arm.c 23 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Author: Christoffer Dall <c.dall@virtualopensystems.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License, version 2, as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  17. */
  18. #include <linux/cpu.h>
  19. #include <linux/cpu_pm.h>
  20. #include <linux/errno.h>
  21. #include <linux/err.h>
  22. #include <linux/kvm_host.h>
  23. #include <linux/module.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/fs.h>
  26. #include <linux/mman.h>
  27. #include <linux/sched.h>
  28. #include <linux/kvm.h>
  29. #include <trace/events/kvm.h>
  30. #define CREATE_TRACE_POINTS
  31. #include "trace.h"
  32. #include <asm/uaccess.h>
  33. #include <asm/ptrace.h>
  34. #include <asm/mman.h>
  35. #include <asm/tlbflush.h>
  36. #include <asm/cacheflush.h>
  37. #include <asm/virt.h>
  38. #include <asm/kvm_arm.h>
  39. #include <asm/kvm_asm.h>
  40. #include <asm/kvm_mmu.h>
  41. #include <asm/kvm_emulate.h>
  42. #include <asm/kvm_coproc.h>
  43. #include <asm/kvm_psci.h>
  44. #ifdef REQUIRES_VIRT
  45. __asm__(".arch_extension virt");
  46. #endif
  47. static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
  48. static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
  49. static unsigned long hyp_default_vectors;
  50. /* Per-CPU variable containing the currently running vcpu. */
  51. static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
  52. /* The VMID used in the VTTBR */
  53. static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
  54. static u8 kvm_next_vmid;
  55. static DEFINE_SPINLOCK(kvm_vmid_lock);
  56. static bool vgic_present;
  57. static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
  58. {
  59. BUG_ON(preemptible());
  60. __this_cpu_write(kvm_arm_running_vcpu, vcpu);
  61. }
  62. /**
  63. * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
  64. * Must be called from non-preemptible context
  65. */
  66. struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
  67. {
  68. BUG_ON(preemptible());
  69. return __this_cpu_read(kvm_arm_running_vcpu);
  70. }
  71. /**
  72. * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
  73. */
  74. struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
  75. {
  76. return &kvm_arm_running_vcpu;
  77. }
  78. int kvm_arch_hardware_enable(void)
  79. {
  80. return 0;
  81. }
  82. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  83. {
  84. return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  85. }
  86. int kvm_arch_hardware_setup(void)
  87. {
  88. return 0;
  89. }
  90. void kvm_arch_check_processor_compat(void *rtn)
  91. {
  92. *(int *)rtn = 0;
  93. }
  94. /**
  95. * kvm_arch_init_vm - initializes a VM data structure
  96. * @kvm: pointer to the KVM struct
  97. */
  98. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  99. {
  100. int ret = 0;
  101. if (type)
  102. return -EINVAL;
  103. ret = kvm_alloc_stage2_pgd(kvm);
  104. if (ret)
  105. goto out_fail_alloc;
  106. ret = create_hyp_mappings(kvm, kvm + 1);
  107. if (ret)
  108. goto out_free_stage2_pgd;
  109. kvm_timer_init(kvm);
  110. /* Mark the initial VMID generation invalid */
  111. kvm->arch.vmid_gen = 0;
  112. return ret;
  113. out_free_stage2_pgd:
  114. kvm_free_stage2_pgd(kvm);
  115. out_fail_alloc:
  116. return ret;
  117. }
  118. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  119. {
  120. return VM_FAULT_SIGBUS;
  121. }
  122. /**
  123. * kvm_arch_destroy_vm - destroy the VM data structure
  124. * @kvm: pointer to the KVM struct
  125. */
  126. void kvm_arch_destroy_vm(struct kvm *kvm)
  127. {
  128. int i;
  129. kvm_free_stage2_pgd(kvm);
  130. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  131. if (kvm->vcpus[i]) {
  132. kvm_arch_vcpu_free(kvm->vcpus[i]);
  133. kvm->vcpus[i] = NULL;
  134. }
  135. }
  136. kvm_vgic_destroy(kvm);
  137. }
  138. int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
  139. {
  140. int r;
  141. switch (ext) {
  142. case KVM_CAP_IRQCHIP:
  143. r = vgic_present;
  144. break;
  145. case KVM_CAP_DEVICE_CTRL:
  146. case KVM_CAP_USER_MEMORY:
  147. case KVM_CAP_SYNC_MMU:
  148. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  149. case KVM_CAP_ONE_REG:
  150. case KVM_CAP_ARM_PSCI:
  151. case KVM_CAP_ARM_PSCI_0_2:
  152. case KVM_CAP_READONLY_MEM:
  153. r = 1;
  154. break;
  155. case KVM_CAP_COALESCED_MMIO:
  156. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  157. break;
  158. case KVM_CAP_ARM_SET_DEVICE_ADDR:
  159. r = 1;
  160. break;
  161. case KVM_CAP_NR_VCPUS:
  162. r = num_online_cpus();
  163. break;
  164. case KVM_CAP_MAX_VCPUS:
  165. r = KVM_MAX_VCPUS;
  166. break;
  167. default:
  168. r = kvm_arch_dev_ioctl_check_extension(ext);
  169. break;
  170. }
  171. return r;
  172. }
  173. long kvm_arch_dev_ioctl(struct file *filp,
  174. unsigned int ioctl, unsigned long arg)
  175. {
  176. return -EINVAL;
  177. }
  178. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  179. {
  180. int err;
  181. struct kvm_vcpu *vcpu;
  182. if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
  183. err = -EBUSY;
  184. goto out;
  185. }
  186. vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  187. if (!vcpu) {
  188. err = -ENOMEM;
  189. goto out;
  190. }
  191. err = kvm_vcpu_init(vcpu, kvm, id);
  192. if (err)
  193. goto free_vcpu;
  194. err = create_hyp_mappings(vcpu, vcpu + 1);
  195. if (err)
  196. goto vcpu_uninit;
  197. return vcpu;
  198. vcpu_uninit:
  199. kvm_vcpu_uninit(vcpu);
  200. free_vcpu:
  201. kmem_cache_free(kvm_vcpu_cache, vcpu);
  202. out:
  203. return ERR_PTR(err);
  204. }
  205. int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  206. {
  207. return 0;
  208. }
  209. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  210. {
  211. kvm_mmu_free_memory_caches(vcpu);
  212. kvm_timer_vcpu_terminate(vcpu);
  213. kvm_vgic_vcpu_destroy(vcpu);
  214. kmem_cache_free(kvm_vcpu_cache, vcpu);
  215. }
  216. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  217. {
  218. kvm_arch_vcpu_free(vcpu);
  219. }
  220. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  221. {
  222. return 0;
  223. }
  224. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  225. {
  226. /* Force users to call KVM_ARM_VCPU_INIT */
  227. vcpu->arch.target = -1;
  228. /* Set up the timer */
  229. kvm_timer_vcpu_init(vcpu);
  230. return 0;
  231. }
  232. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  233. {
  234. vcpu->cpu = cpu;
  235. vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
  236. /*
  237. * Check whether this vcpu requires the cache to be flushed on
  238. * this physical CPU. This is a consequence of doing dcache
  239. * operations by set/way on this vcpu. We do it here to be in
  240. * a non-preemptible section.
  241. */
  242. if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
  243. flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
  244. kvm_arm_set_running_vcpu(vcpu);
  245. }
  246. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  247. {
  248. /*
  249. * The arch-generic KVM code expects the cpu field of a vcpu to be -1
  250. * if the vcpu is no longer assigned to a cpu. This is used for the
  251. * optimized make_all_cpus_request path.
  252. */
  253. vcpu->cpu = -1;
  254. kvm_arm_set_running_vcpu(NULL);
  255. }
  256. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  257. struct kvm_guest_debug *dbg)
  258. {
  259. return -EINVAL;
  260. }
  261. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  262. struct kvm_mp_state *mp_state)
  263. {
  264. return -EINVAL;
  265. }
  266. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  267. struct kvm_mp_state *mp_state)
  268. {
  269. return -EINVAL;
  270. }
  271. /**
  272. * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
  273. * @v: The VCPU pointer
  274. *
  275. * If the guest CPU is not waiting for interrupts or an interrupt line is
  276. * asserted, the CPU is by definition runnable.
  277. */
  278. int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
  279. {
  280. return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
  281. }
  282. /* Just ensure a guest exit from a particular CPU */
  283. static void exit_vm_noop(void *info)
  284. {
  285. }
  286. void force_vm_exit(const cpumask_t *mask)
  287. {
  288. smp_call_function_many(mask, exit_vm_noop, NULL, true);
  289. }
  290. /**
  291. * need_new_vmid_gen - check that the VMID is still valid
  292. * @kvm: The VM's VMID to checkt
  293. *
  294. * return true if there is a new generation of VMIDs being used
  295. *
  296. * The hardware supports only 256 values with the value zero reserved for the
  297. * host, so we check if an assigned value belongs to a previous generation,
  298. * which which requires us to assign a new value. If we're the first to use a
  299. * VMID for the new generation, we must flush necessary caches and TLBs on all
  300. * CPUs.
  301. */
  302. static bool need_new_vmid_gen(struct kvm *kvm)
  303. {
  304. return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
  305. }
  306. /**
  307. * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
  308. * @kvm The guest that we are about to run
  309. *
  310. * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
  311. * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
  312. * caches and TLBs.
  313. */
  314. static void update_vttbr(struct kvm *kvm)
  315. {
  316. phys_addr_t pgd_phys;
  317. u64 vmid;
  318. if (!need_new_vmid_gen(kvm))
  319. return;
  320. spin_lock(&kvm_vmid_lock);
  321. /*
  322. * We need to re-check the vmid_gen here to ensure that if another vcpu
  323. * already allocated a valid vmid for this vm, then this vcpu should
  324. * use the same vmid.
  325. */
  326. if (!need_new_vmid_gen(kvm)) {
  327. spin_unlock(&kvm_vmid_lock);
  328. return;
  329. }
  330. /* First user of a new VMID generation? */
  331. if (unlikely(kvm_next_vmid == 0)) {
  332. atomic64_inc(&kvm_vmid_gen);
  333. kvm_next_vmid = 1;
  334. /*
  335. * On SMP we know no other CPUs can use this CPU's or each
  336. * other's VMID after force_vm_exit returns since the
  337. * kvm_vmid_lock blocks them from reentry to the guest.
  338. */
  339. force_vm_exit(cpu_all_mask);
  340. /*
  341. * Now broadcast TLB + ICACHE invalidation over the inner
  342. * shareable domain to make sure all data structures are
  343. * clean.
  344. */
  345. kvm_call_hyp(__kvm_flush_vm_context);
  346. }
  347. kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
  348. kvm->arch.vmid = kvm_next_vmid;
  349. kvm_next_vmid++;
  350. /* update vttbr to be used with the new vmid */
  351. pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
  352. BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
  353. vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
  354. kvm->arch.vttbr = pgd_phys | vmid;
  355. spin_unlock(&kvm_vmid_lock);
  356. }
  357. static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
  358. {
  359. struct kvm *kvm = vcpu->kvm;
  360. int ret;
  361. if (likely(vcpu->arch.has_run_once))
  362. return 0;
  363. vcpu->arch.has_run_once = true;
  364. /*
  365. * Map the VGIC hardware resources before running a vcpu the first
  366. * time on this VM.
  367. */
  368. if (unlikely(!vgic_initialized(kvm))) {
  369. ret = kvm_vgic_map_resources(kvm);
  370. if (ret)
  371. return ret;
  372. }
  373. /*
  374. * Enable the arch timers only if we have an in-kernel VGIC
  375. * and it has been properly initialized, since we cannot handle
  376. * interrupts from the virtual timer with a userspace gic.
  377. */
  378. if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
  379. kvm_timer_enable(kvm);
  380. return 0;
  381. }
  382. static void vcpu_pause(struct kvm_vcpu *vcpu)
  383. {
  384. wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
  385. wait_event_interruptible(*wq, !vcpu->arch.pause);
  386. }
  387. static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
  388. {
  389. return vcpu->arch.target >= 0;
  390. }
  391. /**
  392. * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
  393. * @vcpu: The VCPU pointer
  394. * @run: The kvm_run structure pointer used for userspace state exchange
  395. *
  396. * This function is called through the VCPU_RUN ioctl called from user space. It
  397. * will execute VM code in a loop until the time slice for the process is used
  398. * or some emulation is needed from user space in which case the function will
  399. * return with return value 0 and with the kvm_run structure filled in with the
  400. * required data for the requested emulation.
  401. */
  402. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  403. {
  404. int ret;
  405. sigset_t sigsaved;
  406. if (unlikely(!kvm_vcpu_initialized(vcpu)))
  407. return -ENOEXEC;
  408. ret = kvm_vcpu_first_run_init(vcpu);
  409. if (ret)
  410. return ret;
  411. if (run->exit_reason == KVM_EXIT_MMIO) {
  412. ret = kvm_handle_mmio_return(vcpu, vcpu->run);
  413. if (ret)
  414. return ret;
  415. }
  416. if (vcpu->sigset_active)
  417. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  418. ret = 1;
  419. run->exit_reason = KVM_EXIT_UNKNOWN;
  420. while (ret > 0) {
  421. /*
  422. * Check conditions before entering the guest
  423. */
  424. cond_resched();
  425. update_vttbr(vcpu->kvm);
  426. if (vcpu->arch.pause)
  427. vcpu_pause(vcpu);
  428. kvm_vgic_flush_hwstate(vcpu);
  429. kvm_timer_flush_hwstate(vcpu);
  430. local_irq_disable();
  431. /*
  432. * Re-check atomic conditions
  433. */
  434. if (signal_pending(current)) {
  435. ret = -EINTR;
  436. run->exit_reason = KVM_EXIT_INTR;
  437. }
  438. if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
  439. local_irq_enable();
  440. kvm_timer_sync_hwstate(vcpu);
  441. kvm_vgic_sync_hwstate(vcpu);
  442. continue;
  443. }
  444. /**************************************************************
  445. * Enter the guest
  446. */
  447. trace_kvm_entry(*vcpu_pc(vcpu));
  448. kvm_guest_enter();
  449. vcpu->mode = IN_GUEST_MODE;
  450. ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
  451. vcpu->mode = OUTSIDE_GUEST_MODE;
  452. vcpu->arch.last_pcpu = smp_processor_id();
  453. kvm_guest_exit();
  454. trace_kvm_exit(*vcpu_pc(vcpu));
  455. /*
  456. * We may have taken a host interrupt in HYP mode (ie
  457. * while executing the guest). This interrupt is still
  458. * pending, as we haven't serviced it yet!
  459. *
  460. * We're now back in SVC mode, with interrupts
  461. * disabled. Enabling the interrupts now will have
  462. * the effect of taking the interrupt again, in SVC
  463. * mode this time.
  464. */
  465. local_irq_enable();
  466. /*
  467. * Back from guest
  468. *************************************************************/
  469. kvm_timer_sync_hwstate(vcpu);
  470. kvm_vgic_sync_hwstate(vcpu);
  471. ret = handle_exit(vcpu, run, ret);
  472. }
  473. if (vcpu->sigset_active)
  474. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  475. return ret;
  476. }
  477. static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
  478. {
  479. int bit_index;
  480. bool set;
  481. unsigned long *ptr;
  482. if (number == KVM_ARM_IRQ_CPU_IRQ)
  483. bit_index = __ffs(HCR_VI);
  484. else /* KVM_ARM_IRQ_CPU_FIQ */
  485. bit_index = __ffs(HCR_VF);
  486. ptr = (unsigned long *)&vcpu->arch.irq_lines;
  487. if (level)
  488. set = test_and_set_bit(bit_index, ptr);
  489. else
  490. set = test_and_clear_bit(bit_index, ptr);
  491. /*
  492. * If we didn't change anything, no need to wake up or kick other CPUs
  493. */
  494. if (set == level)
  495. return 0;
  496. /*
  497. * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
  498. * trigger a world-switch round on the running physical CPU to set the
  499. * virtual IRQ/FIQ fields in the HCR appropriately.
  500. */
  501. kvm_vcpu_kick(vcpu);
  502. return 0;
  503. }
  504. int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
  505. bool line_status)
  506. {
  507. u32 irq = irq_level->irq;
  508. unsigned int irq_type, vcpu_idx, irq_num;
  509. int nrcpus = atomic_read(&kvm->online_vcpus);
  510. struct kvm_vcpu *vcpu = NULL;
  511. bool level = irq_level->level;
  512. irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
  513. vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
  514. irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
  515. trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
  516. switch (irq_type) {
  517. case KVM_ARM_IRQ_TYPE_CPU:
  518. if (irqchip_in_kernel(kvm))
  519. return -ENXIO;
  520. if (vcpu_idx >= nrcpus)
  521. return -EINVAL;
  522. vcpu = kvm_get_vcpu(kvm, vcpu_idx);
  523. if (!vcpu)
  524. return -EINVAL;
  525. if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
  526. return -EINVAL;
  527. return vcpu_interrupt_line(vcpu, irq_num, level);
  528. case KVM_ARM_IRQ_TYPE_PPI:
  529. if (!irqchip_in_kernel(kvm))
  530. return -ENXIO;
  531. if (vcpu_idx >= nrcpus)
  532. return -EINVAL;
  533. vcpu = kvm_get_vcpu(kvm, vcpu_idx);
  534. if (!vcpu)
  535. return -EINVAL;
  536. if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
  537. return -EINVAL;
  538. return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
  539. case KVM_ARM_IRQ_TYPE_SPI:
  540. if (!irqchip_in_kernel(kvm))
  541. return -ENXIO;
  542. if (irq_num < VGIC_NR_PRIVATE_IRQS)
  543. return -EINVAL;
  544. return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
  545. }
  546. return -EINVAL;
  547. }
  548. static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
  549. struct kvm_vcpu_init *init)
  550. {
  551. int ret;
  552. ret = kvm_vcpu_set_target(vcpu, init);
  553. if (ret)
  554. return ret;
  555. /*
  556. * Ensure a rebooted VM will fault in RAM pages and detect if the
  557. * guest MMU is turned off and flush the caches as needed.
  558. */
  559. if (vcpu->arch.has_run_once)
  560. stage2_unmap_vm(vcpu->kvm);
  561. vcpu_reset_hcr(vcpu);
  562. /*
  563. * Handle the "start in power-off" case by marking the VCPU as paused.
  564. */
  565. if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
  566. vcpu->arch.pause = true;
  567. else
  568. vcpu->arch.pause = false;
  569. return 0;
  570. }
  571. long kvm_arch_vcpu_ioctl(struct file *filp,
  572. unsigned int ioctl, unsigned long arg)
  573. {
  574. struct kvm_vcpu *vcpu = filp->private_data;
  575. void __user *argp = (void __user *)arg;
  576. switch (ioctl) {
  577. case KVM_ARM_VCPU_INIT: {
  578. struct kvm_vcpu_init init;
  579. if (copy_from_user(&init, argp, sizeof(init)))
  580. return -EFAULT;
  581. return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
  582. }
  583. case KVM_SET_ONE_REG:
  584. case KVM_GET_ONE_REG: {
  585. struct kvm_one_reg reg;
  586. if (unlikely(!kvm_vcpu_initialized(vcpu)))
  587. return -ENOEXEC;
  588. if (copy_from_user(&reg, argp, sizeof(reg)))
  589. return -EFAULT;
  590. if (ioctl == KVM_SET_ONE_REG)
  591. return kvm_arm_set_reg(vcpu, &reg);
  592. else
  593. return kvm_arm_get_reg(vcpu, &reg);
  594. }
  595. case KVM_GET_REG_LIST: {
  596. struct kvm_reg_list __user *user_list = argp;
  597. struct kvm_reg_list reg_list;
  598. unsigned n;
  599. if (unlikely(!kvm_vcpu_initialized(vcpu)))
  600. return -ENOEXEC;
  601. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  602. return -EFAULT;
  603. n = reg_list.n;
  604. reg_list.n = kvm_arm_num_regs(vcpu);
  605. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  606. return -EFAULT;
  607. if (n < reg_list.n)
  608. return -E2BIG;
  609. return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
  610. }
  611. default:
  612. return -EINVAL;
  613. }
  614. }
  615. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  616. {
  617. return -EINVAL;
  618. }
  619. static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
  620. struct kvm_arm_device_addr *dev_addr)
  621. {
  622. unsigned long dev_id, type;
  623. dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
  624. KVM_ARM_DEVICE_ID_SHIFT;
  625. type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
  626. KVM_ARM_DEVICE_TYPE_SHIFT;
  627. switch (dev_id) {
  628. case KVM_ARM_DEVICE_VGIC_V2:
  629. if (!vgic_present)
  630. return -ENXIO;
  631. return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
  632. default:
  633. return -ENODEV;
  634. }
  635. }
  636. long kvm_arch_vm_ioctl(struct file *filp,
  637. unsigned int ioctl, unsigned long arg)
  638. {
  639. struct kvm *kvm = filp->private_data;
  640. void __user *argp = (void __user *)arg;
  641. switch (ioctl) {
  642. case KVM_CREATE_IRQCHIP: {
  643. if (vgic_present)
  644. return kvm_vgic_create(kvm);
  645. else
  646. return -ENXIO;
  647. }
  648. case KVM_ARM_SET_DEVICE_ADDR: {
  649. struct kvm_arm_device_addr dev_addr;
  650. if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
  651. return -EFAULT;
  652. return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
  653. }
  654. case KVM_ARM_PREFERRED_TARGET: {
  655. int err;
  656. struct kvm_vcpu_init init;
  657. err = kvm_vcpu_preferred_target(&init);
  658. if (err)
  659. return err;
  660. if (copy_to_user(argp, &init, sizeof(init)))
  661. return -EFAULT;
  662. return 0;
  663. }
  664. default:
  665. return -EINVAL;
  666. }
  667. }
  668. static void cpu_init_hyp_mode(void *dummy)
  669. {
  670. phys_addr_t boot_pgd_ptr;
  671. phys_addr_t pgd_ptr;
  672. unsigned long hyp_stack_ptr;
  673. unsigned long stack_page;
  674. unsigned long vector_ptr;
  675. /* Switch from the HYP stub to our own HYP init vector */
  676. __hyp_set_vectors(kvm_get_idmap_vector());
  677. boot_pgd_ptr = kvm_mmu_get_boot_httbr();
  678. pgd_ptr = kvm_mmu_get_httbr();
  679. stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
  680. hyp_stack_ptr = stack_page + PAGE_SIZE;
  681. vector_ptr = (unsigned long)__kvm_hyp_vector;
  682. __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
  683. }
  684. static int hyp_init_cpu_notify(struct notifier_block *self,
  685. unsigned long action, void *cpu)
  686. {
  687. switch (action) {
  688. case CPU_STARTING:
  689. case CPU_STARTING_FROZEN:
  690. if (__hyp_get_vectors() == hyp_default_vectors)
  691. cpu_init_hyp_mode(NULL);
  692. break;
  693. }
  694. return NOTIFY_OK;
  695. }
  696. static struct notifier_block hyp_init_cpu_nb = {
  697. .notifier_call = hyp_init_cpu_notify,
  698. };
  699. #ifdef CONFIG_CPU_PM
  700. static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
  701. unsigned long cmd,
  702. void *v)
  703. {
  704. if (cmd == CPU_PM_EXIT &&
  705. __hyp_get_vectors() == hyp_default_vectors) {
  706. cpu_init_hyp_mode(NULL);
  707. return NOTIFY_OK;
  708. }
  709. return NOTIFY_DONE;
  710. }
  711. static struct notifier_block hyp_init_cpu_pm_nb = {
  712. .notifier_call = hyp_init_cpu_pm_notifier,
  713. };
  714. static void __init hyp_cpu_pm_init(void)
  715. {
  716. cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
  717. }
  718. #else
  719. static inline void hyp_cpu_pm_init(void)
  720. {
  721. }
  722. #endif
  723. /**
  724. * Inits Hyp-mode on all online CPUs
  725. */
  726. static int init_hyp_mode(void)
  727. {
  728. int cpu;
  729. int err = 0;
  730. /*
  731. * Allocate Hyp PGD and setup Hyp identity mapping
  732. */
  733. err = kvm_mmu_init();
  734. if (err)
  735. goto out_err;
  736. /*
  737. * It is probably enough to obtain the default on one
  738. * CPU. It's unlikely to be different on the others.
  739. */
  740. hyp_default_vectors = __hyp_get_vectors();
  741. /*
  742. * Allocate stack pages for Hypervisor-mode
  743. */
  744. for_each_possible_cpu(cpu) {
  745. unsigned long stack_page;
  746. stack_page = __get_free_page(GFP_KERNEL);
  747. if (!stack_page) {
  748. err = -ENOMEM;
  749. goto out_free_stack_pages;
  750. }
  751. per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
  752. }
  753. /*
  754. * Map the Hyp-code called directly from the host
  755. */
  756. err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
  757. if (err) {
  758. kvm_err("Cannot map world-switch code\n");
  759. goto out_free_mappings;
  760. }
  761. /*
  762. * Map the Hyp stack pages
  763. */
  764. for_each_possible_cpu(cpu) {
  765. char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
  766. err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
  767. if (err) {
  768. kvm_err("Cannot map hyp stack\n");
  769. goto out_free_mappings;
  770. }
  771. }
  772. /*
  773. * Map the host CPU structures
  774. */
  775. kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
  776. if (!kvm_host_cpu_state) {
  777. err = -ENOMEM;
  778. kvm_err("Cannot allocate host CPU state\n");
  779. goto out_free_mappings;
  780. }
  781. for_each_possible_cpu(cpu) {
  782. kvm_cpu_context_t *cpu_ctxt;
  783. cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
  784. err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
  785. if (err) {
  786. kvm_err("Cannot map host CPU state: %d\n", err);
  787. goto out_free_context;
  788. }
  789. }
  790. /*
  791. * Execute the init code on each CPU.
  792. */
  793. on_each_cpu(cpu_init_hyp_mode, NULL, 1);
  794. /*
  795. * Init HYP view of VGIC
  796. */
  797. err = kvm_vgic_hyp_init();
  798. if (err)
  799. goto out_free_context;
  800. #ifdef CONFIG_KVM_ARM_VGIC
  801. vgic_present = true;
  802. #endif
  803. /*
  804. * Init HYP architected timer support
  805. */
  806. err = kvm_timer_hyp_init();
  807. if (err)
  808. goto out_free_mappings;
  809. #ifndef CONFIG_HOTPLUG_CPU
  810. free_boot_hyp_pgd();
  811. #endif
  812. kvm_perf_init();
  813. kvm_info("Hyp mode initialized successfully\n");
  814. return 0;
  815. out_free_context:
  816. free_percpu(kvm_host_cpu_state);
  817. out_free_mappings:
  818. free_hyp_pgds();
  819. out_free_stack_pages:
  820. for_each_possible_cpu(cpu)
  821. free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
  822. out_err:
  823. kvm_err("error initializing Hyp mode: %d\n", err);
  824. return err;
  825. }
  826. static void check_kvm_target_cpu(void *ret)
  827. {
  828. *(int *)ret = kvm_target_cpu();
  829. }
  830. /**
  831. * Initialize Hyp-mode and memory mappings on all CPUs.
  832. */
  833. int kvm_arch_init(void *opaque)
  834. {
  835. int err;
  836. int ret, cpu;
  837. if (!is_hyp_mode_available()) {
  838. kvm_err("HYP mode not available\n");
  839. return -ENODEV;
  840. }
  841. for_each_online_cpu(cpu) {
  842. smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
  843. if (ret < 0) {
  844. kvm_err("Error, CPU %d not supported!\n", cpu);
  845. return -ENODEV;
  846. }
  847. }
  848. cpu_notifier_register_begin();
  849. err = init_hyp_mode();
  850. if (err)
  851. goto out_err;
  852. err = __register_cpu_notifier(&hyp_init_cpu_nb);
  853. if (err) {
  854. kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
  855. goto out_err;
  856. }
  857. cpu_notifier_register_done();
  858. hyp_cpu_pm_init();
  859. kvm_coproc_table_init();
  860. return 0;
  861. out_err:
  862. cpu_notifier_register_done();
  863. return err;
  864. }
  865. /* NOP: Compiling as a module not supported */
  866. void kvm_arch_exit(void)
  867. {
  868. kvm_perf_teardown();
  869. }
  870. static int arm_init(void)
  871. {
  872. int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  873. return rc;
  874. }
  875. module_init(arm_init);