menu.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500
  1. /*
  2. * menu.c - the menu idle governor
  3. *
  4. * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
  5. * Copyright (C) 2009 Intel Corporation
  6. * Author:
  7. * Arjan van de Ven <arjan@linux.intel.com>
  8. *
  9. * This code is licenced under the GPL version 2 as described
  10. * in the COPYING file that acompanies the Linux Kernel.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/cpuidle.h>
  14. #include <linux/pm_qos.h>
  15. #include <linux/time.h>
  16. #include <linux/ktime.h>
  17. #include <linux/hrtimer.h>
  18. #include <linux/tick.h>
  19. #include <linux/sched.h>
  20. #include <linux/math64.h>
  21. #include <linux/module.h>
  22. /*
  23. * Please note when changing the tuning values:
  24. * If (MAX_INTERESTING-1) * RESOLUTION > UINT_MAX, the result of
  25. * a scaling operation multiplication may overflow on 32 bit platforms.
  26. * In that case, #define RESOLUTION as ULL to get 64 bit result:
  27. * #define RESOLUTION 1024ULL
  28. *
  29. * The default values do not overflow.
  30. */
  31. #define BUCKETS 12
  32. #define INTERVAL_SHIFT 3
  33. #define INTERVALS (1UL << INTERVAL_SHIFT)
  34. #define RESOLUTION 1024
  35. #define DECAY 8
  36. #define MAX_INTERESTING 50000
  37. /*
  38. * Concepts and ideas behind the menu governor
  39. *
  40. * For the menu governor, there are 3 decision factors for picking a C
  41. * state:
  42. * 1) Energy break even point
  43. * 2) Performance impact
  44. * 3) Latency tolerance (from pmqos infrastructure)
  45. * These these three factors are treated independently.
  46. *
  47. * Energy break even point
  48. * -----------------------
  49. * C state entry and exit have an energy cost, and a certain amount of time in
  50. * the C state is required to actually break even on this cost. CPUIDLE
  51. * provides us this duration in the "target_residency" field. So all that we
  52. * need is a good prediction of how long we'll be idle. Like the traditional
  53. * menu governor, we start with the actual known "next timer event" time.
  54. *
  55. * Since there are other source of wakeups (interrupts for example) than
  56. * the next timer event, this estimation is rather optimistic. To get a
  57. * more realistic estimate, a correction factor is applied to the estimate,
  58. * that is based on historic behavior. For example, if in the past the actual
  59. * duration always was 50% of the next timer tick, the correction factor will
  60. * be 0.5.
  61. *
  62. * menu uses a running average for this correction factor, however it uses a
  63. * set of factors, not just a single factor. This stems from the realization
  64. * that the ratio is dependent on the order of magnitude of the expected
  65. * duration; if we expect 500 milliseconds of idle time the likelihood of
  66. * getting an interrupt very early is much higher than if we expect 50 micro
  67. * seconds of idle time. A second independent factor that has big impact on
  68. * the actual factor is if there is (disk) IO outstanding or not.
  69. * (as a special twist, we consider every sleep longer than 50 milliseconds
  70. * as perfect; there are no power gains for sleeping longer than this)
  71. *
  72. * For these two reasons we keep an array of 12 independent factors, that gets
  73. * indexed based on the magnitude of the expected duration as well as the
  74. * "is IO outstanding" property.
  75. *
  76. * Repeatable-interval-detector
  77. * ----------------------------
  78. * There are some cases where "next timer" is a completely unusable predictor:
  79. * Those cases where the interval is fixed, for example due to hardware
  80. * interrupt mitigation, but also due to fixed transfer rate devices such as
  81. * mice.
  82. * For this, we use a different predictor: We track the duration of the last 8
  83. * intervals and if the stand deviation of these 8 intervals is below a
  84. * threshold value, we use the average of these intervals as prediction.
  85. *
  86. * Limiting Performance Impact
  87. * ---------------------------
  88. * C states, especially those with large exit latencies, can have a real
  89. * noticeable impact on workloads, which is not acceptable for most sysadmins,
  90. * and in addition, less performance has a power price of its own.
  91. *
  92. * As a general rule of thumb, menu assumes that the following heuristic
  93. * holds:
  94. * The busier the system, the less impact of C states is acceptable
  95. *
  96. * This rule-of-thumb is implemented using a performance-multiplier:
  97. * If the exit latency times the performance multiplier is longer than
  98. * the predicted duration, the C state is not considered a candidate
  99. * for selection due to a too high performance impact. So the higher
  100. * this multiplier is, the longer we need to be idle to pick a deep C
  101. * state, and thus the less likely a busy CPU will hit such a deep
  102. * C state.
  103. *
  104. * Two factors are used in determing this multiplier:
  105. * a value of 10 is added for each point of "per cpu load average" we have.
  106. * a value of 5 points is added for each process that is waiting for
  107. * IO on this CPU.
  108. * (these values are experimentally determined)
  109. *
  110. * The load average factor gives a longer term (few seconds) input to the
  111. * decision, while the iowait value gives a cpu local instantanious input.
  112. * The iowait factor may look low, but realize that this is also already
  113. * represented in the system load average.
  114. *
  115. */
  116. struct menu_device {
  117. int last_state_idx;
  118. int needs_update;
  119. unsigned int next_timer_us;
  120. unsigned int predicted_us;
  121. unsigned int bucket;
  122. unsigned int correction_factor[BUCKETS];
  123. unsigned int intervals[INTERVALS];
  124. int interval_ptr;
  125. };
  126. #define LOAD_INT(x) ((x) >> FSHIFT)
  127. #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
  128. static inline int get_loadavg(unsigned long load)
  129. {
  130. return LOAD_INT(load) * 10 + LOAD_FRAC(load) / 10;
  131. }
  132. static inline int which_bucket(unsigned int duration, unsigned long nr_iowaiters)
  133. {
  134. int bucket = 0;
  135. /*
  136. * We keep two groups of stats; one with no
  137. * IO pending, one without.
  138. * This allows us to calculate
  139. * E(duration)|iowait
  140. */
  141. if (nr_iowaiters)
  142. bucket = BUCKETS/2;
  143. if (duration < 10)
  144. return bucket;
  145. if (duration < 100)
  146. return bucket + 1;
  147. if (duration < 1000)
  148. return bucket + 2;
  149. if (duration < 10000)
  150. return bucket + 3;
  151. if (duration < 100000)
  152. return bucket + 4;
  153. return bucket + 5;
  154. }
  155. /*
  156. * Return a multiplier for the exit latency that is intended
  157. * to take performance requirements into account.
  158. * The more performance critical we estimate the system
  159. * to be, the higher this multiplier, and thus the higher
  160. * the barrier to go to an expensive C state.
  161. */
  162. static inline int performance_multiplier(unsigned long nr_iowaiters, unsigned long load)
  163. {
  164. int mult = 1;
  165. /* for higher loadavg, we are more reluctant */
  166. /*
  167. * this doesn't work as intended - it is almost always 0, but can
  168. * sometimes, depending on workload, spike very high into the hundreds
  169. * even when the average cpu load is under 10%.
  170. */
  171. /* mult += 2 * get_loadavg(); */
  172. /* for IO wait tasks (per cpu!) we add 5x each */
  173. mult += 10 * nr_iowaiters;
  174. return mult;
  175. }
  176. static DEFINE_PER_CPU(struct menu_device, menu_devices);
  177. static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
  178. /* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
  179. static u64 div_round64(u64 dividend, u32 divisor)
  180. {
  181. return div_u64(dividend + (divisor / 2), divisor);
  182. }
  183. /*
  184. * Try detecting repeating patterns by keeping track of the last 8
  185. * intervals, and checking if the standard deviation of that set
  186. * of points is below a threshold. If it is... then use the
  187. * average of these 8 points as the estimated value.
  188. */
  189. static void get_typical_interval(struct menu_device *data)
  190. {
  191. int i, divisor;
  192. unsigned int max, thresh;
  193. uint64_t avg, stddev;
  194. thresh = UINT_MAX; /* Discard outliers above this value */
  195. again:
  196. /* First calculate the average of past intervals */
  197. max = 0;
  198. avg = 0;
  199. divisor = 0;
  200. for (i = 0; i < INTERVALS; i++) {
  201. unsigned int value = data->intervals[i];
  202. if (value <= thresh) {
  203. avg += value;
  204. divisor++;
  205. if (value > max)
  206. max = value;
  207. }
  208. }
  209. if (divisor == INTERVALS)
  210. avg >>= INTERVAL_SHIFT;
  211. else
  212. do_div(avg, divisor);
  213. /* Then try to determine standard deviation */
  214. stddev = 0;
  215. for (i = 0; i < INTERVALS; i++) {
  216. unsigned int value = data->intervals[i];
  217. if (value <= thresh) {
  218. int64_t diff = value - avg;
  219. stddev += diff * diff;
  220. }
  221. }
  222. if (divisor == INTERVALS)
  223. stddev >>= INTERVAL_SHIFT;
  224. else
  225. do_div(stddev, divisor);
  226. /*
  227. * The typical interval is obtained when standard deviation is small
  228. * or standard deviation is small compared to the average interval.
  229. *
  230. * int_sqrt() formal parameter type is unsigned long. When the
  231. * greatest difference to an outlier exceeds ~65 ms * sqrt(divisor)
  232. * the resulting squared standard deviation exceeds the input domain
  233. * of int_sqrt on platforms where unsigned long is 32 bits in size.
  234. * In such case reject the candidate average.
  235. *
  236. * Use this result only if there is no timer to wake us up sooner.
  237. */
  238. if (likely(stddev <= ULONG_MAX)) {
  239. stddev = int_sqrt(stddev);
  240. if (((avg > stddev * 6) && (divisor * 4 >= INTERVALS * 3))
  241. || stddev <= 20) {
  242. if (data->next_timer_us > avg)
  243. data->predicted_us = avg;
  244. return;
  245. }
  246. }
  247. /*
  248. * If we have outliers to the upside in our distribution, discard
  249. * those by setting the threshold to exclude these outliers, then
  250. * calculate the average and standard deviation again. Once we get
  251. * down to the bottom 3/4 of our samples, stop excluding samples.
  252. *
  253. * This can deal with workloads that have long pauses interspersed
  254. * with sporadic activity with a bunch of short pauses.
  255. */
  256. if ((divisor * 4) <= INTERVALS * 3)
  257. return;
  258. thresh = max - 1;
  259. goto again;
  260. }
  261. /**
  262. * menu_select - selects the next idle state to enter
  263. * @drv: cpuidle driver containing state data
  264. * @dev: the CPU
  265. */
  266. static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
  267. {
  268. struct menu_device *data = this_cpu_ptr(&menu_devices);
  269. int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
  270. int i;
  271. unsigned int interactivity_req;
  272. unsigned long nr_iowaiters, cpu_load;
  273. if (data->needs_update) {
  274. menu_update(drv, dev);
  275. data->needs_update = 0;
  276. }
  277. data->last_state_idx = CPUIDLE_DRIVER_STATE_START - 1;
  278. /* Special case when user has set very strict latency requirement */
  279. if (unlikely(latency_req == 0))
  280. return 0;
  281. /* determine the expected residency time, round up */
  282. data->next_timer_us = ktime_to_us(tick_nohz_get_sleep_length());
  283. get_iowait_load(&nr_iowaiters, &cpu_load);
  284. data->bucket = which_bucket(data->next_timer_us, nr_iowaiters);
  285. /*
  286. * Force the result of multiplication to be 64 bits even if both
  287. * operands are 32 bits.
  288. * Make sure to round up for half microseconds.
  289. */
  290. data->predicted_us = div_round64((uint64_t)data->next_timer_us *
  291. data->correction_factor[data->bucket],
  292. RESOLUTION * DECAY);
  293. get_typical_interval(data);
  294. /*
  295. * Performance multiplier defines a minimum predicted idle
  296. * duration / latency ratio. Adjust the latency limit if
  297. * necessary.
  298. */
  299. interactivity_req = data->predicted_us / performance_multiplier(nr_iowaiters, cpu_load);
  300. if (latency_req > interactivity_req)
  301. latency_req = interactivity_req;
  302. /*
  303. * We want to default to C1 (hlt), not to busy polling
  304. * unless the timer is happening really really soon.
  305. */
  306. if (data->next_timer_us > 5 &&
  307. !drv->states[CPUIDLE_DRIVER_STATE_START].disabled &&
  308. dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
  309. data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
  310. /*
  311. * Find the idle state with the lowest power while satisfying
  312. * our constraints.
  313. */
  314. for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
  315. struct cpuidle_state *s = &drv->states[i];
  316. struct cpuidle_state_usage *su = &dev->states_usage[i];
  317. if (s->disabled || su->disable)
  318. continue;
  319. if (s->target_residency > data->predicted_us)
  320. continue;
  321. if (s->exit_latency > latency_req)
  322. continue;
  323. data->last_state_idx = i;
  324. }
  325. return data->last_state_idx;
  326. }
  327. /**
  328. * menu_reflect - records that data structures need update
  329. * @dev: the CPU
  330. * @index: the index of actual entered state
  331. *
  332. * NOTE: it's important to be fast here because this operation will add to
  333. * the overall exit latency.
  334. */
  335. static void menu_reflect(struct cpuidle_device *dev, int index)
  336. {
  337. struct menu_device *data = this_cpu_ptr(&menu_devices);
  338. data->last_state_idx = index;
  339. if (index >= 0)
  340. data->needs_update = 1;
  341. }
  342. /**
  343. * menu_update - attempts to guess what happened after entry
  344. * @drv: cpuidle driver containing state data
  345. * @dev: the CPU
  346. */
  347. static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
  348. {
  349. struct menu_device *data = this_cpu_ptr(&menu_devices);
  350. int last_idx = data->last_state_idx;
  351. struct cpuidle_state *target = &drv->states[last_idx];
  352. unsigned int measured_us;
  353. unsigned int new_factor;
  354. /*
  355. * Try to figure out how much time passed between entry to low
  356. * power state and occurrence of the wakeup event.
  357. *
  358. * If the entered idle state didn't support residency measurements,
  359. * we are basically lost in the dark how much time passed.
  360. * As a compromise, assume we slept for the whole expected time.
  361. *
  362. * Any measured amount of time will include the exit latency.
  363. * Since we are interested in when the wakeup begun, not when it
  364. * was completed, we must subtract the exit latency. However, if
  365. * the measured amount of time is less than the exit latency,
  366. * assume the state was never reached and the exit latency is 0.
  367. */
  368. if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID))) {
  369. /* Use timer value as is */
  370. measured_us = data->next_timer_us;
  371. } else {
  372. /* Use measured value */
  373. measured_us = cpuidle_get_last_residency(dev);
  374. /* Deduct exit latency */
  375. if (measured_us > target->exit_latency)
  376. measured_us -= target->exit_latency;
  377. /* Make sure our coefficients do not exceed unity */
  378. if (measured_us > data->next_timer_us)
  379. measured_us = data->next_timer_us;
  380. }
  381. /* Update our correction ratio */
  382. new_factor = data->correction_factor[data->bucket];
  383. new_factor -= new_factor / DECAY;
  384. if (data->next_timer_us > 0 && measured_us < MAX_INTERESTING)
  385. new_factor += RESOLUTION * measured_us / data->next_timer_us;
  386. else
  387. /*
  388. * we were idle so long that we count it as a perfect
  389. * prediction
  390. */
  391. new_factor += RESOLUTION;
  392. /*
  393. * We don't want 0 as factor; we always want at least
  394. * a tiny bit of estimated time. Fortunately, due to rounding,
  395. * new_factor will stay nonzero regardless of measured_us values
  396. * and the compiler can eliminate this test as long as DECAY > 1.
  397. */
  398. if (DECAY == 1 && unlikely(new_factor == 0))
  399. new_factor = 1;
  400. data->correction_factor[data->bucket] = new_factor;
  401. /* update the repeating-pattern data */
  402. data->intervals[data->interval_ptr++] = measured_us;
  403. if (data->interval_ptr >= INTERVALS)
  404. data->interval_ptr = 0;
  405. }
  406. /**
  407. * menu_enable_device - scans a CPU's states and does setup
  408. * @drv: cpuidle driver
  409. * @dev: the CPU
  410. */
  411. static int menu_enable_device(struct cpuidle_driver *drv,
  412. struct cpuidle_device *dev)
  413. {
  414. struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
  415. int i;
  416. memset(data, 0, sizeof(struct menu_device));
  417. /*
  418. * if the correction factor is 0 (eg first time init or cpu hotplug
  419. * etc), we actually want to start out with a unity factor.
  420. */
  421. for(i = 0; i < BUCKETS; i++)
  422. data->correction_factor[i] = RESOLUTION * DECAY;
  423. return 0;
  424. }
  425. static struct cpuidle_governor menu_governor = {
  426. .name = "menu",
  427. .rating = 20,
  428. .enable = menu_enable_device,
  429. .select = menu_select,
  430. .reflect = menu_reflect,
  431. .owner = THIS_MODULE,
  432. };
  433. /**
  434. * init_menu - initializes the governor
  435. */
  436. static int __init init_menu(void)
  437. {
  438. return cpuidle_register_governor(&menu_governor);
  439. }
  440. postcore_initcall(init_menu);