnd_mod *mod,
  313. struct rsnd_dai *rdai)
  314. {
  315. struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
  316. struct device *dev = rsnd_priv_to_dev(priv);
  317. struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
  318. int irq = ssi->info->pio_irq;
  319. int ret;
  320. ret = devm_request_irq(dev, irq,
  321. rsnd_ssi_pio_interrupt,
  322. IRQF_SHARED,
  323. dev_name(dev), ssi);
  324. if (ret)
  325. dev_err(dev, "SSI request interrupt failed\n");
  326. dev_dbg(dev, "%s (PIO) is probed\n", rsnd_mod_name(mod));
  327. return ret;
  328. }
  329. static int rsnd_ssi_pio_start(struct rsnd_mod *mod,
  330. struct rsnd_dai *rdai)
  331. {
  332. struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
  333. struct rsnd_dai_stream *io = rsnd_mod_to_io(mod);
  334. /* enable PIO IRQ */
  335. ssi->cr_etc = UIEN | OIEN | DIEN;
  336. rsnd_src_ssiu_start(mod, rdai, 0);
  337. rsnd_src_enable_ssi_irq(mod, rdai);
  338. rsnd_ssi_hw_start(ssi, rdai, io);
  339. return 0;
  340. }
  341. static int rsnd_ssi_pio_stop(struct rsnd_mod *mod,
  342. struct rsnd_dai *rdai)
  343. {
  344. struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
  345. ssi->cr_etc = 0;
  346. rsnd_ssi_hw_stop(ssi, rdai);
  347. rsnd_src_ssiu_stop(mod, rdai, 0);
  348. return 0;
  349. }
  350. static struct rsnd_mod_ops rsnd_ssi_pio_ops = {
  351. .name = SSI_NAME,
  352. .probe = rsnd_ssi_pio_probe,
  353. .init = rsnd_ssi_init,
  354. .quit = rsnd_ssi_quit,
  355. .start = rsnd_ssi_pio_start,
  356. .stop = rsnd_ssi_pio_stop,
  357. };
  358. static int rsnd_ssi_dma_probe(struct rsnd_mod *mod,
  359. struct rsnd_dai *rdai)
  360. {
  361. struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
  362. struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
  363. struct device *dev = rsnd_priv_to_dev(priv);
  364. int dma_id = ssi->info->dma_id;
  365. int ret;
  366. ret = rsnd_dma_init(
  367. priv, rsnd_mod_to_dma(mod),
  368. rsnd_info_is_playback(priv, ssi),
  369. dma_id);
  370. if (ret < 0)
  371. dev_err(dev, "SSI DMA failed\n");
  372. dev_dbg(dev, "%s (DMA) is probed\n", rsnd_mod_name(mod));
  373. return ret;
  374. }
  375. static int rsnd_ssi_dma_remove(struct rsnd_mod *mod,
  376. struct rsnd_dai *rdai)
  377. {
  378. rsnd_dma_quit(rsnd_mod_to_priv(mod), rsnd_mod_to_dma(mod));
  379. return 0;
  380. }
  381. static int rsnd_ssi_dma_start(struct rsnd_mod *mod,
  382. struct rsnd_dai *rdai)
  383. {
  384. struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
  385. struct rsnd_dma *dma = rsnd_mod_to_dma(&ssi->mod);
  386. struct rsnd_dai_stream *io = rsnd_mod_to_io(mod);
  387. /* enable DMA transfer */
  388. ssi->cr_etc = DMEN;
  389. rsnd_src_ssiu_start(mod, rdai, rsnd_ssi_use_busif(mod));
  390. rsnd_dma_start(dma);
  391. rsnd_ssi_hw_start(ssi, ssi->rdai, io);
  392. /* enable WS continue */
  393. if (rsnd_dai_is_clk_master(rdai))
  394. rsnd_mod_write(&ssi->mod, SSIWSR, CONT);
  395. return 0;
  396. }
  397. static int rsnd_ssi_dma_stop(struct rsnd_mod *mod,
  398. struct rsnd_dai *rdai)
  399. {
  400. struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
  401. struct rsnd_dma *dma = rsnd_mod_to_dma(&ssi->mod);
  402. ssi->cr_etc = 0;
  403. rsnd_ssi_record_error(ssi, rsnd_mod_read(mod, SSISR));
  404. rsnd_ssi_hw_stop(ssi, rdai);
  405. rsnd_dma_stop(dma);
  406. rsnd_src_ssiu_stop(mod, rdai, 1);
  407. return 0;
  408. }
  409. static char *rsnd_ssi_dma_name(struct rsnd_mod *mod)
  410. {
  411. return rsnd_ssi_use_busif(mod) ? "ssiu" : SSI_NAME;
  412. }
  413. static struct rsnd_mod_ops rsnd_ssi_dma_ops = {
  414. .name = SSI_NAME,
  415. .dma_name = rsnd_ssi_dma_name,
  416. .probe = rsnd_ssi_dma_probe,
  417. .remove = rsnd_ssi_dma_remove,
  418. .init = rsnd_ssi_init,
  419. .quit = rsnd_ssi_quit,
  420. .start = rsnd_ssi_dma_start,
  421. .stop = rsnd_ssi_dma_stop,
  422. };
  423. /*
  424. * Non SSI
  425. */
  426. static struct rsnd_mod_ops rsnd_ssi_non_ops = {
  427. .name = SSI_NAME,
  428. };
  429. /*
  430. * ssi mod function
  431. */
  432. struct rsnd_mod *rsnd_ssi_mod_get(struct rsnd_priv *priv, int id)
  433. {
  434. if (WARN_ON(id < 0 || id >= rsnd_ssi_nr(priv)))
  435. id = 0;
  436. return &((struct rsnd_ssi *)(priv->ssi) + id)->mod;
  437. }
  438. int rsnd_ssi_is_pin_sharing(struct rsnd_mod *mod)
  439. {
  440. struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
  441. return !!(rsnd_ssi_mode_flags(ssi) & RSND_SSI_CLK_PIN_SHARE);
  442. }
  443. static void rsnd_ssi_parent_clk_setup(struct rsnd_priv *priv, struct rsnd_ssi *ssi)
  444. {
  445. if (!rsnd_ssi_is_pin_sharing(&ssi->mod))
  446. return;
  447. switch (rsnd_mod_id(&ssi->mod)) {
  448. case 1:
  449. case 2:
  450. ssi->parent = rsnd_mod_to_ssi(rsnd_ssi_mod_get(priv, 0));
  451. break;
  452. case 4:
  453. ssi->parent = rsnd_mod_to_ssi(rsnd_ssi_mod_get(priv, 3));
  454. break;
  455. case 8:
  456. ssi->parent = rsnd_mod_to_ssi(rsnd_ssi_mod_get(priv, 7));
  457. break;
  458. }
  459. }
  460. static void rsnd_of_parse_ssi(struct platform_device *pdev,
  461. const struct rsnd_of_data *of_data,
  462. struct rsnd_priv *priv)
  463. {
  464. struct device_node *node;
  465. struct device_node *np;
  466. struct rsnd_ssi_platform_info *ssi_info;
  467. struct rcar_snd_info *info = rsnd_priv_to_info(priv);
  468. struct device *dev = &pdev->dev;
  469. int nr, i;
  470. if (!of_data)
  471. return;
  472. node = of_get_child_by_name(dev->of_node, "rcar_sound,ssi");
  473. if (!node)
  474. return;
  475. nr = of_get_child_count(node);
  476. if (!nr)
  477. goto rsnd_of_parse_ssi_end;
  478. ssi_info = devm_kzalloc(dev,
  479. sizeof(struct rsnd_ssi_platform_info) * nr,
  480. GFP_KERNEL);
  481. if (!ssi_info) {
  482. dev_err(dev, "ssi info allocation error\n");
  483. goto rsnd_of_parse_ssi_end;
  484. }
  485. info->ssi_info = ssi_info;
  486. info->ssi_info_nr = nr;
  487. i = -1;
  488. for_each_child_of_node(node, np) {
  489. i++;
  490. ssi_info = info->ssi_info + i;
  491. /*
  492. * pin settings
  493. */
  494. if (of_get_property(np, "shared-pin", NULL))
  495. ssi_info->flags |= RSND_SSI_CLK_PIN_SHARE;
  496. /*
  497. * irq
  498. */
  499. ssi_info->pio_irq = irq_of_parse_and_map(np, 0);
  500. /*
  501. * DMA
  502. */
  503. ssi_info->dma_id = of_get_property(np, "pio-transfer", NULL) ?
  504. 0 : 1;
  505. if (of_get_property(np, "no-busif", NULL))
  506. ssi_info->flags |= RSND_SSI_NO_BUSIF;
  507. }
  508. rsnd_of_parse_ssi_end:
  509. of_node_put(node);
  510. }
  511. int rsnd_ssi_probe(struct platform_device *pdev,
  512. const struct rsnd_of_data *of_data,
  513. struct rsnd_priv *priv)
  514. {
  515. struct rcar_snd_info *info = rsnd_priv_to_info(priv);
  516. struct rsnd_ssi_platform_info *pinfo;
  517. struct device *dev = rsnd_priv_to_dev(priv);
  518. struct rsnd_mod_ops *ops;
  519. struct clk *clk;
  520. struct rsnd_ssi *ssi;
  521. char name[RSND_SSI_NAME_SIZE];
  522. int i, nr;
  523. rsnd_of_parse_ssi(pdev, of_data, priv);
  524. /*
  525. * init SSI
  526. */
  527. nr = info->ssi_info_nr;
  528. ssi = devm_kzalloc(dev, sizeof(*ssi) * nr, GFP_KERNEL);
  529. if (!ssi) {
  530. dev_err(dev, "SSI allocate failed\n");
  531. return -ENOMEM;
  532. }
  533. priv->ssi = ssi;
  534. priv->ssi_nr = nr;
  535. for_each_rsnd_ssi(ssi, priv, i) {
  536. pinfo = &info->ssi_info[i];
  537. snprintf(name, RSND_SSI_NAME_SIZE, "%s.%d",
  538. SSI_NAME, i);
  539. clk = devm_clk_get(dev, name);
  540. if (IS_ERR(clk))
  541. return PTR_ERR(clk);
  542. ssi->info = pinfo;
  543. ssi->clk = clk;
  544. ops = &rsnd_ssi_non_ops;
  545. if (pinfo->dma_id > 0)
  546. ops = &rsnd_ssi_dma_ops;
  547. else if (rsnd_ssi_pio_available(ssi))
  548. ops = &rsnd_ssi_pio_ops;
  549. rsnd_mod_init(priv, &ssi->mod, ops, RSND_MOD_SSI, i);
  550. rsnd_ssi_parent_clk_setup(priv, ssi);
  551. }
  552. return 0;
  553. }