aes-ce-glue.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535
  1. /*
  2. * aes-ce-glue.c - wrapper code for ARMv8 AES
  3. *
  4. * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <asm/hwcap.h>
  11. #include <asm/neon.h>
  12. #include <asm/hwcap.h>
  13. #include <crypto/aes.h>
  14. #include <crypto/ablk_helper.h>
  15. #include <crypto/algapi.h>
  16. #include <linux/module.h>
  17. #define LINUX_CBC_CE 0 /* 0: used MTK CBC CE 1: used Linux CBC CE */
  18. MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
  19. MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
  20. MODULE_LICENSE("GPL v2");
  21. /* defined in aes-ce-core.S */
  22. asmlinkage u32 ce_aes_sub(u32 input);
  23. asmlinkage void ce_aes_invert(void *dst, void *src);
  24. asmlinkage void ce_aes_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
  25. int rounds, int blocks);
  26. asmlinkage void ce_aes_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
  27. int rounds, int blocks);
  28. #if LINUX_CBC_CE
  29. asmlinkage void ce_aes_cbc_encrypt(u8 out[], u8 const in[], u8 const rk[],
  30. int rounds, int blocks, u8 iv[]);
  31. asmlinkage void ce_aes_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
  32. int rounds, int blocks, u8 iv[]);
  33. #endif
  34. asmlinkage void ce_aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
  35. int rounds, int blocks, u8 ctr[]);
  36. asmlinkage void ce_aes_xts_encrypt(u8 out[], u8 const in[], u8 const rk1[],
  37. int rounds, int blocks, u8 iv[],
  38. u8 const rk2[], int first);
  39. asmlinkage void ce_aes_xts_decrypt(u8 out[], u8 const in[], u8 const rk1[],
  40. int rounds, int blocks, u8 iv[],
  41. u8 const rk2[], int first);
  42. struct aes_block {
  43. u8 b[AES_BLOCK_SIZE];
  44. };
  45. static int num_rounds(struct crypto_aes_ctx *ctx)
  46. {
  47. /*
  48. * # of rounds specified by AES:
  49. * 128 bit key 10 rounds
  50. * 192 bit key 12 rounds
  51. * 256 bit key 14 rounds
  52. * => n byte key => 6 + (n/4) rounds
  53. */
  54. return 6 + ctx->key_length / 4;
  55. }
  56. static int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
  57. unsigned int key_len)
  58. {
  59. /*
  60. * The AES key schedule round constants
  61. */
  62. static u8 const rcon[] = {
  63. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
  64. };
  65. u32 kwords = key_len / sizeof(u32);
  66. struct aes_block *key_enc, *key_dec;
  67. int i, j;
  68. if (key_len != AES_KEYSIZE_128 &&
  69. key_len != AES_KEYSIZE_192 &&
  70. key_len != AES_KEYSIZE_256)
  71. return -EINVAL;
  72. memcpy(ctx->key_enc, in_key, key_len);
  73. ctx->key_length = key_len;
  74. kernel_neon_begin();
  75. for (i = 0; i < sizeof(rcon); i++) {
  76. u32 *rki = ctx->key_enc + (i * kwords);
  77. u32 *rko = rki + kwords;
  78. rko[0] = ror32(ce_aes_sub(rki[kwords - 1]), 8);
  79. rko[0] = rko[0] ^ rki[0] ^ rcon[i];
  80. rko[1] = rko[0] ^ rki[1];
  81. rko[2] = rko[1] ^ rki[2];
  82. rko[3] = rko[2] ^ rki[3];
  83. if (key_len == AES_KEYSIZE_192) {
  84. if (i >= 7)
  85. break;
  86. rko[4] = rko[3] ^ rki[4];
  87. rko[5] = rko[4] ^ rki[5];
  88. } else if (key_len == AES_KEYSIZE_256) {
  89. if (i >= 6)
  90. break;
  91. rko[4] = ce_aes_sub(rko[3]) ^ rki[4];
  92. rko[5] = rko[4] ^ rki[5];
  93. rko[6] = rko[5] ^ rki[6];
  94. rko[7] = rko[6] ^ rki[7];
  95. }
  96. }
  97. /*
  98. * Generate the decryption keys for the Equivalent Inverse Cipher.
  99. * This involves reversing the order of the round keys, and applying
  100. * the Inverse Mix Columns transformation on all but the first and
  101. * the last one.
  102. */
  103. key_enc = (struct aes_block *)ctx->key_enc;
  104. key_dec = (struct aes_block *)ctx->key_dec;
  105. j = num_rounds(ctx);
  106. key_dec[0] = key_enc[j];
  107. for (i = 1, j--; j > 0; i++, j--)
  108. ce_aes_invert(key_dec + i, key_enc + j);
  109. key_dec[i] = key_enc[0];
  110. kernel_neon_end();
  111. return 0;
  112. }
  113. static int ce_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key,
  114. unsigned int key_len)
  115. {
  116. struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  117. int ret;
  118. ret = ce_aes_expandkey(ctx, in_key, key_len);
  119. if (!ret)
  120. return 0;
  121. tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  122. return -EINVAL;
  123. }
  124. struct crypto_aes_xts_ctx {
  125. struct crypto_aes_ctx key1;
  126. struct crypto_aes_ctx __aligned(8) key2;
  127. };
  128. static int xts_set_key(struct crypto_tfm *tfm, const u8 *in_key,
  129. unsigned int key_len)
  130. {
  131. struct crypto_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
  132. int ret;
  133. ret = ce_aes_expandkey(&ctx->key1, in_key, key_len / 2);
  134. if (!ret)
  135. ret = ce_aes_expandkey(&ctx->key2, &in_key[key_len / 2],
  136. key_len / 2);
  137. if (!ret)
  138. return 0;
  139. tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  140. return -EINVAL;
  141. }
  142. static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  143. struct scatterlist *src, unsigned int nbytes)
  144. {
  145. struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  146. struct blkcipher_walk walk;
  147. unsigned int blocks;
  148. int err;
  149. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  150. blkcipher_walk_init(&walk, dst, src, nbytes);
  151. err = blkcipher_walk_virt(desc, &walk);
  152. kernel_neon_begin();
  153. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  154. ce_aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  155. (u8 *)ctx->key_enc, num_rounds(ctx), blocks);
  156. err = blkcipher_walk_done(desc, &walk,
  157. walk.nbytes % AES_BLOCK_SIZE);
  158. }
  159. kernel_neon_end();
  160. return err;
  161. }
  162. static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  163. struct scatterlist *src, unsigned int nbytes)
  164. {
  165. struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  166. struct blkcipher_walk walk;
  167. unsigned int blocks;
  168. int err;
  169. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  170. blkcipher_walk_init(&walk, dst, src, nbytes);
  171. err = blkcipher_walk_virt(desc, &walk);
  172. kernel_neon_begin();
  173. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  174. ce_aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  175. (u8 *)ctx->key_dec, num_rounds(ctx), blocks);
  176. err = blkcipher_walk_done(desc, &walk,
  177. walk.nbytes % AES_BLOCK_SIZE);
  178. }
  179. kernel_neon_end();
  180. return err;
  181. }
  182. #if LINUX_CBC_CE
  183. static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  184. struct scatterlist *src, unsigned int nbytes)
  185. {
  186. struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  187. struct blkcipher_walk walk;
  188. unsigned int blocks;
  189. int err;
  190. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  191. blkcipher_walk_init(&walk, dst, src, nbytes);
  192. err = blkcipher_walk_virt(desc, &walk);
  193. kernel_neon_begin();
  194. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  195. ce_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  196. (u8 *)ctx->key_enc, num_rounds(ctx), blocks,
  197. walk.iv);
  198. err = blkcipher_walk_done(desc, &walk,
  199. walk.nbytes % AES_BLOCK_SIZE);
  200. }
  201. kernel_neon_end();
  202. return err;
  203. }
  204. static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  205. struct scatterlist *src, unsigned int nbytes)
  206. {
  207. struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  208. struct blkcipher_walk walk;
  209. unsigned int blocks;
  210. int err;
  211. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  212. blkcipher_walk_init(&walk, dst, src, nbytes);
  213. err = blkcipher_walk_virt(desc, &walk);
  214. kernel_neon_begin();
  215. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  216. ce_aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  217. (u8 *)ctx->key_dec, num_rounds(ctx), blocks,
  218. walk.iv);
  219. err = blkcipher_walk_done(desc, &walk,
  220. walk.nbytes % AES_BLOCK_SIZE);
  221. }
  222. kernel_neon_end();
  223. return err;
  224. }
  225. #endif
  226. static int ctr_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  227. struct scatterlist *src, unsigned int nbytes)
  228. {
  229. struct crypto_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  230. struct blkcipher_walk walk;
  231. int err, blocks;
  232. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  233. blkcipher_walk_init(&walk, dst, src, nbytes);
  234. err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
  235. kernel_neon_begin();
  236. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  237. ce_aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  238. (u8 *)ctx->key_enc, num_rounds(ctx), blocks,
  239. walk.iv);
  240. nbytes -= blocks * AES_BLOCK_SIZE;
  241. if (nbytes && nbytes == walk.nbytes % AES_BLOCK_SIZE)
  242. break;
  243. err = blkcipher_walk_done(desc, &walk,
  244. walk.nbytes % AES_BLOCK_SIZE);
  245. }
  246. if (nbytes) {
  247. u8 *tdst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
  248. u8 *tsrc = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
  249. u8 __aligned(8) tail[AES_BLOCK_SIZE];
  250. /*
  251. * Minimum alignment is 8 bytes, so if nbytes is <= 8, we need
  252. * to tell aes_ctr_encrypt() to only read half a block.
  253. */
  254. blocks = (nbytes <= 8) ? -1 : 1;
  255. ce_aes_ctr_encrypt(tail, tsrc, (u8 *)ctx->key_enc,
  256. num_rounds(ctx), blocks, walk.iv);
  257. memcpy(tdst, tail, nbytes);
  258. err = blkcipher_walk_done(desc, &walk, 0);
  259. }
  260. kernel_neon_end();
  261. return err;
  262. }
  263. static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  264. struct scatterlist *src, unsigned int nbytes)
  265. {
  266. struct crypto_aes_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  267. int err, first, rounds = num_rounds(&ctx->key1);
  268. struct blkcipher_walk walk;
  269. unsigned int blocks;
  270. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  271. blkcipher_walk_init(&walk, dst, src, nbytes);
  272. err = blkcipher_walk_virt(desc, &walk);
  273. kernel_neon_begin();
  274. for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
  275. ce_aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  276. (u8 *)ctx->key1.key_enc, rounds, blocks,
  277. walk.iv, (u8 *)ctx->key2.key_enc, first);
  278. err = blkcipher_walk_done(desc, &walk,
  279. walk.nbytes % AES_BLOCK_SIZE);
  280. }
  281. kernel_neon_end();
  282. return err;
  283. }
  284. static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
  285. struct scatterlist *src, unsigned int nbytes)
  286. {
  287. struct crypto_aes_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  288. int err, first, rounds = num_rounds(&ctx->key1);
  289. struct blkcipher_walk walk;
  290. unsigned int blocks;
  291. desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
  292. blkcipher_walk_init(&walk, dst, src, nbytes);
  293. err = blkcipher_walk_virt(desc, &walk);
  294. kernel_neon_begin();
  295. for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
  296. ce_aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  297. (u8 *)ctx->key1.key_dec, rounds, blocks,
  298. walk.iv, (u8 *)ctx->key2.key_enc, first);
  299. err = blkcipher_walk_done(desc, &walk,
  300. walk.nbytes % AES_BLOCK_SIZE);
  301. }
  302. kernel_neon_end();
  303. return err;
  304. }
  305. static struct crypto_alg aes_algs[] = { {
  306. .cra_name = "__ecb-aes-ce",
  307. .cra_driver_name = "__driver-ecb-aes-ce",
  308. .cra_priority = 0,
  309. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
  310. .cra_blocksize = AES_BLOCK_SIZE,
  311. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  312. .cra_alignmask = 7,
  313. .cra_type = &crypto_blkcipher_type,
  314. .cra_module = THIS_MODULE,
  315. .cra_blkcipher = {
  316. .min_keysize = AES_MIN_KEY_SIZE,
  317. .max_keysize = AES_MAX_KEY_SIZE,
  318. .ivsize = AES_BLOCK_SIZE,
  319. .setkey = ce_aes_setkey,
  320. .encrypt = ecb_encrypt,
  321. .decrypt = ecb_decrypt,
  322. },
  323. },
  324. #if LINUX_CBC_CE
  325. {
  326. .cra_name = "__cbc-aes-ce",
  327. .cra_driver_name = "__driver-cbc-aes-ce",
  328. .cra_priority = 0,
  329. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
  330. .cra_blocksize = AES_BLOCK_SIZE,
  331. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  332. .cra_alignmask = 7,
  333. .cra_type = &crypto_blkcipher_type,
  334. .cra_module = THIS_MODULE,
  335. .cra_blkcipher = {
  336. .min_keysize = AES_MIN_KEY_SIZE,
  337. .max_keysize = AES_MAX_KEY_SIZE,
  338. .ivsize = AES_BLOCK_SIZE,
  339. .setkey = ce_aes_setkey,
  340. .encrypt = cbc_encrypt,
  341. .decrypt = cbc_decrypt,
  342. },
  343. },
  344. #endif
  345. {
  346. .cra_name = "__ctr-aes-ce",
  347. .cra_driver_name = "__driver-ctr-aes-ce",
  348. .cra_priority = 0,
  349. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
  350. .cra_blocksize = 1,
  351. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  352. .cra_alignmask = 7,
  353. .cra_type = &crypto_blkcipher_type,
  354. .cra_module = THIS_MODULE,
  355. .cra_blkcipher = {
  356. .min_keysize = AES_MIN_KEY_SIZE,
  357. .max_keysize = AES_MAX_KEY_SIZE,
  358. .ivsize = AES_BLOCK_SIZE,
  359. .setkey = ce_aes_setkey,
  360. .encrypt = ctr_encrypt,
  361. .decrypt = ctr_encrypt,
  362. },
  363. }, {
  364. .cra_name = "__xts-aes-ce",
  365. .cra_driver_name = "__driver-xts-aes-ce",
  366. .cra_priority = 0,
  367. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
  368. .cra_blocksize = AES_BLOCK_SIZE,
  369. .cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
  370. .cra_alignmask = 7,
  371. .cra_type = &crypto_blkcipher_type,
  372. .cra_module = THIS_MODULE,
  373. .cra_blkcipher = {
  374. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  375. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  376. .ivsize = AES_BLOCK_SIZE,
  377. .setkey = xts_set_key,
  378. .encrypt = xts_encrypt,
  379. .decrypt = xts_decrypt,
  380. },
  381. }, {
  382. .cra_name = "ecb(aes)",
  383. .cra_driver_name = "ecb-aes-ce",
  384. .cra_priority = 300,
  385. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
  386. .cra_blocksize = AES_BLOCK_SIZE,
  387. .cra_ctxsize = sizeof(struct async_helper_ctx),
  388. .cra_alignmask = 7,
  389. .cra_type = &crypto_ablkcipher_type,
  390. .cra_module = THIS_MODULE,
  391. .cra_init = ablk_init,
  392. .cra_exit = ablk_exit,
  393. .cra_ablkcipher = {
  394. .min_keysize = AES_MIN_KEY_SIZE,
  395. .max_keysize = AES_MAX_KEY_SIZE,
  396. .ivsize = AES_BLOCK_SIZE,
  397. .setkey = ablk_set_key,
  398. .encrypt = ablk_encrypt,
  399. .decrypt = ablk_decrypt,
  400. }
  401. },
  402. #if LINUX_CBC_CE
  403. {
  404. .cra_name = "cbc(aes)",
  405. .cra_driver_name = "cbc-aes-ce",
  406. .cra_priority = 300,
  407. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
  408. .cra_blocksize = AES_BLOCK_SIZE,
  409. .cra_ctxsize = sizeof(struct async_helper_ctx),
  410. .cra_alignmask = 7,
  411. .cra_type = &crypto_ablkcipher_type,
  412. .cra_module = THIS_MODULE,
  413. .cra_init = ablk_init,
  414. .cra_exit = ablk_exit,
  415. .cra_ablkcipher = {
  416. .min_keysize = AES_MIN_KEY_SIZE,
  417. .max_keysize = AES_MAX_KEY_SIZE,
  418. .ivsize = AES_BLOCK_SIZE,
  419. .setkey = ablk_set_key,
  420. .encrypt = ablk_encrypt,
  421. .decrypt = ablk_decrypt,
  422. }
  423. },
  424. #endif
  425. {
  426. .cra_name = "ctr(aes)",
  427. .cra_driver_name = "ctr-aes-ce",
  428. .cra_priority = 300,
  429. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
  430. .cra_blocksize = 1,
  431. .cra_ctxsize = sizeof(struct async_helper_ctx),
  432. .cra_alignmask = 7,
  433. .cra_type = &crypto_ablkcipher_type,
  434. .cra_module = THIS_MODULE,
  435. .cra_init = ablk_init,
  436. .cra_exit = ablk_exit,
  437. .cra_ablkcipher = {
  438. .min_keysize = AES_MIN_KEY_SIZE,
  439. .max_keysize = AES_MAX_KEY_SIZE,
  440. .ivsize = AES_BLOCK_SIZE,
  441. .setkey = ablk_set_key,
  442. .encrypt = ablk_encrypt,
  443. .decrypt = ablk_decrypt,
  444. }
  445. }, {
  446. .cra_name = "xts(aes)",
  447. .cra_driver_name = "xts-aes-ce",
  448. .cra_priority = 300,
  449. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
  450. .cra_blocksize = AES_BLOCK_SIZE,
  451. .cra_ctxsize = sizeof(struct async_helper_ctx),
  452. .cra_alignmask = 7,
  453. .cra_type = &crypto_ablkcipher_type,
  454. .cra_module = THIS_MODULE,
  455. .cra_init = ablk_init,
  456. .cra_exit = ablk_exit,
  457. .cra_ablkcipher = {
  458. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  459. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  460. .ivsize = AES_BLOCK_SIZE,
  461. .setkey = ablk_set_key,
  462. .encrypt = ablk_encrypt,
  463. .decrypt = ablk_decrypt,
  464. }
  465. } };
  466. static int __init aes_init(void)
  467. {
  468. if (!(elf_hwcap2 & HWCAP2_AES))
  469. return -ENODEV;
  470. return crypto_register_algs(aes_algs, ARRAY_SIZE(aes_algs));
  471. }
  472. static void __exit aes_exit(void)
  473. {
  474. crypto_unregister_algs(aes_algs, ARRAY_SIZE(aes_algs));
  475. }
  476. module_init(aes_init);
  477. module_exit(aes_exit);