process.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691
  1. /*
  2. * linux/arch/arm/kernel/process.c
  3. *
  4. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5. * Original Copyright (C) 1995 Linus Torvalds
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <stdarg.h>
  12. #include <linux/export.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/user.h>
  19. #include <linux/delay.h>
  20. #include <linux/reboot.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/kallsyms.h>
  23. #include <linux/init.h>
  24. #include <linux/cpu.h>
  25. #include <linux/elfcore.h>
  26. #include <linux/pm.h>
  27. #include <linux/tick.h>
  28. #include <linux/utsname.h>
  29. #include <linux/uaccess.h>
  30. #include <linux/random.h>
  31. #include <linux/hw_breakpoint.h>
  32. #include <linux/leds.h>
  33. #include <linux/reboot.h>
  34. #include <linux/console.h>
  35. #include <asm/cacheflush.h>
  36. #include <asm/idmap.h>
  37. #include <asm/processor.h>
  38. #include <asm/thread_notify.h>
  39. #include <asm/stacktrace.h>
  40. #include <asm/system_misc.h>
  41. #include <asm/mach/time.h>
  42. #include <asm/tls.h>
  43. #include "reboot.h"
  44. #ifdef CONFIG_CC_STACKPROTECTOR
  45. #include <linux/stackprotector.h>
  46. unsigned long __stack_chk_guard __read_mostly;
  47. EXPORT_SYMBOL(__stack_chk_guard);
  48. #endif
  49. static const char *processor_modes[] __maybe_unused = {
  50. "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
  51. "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
  52. "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
  53. "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
  54. };
  55. static const char *isa_modes[] __maybe_unused = {
  56. "ARM" , "Thumb" , "Jazelle", "ThumbEE"
  57. };
  58. #ifdef CONFIG_SMP
  59. void arch_trigger_all_cpu_backtrace(void)
  60. {
  61. smp_send_all_cpu_backtrace();
  62. }
  63. #else
  64. void arch_trigger_all_cpu_backtrace(void)
  65. {
  66. dump_stack();
  67. }
  68. #endif
  69. extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
  70. typedef void (*phys_reset_t)(unsigned long);
  71. #ifdef CONFIG_ARM_FLUSH_CONSOLE_ON_RESTART
  72. void arm_machine_flush_console(void)
  73. {
  74. printk("\n");
  75. pr_emerg("Restarting %s\n", linux_banner);
  76. if (console_trylock()) {
  77. console_unlock();
  78. return;
  79. }
  80. mdelay(50);
  81. local_irq_disable();
  82. if (!console_trylock())
  83. pr_emerg("arm_restart: Console was locked! Busting\n");
  84. else
  85. pr_emerg("arm_restart: Console was locked!\n");
  86. console_unlock();
  87. }
  88. #else
  89. void arm_machine_flush_console(void)
  90. {
  91. }
  92. #endif
  93. /*
  94. * A temporary stack to use for CPU reset. This is static so that we
  95. * don't clobber it with the identity mapping. When running with this
  96. * stack, any references to the current task *will not work* so you
  97. * should really do as little as possible before jumping to your reset
  98. * code.
  99. */
  100. static u64 soft_restart_stack[16];
  101. static void __soft_restart(void *addr)
  102. {
  103. phys_reset_t phys_reset;
  104. /* Take out a flat memory mapping. */
  105. setup_mm_for_reboot();
  106. /* Clean and invalidate caches */
  107. flush_cache_all();
  108. /* Turn off caching */
  109. cpu_proc_fin();
  110. /* Push out any further dirty data, and ensure cache is empty */
  111. flush_cache_all();
  112. /* Switch to the identity mapping. */
  113. phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
  114. phys_reset((unsigned long)addr);
  115. /* Should never get here. */
  116. BUG();
  117. }
  118. void _soft_restart(unsigned long addr, bool disable_l2)
  119. {
  120. u64 *stack = soft_restart_stack + ARRAY_SIZE(soft_restart_stack);
  121. /* Disable interrupts first */
  122. raw_local_irq_disable();
  123. local_fiq_disable();
  124. /* Disable the L2 if we're the last man standing. */
  125. if (disable_l2)
  126. outer_disable();
  127. /* Change to the new stack and continue with the reset. */
  128. call_with_stack(__soft_restart, (void *)addr, (void *)stack);
  129. /* Should never get here. */
  130. BUG();
  131. }
  132. void soft_restart(unsigned long addr)
  133. {
  134. _soft_restart(addr, num_online_cpus() == 1);
  135. }
  136. /*
  137. * Function pointers to optional machine specific functions
  138. */
  139. void (*pm_power_off)(void);
  140. EXPORT_SYMBOL(pm_power_off);
  141. void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
  142. /*
  143. * This is our default idle handler.
  144. */
  145. void (*arm_pm_idle)(void);
  146. /*
  147. * Called from the core idle loop.
  148. */
  149. void arch_cpu_idle(void)
  150. {
  151. if (arm_pm_idle)
  152. arm_pm_idle();
  153. else
  154. cpu_do_idle();
  155. local_irq_enable();
  156. }
  157. void arch_cpu_idle_prepare(void)
  158. {
  159. local_fiq_enable();
  160. }
  161. void arch_cpu_idle_enter(void)
  162. {
  163. idle_notifier_call_chain(IDLE_START);
  164. ledtrig_cpu(CPU_LED_IDLE_START);
  165. #ifdef CONFIG_PL310_ERRATA_769419
  166. wmb();
  167. #endif
  168. }
  169. void arch_cpu_idle_exit(void)
  170. {
  171. ledtrig_cpu(CPU_LED_IDLE_END);
  172. idle_notifier_call_chain(IDLE_END);
  173. }
  174. #ifdef CONFIG_HOTPLUG_CPU
  175. void arch_cpu_idle_dead(void)
  176. {
  177. cpu_die();
  178. }
  179. #endif
  180. /*
  181. * Called by kexec, immediately prior to machine_kexec().
  182. *
  183. * This must completely disable all secondary CPUs; simply causing those CPUs
  184. * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
  185. * kexec'd kernel to use any and all RAM as it sees fit, without having to
  186. * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
  187. * functionality embodied in disable_nonboot_cpus() to achieve this.
  188. */
  189. void machine_shutdown(void)
  190. {
  191. #ifdef CONFIG_SMP
  192. /*
  193. * Disable preemption so we're guaranteed to
  194. * run to power off or reboot and prevent
  195. * the possibility of switching to another
  196. * thread that might wind up blocking on
  197. * one of the stopped CPUs.
  198. */
  199. preempt_disable();
  200. #endif
  201. disable_nonboot_cpus();
  202. }
  203. /*
  204. * Halting simply requires that the secondary CPUs stop performing any
  205. * activity (executing tasks, handling interrupts). smp_send_stop()
  206. * achieves this.
  207. */
  208. void machine_halt(void)
  209. {
  210. local_irq_disable();
  211. smp_send_stop();
  212. local_irq_disable();
  213. while (1);
  214. }
  215. /*
  216. * Power-off simply requires that the secondary CPUs stop performing any
  217. * activity (executing tasks, handling interrupts). smp_send_stop()
  218. * achieves this. When the system power is turned off, it will take all CPUs
  219. * with it.
  220. */
  221. void machine_power_off(void)
  222. {
  223. local_irq_disable();
  224. smp_send_stop();
  225. pr_emerg("machine_power_off, pm_power_off(%p)\n", pm_power_off);
  226. dump_stack();
  227. if (pm_power_off)
  228. pm_power_off();
  229. }
  230. /*
  231. * Restart requires that the secondary CPUs stop performing any activity
  232. * while the primary CPU resets the system. Systems with a single CPU can
  233. * use soft_restart() as their machine descriptor's .restart hook, since that
  234. * will cause the only available CPU to reset. Systems with multiple CPUs must
  235. * provide a HW restart implementation, to ensure that all CPUs reset at once.
  236. * This is required so that any code running after reset on the primary CPU
  237. * doesn't have to co-ordinate with other CPUs to ensure they aren't still
  238. * executing pre-reset code, and using RAM that the primary CPU's code wishes
  239. * to use. Implementing such co-ordination would be essentially impossible.
  240. */
  241. void machine_restart(char *cmd)
  242. {
  243. local_irq_disable();
  244. smp_send_stop();
  245. /* Flush the console to make sure all the relevant messages make it
  246. * out to the console drivers */
  247. arm_machine_flush_console();
  248. pr_emerg("machine_restart, arm_pm_restart(%p)\n", arm_pm_restart);
  249. if (arm_pm_restart)
  250. arm_pm_restart(reboot_mode, cmd);
  251. else
  252. do_kernel_restart(cmd);
  253. /* Give a grace period for failure to restart of 1s */
  254. mdelay(1000);
  255. /* Whoops - the platform was unable to reboot. Tell the user! */
  256. printk("Reboot failed -- System halted\n");
  257. local_irq_disable();
  258. while (1);
  259. }
  260. /*
  261. * dump a block of kernel memory from around the given address
  262. */
  263. static void show_data(unsigned long addr, int nbytes, const char *name)
  264. {
  265. int i, j;
  266. int nlines;
  267. u32 *p;
  268. /*
  269. * don't attempt to dump non-kernel addresses or
  270. * values that are probably just small negative numbers
  271. */
  272. if (addr < PAGE_OFFSET || addr > -256UL)
  273. return;
  274. printk("\n%s: %#lx:\n", name, addr);
  275. /*
  276. * round address down to a 32 bit boundary
  277. * and always dump a multiple of 32 bytes
  278. */
  279. p = (u32 *)(addr & ~(sizeof(u32) - 1));
  280. nbytes += (addr & (sizeof(u32) - 1));
  281. nlines = (nbytes + 31) / 32;
  282. for (i = 0; i < nlines; i++) {
  283. /*
  284. * just display low 16 bits of address to keep
  285. * each line of the dump < 80 characters
  286. */
  287. printk("%04lx ", (unsigned long)p & 0xffff);
  288. for (j = 0; j < 8; j++) {
  289. u32 data;
  290. if (probe_kernel_address(p, data)) {
  291. printk(" ********");
  292. } else {
  293. printk(" %08x", data);
  294. }
  295. ++p;
  296. }
  297. printk("\n");
  298. }
  299. }
  300. static void show_extra_register_data(struct pt_regs *regs, int nbytes)
  301. {
  302. mm_segment_t fs;
  303. fs = get_fs();
  304. set_fs(KERNEL_DS);
  305. show_data(regs->ARM_pc - nbytes, nbytes * 2, "PC");
  306. show_data(regs->ARM_lr - nbytes, nbytes * 2, "LR");
  307. show_data(regs->ARM_sp - nbytes, nbytes * 2, "SP");
  308. show_data(regs->ARM_ip - nbytes, nbytes * 2, "IP");
  309. show_data(regs->ARM_fp - nbytes, nbytes * 2, "FP");
  310. show_data(regs->ARM_r0 - nbytes, nbytes * 2, "R0");
  311. show_data(regs->ARM_r1 - nbytes, nbytes * 2, "R1");
  312. show_data(regs->ARM_r2 - nbytes, nbytes * 2, "R2");
  313. show_data(regs->ARM_r3 - nbytes, nbytes * 2, "R3");
  314. show_data(regs->ARM_r4 - nbytes, nbytes * 2, "R4");
  315. show_data(regs->ARM_r5 - nbytes, nbytes * 2, "R5");
  316. show_data(regs->ARM_r6 - nbytes, nbytes * 2, "R6");
  317. show_data(regs->ARM_r7 - nbytes, nbytes * 2, "R7");
  318. show_data(regs->ARM_r8 - nbytes, nbytes * 2, "R8");
  319. show_data(regs->ARM_r9 - nbytes, nbytes * 2, "R9");
  320. show_data(regs->ARM_r10 - nbytes, nbytes * 2, "R10");
  321. set_fs(fs);
  322. }
  323. void __show_regs(struct pt_regs *regs)
  324. {
  325. unsigned long flags;
  326. char buf[64];
  327. show_regs_print_info(KERN_DEFAULT);
  328. print_symbol("PC is at %s\n", instruction_pointer(regs));
  329. print_symbol("LR is at %s\n", regs->ARM_lr);
  330. printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
  331. "sp : %08lx ip : %08lx fp : %08lx\n",
  332. regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
  333. regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
  334. printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
  335. regs->ARM_r10, regs->ARM_r9,
  336. regs->ARM_r8);
  337. printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  338. regs->ARM_r7, regs->ARM_r6,
  339. regs->ARM_r5, regs->ARM_r4);
  340. printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  341. regs->ARM_r3, regs->ARM_r2,
  342. regs->ARM_r1, regs->ARM_r0);
  343. flags = regs->ARM_cpsr;
  344. buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
  345. buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
  346. buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
  347. buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
  348. buf[4] = '\0';
  349. #ifndef CONFIG_CPU_V7M
  350. printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
  351. buf, interrupts_enabled(regs) ? "n" : "ff",
  352. fast_interrupts_enabled(regs) ? "n" : "ff",
  353. processor_modes[processor_mode(regs)],
  354. isa_modes[isa_mode(regs)],
  355. get_fs() == get_ds() ? "kernel" : "user");
  356. #else
  357. printk("xPSR: %08lx\n", regs->ARM_cpsr);
  358. #endif
  359. #ifdef CONFIG_CPU_CP15
  360. {
  361. unsigned int ctrl;
  362. buf[0] = '\0';
  363. #ifdef CONFIG_CPU_CP15_MMU
  364. {
  365. unsigned int transbase, dac;
  366. asm("mrc p15, 0, %0, c2, c0\n\t"
  367. "mrc p15, 0, %1, c3, c0\n"
  368. : "=r" (transbase), "=r" (dac));
  369. snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
  370. transbase, dac);
  371. }
  372. #endif
  373. asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
  374. printk("Control: %08x%s\n", ctrl, buf);
  375. }
  376. #endif
  377. show_extra_register_data(regs, 128);
  378. }
  379. void show_regs(struct pt_regs * regs)
  380. {
  381. __show_regs(regs);
  382. dump_stack();
  383. }
  384. ATOMIC_NOTIFIER_HEAD(thread_notify_head);
  385. EXPORT_SYMBOL_GPL(thread_notify_head);
  386. /*
  387. * Free current thread data structures etc..
  388. */
  389. void exit_thread(void)
  390. {
  391. thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
  392. }
  393. void flush_thread(void)
  394. {
  395. struct thread_info *thread = current_thread_info();
  396. struct task_struct *tsk = current;
  397. flush_ptrace_hw_breakpoint(tsk);
  398. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  399. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  400. memset(&thread->fpstate, 0, sizeof(union fp_state));
  401. flush_tls();
  402. thread_notify(THREAD_NOTIFY_FLUSH, thread);
  403. }
  404. void release_thread(struct task_struct *dead_task)
  405. {
  406. }
  407. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  408. int
  409. copy_thread(unsigned long clone_flags, unsigned long stack_start,
  410. unsigned long stk_sz, struct task_struct *p)
  411. {
  412. struct thread_info *thread = task_thread_info(p);
  413. struct pt_regs *childregs = task_pt_regs(p);
  414. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  415. if (likely(!(p->flags & PF_KTHREAD))) {
  416. *childregs = *current_pt_regs();
  417. childregs->ARM_r0 = 0;
  418. if (stack_start)
  419. childregs->ARM_sp = stack_start;
  420. } else {
  421. memset(childregs, 0, sizeof(struct pt_regs));
  422. thread->cpu_context.r4 = stk_sz;
  423. thread->cpu_context.r5 = stack_start;
  424. childregs->ARM_cpsr = SVC_MODE;
  425. }
  426. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  427. thread->cpu_context.sp = (unsigned long)childregs;
  428. clear_ptrace_hw_breakpoint(p);
  429. if (clone_flags & CLONE_SETTLS)
  430. thread->tp_value[0] = childregs->ARM_r3;
  431. thread->tp_value[1] = get_tpuser();
  432. thread_notify(THREAD_NOTIFY_COPY, thread);
  433. return 0;
  434. }
  435. /*
  436. * Fill in the task's elfregs structure for a core dump.
  437. */
  438. int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
  439. {
  440. elf_core_copy_regs(elfregs, task_pt_regs(t));
  441. return 1;
  442. }
  443. /*
  444. * fill in the fpe structure for a core dump...
  445. */
  446. int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
  447. {
  448. struct thread_info *thread = current_thread_info();
  449. int used_math = thread->used_cp[1] | thread->used_cp[2];
  450. if (used_math)
  451. memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
  452. return used_math != 0;
  453. }
  454. EXPORT_SYMBOL(dump_fpu);
  455. unsigned long get_wchan(struct task_struct *p)
  456. {
  457. struct stackframe frame;
  458. unsigned long stack_page;
  459. int count = 0;
  460. if (!p || p == current || p->state == TASK_RUNNING)
  461. return 0;
  462. frame.fp = thread_saved_fp(p);
  463. frame.sp = thread_saved_sp(p);
  464. frame.lr = 0; /* recovered from the stack */
  465. frame.pc = thread_saved_pc(p);
  466. stack_page = (unsigned long)task_stack_page(p);
  467. do {
  468. if (frame.sp < stack_page ||
  469. frame.sp >= stack_page + THREAD_SIZE ||
  470. unwind_frame(&frame) < 0)
  471. return 0;
  472. if (!in_sched_functions(frame.pc))
  473. return frame.pc;
  474. } while (count ++ < 16);
  475. return 0;
  476. }
  477. unsigned long arch_randomize_brk(struct mm_struct *mm)
  478. {
  479. unsigned long range_end = mm->brk + 0x02000000;
  480. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  481. }
  482. #ifdef CONFIG_MMU
  483. #ifdef CONFIG_KUSER_HELPERS
  484. /*
  485. * The vectors page is always readable from user space for the
  486. * atomic helpers. Insert it into the gate_vma so that it is visible
  487. * through ptrace and /proc/<pid>/mem.
  488. */
  489. static struct vm_area_struct gate_vma = {
  490. .vm_start = 0xffff0000,
  491. .vm_end = 0xffff0000 + PAGE_SIZE,
  492. .vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
  493. };
  494. static int __init gate_vma_init(void)
  495. {
  496. gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
  497. return 0;
  498. }
  499. arch_initcall(gate_vma_init);
  500. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  501. {
  502. return &gate_vma;
  503. }
  504. int in_gate_area(struct mm_struct *mm, unsigned long addr)
  505. {
  506. return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
  507. }
  508. int in_gate_area_no_mm(unsigned long addr)
  509. {
  510. return in_gate_area(NULL, addr);
  511. }
  512. #define is_gate_vma(vma) ((vma) == &gate_vma)
  513. #else
  514. #define is_gate_vma(vma) 0
  515. #endif
  516. const char *arch_vma_name(struct vm_area_struct *vma)
  517. {
  518. return is_gate_vma(vma) ? "[vectors]" : NULL;
  519. }
  520. /* If possible, provide a placement hint at a random offset from the
  521. * stack for the signal page.
  522. */
  523. static unsigned long sigpage_addr(const struct mm_struct *mm,
  524. unsigned int npages)
  525. {
  526. unsigned long offset;
  527. unsigned long first;
  528. unsigned long last;
  529. unsigned long addr;
  530. unsigned int slots;
  531. first = PAGE_ALIGN(mm->start_stack);
  532. last = TASK_SIZE - (npages << PAGE_SHIFT);
  533. /* No room after stack? */
  534. if (first > last)
  535. return 0;
  536. /* Just enough room? */
  537. if (first == last)
  538. return first;
  539. slots = ((last - first) >> PAGE_SHIFT) + 1;
  540. offset = get_random_int() % slots;
  541. addr = first + (offset << PAGE_SHIFT);
  542. return addr;
  543. }
  544. static struct page *signal_page;
  545. extern struct page *get_signal_page(void);
  546. static const struct vm_special_mapping sigpage_mapping = {
  547. .name = "[sigpage]",
  548. .pages = &signal_page,
  549. };
  550. int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
  551. {
  552. struct mm_struct *mm = current->mm;
  553. struct vm_area_struct *vma;
  554. unsigned long addr;
  555. unsigned long hint;
  556. int ret = 0;
  557. if (!signal_page)
  558. signal_page = get_signal_page();
  559. if (!signal_page)
  560. return -ENOMEM;
  561. down_write(&mm->mmap_sem);
  562. hint = sigpage_addr(mm, 1);
  563. addr = get_unmapped_area(NULL, hint, PAGE_SIZE, 0, 0);
  564. if (IS_ERR_VALUE(addr)) {
  565. ret = addr;
  566. goto up_fail;
  567. }
  568. vma = _install_special_mapping(mm, addr, PAGE_SIZE,
  569. VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
  570. &sigpage_mapping);
  571. if (IS_ERR(vma)) {
  572. ret = PTR_ERR(vma);
  573. goto up_fail;
  574. }
  575. mm->context.sigpage = addr;
  576. up_fail:
  577. up_write(&mm->mmap_sem);
  578. return ret;
  579. }
  580. #endif