intel_ringbuffer.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - (tail + I915_RING_FREE_SPACE);
  50. if (space < 0)
  51. space += size;
  52. return space;
  53. }
  54. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. return __intel_ring_space(ringbuf->head & HEAD_ADDR,
  57. ringbuf->tail, ringbuf->size);
  58. }
  59. bool intel_ring_stopped(struct intel_engine_cs *ring)
  60. {
  61. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  62. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  63. }
  64. void __intel_ring_advance(struct intel_engine_cs *ring)
  65. {
  66. struct intel_ringbuffer *ringbuf = ring->buffer;
  67. ringbuf->tail &= ringbuf->size - 1;
  68. if (intel_ring_stopped(ring))
  69. return;
  70. ring->write_tail(ring, ringbuf->tail);
  71. }
  72. static int
  73. gen2_render_ring_flush(struct intel_engine_cs *ring,
  74. u32 invalidate_domains,
  75. u32 flush_domains)
  76. {
  77. u32 cmd;
  78. int ret;
  79. cmd = MI_FLUSH;
  80. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  81. cmd |= MI_NO_WRITE_FLUSH;
  82. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  83. cmd |= MI_READ_FLUSH;
  84. ret = intel_ring_begin(ring, 2);
  85. if (ret)
  86. return ret;
  87. intel_ring_emit(ring, cmd);
  88. intel_ring_emit(ring, MI_NOOP);
  89. intel_ring_advance(ring);
  90. return 0;
  91. }
  92. static int
  93. gen4_render_ring_flush(struct intel_engine_cs *ring,
  94. u32 invalidate_domains,
  95. u32 flush_domains)
  96. {
  97. struct drm_device *dev = ring->dev;
  98. u32 cmd;
  99. int ret;
  100. /*
  101. * read/write caches:
  102. *
  103. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  104. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  105. * also flushed at 2d versus 3d pipeline switches.
  106. *
  107. * read-only caches:
  108. *
  109. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  110. * MI_READ_FLUSH is set, and is always flushed on 965.
  111. *
  112. * I915_GEM_DOMAIN_COMMAND may not exist?
  113. *
  114. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  115. * invalidated when MI_EXE_FLUSH is set.
  116. *
  117. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  118. * invalidated with every MI_FLUSH.
  119. *
  120. * TLBs:
  121. *
  122. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  123. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  124. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  125. * are flushed at any MI_FLUSH.
  126. */
  127. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  128. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  129. cmd &= ~MI_NO_WRITE_FLUSH;
  130. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  131. cmd |= MI_EXE_FLUSH;
  132. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  133. (IS_G4X(dev) || IS_GEN5(dev)))
  134. cmd |= MI_INVALIDATE_ISP;
  135. ret = intel_ring_begin(ring, 2);
  136. if (ret)
  137. return ret;
  138. intel_ring_emit(ring, cmd);
  139. intel_ring_emit(ring, MI_NOOP);
  140. intel_ring_advance(ring);
  141. return 0;
  142. }
  143. /**
  144. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  145. * implementing two workarounds on gen6. From section 1.4.7.1
  146. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  147. *
  148. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  149. * produced by non-pipelined state commands), software needs to first
  150. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  151. * 0.
  152. *
  153. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  154. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  155. *
  156. * And the workaround for these two requires this workaround first:
  157. *
  158. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  159. * BEFORE the pipe-control with a post-sync op and no write-cache
  160. * flushes.
  161. *
  162. * And this last workaround is tricky because of the requirements on
  163. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  164. * volume 2 part 1:
  165. *
  166. * "1 of the following must also be set:
  167. * - Render Target Cache Flush Enable ([12] of DW1)
  168. * - Depth Cache Flush Enable ([0] of DW1)
  169. * - Stall at Pixel Scoreboard ([1] of DW1)
  170. * - Depth Stall ([13] of DW1)
  171. * - Post-Sync Operation ([13] of DW1)
  172. * - Notify Enable ([8] of DW1)"
  173. *
  174. * The cache flushes require the workaround flush that triggered this
  175. * one, so we can't use it. Depth stall would trigger the same.
  176. * Post-sync nonzero is what triggered this second workaround, so we
  177. * can't use that one either. Notify enable is IRQs, which aren't
  178. * really our business. That leaves only stall at scoreboard.
  179. */
  180. static int
  181. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  182. {
  183. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  184. int ret;
  185. ret = intel_ring_begin(ring, 6);
  186. if (ret)
  187. return ret;
  188. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  189. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  190. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  191. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  192. intel_ring_emit(ring, 0); /* low dword */
  193. intel_ring_emit(ring, 0); /* high dword */
  194. intel_ring_emit(ring, MI_NOOP);
  195. intel_ring_advance(ring);
  196. ret = intel_ring_begin(ring, 6);
  197. if (ret)
  198. return ret;
  199. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  200. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  201. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  202. intel_ring_emit(ring, 0);
  203. intel_ring_emit(ring, 0);
  204. intel_ring_emit(ring, MI_NOOP);
  205. intel_ring_advance(ring);
  206. return 0;
  207. }
  208. static int
  209. gen6_render_ring_flush(struct intel_engine_cs *ring,
  210. u32 invalidate_domains, u32 flush_domains)
  211. {
  212. u32 flags = 0;
  213. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  214. int ret;
  215. /* Force SNB workarounds for PIPE_CONTROL flushes */
  216. ret = intel_emit_post_sync_nonzero_flush(ring);
  217. if (ret)
  218. return ret;
  219. /* Just flush everything. Experiments have shown that reducing the
  220. * number of bits based on the write domains has little performance
  221. * impact.
  222. */
  223. if (flush_domains) {
  224. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  225. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  226. /*
  227. * Ensure that any following seqno writes only happen
  228. * when the render cache is indeed flushed.
  229. */
  230. flags |= PIPE_CONTROL_CS_STALL;
  231. }
  232. if (invalidate_domains) {
  233. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  234. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  235. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  238. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  239. /*
  240. * TLB invalidate requires a post-sync write.
  241. */
  242. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  243. }
  244. ret = intel_ring_begin(ring, 4);
  245. if (ret)
  246. return ret;
  247. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  248. intel_ring_emit(ring, flags);
  249. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  250. intel_ring_emit(ring, 0);
  251. intel_ring_advance(ring);
  252. return 0;
  253. }
  254. static int
  255. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  256. {
  257. int ret;
  258. ret = intel_ring_begin(ring, 4);
  259. if (ret)
  260. return ret;
  261. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  262. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  263. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  264. intel_ring_emit(ring, 0);
  265. intel_ring_emit(ring, 0);
  266. intel_ring_advance(ring);
  267. return 0;
  268. }
  269. static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
  270. {
  271. int ret;
  272. if (!ring->fbc_dirty)
  273. return 0;
  274. ret = intel_ring_begin(ring, 6);
  275. if (ret)
  276. return ret;
  277. /* WaFbcNukeOn3DBlt:ivb/hsw */
  278. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  279. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  280. intel_ring_emit(ring, value);
  281. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  282. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  283. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  284. intel_ring_advance(ring);
  285. ring->fbc_dirty = false;
  286. return 0;
  287. }
  288. static int
  289. gen7_render_ring_flush(struct intel_engine_cs *ring,
  290. u32 invalidate_domains, u32 flush_domains)
  291. {
  292. u32 flags = 0;
  293. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  294. int ret;
  295. /*
  296. * Ensure that any following seqno writes only happen when the render
  297. * cache is indeed flushed.
  298. *
  299. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  300. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  301. * don't try to be clever and just set it unconditionally.
  302. */
  303. flags |= PIPE_CONTROL_CS_STALL;
  304. /* Just flush everything. Experiments have shown that reducing the
  305. * number of bits based on the write domains has little performance
  306. * impact.
  307. */
  308. if (flush_domains) {
  309. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  310. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  311. }
  312. if (invalidate_domains) {
  313. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  314. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  315. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  316. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  317. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  318. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  319. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  320. /*
  321. * TLB invalidate requires a post-sync write.
  322. */
  323. flags |= PIPE_CONTROL_QW_WRITE;
  324. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  325. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  326. /* Workaround: we must issue a pipe_control with CS-stall bit
  327. * set before a pipe_control command that has the state cache
  328. * invalidate bit set. */
  329. gen7_render_ring_cs_stall_wa(ring);
  330. }
  331. ret = intel_ring_begin(ring, 4);
  332. if (ret)
  333. return ret;
  334. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  335. intel_ring_emit(ring, flags);
  336. intel_ring_emit(ring, scratch_addr);
  337. intel_ring_emit(ring, 0);
  338. intel_ring_advance(ring);
  339. if (!invalidate_domains && flush_domains)
  340. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  341. return 0;
  342. }
  343. static int
  344. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  345. u32 flags, u32 scratch_addr)
  346. {
  347. int ret;
  348. ret = intel_ring_begin(ring, 6);
  349. if (ret)
  350. return ret;
  351. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  352. intel_ring_emit(ring, flags);
  353. intel_ring_emit(ring, scratch_addr);
  354. intel_ring_emit(ring, 0);
  355. intel_ring_emit(ring, 0);
  356. intel_ring_emit(ring, 0);
  357. intel_ring_advance(ring);
  358. return 0;
  359. }
  360. static int
  361. gen8_render_ring_flush(struct intel_engine_cs *ring,
  362. u32 invalidate_domains, u32 flush_domains)
  363. {
  364. u32 flags = 0;
  365. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  366. int ret;
  367. flags |= PIPE_CONTROL_CS_STALL;
  368. if (flush_domains) {
  369. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  370. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  371. }
  372. if (invalidate_domains) {
  373. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  374. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  375. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  376. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  377. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  378. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  379. flags |= PIPE_CONTROL_QW_WRITE;
  380. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  381. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  382. ret = gen8_emit_pipe_control(ring,
  383. PIPE_CONTROL_CS_STALL |
  384. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  385. 0);
  386. if (ret)
  387. return ret;
  388. }
  389. ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
  390. if (ret)
  391. return ret;
  392. if (!invalidate_domains && flush_domains)
  393. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  394. return 0;
  395. }
  396. static void ring_write_tail(struct intel_engine_cs *ring,
  397. u32 value)
  398. {
  399. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  400. I915_WRITE_TAIL(ring, value);
  401. }
  402. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  403. {
  404. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  405. u64 acthd;
  406. if (INTEL_INFO(ring->dev)->gen >= 8)
  407. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  408. RING_ACTHD_UDW(ring->mmio_base));
  409. else if (INTEL_INFO(ring->dev)->gen >= 4)
  410. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  411. else
  412. acthd = I915_READ(ACTHD);
  413. return acthd;
  414. }
  415. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  416. {
  417. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  418. u32 addr;
  419. addr = dev_priv->status_page_dmah->busaddr;
  420. if (INTEL_INFO(ring->dev)->gen >= 4)
  421. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  422. I915_WRITE(HWS_PGA, addr);
  423. }
  424. static bool stop_ring(struct intel_engine_cs *ring)
  425. {
  426. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  427. if (!IS_GEN2(ring->dev)) {
  428. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  429. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  430. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  431. /* Sometimes we observe that the idle flag is not
  432. * set even though the ring is empty. So double
  433. * check before giving up.
  434. */
  435. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  436. return false;
  437. }
  438. }
  439. I915_WRITE_CTL(ring, 0);
  440. I915_WRITE_HEAD(ring, 0);
  441. ring->write_tail(ring, 0);
  442. if (!IS_GEN2(ring->dev)) {
  443. (void)I915_READ_CTL(ring);
  444. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  445. }
  446. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  447. }
  448. static int init_ring_common(struct intel_engine_cs *ring)
  449. {
  450. struct drm_device *dev = ring->dev;
  451. struct drm_i915_private *dev_priv = dev->dev_private;
  452. struct intel_ringbuffer *ringbuf = ring->buffer;
  453. struct drm_i915_gem_object *obj = ringbuf->obj;
  454. int ret = 0;
  455. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  456. if (!stop_ring(ring)) {
  457. /* G45 ring initialization often fails to reset head to zero */
  458. DRM_DEBUG_KMS("%s head not reset to zero "
  459. "ctl %08x head %08x tail %08x start %08x\n",
  460. ring->name,
  461. I915_READ_CTL(ring),
  462. I915_READ_HEAD(ring),
  463. I915_READ_TAIL(ring),
  464. I915_READ_START(ring));
  465. if (!stop_ring(ring)) {
  466. DRM_ERROR("failed to set %s head to zero "
  467. "ctl %08x head %08x tail %08x start %08x\n",
  468. ring->name,
  469. I915_READ_CTL(ring),
  470. I915_READ_HEAD(ring),
  471. I915_READ_TAIL(ring),
  472. I915_READ_START(ring));
  473. ret = -EIO;
  474. goto out;
  475. }
  476. }
  477. if (I915_NEED_GFX_HWS(dev))
  478. intel_ring_setup_status_page(ring);
  479. else
  480. ring_setup_phys_status_page(ring);
  481. /* Enforce ordering by reading HEAD register back */
  482. I915_READ_HEAD(ring);
  483. /* Initialize the ring. This must happen _after_ we've cleared the ring
  484. * registers with the above sequence (the readback of the HEAD registers
  485. * also enforces ordering), otherwise the hw might lose the new ring
  486. * register values. */
  487. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  488. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  489. if (I915_READ_HEAD(ring))
  490. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  491. ring->name, I915_READ_HEAD(ring));
  492. I915_WRITE_HEAD(ring, 0);
  493. (void)I915_READ_HEAD(ring);
  494. I915_WRITE_CTL(ring,
  495. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  496. | RING_VALID);
  497. /* If the head is still not zero, the ring is dead */
  498. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  499. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  500. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  501. DRM_ERROR("%s initialization failed "
  502. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  503. ring->name,
  504. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  505. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  506. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  507. ret = -EIO;
  508. goto out;
  509. }
  510. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  511. i915_kernel_lost_context(ring->dev);
  512. else {
  513. ringbuf->head = I915_READ_HEAD(ring);
  514. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  515. ringbuf->space = intel_ring_space(ringbuf);
  516. ringbuf->last_retired_head = -1;
  517. }
  518. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  519. out:
  520. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  521. return ret;
  522. }
  523. void
  524. intel_fini_pipe_control(struct intel_engine_cs *ring)
  525. {
  526. struct drm_device *dev = ring->dev;
  527. if (ring->scratch.obj == NULL)
  528. return;
  529. if (INTEL_INFO(dev)->gen >= 5) {
  530. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  531. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  532. }
  533. drm_gem_object_unreference(&ring->scratch.obj->base);
  534. ring->scratch.obj = NULL;
  535. }
  536. int
  537. intel_init_pipe_control(struct intel_engine_cs *ring)
  538. {
  539. int ret;
  540. if (ring->scratch.obj)
  541. return 0;
  542. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  543. if (ring->scratch.obj == NULL) {
  544. DRM_ERROR("Failed to allocate seqno page\n");
  545. ret = -ENOMEM;
  546. goto err;
  547. }
  548. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  549. if (ret)
  550. goto err_unref;
  551. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  552. if (ret)
  553. goto err_unref;
  554. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  555. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  556. if (ring->scratch.cpu_page == NULL) {
  557. ret = -ENOMEM;
  558. goto err_unpin;
  559. }
  560. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  561. ring->name, ring->scratch.gtt_offset);
  562. return 0;
  563. err_unpin:
  564. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  565. err_unref:
  566. drm_gem_object_unreference(&ring->scratch.obj->base);
  567. err:
  568. return ret;
  569. }
  570. static inline void intel_ring_emit_wa(struct intel_engine_cs *ring,
  571. u32 addr, u32 value)
  572. {
  573. struct drm_device *dev = ring->dev;
  574. struct drm_i915_private *dev_priv = dev->dev_private;
  575. if (WARN_ON(dev_priv->num_wa_regs >= I915_MAX_WA_REGS))
  576. return;
  577. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  578. intel_ring_emit(ring, addr);
  579. intel_ring_emit(ring, value);
  580. dev_priv->intel_wa_regs[dev_priv->num_wa_regs].addr = addr;
  581. dev_priv->intel_wa_regs[dev_priv->num_wa_regs].mask = value & 0xFFFF;
  582. /* value is updated with the status of remaining bits of this
  583. * register when it is read from debugfs file
  584. */
  585. dev_priv->intel_wa_regs[dev_priv->num_wa_regs].value = value;
  586. dev_priv->num_wa_regs++;
  587. return;
  588. }
  589. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  590. {
  591. int ret;
  592. struct drm_device *dev = ring->dev;
  593. struct drm_i915_private *dev_priv = dev->dev_private;
  594. /*
  595. * workarounds applied in this fn are part of register state context,
  596. * they need to be re-initialized followed by gpu reset, suspend/resume,
  597. * module reload.
  598. */
  599. dev_priv->num_wa_regs = 0;
  600. memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
  601. /*
  602. * update the number of dwords required based on the
  603. * actual number of workarounds applied
  604. */
  605. ret = intel_ring_begin(ring, 18);
  606. if (ret)
  607. return ret;
  608. /* WaDisablePartialInstShootdown:bdw */
  609. /* WaDisableThreadStallDopClockGating:bdw */
  610. /* FIXME: Unclear whether we really need this on production bdw. */
  611. intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
  612. _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
  613. | STALL_DOP_GATING_DISABLE));
  614. /* WaDisableDopClockGating:bdw May not be needed for production */
  615. intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
  616. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  617. intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
  618. _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
  619. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  620. * workaround for for a possible hang in the unlikely event a TLB
  621. * invalidation occurs during a PSD flush.
  622. */
  623. intel_ring_emit_wa(ring, HDC_CHICKEN0,
  624. _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
  625. /* Wa4x4STCOptimizationDisable:bdw */
  626. intel_ring_emit_wa(ring, CACHE_MODE_1,
  627. _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
  628. /*
  629. * BSpec recommends 8x4 when MSAA is used,
  630. * however in practice 16x4 seems fastest.
  631. *
  632. * Note that PS/WM thread counts depend on the WIZ hashing
  633. * disable bit, which we don't touch here, but it's good
  634. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  635. */
  636. intel_ring_emit_wa(ring, GEN7_GT_MODE,
  637. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  638. intel_ring_advance(ring);
  639. DRM_DEBUG_DRIVER("Number of Workarounds applied: %d\n",
  640. dev_priv->num_wa_regs);
  641. return 0;
  642. }
  643. static int chv_init_workarounds(struct intel_engine_cs *ring)
  644. {
  645. int ret;
  646. struct drm_device *dev = ring->dev;
  647. struct drm_i915_private *dev_priv = dev->dev_private;
  648. /*
  649. * workarounds applied in this fn are part of register state context,
  650. * they need to be re-initialized followed by gpu reset, suspend/resume,
  651. * module reload.
  652. */
  653. dev_priv->num_wa_regs = 0;
  654. memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
  655. ret = intel_ring_begin(ring, 12);
  656. if (ret)
  657. return ret;
  658. /* WaDisablePartialInstShootdown:chv */
  659. intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
  660. _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
  661. /* WaDisableThreadStallDopClockGating:chv */
  662. intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
  663. _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
  664. /* WaDisableDopClockGating:chv (pre-production hw) */
  665. intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
  666. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  667. /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
  668. intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
  669. _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
  670. intel_ring_advance(ring);
  671. return 0;
  672. }
  673. static int init_render_ring(struct intel_engine_cs *ring)
  674. {
  675. struct drm_device *dev = ring->dev;
  676. struct drm_i915_private *dev_priv = dev->dev_private;
  677. int ret = init_ring_common(ring);
  678. if (ret)
  679. return ret;
  680. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  681. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  682. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  683. /* We need to disable the AsyncFlip performance optimisations in order
  684. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  685. * programmed to '1' on all products.
  686. *
  687. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  688. */
  689. if (INTEL_INFO(dev)->gen >= 6)
  690. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  691. /* Required for the hardware to program scanline values for waiting */
  692. /* WaEnableFlushTlbInvalidationMode:snb */
  693. if (INTEL_INFO(dev)->gen == 6)
  694. I915_WRITE(GFX_MODE,
  695. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  696. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  697. if (IS_GEN7(dev))
  698. I915_WRITE(GFX_MODE_GEN7,
  699. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  700. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  701. if (INTEL_INFO(dev)->gen >= 5) {
  702. ret = intel_init_pipe_control(ring);
  703. if (ret)
  704. return ret;
  705. }
  706. if (IS_GEN6(dev)) {
  707. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  708. * "If this bit is set, STCunit will have LRA as replacement
  709. * policy. [...] This bit must be reset. LRA replacement
  710. * policy is not supported."
  711. */
  712. I915_WRITE(CACHE_MODE_0,
  713. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  714. }
  715. if (INTEL_INFO(dev)->gen >= 6)
  716. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  717. if (HAS_L3_DPF(dev))
  718. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  719. return ret;
  720. }
  721. static void render_ring_cleanup(struct intel_engine_cs *ring)
  722. {
  723. struct drm_device *dev = ring->dev;
  724. struct drm_i915_private *dev_priv = dev->dev_private;
  725. if (dev_priv->semaphore_obj) {
  726. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  727. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  728. dev_priv->semaphore_obj = NULL;
  729. }
  730. intel_fini_pipe_control(ring);
  731. }
  732. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  733. unsigned int num_dwords)
  734. {
  735. #define MBOX_UPDATE_DWORDS 8
  736. struct drm_device *dev = signaller->dev;
  737. struct drm_i915_private *dev_priv = dev->dev_private;
  738. struct intel_engine_cs *waiter;
  739. int i, ret, num_rings;
  740. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  741. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  742. #undef MBOX_UPDATE_DWORDS
  743. ret = intel_ring_begin(signaller, num_dwords);
  744. if (ret)
  745. return ret;
  746. for_each_ring(waiter, dev_priv, i) {
  747. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  748. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  749. continue;
  750. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  751. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  752. PIPE_CONTROL_QW_WRITE |
  753. PIPE_CONTROL_FLUSH_ENABLE);
  754. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  755. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  756. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  757. intel_ring_emit(signaller, 0);
  758. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  759. MI_SEMAPHORE_TARGET(waiter->id));
  760. intel_ring_emit(signaller, 0);
  761. }
  762. return 0;
  763. }
  764. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  765. unsigned int num_dwords)
  766. {
  767. #define MBOX_UPDATE_DWORDS 6
  768. struct drm_device *dev = signaller->dev;
  769. struct drm_i915_private *dev_priv = dev->dev_private;
  770. struct intel_engine_cs *waiter;
  771. int i, ret, num_rings;
  772. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  773. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  774. #undef MBOX_UPDATE_DWORDS
  775. ret = intel_ring_begin(signaller, num_dwords);
  776. if (ret)
  777. return ret;
  778. for_each_ring(waiter, dev_priv, i) {
  779. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  780. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  781. continue;
  782. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  783. MI_FLUSH_DW_OP_STOREDW);
  784. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  785. MI_FLUSH_DW_USE_GTT);
  786. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  787. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  788. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  789. MI_SEMAPHORE_TARGET(waiter->id));
  790. intel_ring_emit(signaller, 0);
  791. }
  792. return 0;
  793. }
  794. static int gen6_signal(struct intel_engine_cs *signaller,
  795. unsigned int num_dwords)
  796. {
  797. struct drm_device *dev = signaller->dev;
  798. struct drm_i915_private *dev_priv = dev->dev_private;
  799. struct intel_engine_cs *useless;
  800. int i, ret, num_rings;
  801. #define MBOX_UPDATE_DWORDS 3
  802. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  803. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  804. #undef MBOX_UPDATE_DWORDS
  805. ret = intel_ring_begin(signaller, num_dwords);
  806. if (ret)
  807. return ret;
  808. for_each_ring(useless, dev_priv, i) {
  809. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  810. if (mbox_reg != GEN6_NOSYNC) {
  811. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  812. intel_ring_emit(signaller, mbox_reg);
  813. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  814. }
  815. }
  816. /* If num_dwords was rounded, make sure the tail pointer is correct */
  817. if (num_rings % 2 == 0)
  818. intel_ring_emit(signaller, MI_NOOP);
  819. return 0;
  820. }
  821. /**
  822. * gen6_add_request - Update the semaphore mailbox registers
  823. *
  824. * @ring - ring that is adding a request
  825. * @seqno - return seqno stuck into the ring
  826. *
  827. * Update the mailbox registers in the *other* rings with the current seqno.
  828. * This acts like a signal in the canonical semaphore.
  829. */
  830. static int
  831. gen6_add_request(struct intel_engine_cs *ring)
  832. {
  833. int ret;
  834. if (ring->semaphore.signal)
  835. ret = ring->semaphore.signal(ring, 4);
  836. else
  837. ret = intel_ring_begin(ring, 4);
  838. if (ret)
  839. return ret;
  840. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  841. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  842. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  843. intel_ring_emit(ring, MI_USER_INTERRUPT);
  844. __intel_ring_advance(ring);
  845. return 0;
  846. }
  847. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  848. u32 seqno)
  849. {
  850. struct drm_i915_private *dev_priv = dev->dev_private;
  851. return dev_priv->last_seqno < seqno;
  852. }
  853. /**
  854. * intel_ring_sync - sync the waiter to the signaller on seqno
  855. *
  856. * @waiter - ring that is waiting
  857. * @signaller - ring which has, or will signal
  858. * @seqno - seqno which the waiter will block on
  859. */
  860. static int
  861. gen8_ring_sync(struct intel_engine_cs *waiter,
  862. struct intel_engine_cs *signaller,
  863. u32 seqno)
  864. {
  865. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  866. int ret;
  867. ret = intel_ring_begin(waiter, 4);
  868. if (ret)
  869. return ret;
  870. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  871. MI_SEMAPHORE_GLOBAL_GTT |
  872. MI_SEMAPHORE_POLL |
  873. MI_SEMAPHORE_SAD_GTE_SDD);
  874. intel_ring_emit(waiter, seqno);
  875. intel_ring_emit(waiter,
  876. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  877. intel_ring_emit(waiter,
  878. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  879. intel_ring_advance(waiter);
  880. return 0;
  881. }
  882. static int
  883. gen6_ring_sync(struct intel_engine_cs *waiter,
  884. struct intel_engine_cs *signaller,
  885. u32 seqno)
  886. {
  887. u32 dw1 = MI_SEMAPHORE_MBOX |
  888. MI_SEMAPHORE_COMPARE |
  889. MI_SEMAPHORE_REGISTER;
  890. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  891. int ret;
  892. /* Throughout all of the GEM code, seqno passed implies our current
  893. * seqno is >= the last seqno executed. However for hardware the
  894. * comparison is strictly greater than.
  895. */
  896. seqno -= 1;
  897. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  898. ret = intel_ring_begin(waiter, 4);
  899. if (ret)
  900. return ret;
  901. /* If seqno wrap happened, omit the wait with no-ops */
  902. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  903. intel_ring_emit(waiter, dw1 | wait_mbox);
  904. intel_ring_emit(waiter, seqno);
  905. intel_ring_emit(waiter, 0);
  906. intel_ring_emit(waiter, MI_NOOP);
  907. } else {
  908. intel_ring_emit(waiter, MI_NOOP);
  909. intel_ring_emit(waiter, MI_NOOP);
  910. intel_ring_emit(waiter, MI_NOOP);
  911. intel_ring_emit(waiter, MI_NOOP);
  912. }
  913. intel_ring_advance(waiter);
  914. return 0;
  915. }
  916. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  917. do { \
  918. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  919. PIPE_CONTROL_DEPTH_STALL); \
  920. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  921. intel_ring_emit(ring__, 0); \
  922. intel_ring_emit(ring__, 0); \
  923. } while (0)
  924. static int
  925. pc_render_add_request(struct intel_engine_cs *ring)
  926. {
  927. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  928. int ret;
  929. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  930. * incoherent with writes to memory, i.e. completely fubar,
  931. * so we need to use PIPE_NOTIFY instead.
  932. *
  933. * However, we also need to workaround the qword write
  934. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  935. * memory before requesting an interrupt.
  936. */
  937. ret = intel_ring_begin(ring, 32);
  938. if (ret)
  939. return ret;
  940. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  941. PIPE_CONTROL_WRITE_FLUSH |
  942. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  943. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  944. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  945. intel_ring_emit(ring, 0);
  946. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  947. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  948. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  949. scratch_addr += 2 * CACHELINE_BYTES;
  950. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  951. scratch_addr += 2 * CACHELINE_BYTES;
  952. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  953. scratch_addr += 2 * CACHELINE_BYTES;
  954. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  955. scratch_addr += 2 * CACHELINE_BYTES;
  956. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  957. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  958. PIPE_CONTROL_WRITE_FLUSH |
  959. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  960. PIPE_CONTROL_NOTIFY);
  961. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  962. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  963. intel_ring_emit(ring, 0);
  964. __intel_ring_advance(ring);
  965. return 0;
  966. }
  967. static u32
  968. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  969. {
  970. /* Workaround to force correct ordering between irq and seqno writes on
  971. * ivb (and maybe also on snb) by reading from a CS register (like
  972. * ACTHD) before reading the status page. */
  973. if (!lazy_coherency) {
  974. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  975. POSTING_READ(RING_ACTHD(ring->mmio_base));
  976. }
  977. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  978. }
  979. static u32
  980. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  981. {
  982. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  983. }
  984. static void
  985. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  986. {
  987. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  988. }
  989. static u32
  990. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  991. {
  992. return ring->scratch.cpu_page[0];
  993. }
  994. static void
  995. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  996. {
  997. ring->scratch.cpu_page[0] = seqno;
  998. }
  999. static bool
  1000. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1001. {
  1002. struct drm_device *dev = ring->dev;
  1003. struct drm_i915_private *dev_priv = dev->dev_private;
  1004. unsigned long flags;
  1005. if (!dev->irq_enabled)
  1006. return false;
  1007. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1008. if (ring->irq_refcount++ == 0)
  1009. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1010. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1011. return true;
  1012. }
  1013. static void
  1014. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1015. {
  1016. struct drm_device *dev = ring->dev;
  1017. struct drm_i915_private *dev_priv = dev->dev_private;
  1018. unsigned long flags;
  1019. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1020. if (--ring->irq_refcount == 0)
  1021. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1022. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1023. }
  1024. static bool
  1025. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1026. {
  1027. struct drm_device *dev = ring->dev;
  1028. struct drm_i915_private *dev_priv = dev->dev_private;
  1029. unsigned long flags;
  1030. if (!dev->irq_enabled)
  1031. return false;
  1032. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1033. if (ring->irq_refcount++ == 0) {
  1034. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1035. I915_WRITE(IMR, dev_priv->irq_mask);
  1036. POSTING_READ(IMR);
  1037. }
  1038. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1039. return true;
  1040. }
  1041. static void
  1042. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1043. {
  1044. struct drm_device *dev = ring->dev;
  1045. struct drm_i915_private *dev_priv = dev->dev_private;
  1046. unsigned long flags;
  1047. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1048. if (--ring->irq_refcount == 0) {
  1049. dev_priv->irq_mask |= ring->irq_enable_mask;
  1050. I915_WRITE(IMR, dev_priv->irq_mask);
  1051. POSTING_READ(IMR);
  1052. }
  1053. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1054. }
  1055. static bool
  1056. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1057. {
  1058. struct drm_device *dev = ring->dev;
  1059. struct drm_i915_private *dev_priv = dev->dev_private;
  1060. unsigned long flags;
  1061. if (!dev->irq_enabled)
  1062. return false;
  1063. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1064. if (ring->irq_refcount++ == 0) {
  1065. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1066. I915_WRITE16(IMR, dev_priv->irq_mask);
  1067. POSTING_READ16(IMR);
  1068. }
  1069. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1070. return true;
  1071. }
  1072. static void
  1073. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1074. {
  1075. struct drm_device *dev = ring->dev;
  1076. struct drm_i915_private *dev_priv = dev->dev_private;
  1077. unsigned long flags;
  1078. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1079. if (--ring->irq_refcount == 0) {
  1080. dev_priv->irq_mask |= ring->irq_enable_mask;
  1081. I915_WRITE16(IMR, dev_priv->irq_mask);
  1082. POSTING_READ16(IMR);
  1083. }
  1084. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1085. }
  1086. void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  1087. {
  1088. struct drm_device *dev = ring->dev;
  1089. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1090. u32 mmio = 0;
  1091. /* The ring status page addresses are no longer next to the rest of
  1092. * the ring registers as of gen7.
  1093. */
  1094. if (IS_GEN7(dev)) {
  1095. switch (ring->id) {
  1096. case RCS:
  1097. mmio = RENDER_HWS_PGA_GEN7;
  1098. break;
  1099. case BCS:
  1100. mmio = BLT_HWS_PGA_GEN7;
  1101. break;
  1102. /*
  1103. * VCS2 actually doesn't exist on Gen7. Only shut up
  1104. * gcc switch check warning
  1105. */
  1106. case VCS2:
  1107. case VCS:
  1108. mmio = BSD_HWS_PGA_GEN7;
  1109. break;
  1110. case VECS:
  1111. mmio = VEBOX_HWS_PGA_GEN7;
  1112. break;
  1113. }
  1114. } else if (IS_GEN6(ring->dev)) {
  1115. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  1116. } else {
  1117. /* XXX: gen8 returns to sanity */
  1118. mmio = RING_HWS_PGA(ring->mmio_base);
  1119. }
  1120. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  1121. POSTING_READ(mmio);
  1122. /*
  1123. * Flush the TLB for this page
  1124. *
  1125. * FIXME: These two bits have disappeared on gen8, so a question
  1126. * arises: do we still need this and if so how should we go about
  1127. * invalidating the TLB?
  1128. */
  1129. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  1130. u32 reg = RING_INSTPM(ring->mmio_base);
  1131. /* ring should be idle before issuing a sync flush*/
  1132. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1133. I915_WRITE(reg,
  1134. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  1135. INSTPM_SYNC_FLUSH));
  1136. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  1137. 1000))
  1138. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  1139. ring->name);
  1140. }
  1141. }
  1142. static int
  1143. bsd_ring_flush(struct intel_engine_cs *ring,
  1144. u32 invalidate_domains,
  1145. u32 flush_domains)
  1146. {
  1147. int ret;
  1148. ret = intel_ring_begin(ring, 2);
  1149. if (ret)
  1150. return ret;
  1151. intel_ring_emit(ring, MI_FLUSH);
  1152. intel_ring_emit(ring, MI_NOOP);
  1153. intel_ring_advance(ring);
  1154. return 0;
  1155. }
  1156. static int
  1157. i9xx_add_request(struct intel_engine_cs *ring)
  1158. {
  1159. int ret;
  1160. ret = intel_ring_begin(ring, 4);
  1161. if (ret)
  1162. return ret;
  1163. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1164. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1165. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  1166. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1167. __intel_ring_advance(ring);
  1168. return 0;
  1169. }
  1170. static bool
  1171. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1172. {
  1173. struct drm_device *dev = ring->dev;
  1174. struct drm_i915_private *dev_priv = dev->dev_private;
  1175. unsigned long flags;
  1176. if (!dev->irq_enabled)
  1177. return false;
  1178. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1179. if (ring->irq_refcount++ == 0) {
  1180. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1181. I915_WRITE_IMR(ring,
  1182. ~(ring->irq_enable_mask |
  1183. GT_PARITY_ERROR(dev)));
  1184. else
  1185. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1186. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1187. }
  1188. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1189. return true;
  1190. }
  1191. static void
  1192. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1193. {
  1194. struct drm_device *dev = ring->dev;
  1195. struct drm_i915_private *dev_priv = dev->dev_private;
  1196. unsigned long flags;
  1197. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1198. if (--ring->irq_refcount == 0) {
  1199. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1200. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1201. else
  1202. I915_WRITE_IMR(ring, ~0);
  1203. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1204. }
  1205. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1206. }
  1207. static bool
  1208. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1209. {
  1210. struct drm_device *dev = ring->dev;
  1211. struct drm_i915_private *dev_priv = dev->dev_private;
  1212. unsigned long flags;
  1213. if (!dev->irq_enabled)
  1214. return false;
  1215. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1216. if (ring->irq_refcount++ == 0) {
  1217. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1218. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1219. }
  1220. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1221. return true;
  1222. }
  1223. static void
  1224. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1225. {
  1226. struct drm_device *dev = ring->dev;
  1227. struct drm_i915_private *dev_priv = dev->dev_private;
  1228. unsigned long flags;
  1229. if (!dev->irq_enabled)
  1230. return;
  1231. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1232. if (--ring->irq_refcount == 0) {
  1233. I915_WRITE_IMR(ring, ~0);
  1234. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1235. }
  1236. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1237. }
  1238. static bool
  1239. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1240. {
  1241. struct drm_device *dev = ring->dev;
  1242. struct drm_i915_private *dev_priv = dev->dev_private;
  1243. unsigned long flags;
  1244. if (!dev->irq_enabled)
  1245. return false;
  1246. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1247. if (ring->irq_refcount++ == 0) {
  1248. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1249. I915_WRITE_IMR(ring,
  1250. ~(ring->irq_enable_mask |
  1251. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1252. } else {
  1253. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1254. }
  1255. POSTING_READ(RING_IMR(ring->mmio_base));
  1256. }
  1257. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1258. return true;
  1259. }
  1260. static void
  1261. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1262. {
  1263. struct drm_device *dev = ring->dev;
  1264. struct drm_i915_private *dev_priv = dev->dev_private;
  1265. unsigned long flags;
  1266. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1267. if (--ring->irq_refcount == 0) {
  1268. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1269. I915_WRITE_IMR(ring,
  1270. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1271. } else {
  1272. I915_WRITE_IMR(ring, ~0);
  1273. }
  1274. POSTING_READ(RING_IMR(ring->mmio_base));
  1275. }
  1276. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1277. }
  1278. static int
  1279. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1280. u64 offset, u32 length,
  1281. unsigned flags)
  1282. {
  1283. int ret;
  1284. ret = intel_ring_begin(ring, 2);
  1285. if (ret)
  1286. return ret;
  1287. intel_ring_emit(ring,
  1288. MI_BATCH_BUFFER_START |
  1289. MI_BATCH_GTT |
  1290. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1291. intel_ring_emit(ring, offset);
  1292. intel_ring_advance(ring);
  1293. return 0;
  1294. }
  1295. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1296. #define I830_BATCH_LIMIT (256*1024)
  1297. #define I830_TLB_ENTRIES (2)
  1298. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1299. static int
  1300. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1301. u64 offset, u32 len,
  1302. unsigned flags)
  1303. {
  1304. u32 cs_offset = ring->scratch.gtt_offset;
  1305. int ret;
  1306. ret = intel_ring_begin(ring, 6);
  1307. if (ret)
  1308. return ret;
  1309. /* Evict the invalid PTE TLBs */
  1310. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1311. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1312. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1313. intel_ring_emit(ring, cs_offset);
  1314. intel_ring_emit(ring, 0xdeadbeef);
  1315. intel_ring_emit(ring, MI_NOOP);
  1316. intel_ring_advance(ring);
  1317. if ((flags & I915_DISPATCH_PINNED) == 0) {
  1318. if (len > I830_BATCH_LIMIT)
  1319. return -ENOSPC;
  1320. ret = intel_ring_begin(ring, 6 + 2);
  1321. if (ret)
  1322. return ret;
  1323. /* Blit the batch (which has now all relocs applied) to the
  1324. * stable batch scratch bo area (so that the CS never
  1325. * stumbles over its tlb invalidation bug) ...
  1326. */
  1327. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1328. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1329. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1330. intel_ring_emit(ring, cs_offset);
  1331. intel_ring_emit(ring, 4096);
  1332. intel_ring_emit(ring, offset);
  1333. intel_ring_emit(ring, MI_FLUSH);
  1334. intel_ring_emit(ring, MI_NOOP);
  1335. intel_ring_advance(ring);
  1336. /* ... and execute it. */
  1337. offset = cs_offset;
  1338. }
  1339. ret = intel_ring_begin(ring, 4);
  1340. if (ret)
  1341. return ret;
  1342. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1343. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1344. intel_ring_emit(ring, offset + len - 8);
  1345. intel_ring_emit(ring, MI_NOOP);
  1346. intel_ring_advance(ring);
  1347. return 0;
  1348. }
  1349. static int
  1350. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1351. u64 offset, u32 len,
  1352. unsigned flags)
  1353. {
  1354. int ret;
  1355. ret = intel_ring_begin(ring, 2);
  1356. if (ret)
  1357. return ret;
  1358. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1359. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1360. intel_ring_advance(ring);
  1361. return 0;
  1362. }
  1363. static void cleanup_status_page(struct intel_engine_cs *ring)
  1364. {
  1365. struct drm_i915_gem_object *obj;
  1366. obj = ring->status_page.obj;
  1367. if (obj == NULL)
  1368. return;
  1369. kunmap(sg_page(obj->pages->sgl));
  1370. i915_gem_object_ggtt_unpin(obj);
  1371. drm_gem_object_unreference(&obj->base);
  1372. ring->status_page.obj = NULL;
  1373. }
  1374. static int init_status_page(struct intel_engine_cs *ring)
  1375. {
  1376. struct drm_i915_gem_object *obj;
  1377. if ((obj = ring->status_page.obj) == NULL) {
  1378. unsigned flags;
  1379. int ret;
  1380. obj = i915_gem_alloc_object(ring->dev, 4096);
  1381. if (obj == NULL) {
  1382. DRM_ERROR("Failed to allocate status page\n");
  1383. return -ENOMEM;
  1384. }
  1385. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1386. if (ret)
  1387. goto err_unref;
  1388. flags = 0;
  1389. if (!HAS_LLC(ring->dev))
  1390. /* On g33, we cannot place HWS above 256MiB, so
  1391. * restrict its pinning to the low mappable arena.
  1392. * Though this restriction is not documented for
  1393. * gen4, gen5, or byt, they also behave similarly
  1394. * and hang if the HWS is placed at the top of the
  1395. * GTT. To generalise, it appears that all !llc
  1396. * platforms have issues with us placing the HWS
  1397. * above the mappable region (even though we never
  1398. * actualy map it).
  1399. */
  1400. flags |= PIN_MAPPABLE;
  1401. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1402. if (ret) {
  1403. err_unref:
  1404. drm_gem_object_unreference(&obj->base);
  1405. return ret;
  1406. }
  1407. ring->status_page.obj = obj;
  1408. }
  1409. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1410. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1411. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1412. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1413. ring->name, ring->status_page.gfx_addr);
  1414. return 0;
  1415. }
  1416. static int init_phys_status_page(struct intel_engine_cs *ring)
  1417. {
  1418. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1419. if (!dev_priv->status_page_dmah) {
  1420. dev_priv->status_page_dmah =
  1421. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1422. if (!dev_priv->status_page_dmah)
  1423. return -ENOMEM;
  1424. }
  1425. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1426. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1427. return 0;
  1428. }
  1429. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1430. {
  1431. if (!ringbuf->obj)
  1432. return;
  1433. iounmap(ringbuf->virtual_start);
  1434. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1435. drm_gem_object_unreference(&ringbuf->obj->base);
  1436. ringbuf->obj = NULL;
  1437. }
  1438. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1439. struct intel_ringbuffer *ringbuf)
  1440. {
  1441. struct drm_i915_private *dev_priv = to_i915(dev);
  1442. struct drm_i915_gem_object *obj;
  1443. int ret;
  1444. if (ringbuf->obj)
  1445. return 0;
  1446. obj = NULL;
  1447. if (!HAS_LLC(dev))
  1448. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1449. if (obj == NULL)
  1450. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1451. if (obj == NULL)
  1452. return -ENOMEM;
  1453. /* mark ring buffers as read-only from GPU side by default */
  1454. obj->gt_ro = 1;
  1455. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1456. if (ret)
  1457. goto err_unref;
  1458. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1459. if (ret)
  1460. goto err_unpin;
  1461. ringbuf->virtual_start =
  1462. ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
  1463. ringbuf->size);
  1464. if (ringbuf->virtual_start == NULL) {
  1465. ret = -EINVAL;
  1466. goto err_unpin;
  1467. }
  1468. ringbuf->obj = obj;
  1469. return 0;
  1470. err_unpin:
  1471. i915_gem_object_ggtt_unpin(obj);
  1472. err_unref:
  1473. drm_gem_object_unreference(&obj->base);
  1474. return ret;
  1475. }
  1476. static int intel_init_ring_buffer(struct drm_device *dev,
  1477. struct intel_engine_cs *ring)
  1478. {
  1479. struct intel_ringbuffer *ringbuf = ring->buffer;
  1480. int ret;
  1481. if (ringbuf == NULL) {
  1482. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1483. if (!ringbuf)
  1484. return -ENOMEM;
  1485. ring->buffer = ringbuf;
  1486. }
  1487. ring->dev = dev;
  1488. INIT_LIST_HEAD(&ring->active_list);
  1489. INIT_LIST_HEAD(&ring->request_list);
  1490. INIT_LIST_HEAD(&ring->execlist_queue);
  1491. ringbuf->size = 32 * PAGE_SIZE;
  1492. ringbuf->ring = ring;
  1493. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1494. init_waitqueue_head(&ring->irq_queue);
  1495. if (I915_NEED_GFX_HWS(dev)) {
  1496. ret = init_status_page(ring);
  1497. if (ret)
  1498. goto error;
  1499. } else {
  1500. BUG_ON(ring->id != RCS);
  1501. ret = init_phys_status_page(ring);
  1502. if (ret)
  1503. goto error;
  1504. }
  1505. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1506. if (ret) {
  1507. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
  1508. goto error;
  1509. }
  1510. /* Workaround an erratum on the i830 which causes a hang if
  1511. * the TAIL pointer points to within the last 2 cachelines
  1512. * of the buffer.
  1513. */
  1514. ringbuf->effective_size = ringbuf->size;
  1515. if (IS_I830(dev) || IS_845G(dev))
  1516. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1517. ret = i915_cmd_parser_init_ring(ring);
  1518. if (ret)
  1519. goto error;
  1520. ret = ring->init(ring);
  1521. if (ret)
  1522. goto error;
  1523. return 0;
  1524. error:
  1525. kfree(ringbuf);
  1526. ring->buffer = NULL;
  1527. return ret;
  1528. }
  1529. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1530. {
  1531. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  1532. struct intel_ringbuffer *ringbuf = ring->buffer;
  1533. if (!intel_ring_initialized(ring))
  1534. return;
  1535. intel_stop_ring_buffer(ring);
  1536. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1537. intel_destroy_ringbuffer_obj(ringbuf);
  1538. ring->preallocated_lazy_request = NULL;
  1539. ring->outstanding_lazy_seqno = 0;
  1540. if (ring->cleanup)
  1541. ring->cleanup(ring);
  1542. cleanup_status_page(ring);
  1543. i915_cmd_parser_fini_ring(ring);
  1544. kfree(ringbuf);
  1545. ring->buffer = NULL;
  1546. }
  1547. static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
  1548. {
  1549. struct intel_ringbuffer *ringbuf = ring->buffer;
  1550. struct drm_i915_gem_request *request;
  1551. u32 seqno = 0;
  1552. int ret;
  1553. if (ringbuf->last_retired_head != -1) {
  1554. ringbuf->head = ringbuf->last_retired_head;
  1555. ringbuf->last_retired_head = -1;
  1556. ringbuf->space = intel_ring_space(ringbuf);
  1557. if (ringbuf->space >= n)
  1558. return 0;
  1559. }
  1560. list_for_each_entry(request, &ring->request_list, list) {
  1561. if (__intel_ring_space(request->tail, ringbuf->tail,
  1562. ringbuf->size) >= n) {
  1563. seqno = request->seqno;
  1564. break;
  1565. }
  1566. }
  1567. if (seqno == 0)
  1568. return -ENOSPC;
  1569. ret = i915_wait_seqno(ring, seqno);
  1570. if (ret)
  1571. return ret;
  1572. i915_gem_retire_requests_ring(ring);
  1573. ringbuf->head = ringbuf->last_retired_head;
  1574. ringbuf->last_retired_head = -1;
  1575. ringbuf->space = intel_ring_space(ringbuf);
  1576. return 0;
  1577. }
  1578. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1579. {
  1580. struct drm_device *dev = ring->dev;
  1581. struct drm_i915_private *dev_priv = dev->dev_private;
  1582. struct intel_ringbuffer *ringbuf = ring->buffer;
  1583. unsigned long end;
  1584. int ret;
  1585. ret = intel_ring_wait_request(ring, n);
  1586. if (ret != -ENOSPC)
  1587. return ret;
  1588. /* force the tail write in case we have been skipping them */
  1589. __intel_ring_advance(ring);
  1590. /* With GEM the hangcheck timer should kick us out of the loop,
  1591. * leaving it early runs the risk of corrupting GEM state (due
  1592. * to running on almost untested codepaths). But on resume
  1593. * timers don't work yet, so prevent a complete hang in that
  1594. * case by choosing an insanely large timeout. */
  1595. end = jiffies + 60 * HZ;
  1596. trace_i915_ring_wait_begin(ring);
  1597. do {
  1598. ringbuf->head = I915_READ_HEAD(ring);
  1599. ringbuf->space = intel_ring_space(ringbuf);
  1600. if (ringbuf->space >= n) {
  1601. ret = 0;
  1602. break;
  1603. }
  1604. if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
  1605. dev->primary->master) {
  1606. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1607. if (master_priv->sarea_priv)
  1608. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1609. }
  1610. msleep(1);
  1611. if (dev_priv->mm.interruptible && signal_pending(current)) {
  1612. ret = -ERESTARTSYS;
  1613. break;
  1614. }
  1615. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1616. dev_priv->mm.interruptible);
  1617. if (ret)
  1618. break;
  1619. if (time_after(jiffies, end)) {
  1620. ret = -EBUSY;
  1621. break;
  1622. }
  1623. } while (1);
  1624. trace_i915_ring_wait_end(ring);
  1625. return ret;
  1626. }
  1627. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1628. {
  1629. uint32_t __iomem *virt;
  1630. struct intel_ringbuffer *ringbuf = ring->buffer;
  1631. int rem = ringbuf->size - ringbuf->tail;
  1632. if (ringbuf->space < rem) {
  1633. int ret = ring_wait_for_space(ring, rem);
  1634. if (ret)
  1635. return ret;
  1636. }
  1637. virt = ringbuf->virtual_start + ringbuf->tail;
  1638. rem /= 4;
  1639. while (rem--)
  1640. iowrite32(MI_NOOP, virt++);
  1641. ringbuf->tail = 0;
  1642. ringbuf->space = intel_ring_space(ringbuf);
  1643. return 0;
  1644. }
  1645. int intel_ring_idle(struct intel_engine_cs *ring)
  1646. {
  1647. u32 seqno;
  1648. int ret;
  1649. /* We need to add any requests required to flush the objects and ring */
  1650. if (ring->outstanding_lazy_seqno) {
  1651. ret = i915_add_request(ring, NULL);
  1652. if (ret)
  1653. return ret;
  1654. }
  1655. /* Wait upon the last request to be completed */
  1656. if (list_empty(&ring->request_list))
  1657. return 0;
  1658. seqno = list_entry(ring->request_list.prev,
  1659. struct drm_i915_gem_request,
  1660. list)->seqno;
  1661. return i915_wait_seqno(ring, seqno);
  1662. }
  1663. static int
  1664. intel_ring_alloc_seqno(struct intel_engine_cs *ring)
  1665. {
  1666. if (ring->outstanding_lazy_seqno)
  1667. return 0;
  1668. if (ring->preallocated_lazy_request == NULL) {
  1669. struct drm_i915_gem_request *request;
  1670. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1671. if (request == NULL)
  1672. return -ENOMEM;
  1673. ring->preallocated_lazy_request = request;
  1674. }
  1675. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
  1676. }
  1677. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1678. int bytes)
  1679. {
  1680. struct intel_ringbuffer *ringbuf = ring->buffer;
  1681. int ret;
  1682. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1683. ret = intel_wrap_ring_buffer(ring);
  1684. if (unlikely(ret))
  1685. return ret;
  1686. }
  1687. if (unlikely(ringbuf->space < bytes)) {
  1688. ret = ring_wait_for_space(ring, bytes);
  1689. if (unlikely(ret))
  1690. return ret;
  1691. }
  1692. return 0;
  1693. }
  1694. int intel_ring_begin(struct intel_engine_cs *ring,
  1695. int num_dwords)
  1696. {
  1697. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1698. int ret;
  1699. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1700. dev_priv->mm.interruptible);
  1701. if (ret)
  1702. return ret;
  1703. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1704. if (ret)
  1705. return ret;
  1706. /* Preallocate the olr before touching the ring */
  1707. ret = intel_ring_alloc_seqno(ring);
  1708. if (ret)
  1709. return ret;
  1710. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1711. return 0;
  1712. }
  1713. /* Align the ring tail to a cacheline boundary */
  1714. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1715. {
  1716. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1717. int ret;
  1718. if (num_dwords == 0)
  1719. return 0;
  1720. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1721. ret = intel_ring_begin(ring, num_dwords);
  1722. if (ret)
  1723. return ret;
  1724. while (num_dwords--)
  1725. intel_ring_emit(ring, MI_NOOP);
  1726. intel_ring_advance(ring);
  1727. return 0;
  1728. }
  1729. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1730. {
  1731. struct drm_device *dev = ring->dev;
  1732. struct drm_i915_private *dev_priv = dev->dev_private;
  1733. BUG_ON(ring->outstanding_lazy_seqno);
  1734. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1735. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1736. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1737. if (HAS_VEBOX(dev))
  1738. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1739. }
  1740. ring->set_seqno(ring, seqno);
  1741. ring->hangcheck.seqno = seqno;
  1742. }
  1743. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1744. u32 value)
  1745. {
  1746. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1747. /* Every tail move must follow the sequence below */
  1748. /* Disable notification that the ring is IDLE. The GT
  1749. * will then assume that it is busy and bring it out of rc6.
  1750. */
  1751. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1752. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1753. /* Clear the context id. Here be magic! */
  1754. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1755. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1756. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1757. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1758. 50))
  1759. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1760. /* Now that the ring is fully powered up, update the tail */
  1761. I915_WRITE_TAIL(ring, value);
  1762. POSTING_READ(RING_TAIL(ring->mmio_base));
  1763. /* Let the ring send IDLE messages to the GT again,
  1764. * and so let it sleep to conserve power when idle.
  1765. */
  1766. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1767. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1768. }
  1769. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1770. u32 invalidate, u32 flush)
  1771. {
  1772. uint32_t cmd;
  1773. int ret;
  1774. ret = intel_ring_begin(ring, 4);
  1775. if (ret)
  1776. return ret;
  1777. cmd = MI_FLUSH_DW;
  1778. if (INTEL_INFO(ring->dev)->gen >= 8)
  1779. cmd += 1;
  1780. /* We always require a command barrier so that subsequent
  1781. * commands, such as breadcrumb interrupts, are strictly ordered
  1782. * wrt the contents of the write cache being flushed to memory
  1783. * (and thus being coherent from the CPU).
  1784. */
  1785. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1786. /*
  1787. * Bspec vol 1c.5 - video engine command streamer:
  1788. * "If ENABLED, all TLBs will be invalidated once the flush
  1789. * operation is complete. This bit is only valid when the
  1790. * Post-Sync Operation field is a value of 1h or 3h."
  1791. */
  1792. if (invalidate & I915_GEM_GPU_DOMAINS)
  1793. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  1794. intel_ring_emit(ring, cmd);
  1795. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1796. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1797. intel_ring_emit(ring, 0); /* upper addr */
  1798. intel_ring_emit(ring, 0); /* value */
  1799. } else {
  1800. intel_ring_emit(ring, 0);
  1801. intel_ring_emit(ring, MI_NOOP);
  1802. }
  1803. intel_ring_advance(ring);
  1804. return 0;
  1805. }
  1806. static int
  1807. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1808. u64 offset, u32 len,
  1809. unsigned flags)
  1810. {
  1811. bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
  1812. int ret;
  1813. ret = intel_ring_begin(ring, 4);
  1814. if (ret)
  1815. return ret;
  1816. /* FIXME(BDW): Address space and security selectors. */
  1817. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1818. intel_ring_emit(ring, lower_32_bits(offset));
  1819. intel_ring_emit(ring, upper_32_bits(offset));
  1820. intel_ring_emit(ring, MI_NOOP);
  1821. intel_ring_advance(ring);
  1822. return 0;
  1823. }
  1824. static int
  1825. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1826. u64 offset, u32 len,
  1827. unsigned flags)
  1828. {
  1829. int ret;
  1830. ret = intel_ring_begin(ring, 2);
  1831. if (ret)
  1832. return ret;
  1833. intel_ring_emit(ring,
  1834. MI_BATCH_BUFFER_START |
  1835. (flags & I915_DISPATCH_SECURE ?
  1836. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
  1837. /* bit0-7 is the length on GEN6+ */
  1838. intel_ring_emit(ring, offset);
  1839. intel_ring_advance(ring);
  1840. return 0;
  1841. }
  1842. static int
  1843. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1844. u64 offset, u32 len,
  1845. unsigned flags)
  1846. {
  1847. int ret;
  1848. ret = intel_ring_begin(ring, 2);
  1849. if (ret)
  1850. return ret;
  1851. intel_ring_emit(ring,
  1852. MI_BATCH_BUFFER_START |
  1853. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1854. /* bit0-7 is the length on GEN6+ */
  1855. intel_ring_emit(ring, offset);
  1856. intel_ring_advance(ring);
  1857. return 0;
  1858. }
  1859. /* Blitter support (SandyBridge+) */
  1860. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1861. u32 invalidate, u32 flush)
  1862. {
  1863. struct drm_device *dev = ring->dev;
  1864. uint32_t cmd;
  1865. int ret;
  1866. ret = intel_ring_begin(ring, 4);
  1867. if (ret)
  1868. return ret;
  1869. cmd = MI_FLUSH_DW;
  1870. if (INTEL_INFO(ring->dev)->gen >= 8)
  1871. cmd += 1;
  1872. /* We always require a command barrier so that subsequent
  1873. * commands, such as breadcrumb interrupts, are strictly ordered
  1874. * wrt the contents of the write cache being flushed to memory
  1875. * (and thus being coherent from the CPU).
  1876. */
  1877. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1878. /*
  1879. * Bspec vol 1c.3 - blitter engine command streamer:
  1880. * "If ENABLED, all TLBs will be invalidated once the flush
  1881. * operation is complete. This bit is only valid when the
  1882. * Post-Sync Operation field is a value of 1h or 3h."
  1883. */
  1884. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1885. cmd |= MI_INVALIDATE_TLB;
  1886. intel_ring_emit(ring, cmd);
  1887. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1888. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1889. intel_ring_emit(ring, 0); /* upper addr */
  1890. intel_ring_emit(ring, 0); /* value */
  1891. } else {
  1892. intel_ring_emit(ring, 0);
  1893. intel_ring_emit(ring, MI_NOOP);
  1894. }
  1895. intel_ring_advance(ring);
  1896. if (IS_GEN7(dev) && !invalidate && flush)
  1897. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1898. return 0;
  1899. }
  1900. int intel_init_render_ring_buffer(struct drm_device *dev)
  1901. {
  1902. struct drm_i915_private *dev_priv = dev->dev_private;
  1903. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1904. struct drm_i915_gem_object *obj;
  1905. int ret;
  1906. ring->name = "render ring";
  1907. ring->id = RCS;
  1908. ring->mmio_base = RENDER_RING_BASE;
  1909. if (INTEL_INFO(dev)->gen >= 8) {
  1910. if (i915_semaphore_is_enabled(dev)) {
  1911. obj = i915_gem_alloc_object(dev, 4096);
  1912. if (obj == NULL) {
  1913. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  1914. i915.semaphores = 0;
  1915. } else {
  1916. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1917. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  1918. if (ret != 0) {
  1919. drm_gem_object_unreference(&obj->base);
  1920. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  1921. i915.semaphores = 0;
  1922. } else
  1923. dev_priv->semaphore_obj = obj;
  1924. }
  1925. }
  1926. if (IS_CHERRYVIEW(dev))
  1927. ring->init_context = chv_init_workarounds;
  1928. else
  1929. ring->init_context = bdw_init_workarounds;
  1930. ring->add_request = gen6_add_request;
  1931. ring->flush = gen8_render_ring_flush;
  1932. ring->irq_get = gen8_ring_get_irq;
  1933. ring->irq_put = gen8_ring_put_irq;
  1934. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1935. ring->get_seqno = gen6_ring_get_seqno;
  1936. ring->set_seqno = ring_set_seqno;
  1937. if (i915_semaphore_is_enabled(dev)) {
  1938. WARN_ON(!dev_priv->semaphore_obj);
  1939. ring->semaphore.sync_to = gen8_ring_sync;
  1940. ring->semaphore.signal = gen8_rcs_signal;
  1941. GEN8_RING_SEMAPHORE_INIT;
  1942. }
  1943. } else if (INTEL_INFO(dev)->gen >= 6) {
  1944. ring->add_request = gen6_add_request;
  1945. ring->flush = gen7_render_ring_flush;
  1946. if (INTEL_INFO(dev)->gen == 6)
  1947. ring->flush = gen6_render_ring_flush;
  1948. ring->irq_get = gen6_ring_get_irq;
  1949. ring->irq_put = gen6_ring_put_irq;
  1950. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1951. ring->get_seqno = gen6_ring_get_seqno;
  1952. ring->set_seqno = ring_set_seqno;
  1953. if (i915_semaphore_is_enabled(dev)) {
  1954. ring->semaphore.sync_to = gen6_ring_sync;
  1955. ring->semaphore.signal = gen6_signal;
  1956. /*
  1957. * The current semaphore is only applied on pre-gen8
  1958. * platform. And there is no VCS2 ring on the pre-gen8
  1959. * platform. So the semaphore between RCS and VCS2 is
  1960. * initialized as INVALID. Gen8 will initialize the
  1961. * sema between VCS2 and RCS later.
  1962. */
  1963. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1964. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  1965. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  1966. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1967. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1968. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  1969. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  1970. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  1971. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  1972. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1973. }
  1974. } else if (IS_GEN5(dev)) {
  1975. ring->add_request = pc_render_add_request;
  1976. ring->flush = gen4_render_ring_flush;
  1977. ring->get_seqno = pc_render_get_seqno;
  1978. ring->set_seqno = pc_render_set_seqno;
  1979. ring->irq_get = gen5_ring_get_irq;
  1980. ring->irq_put = gen5_ring_put_irq;
  1981. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  1982. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  1983. } else {
  1984. ring->add_request = i9xx_add_request;
  1985. if (INTEL_INFO(dev)->gen < 4)
  1986. ring->flush = gen2_render_ring_flush;
  1987. else
  1988. ring->flush = gen4_render_ring_flush;
  1989. ring->get_seqno = ring_get_seqno;
  1990. ring->set_seqno = ring_set_seqno;
  1991. if (IS_GEN2(dev)) {
  1992. ring->irq_get = i8xx_ring_get_irq;
  1993. ring->irq_put = i8xx_ring_put_irq;
  1994. } else {
  1995. ring->irq_get = i9xx_ring_get_irq;
  1996. ring->irq_put = i9xx_ring_put_irq;
  1997. }
  1998. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1999. }
  2000. ring->write_tail = ring_write_tail;
  2001. if (IS_HASWELL(dev))
  2002. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2003. else if (IS_GEN8(dev))
  2004. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2005. else if (INTEL_INFO(dev)->gen >= 6)
  2006. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2007. else if (INTEL_INFO(dev)->gen >= 4)
  2008. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2009. else if (IS_I830(dev) || IS_845G(dev))
  2010. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2011. else
  2012. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2013. ring->init = init_render_ring;
  2014. ring->cleanup = render_ring_cleanup;
  2015. /* Workaround batchbuffer to combat CS tlb bug. */
  2016. if (HAS_BROKEN_CS_TLB(dev)) {
  2017. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2018. if (obj == NULL) {
  2019. DRM_ERROR("Failed to allocate batch bo\n");
  2020. return -ENOMEM;
  2021. }
  2022. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2023. if (ret != 0) {
  2024. drm_gem_object_unreference(&obj->base);
  2025. DRM_ERROR("Failed to ping batch bo\n");
  2026. return ret;
  2027. }
  2028. ring->scratch.obj = obj;
  2029. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2030. }
  2031. return intel_init_ring_buffer(dev, ring);
  2032. }
  2033. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  2034. {
  2035. struct drm_i915_private *dev_priv = dev->dev_private;
  2036. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2037. struct intel_ringbuffer *ringbuf = ring->buffer;
  2038. int ret;
  2039. if (ringbuf == NULL) {
  2040. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  2041. if (!ringbuf)
  2042. return -ENOMEM;
  2043. ring->buffer = ringbuf;
  2044. }
  2045. ring->name = "render ring";
  2046. ring->id = RCS;
  2047. ring->mmio_base = RENDER_RING_BASE;
  2048. if (INTEL_INFO(dev)->gen >= 6) {
  2049. /* non-kms not supported on gen6+ */
  2050. ret = -ENODEV;
  2051. goto err_ringbuf;
  2052. }
  2053. /* Note: gem is not supported on gen5/ilk without kms (the corresponding
  2054. * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
  2055. * the special gen5 functions. */
  2056. ring->add_request = i9xx_add_request;
  2057. if (INTEL_INFO(dev)->gen < 4)
  2058. ring->flush = gen2_render_ring_flush;
  2059. else
  2060. ring->flush = gen4_render_ring_flush;
  2061. ring->get_seqno = ring_get_seqno;
  2062. ring->set_seqno = ring_set_seqno;
  2063. if (IS_GEN2(dev)) {
  2064. ring->irq_get = i8xx_ring_get_irq;
  2065. ring->irq_put = i8xx_ring_put_irq;
  2066. } else {
  2067. ring->irq_get = i9xx_ring_get_irq;
  2068. ring->irq_put = i9xx_ring_put_irq;
  2069. }
  2070. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2071. ring->write_tail = ring_write_tail;
  2072. if (INTEL_INFO(dev)->gen >= 4)
  2073. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2074. else if (IS_I830(dev) || IS_845G(dev))
  2075. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2076. else
  2077. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2078. ring->init = init_render_ring;
  2079. ring->cleanup = render_ring_cleanup;
  2080. ring->dev = dev;
  2081. INIT_LIST_HEAD(&ring->active_list);
  2082. INIT_LIST_HEAD(&ring->request_list);
  2083. ringbuf->size = size;
  2084. ringbuf->effective_size = ringbuf->size;
  2085. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  2086. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  2087. ringbuf->virtual_start = ioremap_wc(start, size);
  2088. if (ringbuf->virtual_start == NULL) {
  2089. DRM_ERROR("can not ioremap virtual address for"
  2090. " ring buffer\n");
  2091. ret = -ENOMEM;
  2092. goto err_ringbuf;
  2093. }
  2094. if (!I915_NEED_GFX_HWS(dev)) {
  2095. ret = init_phys_status_page(ring);
  2096. if (ret)
  2097. goto err_vstart;
  2098. }
  2099. return 0;
  2100. err_vstart:
  2101. iounmap(ringbuf->virtual_start);
  2102. err_ringbuf:
  2103. kfree(ringbuf);
  2104. ring->buffer = NULL;
  2105. return ret;
  2106. }
  2107. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2108. {
  2109. struct drm_i915_private *dev_priv = dev->dev_private;
  2110. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2111. ring->name = "bsd ring";
  2112. ring->id = VCS;
  2113. ring->write_tail = ring_write_tail;
  2114. if (INTEL_INFO(dev)->gen >= 6) {
  2115. ring->mmio_base = GEN6_BSD_RING_BASE;
  2116. /* gen6 bsd needs a special wa for tail updates */
  2117. if (IS_GEN6(dev))
  2118. ring->write_tail = gen6_bsd_ring_write_tail;
  2119. ring->flush = gen6_bsd_ring_flush;
  2120. ring->add_request = gen6_add_request;
  2121. ring->get_seqno = gen6_ring_get_seqno;
  2122. ring->set_seqno = ring_set_seqno;
  2123. if (INTEL_INFO(dev)->gen >= 8) {
  2124. ring->irq_enable_mask =
  2125. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2126. ring->irq_get = gen8_ring_get_irq;
  2127. ring->irq_put = gen8_ring_put_irq;
  2128. ring->dispatch_execbuffer =
  2129. gen8_ring_dispatch_execbuffer;
  2130. if (i915_semaphore_is_enabled(dev)) {
  2131. ring->semaphore.sync_to = gen8_ring_sync;
  2132. ring->semaphore.signal = gen8_xcs_signal;
  2133. GEN8_RING_SEMAPHORE_INIT;
  2134. }
  2135. } else {
  2136. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2137. ring->irq_get = gen6_ring_get_irq;
  2138. ring->irq_put = gen6_ring_put_irq;
  2139. ring->dispatch_execbuffer =
  2140. gen6_ring_dispatch_execbuffer;
  2141. if (i915_semaphore_is_enabled(dev)) {
  2142. ring->semaphore.sync_to = gen6_ring_sync;
  2143. ring->semaphore.signal = gen6_signal;
  2144. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2145. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2146. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2147. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2148. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2149. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2150. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2151. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2152. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2153. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2154. }
  2155. }
  2156. } else {
  2157. ring->mmio_base = BSD_RING_BASE;
  2158. ring->flush = bsd_ring_flush;
  2159. ring->add_request = i9xx_add_request;
  2160. ring->get_seqno = ring_get_seqno;
  2161. ring->set_seqno = ring_set_seqno;
  2162. if (IS_GEN5(dev)) {
  2163. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2164. ring->irq_get = gen5_ring_get_irq;
  2165. ring->irq_put = gen5_ring_put_irq;
  2166. } else {
  2167. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2168. ring->irq_get = i9xx_ring_get_irq;
  2169. ring->irq_put = i9xx_ring_put_irq;
  2170. }
  2171. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2172. }
  2173. ring->init = init_ring_common;
  2174. return intel_init_ring_buffer(dev, ring);
  2175. }
  2176. /**
  2177. * Initialize the second BSD ring for Broadwell GT3.
  2178. * It is noted that this only exists on Broadwell GT3.
  2179. */
  2180. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2181. {
  2182. struct drm_i915_private *dev_priv = dev->dev_private;
  2183. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2184. if ((INTEL_INFO(dev)->gen != 8)) {
  2185. DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
  2186. return -EINVAL;
  2187. }
  2188. ring->name = "bsd2 ring";
  2189. ring->id = VCS2;
  2190. ring->write_tail = ring_write_tail;
  2191. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2192. ring->flush = gen6_bsd_ring_flush;
  2193. ring->add_request = gen6_add_request;
  2194. ring->get_seqno = gen6_ring_get_seqno;
  2195. ring->set_seqno = ring_set_seqno;
  2196. ring->irq_enable_mask =
  2197. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2198. ring->irq_get = gen8_ring_get_irq;
  2199. ring->irq_put = gen8_ring_put_irq;
  2200. ring->dispatch_execbuffer =
  2201. gen8_ring_dispatch_execbuffer;
  2202. if (i915_semaphore_is_enabled(dev)) {
  2203. ring->semaphore.sync_to = gen8_ring_sync;
  2204. ring->semaphore.signal = gen8_xcs_signal;
  2205. GEN8_RING_SEMAPHORE_INIT;
  2206. }
  2207. ring->init = init_ring_common;
  2208. return intel_init_ring_buffer(dev, ring);
  2209. }
  2210. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2211. {
  2212. struct drm_i915_private *dev_priv = dev->dev_private;
  2213. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2214. ring->name = "blitter ring";
  2215. ring->id = BCS;
  2216. ring->mmio_base = BLT_RING_BASE;
  2217. ring->write_tail = ring_write_tail;
  2218. ring->flush = gen6_ring_flush;
  2219. ring->add_request = gen6_add_request;
  2220. ring->get_seqno = gen6_ring_get_seqno;
  2221. ring->set_seqno = ring_set_seqno;
  2222. if (INTEL_INFO(dev)->gen >= 8) {
  2223. ring->irq_enable_mask =
  2224. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2225. ring->irq_get = gen8_ring_get_irq;
  2226. ring->irq_put = gen8_ring_put_irq;
  2227. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2228. if (i915_semaphore_is_enabled(dev)) {
  2229. ring->semaphore.sync_to = gen8_ring_sync;
  2230. ring->semaphore.signal = gen8_xcs_signal;
  2231. GEN8_RING_SEMAPHORE_INIT;
  2232. }
  2233. } else {
  2234. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2235. ring->irq_get = gen6_ring_get_irq;
  2236. ring->irq_put = gen6_ring_put_irq;
  2237. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2238. if (i915_semaphore_is_enabled(dev)) {
  2239. ring->semaphore.signal = gen6_signal;
  2240. ring->semaphore.sync_to = gen6_ring_sync;
  2241. /*
  2242. * The current semaphore is only applied on pre-gen8
  2243. * platform. And there is no VCS2 ring on the pre-gen8
  2244. * platform. So the semaphore between BCS and VCS2 is
  2245. * initialized as INVALID. Gen8 will initialize the
  2246. * sema between BCS and VCS2 later.
  2247. */
  2248. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2249. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2250. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2251. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2252. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2253. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2254. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2255. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2256. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2257. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2258. }
  2259. }
  2260. ring->init = init_ring_common;
  2261. return intel_init_ring_buffer(dev, ring);
  2262. }
  2263. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2264. {
  2265. struct drm_i915_private *dev_priv = dev->dev_private;
  2266. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2267. ring->name = "video enhancement ring";
  2268. ring->id = VECS;
  2269. ring->mmio_base = VEBOX_RING_BASE;
  2270. ring->write_tail = ring_write_tail;
  2271. ring->flush = gen6_ring_flush;
  2272. ring->add_request = gen6_add_request;
  2273. ring->get_seqno = gen6_ring_get_seqno;
  2274. ring->set_seqno = ring_set_seqno;
  2275. if (INTEL_INFO(dev)->gen >= 8) {
  2276. ring->irq_enable_mask =
  2277. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2278. ring->irq_get = gen8_ring_get_irq;
  2279. ring->irq_put = gen8_ring_put_irq;
  2280. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2281. if (i915_semaphore_is_enabled(dev)) {
  2282. ring->semaphore.sync_to = gen8_ring_sync;
  2283. ring->semaphore.signal = gen8_xcs_signal;
  2284. GEN8_RING_SEMAPHORE_INIT;
  2285. }
  2286. } else {
  2287. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2288. ring->irq_get = hsw_vebox_get_irq;
  2289. ring->irq_put = hsw_vebox_put_irq;
  2290. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2291. if (i915_semaphore_is_enabled(dev)) {
  2292. ring->semaphore.sync_to = gen6_ring_sync;
  2293. ring->semaphore.signal = gen6_signal;
  2294. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2295. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2296. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2297. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2298. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2299. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2300. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2301. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2302. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2303. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2304. }
  2305. }
  2306. ring->init = init_ring_common;
  2307. return intel_init_ring_buffer(dev, ring);
  2308. }
  2309. int
  2310. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2311. {
  2312. int ret;
  2313. if (!ring->gpu_caches_dirty)
  2314. return 0;
  2315. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2316. if (ret)
  2317. return ret;
  2318. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2319. ring->gpu_caches_dirty = false;
  2320. return 0;
  2321. }
  2322. int
  2323. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2324. {
  2325. uint32_t flush_domains;
  2326. int ret;
  2327. flush_domains = 0;
  2328. if (ring->gpu_caches_dirty)
  2329. flush_domains = I915_GEM_GPU_DOMAINS;
  2330. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2331. if (ret)
  2332. return ret;
  2333. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2334. ring->gpu_caches_dirty = false;
  2335. return 0;
  2336. }
  2337. void
  2338. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2339. {
  2340. int ret;
  2341. if (!intel_ring_initialized(ring))
  2342. return;
  2343. ret = intel_ring_idle(ring);
  2344. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2345. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2346. ring->name, ret);
  2347. stop_ring(ring);
  2348. }