kmemleak.c 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934
  1. /*
  2. * mm/kmemleak.c
  3. *
  4. * Copyright (C) 2008 ARM Limited
  5. * Written by Catalin Marinas <catalin.marinas@arm.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. *
  21. * For more information on the algorithm and kmemleak usage, please see
  22. * Documentation/kmemleak.txt.
  23. *
  24. * Notes on locking
  25. * ----------------
  26. *
  27. * The following locks and mutexes are used by kmemleak:
  28. *
  29. * - kmemleak_lock (rwlock): protects the object_list modifications and
  30. * accesses to the object_tree_root. The object_list is the main list
  31. * holding the metadata (struct kmemleak_object) for the allocated memory
  32. * blocks. The object_tree_root is a red black tree used to look-up
  33. * metadata based on a pointer to the corresponding memory block. The
  34. * kmemleak_object structures are added to the object_list and
  35. * object_tree_root in the create_object() function called from the
  36. * kmemleak_alloc() callback and removed in delete_object() called from the
  37. * kmemleak_free() callback
  38. * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
  39. * the metadata (e.g. count) are protected by this lock. Note that some
  40. * members of this structure may be protected by other means (atomic or
  41. * kmemleak_lock). This lock is also held when scanning the corresponding
  42. * memory block to avoid the kernel freeing it via the kmemleak_free()
  43. * callback. This is less heavyweight than holding a global lock like
  44. * kmemleak_lock during scanning
  45. * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  46. * unreferenced objects at a time. The gray_list contains the objects which
  47. * are already referenced or marked as false positives and need to be
  48. * scanned. This list is only modified during a scanning episode when the
  49. * scan_mutex is held. At the end of a scan, the gray_list is always empty.
  50. * Note that the kmemleak_object.use_count is incremented when an object is
  51. * added to the gray_list and therefore cannot be freed. This mutex also
  52. * prevents multiple users of the "kmemleak" debugfs file together with
  53. * modifications to the memory scanning parameters including the scan_thread
  54. * pointer
  55. *
  56. * The kmemleak_object structures have a use_count incremented or decremented
  57. * using the get_object()/put_object() functions. When the use_count becomes
  58. * 0, this count can no longer be incremented and put_object() schedules the
  59. * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  60. * function must be protected by rcu_read_lock() to avoid accessing a freed
  61. * structure.
  62. */
  63. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  64. #include <linux/init.h>
  65. #include <linux/kernel.h>
  66. #include <linux/list.h>
  67. #include <linux/sched.h>
  68. #include <linux/jiffies.h>
  69. #include <linux/delay.h>
  70. #include <linux/export.h>
  71. #include <linux/kthread.h>
  72. #include <linux/rbtree.h>
  73. #include <linux/fs.h>
  74. #include <linux/debugfs.h>
  75. #include <linux/seq_file.h>
  76. #include <linux/cpumask.h>
  77. #include <linux/spinlock.h>
  78. #include <linux/mutex.h>
  79. #include <linux/rcupdate.h>
  80. #include <linux/stacktrace.h>
  81. #include <linux/cache.h>
  82. #include <linux/percpu.h>
  83. #include <linux/hardirq.h>
  84. #include <linux/mmzone.h>
  85. #include <linux/slab.h>
  86. #include <linux/thread_info.h>
  87. #include <linux/err.h>
  88. #include <linux/uaccess.h>
  89. #include <linux/string.h>
  90. #include <linux/nodemask.h>
  91. #include <linux/mm.h>
  92. #include <linux/workqueue.h>
  93. #include <linux/crc32.h>
  94. #include <asm/sections.h>
  95. #include <asm/processor.h>
  96. #include <linux/atomic.h>
  97. #include <linux/kmemcheck.h>
  98. #include <linux/kmemleak.h>
  99. #include <linux/memory_hotplug.h>
  100. /*
  101. * Kmemleak configuration and common defines.
  102. */
  103. #define MAX_TRACE 16 /* stack trace length */
  104. #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
  105. #define SECS_FIRST_SCAN 60 /* delay before the first scan */
  106. #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
  107. #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
  108. #define BYTES_PER_POINTER sizeof(void *)
  109. /* GFP bitmask for kmemleak internal allocations */
  110. #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
  111. __GFP_NORETRY | __GFP_NOMEMALLOC | \
  112. __GFP_NOWARN)
  113. /* scanning area inside a memory block */
  114. struct kmemleak_scan_area {
  115. struct hlist_node node;
  116. unsigned long start;
  117. size_t size;
  118. };
  119. #define KMEMLEAK_GREY 0
  120. #define KMEMLEAK_BLACK -1
  121. /*
  122. * Structure holding the metadata for each allocated memory block.
  123. * Modifications to such objects should be made while holding the
  124. * object->lock. Insertions or deletions from object_list, gray_list or
  125. * rb_node are already protected by the corresponding locks or mutex (see
  126. * the notes on locking above). These objects are reference-counted
  127. * (use_count) and freed using the RCU mechanism.
  128. */
  129. struct kmemleak_object {
  130. spinlock_t lock;
  131. unsigned long flags; /* object status flags */
  132. struct list_head object_list;
  133. struct list_head gray_list;
  134. struct rb_node rb_node;
  135. struct rcu_head rcu; /* object_list lockless traversal */
  136. /* object usage count; object freed when use_count == 0 */
  137. atomic_t use_count;
  138. unsigned long pointer;
  139. size_t size;
  140. /* minimum number of a pointers found before it is considered leak */
  141. int min_count;
  142. /* the total number of pointers found pointing to this object */
  143. int count;
  144. /* checksum for detecting modified objects */
  145. u32 checksum;
  146. /* memory ranges to be scanned inside an object (empty for all) */
  147. struct hlist_head area_list;
  148. unsigned long trace[MAX_TRACE];
  149. unsigned int trace_len;
  150. unsigned long jiffies; /* creation timestamp */
  151. pid_t pid; /* pid of the current task */
  152. char comm[TASK_COMM_LEN]; /* executable name */
  153. };
  154. /* flag representing the memory block allocation status */
  155. #define OBJECT_ALLOCATED (1 << 0)
  156. /* flag set after the first reporting of an unreference object */
  157. #define OBJECT_REPORTED (1 << 1)
  158. /* flag set to not scan the object */
  159. #define OBJECT_NO_SCAN (1 << 2)
  160. /* number of bytes to print per line; must be 16 or 32 */
  161. #define HEX_ROW_SIZE 16
  162. /* number of bytes to print at a time (1, 2, 4, 8) */
  163. #define HEX_GROUP_SIZE 1
  164. /* include ASCII after the hex output */
  165. #define HEX_ASCII 1
  166. /* max number of lines to be printed */
  167. #define HEX_MAX_LINES 2
  168. /* the list of all allocated objects */
  169. static LIST_HEAD(object_list);
  170. /* the list of gray-colored objects (see color_gray comment below) */
  171. static LIST_HEAD(gray_list);
  172. /* search tree for object boundaries */
  173. static struct rb_root object_tree_root = RB_ROOT;
  174. /* rw_lock protecting the access to object_list and object_tree_root */
  175. static DEFINE_RWLOCK(kmemleak_lock);
  176. /* allocation caches for kmemleak internal data */
  177. static struct kmem_cache *object_cache;
  178. static struct kmem_cache *scan_area_cache;
  179. /* set if tracing memory operations is enabled */
  180. static int kmemleak_enabled;
  181. /* same as above but only for the kmemleak_free() callback */
  182. static int kmemleak_free_enabled;
  183. /* set in the late_initcall if there were no errors */
  184. static int kmemleak_initialized;
  185. /* enables or disables early logging of the memory operations */
  186. static int kmemleak_early_log = 1;
  187. /* set if a kmemleak warning was issued */
  188. static int kmemleak_warning;
  189. /* set if a fatal kmemleak error has occurred */
  190. static int kmemleak_error;
  191. /* minimum and maximum address that may be valid pointers */
  192. static unsigned long min_addr = ULONG_MAX;
  193. static unsigned long max_addr;
  194. static struct task_struct *scan_thread;
  195. /* used to avoid reporting of recently allocated objects */
  196. static unsigned long jiffies_min_age;
  197. static unsigned long jiffies_last_scan;
  198. /* delay between automatic memory scannings */
  199. static signed long jiffies_scan_wait;
  200. /* enables or disables the task stacks scanning */
  201. static int kmemleak_stack_scan = 1;
  202. /* protects the memory scanning, parameters and debug/kmemleak file access */
  203. static DEFINE_MUTEX(scan_mutex);
  204. /* setting kmemleak=on, will set this var, skipping the disable */
  205. static int kmemleak_skip_disable;
  206. /* If there are leaks that can be reported */
  207. static bool kmemleak_found_leaks;
  208. /*
  209. * Early object allocation/freeing logging. Kmemleak is initialized after the
  210. * kernel allocator. However, both the kernel allocator and kmemleak may
  211. * allocate memory blocks which need to be tracked. Kmemleak defines an
  212. * arbitrary buffer to hold the allocation/freeing information before it is
  213. * fully initialized.
  214. */
  215. /* kmemleak operation type for early logging */
  216. enum {
  217. KMEMLEAK_ALLOC,
  218. KMEMLEAK_ALLOC_PERCPU,
  219. KMEMLEAK_FREE,
  220. KMEMLEAK_FREE_PART,
  221. KMEMLEAK_FREE_PERCPU,
  222. KMEMLEAK_NOT_LEAK,
  223. KMEMLEAK_IGNORE,
  224. KMEMLEAK_SCAN_AREA,
  225. KMEMLEAK_NO_SCAN
  226. };
  227. /*
  228. * Structure holding the information passed to kmemleak callbacks during the
  229. * early logging.
  230. */
  231. struct early_log {
  232. int op_type; /* kmemleak operation type */
  233. const void *ptr; /* allocated/freed memory block */
  234. size_t size; /* memory block size */
  235. int min_count; /* minimum reference count */
  236. unsigned long trace[MAX_TRACE]; /* stack trace */
  237. unsigned int trace_len; /* stack trace length */
  238. };
  239. /* early logging buffer and current position */
  240. static struct early_log
  241. early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
  242. static int crt_early_log __initdata;
  243. static void kmemleak_disable(void);
  244. /*
  245. * Print a warning and dump the stack trace.
  246. */
  247. #define kmemleak_warn(x...) do { \
  248. pr_warning(x); \
  249. dump_stack(); \
  250. kmemleak_warning = 1; \
  251. } while (0)
  252. /*
  253. * Macro invoked when a serious kmemleak condition occurred and cannot be
  254. * recovered from. Kmemleak will be disabled and further allocation/freeing
  255. * tracing no longer available.
  256. */
  257. #define kmemleak_stop(x...) do { \
  258. kmemleak_warn(x); \
  259. kmemleak_disable(); \
  260. } while (0)
  261. /*
  262. * Printing of the objects hex dump to the seq file. The number of lines to be
  263. * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
  264. * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
  265. * with the object->lock held.
  266. */
  267. static void hex_dump_object(struct seq_file *seq,
  268. struct kmemleak_object *object)
  269. {
  270. const u8 *ptr = (const u8 *)object->pointer;
  271. int i, len, remaining;
  272. unsigned char linebuf[HEX_ROW_SIZE * 5];
  273. /* limit the number of lines to HEX_MAX_LINES */
  274. remaining = len =
  275. min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
  276. seq_printf(seq, " hex dump (first %d bytes):\n", len);
  277. for (i = 0; i < len; i += HEX_ROW_SIZE) {
  278. int linelen = min(remaining, HEX_ROW_SIZE);
  279. remaining -= HEX_ROW_SIZE;
  280. hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
  281. HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
  282. HEX_ASCII);
  283. seq_printf(seq, " %s\n", linebuf);
  284. }
  285. }
  286. /*
  287. * Object colors, encoded with count and min_count:
  288. * - white - orphan object, not enough references to it (count < min_count)
  289. * - gray - not orphan, not marked as false positive (min_count == 0) or
  290. * sufficient references to it (count >= min_count)
  291. * - black - ignore, it doesn't contain references (e.g. text section)
  292. * (min_count == -1). No function defined for this color.
  293. * Newly created objects don't have any color assigned (object->count == -1)
  294. * before the next memory scan when they become white.
  295. */
  296. static bool color_white(const struct kmemleak_object *object)
  297. {
  298. return object->count != KMEMLEAK_BLACK &&
  299. object->count < object->min_count;
  300. }
  301. static bool color_gray(const struct kmemleak_object *object)
  302. {
  303. return object->min_count != KMEMLEAK_BLACK &&
  304. object->count >= object->min_count;
  305. }
  306. /*
  307. * Objects are considered unreferenced only if their color is white, they have
  308. * not be deleted and have a minimum age to avoid false positives caused by
  309. * pointers temporarily stored in CPU registers.
  310. */
  311. static bool unreferenced_object(struct kmemleak_object *object)
  312. {
  313. return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
  314. time_before_eq(object->jiffies + jiffies_min_age,
  315. jiffies_last_scan);
  316. }
  317. /*
  318. * Printing of the unreferenced objects information to the seq file. The
  319. * print_unreferenced function must be called with the object->lock held.
  320. */
  321. static void print_unreferenced(struct seq_file *seq,
  322. struct kmemleak_object *object)
  323. {
  324. int i;
  325. unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
  326. seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
  327. object->pointer, object->size);
  328. seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
  329. object->comm, object->pid, object->jiffies,
  330. msecs_age / 1000, msecs_age % 1000);
  331. hex_dump_object(seq, object);
  332. seq_printf(seq, " backtrace:\n");
  333. for (i = 0; i < object->trace_len; i++) {
  334. void *ptr = (void *)object->trace[i];
  335. seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
  336. }
  337. }
  338. /*
  339. * Print the kmemleak_object information. This function is used mainly for
  340. * debugging special cases when kmemleak operations. It must be called with
  341. * the object->lock held.
  342. */
  343. static void dump_object_info(struct kmemleak_object *object)
  344. {
  345. struct stack_trace trace;
  346. trace.nr_entries = object->trace_len;
  347. trace.entries = object->trace;
  348. pr_notice("Object 0x%08lx (size %zu):\n",
  349. object->pointer, object->size);
  350. pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
  351. object->comm, object->pid, object->jiffies);
  352. pr_notice(" min_count = %d\n", object->min_count);
  353. pr_notice(" count = %d\n", object->count);
  354. pr_notice(" flags = 0x%lx\n", object->flags);
  355. pr_notice(" checksum = %u\n", object->checksum);
  356. pr_notice(" backtrace:\n");
  357. print_stack_trace(&trace, 4);
  358. }
  359. /*
  360. * Look-up a memory block metadata (kmemleak_object) in the object search
  361. * tree based on a pointer value. If alias is 0, only values pointing to the
  362. * beginning of the memory block are allowed. The kmemleak_lock must be held
  363. * when calling this function.
  364. */
  365. static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
  366. {
  367. struct rb_node *rb = object_tree_root.rb_node;
  368. while (rb) {
  369. struct kmemleak_object *object =
  370. rb_entry(rb, struct kmemleak_object, rb_node);
  371. if (ptr < object->pointer)
  372. rb = object->rb_node.rb_left;
  373. else if (object->pointer + object->size <= ptr)
  374. rb = object->rb_node.rb_right;
  375. else if (object->pointer == ptr || alias)
  376. return object;
  377. else {
  378. kmemleak_warn("Found object by alias at 0x%08lx\n",
  379. ptr);
  380. dump_object_info(object);
  381. break;
  382. }
  383. }
  384. return NULL;
  385. }
  386. /*
  387. * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
  388. * that once an object's use_count reached 0, the RCU freeing was already
  389. * registered and the object should no longer be used. This function must be
  390. * called under the protection of rcu_read_lock().
  391. */
  392. static int get_object(struct kmemleak_object *object)
  393. {
  394. return atomic_inc_not_zero(&object->use_count);
  395. }
  396. /*
  397. * RCU callback to free a kmemleak_object.
  398. */
  399. static void free_object_rcu(struct rcu_head *rcu)
  400. {
  401. struct hlist_node *tmp;
  402. struct kmemleak_scan_area *area;
  403. struct kmemleak_object *object =
  404. container_of(rcu, struct kmemleak_object, rcu);
  405. /*
  406. * Once use_count is 0 (guaranteed by put_object), there is no other
  407. * code accessing this object, hence no need for locking.
  408. */
  409. hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
  410. hlist_del(&area->node);
  411. kmem_cache_free(scan_area_cache, area);
  412. }
  413. kmem_cache_free(object_cache, object);
  414. }
  415. /*
  416. * Decrement the object use_count. Once the count is 0, free the object using
  417. * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
  418. * delete_object() path, the delayed RCU freeing ensures that there is no
  419. * recursive call to the kernel allocator. Lock-less RCU object_list traversal
  420. * is also possible.
  421. */
  422. static void put_object(struct kmemleak_object *object)
  423. {
  424. if (!atomic_dec_and_test(&object->use_count))
  425. return;
  426. /* should only get here after delete_object was called */
  427. WARN_ON(object->flags & OBJECT_ALLOCATED);
  428. call_rcu(&object->rcu, free_object_rcu);
  429. }
  430. /*
  431. * Look up an object in the object search tree and increase its use_count.
  432. */
  433. static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
  434. {
  435. unsigned long flags;
  436. struct kmemleak_object *object = NULL;
  437. rcu_read_lock();
  438. read_lock_irqsave(&kmemleak_lock, flags);
  439. if (ptr >= min_addr && ptr < max_addr)
  440. object = lookup_object(ptr, alias);
  441. read_unlock_irqrestore(&kmemleak_lock, flags);
  442. /* check whether the object is still available */
  443. if (object && !get_object(object))
  444. object = NULL;
  445. rcu_read_unlock();
  446. return object;
  447. }
  448. /*
  449. * Save stack trace to the given array of MAX_TRACE size.
  450. */
  451. static int __save_stack_trace(unsigned long *trace)
  452. {
  453. struct stack_trace stack_trace;
  454. stack_trace.max_entries = MAX_TRACE;
  455. stack_trace.nr_entries = 0;
  456. stack_trace.entries = trace;
  457. stack_trace.skip = 2;
  458. save_stack_trace(&stack_trace);
  459. return stack_trace.nr_entries;
  460. }
  461. /*
  462. * Create the metadata (struct kmemleak_object) corresponding to an allocated
  463. * memory block and add it to the object_list and object_tree_root.
  464. */
  465. static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
  466. int min_count, gfp_t gfp)
  467. {
  468. unsigned long flags;
  469. struct kmemleak_object *object, *parent;
  470. struct rb_node **link, *rb_parent;
  471. object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
  472. if (!object) {
  473. pr_warning("Cannot allocate a kmemleak_object structure\n");
  474. kmemleak_disable();
  475. return NULL;
  476. }
  477. INIT_LIST_HEAD(&object->object_list);
  478. INIT_LIST_HEAD(&object->gray_list);
  479. INIT_HLIST_HEAD(&object->area_list);
  480. spin_lock_init(&object->lock);
  481. atomic_set(&object->use_count, 1);
  482. object->flags = OBJECT_ALLOCATED;
  483. object->pointer = ptr;
  484. object->size = size;
  485. object->min_count = min_count;
  486. object->count = 0; /* white color initially */
  487. object->jiffies = jiffies;
  488. object->checksum = 0;
  489. /* task information */
  490. if (in_irq()) {
  491. object->pid = 0;
  492. strncpy(object->comm, "hardirq", sizeof(object->comm));
  493. } else if (in_softirq()) {
  494. object->pid = 0;
  495. strncpy(object->comm, "softirq", sizeof(object->comm));
  496. } else {
  497. object->pid = current->pid;
  498. /*
  499. * There is a small chance of a race with set_task_comm(),
  500. * however using get_task_comm() here may cause locking
  501. * dependency issues with current->alloc_lock. In the worst
  502. * case, the command line is not correct.
  503. */
  504. strncpy(object->comm, current->comm, sizeof(object->comm));
  505. }
  506. /* kernel backtrace */
  507. object->trace_len = __save_stack_trace(object->trace);
  508. write_lock_irqsave(&kmemleak_lock, flags);
  509. min_addr = min(min_addr, ptr);
  510. max_addr = max(max_addr, ptr + size);
  511. link = &object_tree_root.rb_node;
  512. rb_parent = NULL;
  513. while (*link) {
  514. rb_parent = *link;
  515. parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
  516. if (ptr + size <= parent->pointer)
  517. link = &parent->rb_node.rb_left;
  518. else if (parent->pointer + parent->size <= ptr)
  519. link = &parent->rb_node.rb_right;
  520. else {
  521. kmemleak_stop("Cannot insert 0x%lx into the object "
  522. "search tree (overlaps existing)\n",
  523. ptr);
  524. kmem_cache_free(object_cache, object);
  525. object = parent;
  526. spin_lock(&object->lock);
  527. dump_object_info(object);
  528. spin_unlock(&object->lock);
  529. goto out;
  530. }
  531. }
  532. rb_link_node(&object->rb_node, rb_parent, link);
  533. rb_insert_color(&object->rb_node, &object_tree_root);
  534. list_add_tail_rcu(&object->object_list, &object_list);
  535. out:
  536. write_unlock_irqrestore(&kmemleak_lock, flags);
  537. return object;
  538. }
  539. /*
  540. * Remove the metadata (struct kmemleak_object) for a memory block from the
  541. * object_list and object_tree_root and decrement its use_count.
  542. */
  543. static void __delete_object(struct kmemleak_object *object)
  544. {
  545. unsigned long flags;
  546. write_lock_irqsave(&kmemleak_lock, flags);
  547. rb_erase(&object->rb_node, &object_tree_root);
  548. list_del_rcu(&object->object_list);
  549. write_unlock_irqrestore(&kmemleak_lock, flags);
  550. WARN_ON(!(object->flags & OBJECT_ALLOCATED));
  551. WARN_ON(atomic_read(&object->use_count) < 2);
  552. /*
  553. * Locking here also ensures that the corresponding memory block
  554. * cannot be freed when it is being scanned.
  555. */
  556. spin_lock_irqsave(&object->lock, flags);
  557. object->flags &= ~OBJECT_ALLOCATED;
  558. spin_unlock_irqrestore(&object->lock, flags);
  559. put_object(object);
  560. }
  561. /*
  562. * Look up the metadata (struct kmemleak_object) corresponding to ptr and
  563. * delete it.
  564. */
  565. static void delete_object_full(unsigned long ptr)
  566. {
  567. struct kmemleak_object *object;
  568. object = find_and_get_object(ptr, 0);
  569. if (!object) {
  570. #ifdef DEBUG
  571. kmemleak_warn("Freeing unknown object at 0x%08lx\n",
  572. ptr);
  573. #endif
  574. return;
  575. }
  576. __delete_object(object);
  577. put_object(object);
  578. }
  579. /*
  580. * Look up the metadata (struct kmemleak_object) corresponding to ptr and
  581. * delete it. If the memory block is partially freed, the function may create
  582. * additional metadata for the remaining parts of the block.
  583. */
  584. static void delete_object_part(unsigned long ptr, size_t size)
  585. {
  586. struct kmemleak_object *object;
  587. unsigned long start, end;
  588. object = find_and_get_object(ptr, 1);
  589. if (!object) {
  590. #ifdef DEBUG
  591. kmemleak_warn("Partially freeing unknown object at 0x%08lx "
  592. "(size %zu)\n", ptr, size);
  593. #endif
  594. return;
  595. }
  596. __delete_object(object);
  597. /*
  598. * Create one or two objects that may result from the memory block
  599. * split. Note that partial freeing is only done by free_bootmem() and
  600. * this happens before kmemleak_init() is called. The path below is
  601. * only executed during early log recording in kmemleak_init(), so
  602. * GFP_KERNEL is enough.
  603. */
  604. start = object->pointer;
  605. end = object->pointer + object->size;
  606. if (ptr > start)
  607. create_object(start, ptr - start, object->min_count,
  608. GFP_KERNEL);
  609. if (ptr + size < end)
  610. create_object(ptr + size, end - ptr - size, object->min_count,
  611. GFP_KERNEL);
  612. put_object(object);
  613. }
  614. static void __paint_it(struct kmemleak_object *object, int color)
  615. {
  616. object->min_count = color;
  617. if (color == KMEMLEAK_BLACK)
  618. object->flags |= OBJECT_NO_SCAN;
  619. }
  620. static void paint_it(struct kmemleak_object *object, int color)
  621. {
  622. unsigned long flags;
  623. spin_lock_irqsave(&object->lock, flags);
  624. __paint_it(object, color);
  625. spin_unlock_irqrestore(&object->lock, flags);
  626. }
  627. static void paint_ptr(unsigned long ptr, int color)
  628. {
  629. struct kmemleak_object *object;
  630. object = find_and_get_object(ptr, 0);
  631. if (!object) {
  632. kmemleak_warn("Trying to color unknown object "
  633. "at 0x%08lx as %s\n", ptr,
  634. (color == KMEMLEAK_GREY) ? "Grey" :
  635. (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
  636. return;
  637. }
  638. paint_it(object, color);
  639. put_object(object);
  640. }
  641. /*
  642. * Mark an object permanently as gray-colored so that it can no longer be
  643. * reported as a leak. This is used in general to mark a false positive.
  644. */
  645. static void make_gray_object(unsigned long ptr)
  646. {
  647. paint_ptr(ptr, KMEMLEAK_GREY);
  648. }
  649. /*
  650. * Mark the object as black-colored so that it is ignored from scans and
  651. * reporting.
  652. */
  653. static void make_black_object(unsigned long ptr)
  654. {
  655. paint_ptr(ptr, KMEMLEAK_BLACK);
  656. }
  657. /*
  658. * Add a scanning area to the object. If at least one such area is added,
  659. * kmemleak will only scan these ranges rather than the whole memory block.
  660. */
  661. static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
  662. {
  663. unsigned long flags;
  664. struct kmemleak_object *object;
  665. struct kmemleak_scan_area *area;
  666. object = find_and_get_object(ptr, 1);
  667. if (!object) {
  668. kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
  669. ptr);
  670. return;
  671. }
  672. area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
  673. if (!area) {
  674. pr_warning("Cannot allocate a scan area\n");
  675. goto out;
  676. }
  677. spin_lock_irqsave(&object->lock, flags);
  678. if (size == SIZE_MAX) {
  679. size = object->pointer + object->size - ptr;
  680. } else if (ptr + size > object->pointer + object->size) {
  681. kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
  682. dump_object_info(object);
  683. kmem_cache_free(scan_area_cache, area);
  684. goto out_unlock;
  685. }
  686. INIT_HLIST_NODE(&area->node);
  687. area->start = ptr;
  688. area->size = size;
  689. hlist_add_head(&area->node, &object->area_list);
  690. out_unlock:
  691. spin_unlock_irqrestore(&object->lock, flags);
  692. out:
  693. put_object(object);
  694. }
  695. /*
  696. * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
  697. * pointer. Such object will not be scanned by kmemleak but references to it
  698. * are searched.
  699. */
  700. static void object_no_scan(unsigned long ptr)
  701. {
  702. unsigned long flags;
  703. struct kmemleak_object *object;
  704. object = find_and_get_object(ptr, 0);
  705. if (!object) {
  706. kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
  707. return;
  708. }
  709. spin_lock_irqsave(&object->lock, flags);
  710. object->flags |= OBJECT_NO_SCAN;
  711. spin_unlock_irqrestore(&object->lock, flags);
  712. put_object(object);
  713. }
  714. /*
  715. * Log an early kmemleak_* call to the early_log buffer. These calls will be
  716. * processed later once kmemleak is fully initialized.
  717. */
  718. static void __init log_early(int op_type, const void *ptr, size_t size,
  719. int min_count)
  720. {
  721. unsigned long flags;
  722. struct early_log *log;
  723. if (kmemleak_error) {
  724. /* kmemleak stopped recording, just count the requests */
  725. crt_early_log++;
  726. return;
  727. }
  728. if (crt_early_log >= ARRAY_SIZE(early_log)) {
  729. kmemleak_disable();
  730. return;
  731. }
  732. /*
  733. * There is no need for locking since the kernel is still in UP mode
  734. * at this stage. Disabling the IRQs is enough.
  735. */
  736. local_irq_save(flags);
  737. log = &early_log[crt_early_log];
  738. log->op_type = op_type;
  739. log->ptr = ptr;
  740. log->size = size;
  741. log->min_count = min_count;
  742. log->trace_len = __save_stack_trace(log->trace);
  743. crt_early_log++;
  744. local_irq_restore(flags);
  745. }
  746. /*
  747. * Log an early allocated block and populate the stack trace.
  748. */
  749. static void early_alloc(struct early_log *log)
  750. {
  751. struct kmemleak_object *object;
  752. unsigned long flags;
  753. int i;
  754. if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
  755. return;
  756. /*
  757. * RCU locking needed to ensure object is not freed via put_object().
  758. */
  759. rcu_read_lock();
  760. object = create_object((unsigned long)log->ptr, log->size,
  761. log->min_count, GFP_ATOMIC);
  762. if (!object)
  763. goto out;
  764. spin_lock_irqsave(&object->lock, flags);
  765. for (i = 0; i < log->trace_len; i++)
  766. object->trace[i] = log->trace[i];
  767. object->trace_len = log->trace_len;
  768. spin_unlock_irqrestore(&object->lock, flags);
  769. out:
  770. rcu_read_unlock();
  771. }
  772. /*
  773. * Log an early allocated block and populate the stack trace.
  774. */
  775. static void early_alloc_percpu(struct early_log *log)
  776. {
  777. unsigned int cpu;
  778. const void __percpu *ptr = log->ptr;
  779. for_each_possible_cpu(cpu) {
  780. log->ptr = per_cpu_ptr(ptr, cpu);
  781. early_alloc(log);
  782. }
  783. }
  784. /**
  785. * kmemleak_alloc - register a newly allocated object
  786. * @ptr: pointer to beginning of the object
  787. * @size: size of the object
  788. * @min_count: minimum number of references to this object. If during memory
  789. * scanning a number of references less than @min_count is found,
  790. * the object is reported as a memory leak. If @min_count is 0,
  791. * the object is never reported as a leak. If @min_count is -1,
  792. * the object is ignored (not scanned and not reported as a leak)
  793. * @gfp: kmalloc() flags used for kmemleak internal memory allocations
  794. *
  795. * This function is called from the kernel allocators when a new object
  796. * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
  797. */
  798. void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
  799. gfp_t gfp)
  800. {
  801. pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
  802. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  803. create_object((unsigned long)ptr, size, min_count, gfp);
  804. else if (kmemleak_early_log)
  805. log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
  806. }
  807. EXPORT_SYMBOL_GPL(kmemleak_alloc);
  808. /**
  809. * kmemleak_alloc_percpu - register a newly allocated __percpu object
  810. * @ptr: __percpu pointer to beginning of the object
  811. * @size: size of the object
  812. * @gfp: flags used for kmemleak internal memory allocations
  813. *
  814. * This function is called from the kernel percpu allocator when a new object
  815. * (memory block) is allocated (alloc_percpu).
  816. */
  817. void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
  818. gfp_t gfp)
  819. {
  820. unsigned int cpu;
  821. pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
  822. /*
  823. * Percpu allocations are only scanned and not reported as leaks
  824. * (min_count is set to 0).
  825. */
  826. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  827. for_each_possible_cpu(cpu)
  828. create_object((unsigned long)per_cpu_ptr(ptr, cpu),
  829. size, 0, gfp);
  830. else if (kmemleak_early_log)
  831. log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
  832. }
  833. EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
  834. /**
  835. * kmemleak_free - unregister a previously registered object
  836. * @ptr: pointer to beginning of the object
  837. *
  838. * This function is called from the kernel allocators when an object (memory
  839. * block) is freed (kmem_cache_free, kfree, vfree etc.).
  840. */
  841. void __ref kmemleak_free(const void *ptr)
  842. {
  843. pr_debug("%s(0x%p)\n", __func__, ptr);
  844. if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
  845. delete_object_full((unsigned long)ptr);
  846. else if (kmemleak_early_log)
  847. log_early(KMEMLEAK_FREE, ptr, 0, 0);
  848. }
  849. EXPORT_SYMBOL_GPL(kmemleak_free);
  850. /**
  851. * kmemleak_free_part - partially unregister a previously registered object
  852. * @ptr: pointer to the beginning or inside the object. This also
  853. * represents the start of the range to be freed
  854. * @size: size to be unregistered
  855. *
  856. * This function is called when only a part of a memory block is freed
  857. * (usually from the bootmem allocator).
  858. */
  859. void __ref kmemleak_free_part(const void *ptr, size_t size)
  860. {
  861. pr_debug("%s(0x%p)\n", __func__, ptr);
  862. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  863. delete_object_part((unsigned long)ptr, size);
  864. else if (kmemleak_early_log)
  865. log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
  866. }
  867. EXPORT_SYMBOL_GPL(kmemleak_free_part);
  868. /**
  869. * kmemleak_free_percpu - unregister a previously registered __percpu object
  870. * @ptr: __percpu pointer to beginning of the object
  871. *
  872. * This function is called from the kernel percpu allocator when an object
  873. * (memory block) is freed (free_percpu).
  874. */
  875. void __ref kmemleak_free_percpu(const void __percpu *ptr)
  876. {
  877. unsigned int cpu;
  878. pr_debug("%s(0x%p)\n", __func__, ptr);
  879. if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
  880. for_each_possible_cpu(cpu)
  881. delete_object_full((unsigned long)per_cpu_ptr(ptr,
  882. cpu));
  883. else if (kmemleak_early_log)
  884. log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
  885. }
  886. EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
  887. /**
  888. * kmemleak_update_trace - update object allocation stack trace
  889. * @ptr: pointer to beginning of the object
  890. *
  891. * Override the object allocation stack trace for cases where the actual
  892. * allocation place is not always useful.
  893. */
  894. void __ref kmemleak_update_trace(const void *ptr)
  895. {
  896. struct kmemleak_object *object;
  897. unsigned long flags;
  898. pr_debug("%s(0x%p)\n", __func__, ptr);
  899. if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
  900. return;
  901. object = find_and_get_object((unsigned long)ptr, 1);
  902. if (!object) {
  903. #ifdef DEBUG
  904. kmemleak_warn("Updating stack trace for unknown object at %p\n",
  905. ptr);
  906. #endif
  907. return;
  908. }
  909. spin_lock_irqsave(&object->lock, flags);
  910. object->trace_len = __save_stack_trace(object->trace);
  911. spin_unlock_irqrestore(&object->lock, flags);
  912. put_object(object);
  913. }
  914. EXPORT_SYMBOL(kmemleak_update_trace);
  915. /**
  916. * kmemleak_not_leak - mark an allocated object as false positive
  917. * @ptr: pointer to beginning of the object
  918. *
  919. * Calling this function on an object will cause the memory block to no longer
  920. * be reported as leak and always be scanned.
  921. */
  922. void __ref kmemleak_not_leak(const void *ptr)
  923. {
  924. pr_debug("%s(0x%p)\n", __func__, ptr);
  925. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  926. make_gray_object((unsigned long)ptr);
  927. else if (kmemleak_early_log)
  928. log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
  929. }
  930. EXPORT_SYMBOL(kmemleak_not_leak);
  931. /**
  932. * kmemleak_ignore - ignore an allocated object
  933. * @ptr: pointer to beginning of the object
  934. *
  935. * Calling this function on an object will cause the memory block to be
  936. * ignored (not scanned and not reported as a leak). This is usually done when
  937. * it is known that the corresponding block is not a leak and does not contain
  938. * any references to other allocated memory blocks.
  939. */
  940. void __ref kmemleak_ignore(const void *ptr)
  941. {
  942. pr_debug("%s(0x%p)\n", __func__, ptr);
  943. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  944. make_black_object((unsigned long)ptr);
  945. else if (kmemleak_early_log)
  946. log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
  947. }
  948. EXPORT_SYMBOL(kmemleak_ignore);
  949. /**
  950. * kmemleak_scan_area - limit the range to be scanned in an allocated object
  951. * @ptr: pointer to beginning or inside the object. This also
  952. * represents the start of the scan area
  953. * @size: size of the scan area
  954. * @gfp: kmalloc() flags used for kmemleak internal memory allocations
  955. *
  956. * This function is used when it is known that only certain parts of an object
  957. * contain references to other objects. Kmemleak will only scan these areas
  958. * reducing the number false negatives.
  959. */
  960. void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
  961. {
  962. pr_debug("%s(0x%p)\n", __func__, ptr);
  963. if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
  964. add_scan_area((unsigned long)ptr, size, gfp);
  965. else if (kmemleak_early_log)
  966. log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
  967. }
  968. EXPORT_SYMBOL(kmemleak_scan_area);
  969. /**
  970. * kmemleak_no_scan - do not scan an allocated object
  971. * @ptr: pointer to beginning of the object
  972. *
  973. * This function notifies kmemleak not to scan the given memory block. Useful
  974. * in situations where it is known that the given object does not contain any
  975. * references to other objects. Kmemleak will not scan such objects reducing
  976. * the number of false negatives.
  977. */
  978. void __ref kmemleak_no_scan(const void *ptr)
  979. {
  980. pr_debug("%s(0x%p)\n", __func__, ptr);
  981. if (kmemleak_enabled && ptr && !IS_ERR(ptr))
  982. object_no_scan((unsigned long)ptr);
  983. else if (kmemleak_early_log)
  984. log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
  985. }
  986. EXPORT_SYMBOL(kmemleak_no_scan);
  987. /*
  988. * Update an object's checksum and return true if it was modified.
  989. */
  990. static bool update_checksum(struct kmemleak_object *object)
  991. {
  992. u32 old_csum = object->checksum;
  993. if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
  994. return false;
  995. object->checksum = crc32(0, (void *)object->pointer, object->size);
  996. return object->checksum != old_csum;
  997. }
  998. /*
  999. * Memory scanning is a long process and it needs to be interruptable. This
  1000. * function checks whether such interrupt condition occurred.
  1001. */
  1002. static int scan_should_stop(void)
  1003. {
  1004. if (!kmemleak_enabled)
  1005. return 1;
  1006. /*
  1007. * This function may be called from either process or kthread context,
  1008. * hence the need to check for both stop conditions.
  1009. */
  1010. if (current->mm)
  1011. return signal_pending(current);
  1012. else
  1013. return kthread_should_stop();
  1014. return 0;
  1015. }
  1016. /*
  1017. * Scan a memory block (exclusive range) for valid pointers and add those
  1018. * found to the gray list.
  1019. */
  1020. static void scan_block(void *_start, void *_end,
  1021. struct kmemleak_object *scanned, int allow_resched)
  1022. {
  1023. unsigned long *ptr;
  1024. unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
  1025. unsigned long *end = _end - (BYTES_PER_POINTER - 1);
  1026. for (ptr = start; ptr < end; ptr++) {
  1027. struct kmemleak_object *object;
  1028. unsigned long flags;
  1029. unsigned long pointer;
  1030. if (allow_resched)
  1031. cond_resched();
  1032. if (scan_should_stop())
  1033. break;
  1034. /* don't scan uninitialized memory */
  1035. if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
  1036. BYTES_PER_POINTER))
  1037. continue;
  1038. pointer = *ptr;
  1039. object = find_and_get_object(pointer, 1);
  1040. if (!object)
  1041. continue;
  1042. if (object == scanned) {
  1043. /* self referenced, ignore */
  1044. put_object(object);
  1045. continue;
  1046. }
  1047. /*
  1048. * Avoid the lockdep recursive warning on object->lock being
  1049. * previously acquired in scan_object(). These locks are
  1050. * enclosed by scan_mutex.
  1051. */
  1052. spin_lock_irqsave_nested(&object->lock, flags,
  1053. SINGLE_DEPTH_NESTING);
  1054. if (!color_white(object)) {
  1055. /* non-orphan, ignored or new */
  1056. spin_unlock_irqrestore(&object->lock, flags);
  1057. put_object(object);
  1058. continue;
  1059. }
  1060. /*
  1061. * Increase the object's reference count (number of pointers
  1062. * to the memory block). If this count reaches the required
  1063. * minimum, the object's color will become gray and it will be
  1064. * added to the gray_list.
  1065. */
  1066. object->count++;
  1067. if (color_gray(object)) {
  1068. list_add_tail(&object->gray_list, &gray_list);
  1069. spin_unlock_irqrestore(&object->lock, flags);
  1070. continue;
  1071. }
  1072. spin_unlock_irqrestore(&object->lock, flags);
  1073. put_object(object);
  1074. }
  1075. }
  1076. /*
  1077. * Scan a memory block corresponding to a kmemleak_object. A condition is
  1078. * that object->use_count >= 1.
  1079. */
  1080. static void scan_object(struct kmemleak_object *object)
  1081. {
  1082. struct kmemleak_scan_area *area;
  1083. unsigned long flags;
  1084. /*
  1085. * Once the object->lock is acquired, the corresponding memory block
  1086. * cannot be freed (the same lock is acquired in delete_object).
  1087. */
  1088. spin_lock_irqsave(&object->lock, flags);
  1089. if (object->flags & OBJECT_NO_SCAN)
  1090. goto out;
  1091. if (!(object->flags & OBJECT_ALLOCATED))
  1092. /* already freed object */
  1093. goto out;
  1094. if (hlist_empty(&object->area_list)) {
  1095. void *start = (void *)object->pointer;
  1096. void *end = (void *)(object->pointer + object->size);
  1097. while (start < end && (object->flags & OBJECT_ALLOCATED) &&
  1098. !(object->flags & OBJECT_NO_SCAN)) {
  1099. scan_block(start, min(start + MAX_SCAN_SIZE, end),
  1100. object, 0);
  1101. start += MAX_SCAN_SIZE;
  1102. spin_unlock_irqrestore(&object->lock, flags);
  1103. cond_resched();
  1104. spin_lock_irqsave(&object->lock, flags);
  1105. }
  1106. } else
  1107. hlist_for_each_entry(area, &object->area_list, node)
  1108. scan_block((void *)area->start,
  1109. (void *)(area->start + area->size),
  1110. object, 0);
  1111. out:
  1112. spin_unlock_irqrestore(&object->lock, flags);
  1113. }
  1114. /*
  1115. * Scan the objects already referenced (gray objects). More objects will be
  1116. * referenced and, if there are no memory leaks, all the objects are scanned.
  1117. */
  1118. static void scan_gray_list(void)
  1119. {
  1120. struct kmemleak_object *object, *tmp;
  1121. /*
  1122. * The list traversal is safe for both tail additions and removals
  1123. * from inside the loop. The kmemleak objects cannot be freed from
  1124. * outside the loop because their use_count was incremented.
  1125. */
  1126. object = list_entry(gray_list.next, typeof(*object), gray_list);
  1127. while (&object->gray_list != &gray_list) {
  1128. cond_resched();
  1129. /* may add new objects to the list */
  1130. if (!scan_should_stop())
  1131. scan_object(object);
  1132. tmp = list_entry(object->gray_list.next, typeof(*object),
  1133. gray_list);
  1134. /* remove the object from the list and release it */
  1135. list_del(&object->gray_list);
  1136. put_object(object);
  1137. object = tmp;
  1138. }
  1139. WARN_ON(!list_empty(&gray_list));
  1140. }
  1141. /*
  1142. * Scan data sections and all the referenced memory blocks allocated via the
  1143. * kernel's standard allocators. This function must be called with the
  1144. * scan_mutex held.
  1145. */
  1146. static void kmemleak_scan(void)
  1147. {
  1148. unsigned long flags;
  1149. struct kmemleak_object *object;
  1150. int i;
  1151. int new_leaks = 0;
  1152. jiffies_last_scan = jiffies;
  1153. /* prepare the kmemleak_object's */
  1154. rcu_read_lock();
  1155. list_for_each_entry_rcu(object, &object_list, object_list) {
  1156. spin_lock_irqsave(&object->lock, flags);
  1157. #ifdef DEBUG
  1158. /*
  1159. * With a few exceptions there should be a maximum of
  1160. * 1 reference to any object at this point.
  1161. */
  1162. if (atomic_read(&object->use_count) > 1) {
  1163. pr_debug("object->use_count = %d\n",
  1164. atomic_read(&object->use_count));
  1165. dump_object_info(object);
  1166. }
  1167. #endif
  1168. /* reset the reference count (whiten the object) */
  1169. object->count = 0;
  1170. if (color_gray(object) && get_object(object))
  1171. list_add_tail(&object->gray_list, &gray_list);
  1172. spin_unlock_irqrestore(&object->lock, flags);
  1173. }
  1174. rcu_read_unlock();
  1175. /* data/bss scanning */
  1176. scan_block(_sdata, _edata, NULL, 1);
  1177. scan_block(__bss_start, __bss_stop, NULL, 1);
  1178. #ifdef CONFIG_SMP
  1179. /* per-cpu sections scanning */
  1180. for_each_possible_cpu(i)
  1181. scan_block(__per_cpu_start + per_cpu_offset(i),
  1182. __per_cpu_end + per_cpu_offset(i), NULL, 1);
  1183. #endif
  1184. /*
  1185. * Struct page scanning for each node.
  1186. */
  1187. get_online_mems();
  1188. for_each_online_node(i) {
  1189. unsigned long start_pfn = node_start_pfn(i);
  1190. unsigned long end_pfn = node_end_pfn(i);
  1191. unsigned long pfn;
  1192. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  1193. struct page *page;
  1194. if (!pfn_valid(pfn))
  1195. continue;
  1196. page = pfn_to_page(pfn);
  1197. /* only scan if page is in use */
  1198. if (page_count(page) == 0)
  1199. continue;
  1200. scan_block(page, page + 1, NULL, 1);
  1201. }
  1202. }
  1203. put_online_mems();
  1204. /*
  1205. * Scanning the task stacks (may introduce false negatives).
  1206. */
  1207. if (kmemleak_stack_scan) {
  1208. struct task_struct *p, *g;
  1209. read_lock(&tasklist_lock);
  1210. do_each_thread(g, p) {
  1211. scan_block(task_stack_page(p), task_stack_page(p) +
  1212. THREAD_SIZE, NULL, 0);
  1213. } while_each_thread(g, p);
  1214. read_unlock(&tasklist_lock);
  1215. }
  1216. /*
  1217. * Scan the objects already referenced from the sections scanned
  1218. * above.
  1219. */
  1220. scan_gray_list();
  1221. /*
  1222. * Check for new or unreferenced objects modified since the previous
  1223. * scan and color them gray until the next scan.
  1224. */
  1225. rcu_read_lock();
  1226. list_for_each_entry_rcu(object, &object_list, object_list) {
  1227. spin_lock_irqsave(&object->lock, flags);
  1228. if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
  1229. && update_checksum(object) && get_object(object)) {
  1230. /* color it gray temporarily */
  1231. object->count = object->min_count;
  1232. list_add_tail(&object->gray_list, &gray_list);
  1233. }
  1234. spin_unlock_irqrestore(&object->lock, flags);
  1235. }
  1236. rcu_read_unlock();
  1237. /*
  1238. * Re-scan the gray list for modified unreferenced objects.
  1239. */
  1240. scan_gray_list();
  1241. /*
  1242. * If scanning was stopped do not report any new unreferenced objects.
  1243. */
  1244. if (scan_should_stop())
  1245. return;
  1246. /*
  1247. * Scanning result reporting.
  1248. */
  1249. rcu_read_lock();
  1250. list_for_each_entry_rcu(object, &object_list, object_list) {
  1251. spin_lock_irqsave(&object->lock, flags);
  1252. if (unreferenced_object(object) &&
  1253. !(object->flags & OBJECT_REPORTED)) {
  1254. object->flags |= OBJECT_REPORTED;
  1255. new_leaks++;
  1256. }
  1257. spin_unlock_irqrestore(&object->lock, flags);
  1258. }
  1259. rcu_read_unlock();
  1260. if (new_leaks) {
  1261. kmemleak_found_leaks = true;
  1262. pr_info("%d new suspected memory leaks (see "
  1263. "/sys/kernel/debug/kmemleak)\n", new_leaks);
  1264. }
  1265. }
  1266. /*
  1267. * Thread function performing automatic memory scanning. Unreferenced objects
  1268. * at the end of a memory scan are reported but only the first time.
  1269. */
  1270. static int kmemleak_scan_thread(void *arg)
  1271. {
  1272. static int first_run = 1;
  1273. pr_info("Automatic memory scanning thread started\n");
  1274. set_user_nice(current, 10);
  1275. /*
  1276. * Wait before the first scan to allow the system to fully initialize.
  1277. */
  1278. if (first_run) {
  1279. first_run = 0;
  1280. ssleep(SECS_FIRST_SCAN);
  1281. }
  1282. while (!kthread_should_stop()) {
  1283. signed long timeout = jiffies_scan_wait;
  1284. mutex_lock(&scan_mutex);
  1285. kmemleak_scan();
  1286. mutex_unlock(&scan_mutex);
  1287. /* wait before the next scan */
  1288. while (timeout && !kthread_should_stop())
  1289. timeout = schedule_timeout_interruptible(timeout);
  1290. }
  1291. pr_info("Automatic memory scanning thread ended\n");
  1292. return 0;
  1293. }
  1294. /*
  1295. * Start the automatic memory scanning thread. This function must be called
  1296. * with the scan_mutex held.
  1297. */
  1298. static void start_scan_thread(void)
  1299. {
  1300. if (scan_thread)
  1301. return;
  1302. scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
  1303. if (IS_ERR(scan_thread)) {
  1304. pr_warning("Failed to create the scan thread\n");
  1305. scan_thread = NULL;
  1306. }
  1307. }
  1308. /*
  1309. * Stop the automatic memory scanning thread. This function must be called
  1310. * with the scan_mutex held.
  1311. */
  1312. static void stop_scan_thread(void)
  1313. {
  1314. if (scan_thread) {
  1315. kthread_stop(scan_thread);
  1316. scan_thread = NULL;
  1317. }
  1318. }
  1319. /*
  1320. * Iterate over the object_list and return the first valid object at or after
  1321. * the required position with its use_count incremented. The function triggers
  1322. * a memory scanning when the pos argument points to the first position.
  1323. */
  1324. static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
  1325. {
  1326. struct kmemleak_object *object;
  1327. loff_t n = *pos;
  1328. int err;
  1329. err = mutex_lock_interruptible(&scan_mutex);
  1330. if (err < 0)
  1331. return ERR_PTR(err);
  1332. rcu_read_lock();
  1333. list_for_each_entry_rcu(object, &object_list, object_list) {
  1334. if (n-- > 0)
  1335. continue;
  1336. if (get_object(object))
  1337. goto out;
  1338. }
  1339. object = NULL;
  1340. out:
  1341. return object;
  1342. }
  1343. /*
  1344. * Return the next object in the object_list. The function decrements the
  1345. * use_count of the previous object and increases that of the next one.
  1346. */
  1347. static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1348. {
  1349. struct kmemleak_object *prev_obj = v;
  1350. struct kmemleak_object *next_obj = NULL;
  1351. struct kmemleak_object *obj = prev_obj;
  1352. ++(*pos);
  1353. list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
  1354. if (get_object(obj)) {
  1355. next_obj = obj;
  1356. break;
  1357. }
  1358. }
  1359. put_object(prev_obj);
  1360. return next_obj;
  1361. }
  1362. /*
  1363. * Decrement the use_count of the last object required, if any.
  1364. */
  1365. static void kmemleak_seq_stop(struct seq_file *seq, void *v)
  1366. {
  1367. if (!IS_ERR(v)) {
  1368. /*
  1369. * kmemleak_seq_start may return ERR_PTR if the scan_mutex
  1370. * waiting was interrupted, so only release it if !IS_ERR.
  1371. */
  1372. rcu_read_unlock();
  1373. mutex_unlock(&scan_mutex);
  1374. if (v)
  1375. put_object(v);
  1376. }
  1377. }
  1378. /*
  1379. * Print the information for an unreferenced object to the seq file.
  1380. */
  1381. static int kmemleak_seq_show(struct seq_file *seq, void *v)
  1382. {
  1383. struct kmemleak_object *object = v;
  1384. unsigned long flags;
  1385. spin_lock_irqsave(&object->lock, flags);
  1386. if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
  1387. print_unreferenced(seq, object);
  1388. spin_unlock_irqrestore(&object->lock, flags);
  1389. return 0;
  1390. }
  1391. static const struct seq_operations kmemleak_seq_ops = {
  1392. .start = kmemleak_seq_start,
  1393. .next = kmemleak_seq_next,
  1394. .stop = kmemleak_seq_stop,
  1395. .show = kmemleak_seq_show,
  1396. };
  1397. static int kmemleak_open(struct inode *inode, struct file *file)
  1398. {
  1399. return seq_open(file, &kmemleak_seq_ops);
  1400. }
  1401. static int dump_str_object_info(const char *str)
  1402. {
  1403. unsigned long flags;
  1404. struct kmemleak_object *object;
  1405. unsigned long addr;
  1406. if (kstrtoul(str, 0, &addr))
  1407. return -EINVAL;
  1408. object = find_and_get_object(addr, 0);
  1409. if (!object) {
  1410. pr_info("Unknown object at 0x%08lx\n", addr);
  1411. return -EINVAL;
  1412. }
  1413. spin_lock_irqsave(&object->lock, flags);
  1414. dump_object_info(object);
  1415. spin_unlock_irqrestore(&object->lock, flags);
  1416. put_object(object);
  1417. return 0;
  1418. }
  1419. /*
  1420. * We use grey instead of black to ensure we can do future scans on the same
  1421. * objects. If we did not do future scans these black objects could
  1422. * potentially contain references to newly allocated objects in the future and
  1423. * we'd end up with false positives.
  1424. */
  1425. static void kmemleak_clear(void)
  1426. {
  1427. struct kmemleak_object *object;
  1428. unsigned long flags;
  1429. rcu_read_lock();
  1430. list_for_each_entry_rcu(object, &object_list, object_list) {
  1431. spin_lock_irqsave(&object->lock, flags);
  1432. if ((object->flags & OBJECT_REPORTED) &&
  1433. unreferenced_object(object))
  1434. __paint_it(object, KMEMLEAK_GREY);
  1435. spin_unlock_irqrestore(&object->lock, flags);
  1436. }
  1437. rcu_read_unlock();
  1438. kmemleak_found_leaks = false;
  1439. }
  1440. static void __kmemleak_do_cleanup(void);
  1441. /*
  1442. * File write operation to configure kmemleak at run-time. The following
  1443. * commands can be written to the /sys/kernel/debug/kmemleak file:
  1444. * off - disable kmemleak (irreversible)
  1445. * stack=on - enable the task stacks scanning
  1446. * stack=off - disable the tasks stacks scanning
  1447. * scan=on - start the automatic memory scanning thread
  1448. * scan=off - stop the automatic memory scanning thread
  1449. * scan=... - set the automatic memory scanning period in seconds (0 to
  1450. * disable it)
  1451. * scan - trigger a memory scan
  1452. * clear - mark all current reported unreferenced kmemleak objects as
  1453. * grey to ignore printing them, or free all kmemleak objects
  1454. * if kmemleak has been disabled.
  1455. * dump=... - dump information about the object found at the given address
  1456. */
  1457. static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
  1458. size_t size, loff_t *ppos)
  1459. {
  1460. char buf[64];
  1461. int buf_size;
  1462. int ret;
  1463. buf_size = min(size, (sizeof(buf) - 1));
  1464. if (strncpy_from_user(buf, user_buf, buf_size) < 0)
  1465. return -EFAULT;
  1466. buf[buf_size] = 0;
  1467. ret = mutex_lock_interruptible(&scan_mutex);
  1468. if (ret < 0)
  1469. return ret;
  1470. if (strncmp(buf, "clear", 5) == 0) {
  1471. if (kmemleak_enabled)
  1472. kmemleak_clear();
  1473. else
  1474. __kmemleak_do_cleanup();
  1475. goto out;
  1476. }
  1477. if (!kmemleak_enabled) {
  1478. ret = -EBUSY;
  1479. goto out;
  1480. }
  1481. if (strncmp(buf, "off", 3) == 0)
  1482. kmemleak_disable();
  1483. else if (strncmp(buf, "stack=on", 8) == 0)
  1484. kmemleak_stack_scan = 1;
  1485. else if (strncmp(buf, "stack=off", 9) == 0)
  1486. kmemleak_stack_scan = 0;
  1487. else if (strncmp(buf, "scan=on", 7) == 0)
  1488. start_scan_thread();
  1489. else if (strncmp(buf, "scan=off", 8) == 0)
  1490. stop_scan_thread();
  1491. else if (strncmp(buf, "scan=", 5) == 0) {
  1492. unsigned long secs;
  1493. ret = kstrtoul(buf + 5, 0, &secs);
  1494. if (ret < 0)
  1495. goto out;
  1496. stop_scan_thread();
  1497. if (secs) {
  1498. jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
  1499. start_scan_thread();
  1500. }
  1501. } else if (strncmp(buf, "scan", 4) == 0)
  1502. kmemleak_scan();
  1503. else if (strncmp(buf, "dump=", 5) == 0)
  1504. ret = dump_str_object_info(buf + 5);
  1505. else
  1506. ret = -EINVAL;
  1507. out:
  1508. mutex_unlock(&scan_mutex);
  1509. if (ret < 0)
  1510. return ret;
  1511. /* ignore the rest of the buffer, only one command at a time */
  1512. *ppos += size;
  1513. return size;
  1514. }
  1515. static const struct file_operations kmemleak_fops = {
  1516. .owner = THIS_MODULE,
  1517. .open = kmemleak_open,
  1518. .read = seq_read,
  1519. .write = kmemleak_write,
  1520. .llseek = seq_lseek,
  1521. .release = seq_release,
  1522. };
  1523. static void __kmemleak_do_cleanup(void)
  1524. {
  1525. struct kmemleak_object *object;
  1526. rcu_read_lock();
  1527. list_for_each_entry_rcu(object, &object_list, object_list)
  1528. delete_object_full(object->pointer);
  1529. rcu_read_unlock();
  1530. }
  1531. /*
  1532. * Stop the memory scanning thread and free the kmemleak internal objects if
  1533. * no previous scan thread (otherwise, kmemleak may still have some useful
  1534. * information on memory leaks).
  1535. */
  1536. static void kmemleak_do_cleanup(struct work_struct *work)
  1537. {
  1538. mutex_lock(&scan_mutex);
  1539. stop_scan_thread();
  1540. /*
  1541. * Once the scan thread has stopped, it is safe to no longer track
  1542. * object freeing. Ordering of the scan thread stopping and the memory
  1543. * accesses below is guaranteed by the kthread_stop() function.
  1544. */
  1545. kmemleak_free_enabled = 0;
  1546. if (!kmemleak_found_leaks)
  1547. __kmemleak_do_cleanup();
  1548. else
  1549. pr_info("Kmemleak disabled without freeing internal data. "
  1550. "Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
  1551. mutex_unlock(&scan_mutex);
  1552. }
  1553. static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
  1554. /*
  1555. * Disable kmemleak. No memory allocation/freeing will be traced once this
  1556. * function is called. Disabling kmemleak is an irreversible operation.
  1557. */
  1558. static void kmemleak_disable(void)
  1559. {
  1560. /* atomically check whether it was already invoked */
  1561. if (cmpxchg(&kmemleak_error, 0, 1))
  1562. return;
  1563. /* stop any memory operation tracing */
  1564. kmemleak_enabled = 0;
  1565. /* check whether it is too early for a kernel thread */
  1566. if (kmemleak_initialized)
  1567. schedule_work(&cleanup_work);
  1568. else
  1569. kmemleak_free_enabled = 0;
  1570. pr_info("Kernel memory leak detector disabled\n");
  1571. }
  1572. /*
  1573. * Allow boot-time kmemleak disabling (enabled by default).
  1574. */
  1575. static int kmemleak_boot_config(char *str)
  1576. {
  1577. if (!str)
  1578. return -EINVAL;
  1579. if (strcmp(str, "off") == 0)
  1580. kmemleak_disable();
  1581. else if (strcmp(str, "on") == 0)
  1582. kmemleak_skip_disable = 1;
  1583. else
  1584. return -EINVAL;
  1585. return 0;
  1586. }
  1587. early_param("kmemleak", kmemleak_boot_config);
  1588. static void __init print_log_trace(struct early_log *log)
  1589. {
  1590. struct stack_trace trace;
  1591. trace.nr_entries = log->trace_len;
  1592. trace.entries = log->trace;
  1593. pr_notice("Early log backtrace:\n");
  1594. print_stack_trace(&trace, 2);
  1595. }
  1596. /*
  1597. * Kmemleak initialization.
  1598. */
  1599. void __init kmemleak_init(void)
  1600. {
  1601. int i;
  1602. unsigned long flags;
  1603. #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
  1604. if (!kmemleak_skip_disable) {
  1605. kmemleak_early_log = 0;
  1606. kmemleak_disable();
  1607. return;
  1608. }
  1609. #endif
  1610. jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
  1611. jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
  1612. object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
  1613. scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
  1614. if (crt_early_log >= ARRAY_SIZE(early_log))
  1615. pr_warning("Early log buffer exceeded (%d), please increase "
  1616. "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
  1617. /* the kernel is still in UP mode, so disabling the IRQs is enough */
  1618. local_irq_save(flags);
  1619. kmemleak_early_log = 0;
  1620. if (kmemleak_error) {
  1621. local_irq_restore(flags);
  1622. return;
  1623. } else {
  1624. kmemleak_enabled = 1;
  1625. kmemleak_free_enabled = 1;
  1626. }
  1627. local_irq_restore(flags);
  1628. /*
  1629. * This is the point where tracking allocations is safe. Automatic
  1630. * scanning is started during the late initcall. Add the early logged
  1631. * callbacks to the kmemleak infrastructure.
  1632. */
  1633. for (i = 0; i < crt_early_log; i++) {
  1634. struct early_log *log = &early_log[i];
  1635. switch (log->op_type) {
  1636. case KMEMLEAK_ALLOC:
  1637. early_alloc(log);
  1638. break;
  1639. case KMEMLEAK_ALLOC_PERCPU:
  1640. early_alloc_percpu(log);
  1641. break;
  1642. case KMEMLEAK_FREE:
  1643. kmemleak_free(log->ptr);
  1644. break;
  1645. case KMEMLEAK_FREE_PART:
  1646. kmemleak_free_part(log->ptr, log->size);
  1647. break;
  1648. case KMEMLEAK_FREE_PERCPU:
  1649. kmemleak_free_percpu(log->ptr);
  1650. break;
  1651. case KMEMLEAK_NOT_LEAK:
  1652. kmemleak_not_leak(log->ptr);
  1653. break;
  1654. case KMEMLEAK_IGNORE:
  1655. kmemleak_ignore(log->ptr);
  1656. break;
  1657. case KMEMLEAK_SCAN_AREA:
  1658. kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
  1659. break;
  1660. case KMEMLEAK_NO_SCAN:
  1661. kmemleak_no_scan(log->ptr);
  1662. break;
  1663. default:
  1664. kmemleak_warn("Unknown early log operation: %d\n",
  1665. log->op_type);
  1666. }
  1667. if (kmemleak_warning) {
  1668. print_log_trace(log);
  1669. kmemleak_warning = 0;
  1670. }
  1671. }
  1672. }
  1673. /*
  1674. * Late initialization function.
  1675. */
  1676. static int __init kmemleak_late_init(void)
  1677. {
  1678. struct dentry *dentry;
  1679. kmemleak_initialized = 1;
  1680. if (kmemleak_error) {
  1681. /*
  1682. * Some error occurred and kmemleak was disabled. There is a
  1683. * small chance that kmemleak_disable() was called immediately
  1684. * after setting kmemleak_initialized and we may end up with
  1685. * two clean-up threads but serialized by scan_mutex.
  1686. */
  1687. schedule_work(&cleanup_work);
  1688. return -ENOMEM;
  1689. }
  1690. dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
  1691. &kmemleak_fops);
  1692. if (!dentry)
  1693. pr_warning("Failed to create the debugfs kmemleak file\n");
  1694. mutex_lock(&scan_mutex);
  1695. start_scan_thread();
  1696. mutex_unlock(&scan_mutex);
  1697. pr_info("Kernel memory leak detector initialized\n");
  1698. return 0;
  1699. }
  1700. late_initcall(kmemleak_late_init);