kv_dpm.c 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873
  1. /*
  2. * Copyright 2013 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include "drmP.h"
  24. #include "radeon.h"
  25. #include "cikd.h"
  26. #include "r600_dpm.h"
  27. #include "kv_dpm.h"
  28. #include "radeon_asic.h"
  29. #include <linux/seq_file.h>
  30. #define KV_MAX_DEEPSLEEP_DIVIDER_ID 5
  31. #define KV_MINIMUM_ENGINE_CLOCK 800
  32. #define SMC_RAM_END 0x40000
  33. static int kv_enable_nb_dpm(struct radeon_device *rdev,
  34. bool enable);
  35. static void kv_init_graphics_levels(struct radeon_device *rdev);
  36. static int kv_calculate_ds_divider(struct radeon_device *rdev);
  37. static int kv_calculate_nbps_level_settings(struct radeon_device *rdev);
  38. static int kv_calculate_dpm_settings(struct radeon_device *rdev);
  39. static void kv_enable_new_levels(struct radeon_device *rdev);
  40. static void kv_program_nbps_index_settings(struct radeon_device *rdev,
  41. struct radeon_ps *new_rps);
  42. static int kv_set_enabled_level(struct radeon_device *rdev, u32 level);
  43. static int kv_set_enabled_levels(struct radeon_device *rdev);
  44. static int kv_force_dpm_highest(struct radeon_device *rdev);
  45. static int kv_force_dpm_lowest(struct radeon_device *rdev);
  46. static void kv_apply_state_adjust_rules(struct radeon_device *rdev,
  47. struct radeon_ps *new_rps,
  48. struct radeon_ps *old_rps);
  49. static int kv_set_thermal_temperature_range(struct radeon_device *rdev,
  50. int min_temp, int max_temp);
  51. static int kv_init_fps_limits(struct radeon_device *rdev);
  52. void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate);
  53. static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate);
  54. static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate);
  55. static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate);
  56. extern void cik_enter_rlc_safe_mode(struct radeon_device *rdev);
  57. extern void cik_exit_rlc_safe_mode(struct radeon_device *rdev);
  58. extern void cik_update_cg(struct radeon_device *rdev,
  59. u32 block, bool enable);
  60. static const struct kv_lcac_config_values sx_local_cac_cfg_kv[] =
  61. {
  62. { 0, 4, 1 },
  63. { 1, 4, 1 },
  64. { 2, 5, 1 },
  65. { 3, 4, 2 },
  66. { 4, 1, 1 },
  67. { 5, 5, 2 },
  68. { 6, 6, 1 },
  69. { 7, 9, 2 },
  70. { 0xffffffff }
  71. };
  72. static const struct kv_lcac_config_values mc0_local_cac_cfg_kv[] =
  73. {
  74. { 0, 4, 1 },
  75. { 0xffffffff }
  76. };
  77. static const struct kv_lcac_config_values mc1_local_cac_cfg_kv[] =
  78. {
  79. { 0, 4, 1 },
  80. { 0xffffffff }
  81. };
  82. static const struct kv_lcac_config_values mc2_local_cac_cfg_kv[] =
  83. {
  84. { 0, 4, 1 },
  85. { 0xffffffff }
  86. };
  87. static const struct kv_lcac_config_values mc3_local_cac_cfg_kv[] =
  88. {
  89. { 0, 4, 1 },
  90. { 0xffffffff }
  91. };
  92. static const struct kv_lcac_config_values cpl_local_cac_cfg_kv[] =
  93. {
  94. { 0, 4, 1 },
  95. { 1, 4, 1 },
  96. { 2, 5, 1 },
  97. { 3, 4, 1 },
  98. { 4, 1, 1 },
  99. { 5, 5, 1 },
  100. { 6, 6, 1 },
  101. { 7, 9, 1 },
  102. { 8, 4, 1 },
  103. { 9, 2, 1 },
  104. { 10, 3, 1 },
  105. { 11, 6, 1 },
  106. { 12, 8, 2 },
  107. { 13, 1, 1 },
  108. { 14, 2, 1 },
  109. { 15, 3, 1 },
  110. { 16, 1, 1 },
  111. { 17, 4, 1 },
  112. { 18, 3, 1 },
  113. { 19, 1, 1 },
  114. { 20, 8, 1 },
  115. { 21, 5, 1 },
  116. { 22, 1, 1 },
  117. { 23, 1, 1 },
  118. { 24, 4, 1 },
  119. { 27, 6, 1 },
  120. { 28, 1, 1 },
  121. { 0xffffffff }
  122. };
  123. static const struct kv_lcac_config_reg sx0_cac_config_reg[] =
  124. {
  125. { 0xc0400d00, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  126. };
  127. static const struct kv_lcac_config_reg mc0_cac_config_reg[] =
  128. {
  129. { 0xc0400d30, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  130. };
  131. static const struct kv_lcac_config_reg mc1_cac_config_reg[] =
  132. {
  133. { 0xc0400d3c, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  134. };
  135. static const struct kv_lcac_config_reg mc2_cac_config_reg[] =
  136. {
  137. { 0xc0400d48, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  138. };
  139. static const struct kv_lcac_config_reg mc3_cac_config_reg[] =
  140. {
  141. { 0xc0400d54, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  142. };
  143. static const struct kv_lcac_config_reg cpl_cac_config_reg[] =
  144. {
  145. { 0xc0400d80, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  146. };
  147. static const struct kv_pt_config_reg didt_config_kv[] =
  148. {
  149. { 0x10, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  150. { 0x10, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  151. { 0x10, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  152. { 0x10, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  153. { 0x11, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  154. { 0x11, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  155. { 0x11, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  156. { 0x11, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  157. { 0x12, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  158. { 0x12, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  159. { 0x12, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  160. { 0x12, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  161. { 0x2, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  162. { 0x2, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  163. { 0x2, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  164. { 0x1, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  165. { 0x1, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  166. { 0x0, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  167. { 0x30, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  168. { 0x30, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  169. { 0x30, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  170. { 0x30, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  171. { 0x31, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  172. { 0x31, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  173. { 0x31, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  174. { 0x31, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  175. { 0x32, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  176. { 0x32, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  177. { 0x32, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  178. { 0x32, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  179. { 0x22, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  180. { 0x22, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  181. { 0x22, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  182. { 0x21, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  183. { 0x21, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  184. { 0x20, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  185. { 0x50, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  186. { 0x50, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  187. { 0x50, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  188. { 0x50, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  189. { 0x51, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  190. { 0x51, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  191. { 0x51, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  192. { 0x51, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  193. { 0x52, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  194. { 0x52, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  195. { 0x52, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  196. { 0x52, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  197. { 0x42, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  198. { 0x42, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  199. { 0x42, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  200. { 0x41, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  201. { 0x41, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  202. { 0x40, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  203. { 0x70, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  204. { 0x70, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  205. { 0x70, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  206. { 0x70, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  207. { 0x71, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  208. { 0x71, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  209. { 0x71, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  210. { 0x71, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  211. { 0x72, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  212. { 0x72, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  213. { 0x72, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  214. { 0x72, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  215. { 0x62, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  216. { 0x62, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  217. { 0x62, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  218. { 0x61, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  219. { 0x61, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  220. { 0x60, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  221. { 0xFFFFFFFF }
  222. };
  223. static struct kv_ps *kv_get_ps(struct radeon_ps *rps)
  224. {
  225. struct kv_ps *ps = rps->ps_priv;
  226. return ps;
  227. }
  228. static struct kv_power_info *kv_get_pi(struct radeon_device *rdev)
  229. {
  230. struct kv_power_info *pi = rdev->pm.dpm.priv;
  231. return pi;
  232. }
  233. #if 0
  234. static void kv_program_local_cac_table(struct radeon_device *rdev,
  235. const struct kv_lcac_config_values *local_cac_table,
  236. const struct kv_lcac_config_reg *local_cac_reg)
  237. {
  238. u32 i, count, data;
  239. const struct kv_lcac_config_values *values = local_cac_table;
  240. while (values->block_id != 0xffffffff) {
  241. count = values->signal_id;
  242. for (i = 0; i < count; i++) {
  243. data = ((values->block_id << local_cac_reg->block_shift) &
  244. local_cac_reg->block_mask);
  245. data |= ((i << local_cac_reg->signal_shift) &
  246. local_cac_reg->signal_mask);
  247. data |= ((values->t << local_cac_reg->t_shift) &
  248. local_cac_reg->t_mask);
  249. data |= ((1 << local_cac_reg->enable_shift) &
  250. local_cac_reg->enable_mask);
  251. WREG32_SMC(local_cac_reg->cntl, data);
  252. }
  253. values++;
  254. }
  255. }
  256. #endif
  257. static int kv_program_pt_config_registers(struct radeon_device *rdev,
  258. const struct kv_pt_config_reg *cac_config_regs)
  259. {
  260. const struct kv_pt_config_reg *config_regs = cac_config_regs;
  261. u32 data;
  262. u32 cache = 0;
  263. if (config_regs == NULL)
  264. return -EINVAL;
  265. while (config_regs->offset != 0xFFFFFFFF) {
  266. if (config_regs->type == KV_CONFIGREG_CACHE) {
  267. cache |= ((config_regs->value << config_regs->shift) & config_regs->mask);
  268. } else {
  269. switch (config_regs->type) {
  270. case KV_CONFIGREG_SMC_IND:
  271. data = RREG32_SMC(config_regs->offset);
  272. break;
  273. case KV_CONFIGREG_DIDT_IND:
  274. data = RREG32_DIDT(config_regs->offset);
  275. break;
  276. default:
  277. data = RREG32(config_regs->offset << 2);
  278. break;
  279. }
  280. data &= ~config_regs->mask;
  281. data |= ((config_regs->value << config_regs->shift) & config_regs->mask);
  282. data |= cache;
  283. cache = 0;
  284. switch (config_regs->type) {
  285. case KV_CONFIGREG_SMC_IND:
  286. WREG32_SMC(config_regs->offset, data);
  287. break;
  288. case KV_CONFIGREG_DIDT_IND:
  289. WREG32_DIDT(config_regs->offset, data);
  290. break;
  291. default:
  292. WREG32(config_regs->offset << 2, data);
  293. break;
  294. }
  295. }
  296. config_regs++;
  297. }
  298. return 0;
  299. }
  300. static void kv_do_enable_didt(struct radeon_device *rdev, bool enable)
  301. {
  302. struct kv_power_info *pi = kv_get_pi(rdev);
  303. u32 data;
  304. if (pi->caps_sq_ramping) {
  305. data = RREG32_DIDT(DIDT_SQ_CTRL0);
  306. if (enable)
  307. data |= DIDT_CTRL_EN;
  308. else
  309. data &= ~DIDT_CTRL_EN;
  310. WREG32_DIDT(DIDT_SQ_CTRL0, data);
  311. }
  312. if (pi->caps_db_ramping) {
  313. data = RREG32_DIDT(DIDT_DB_CTRL0);
  314. if (enable)
  315. data |= DIDT_CTRL_EN;
  316. else
  317. data &= ~DIDT_CTRL_EN;
  318. WREG32_DIDT(DIDT_DB_CTRL0, data);
  319. }
  320. if (pi->caps_td_ramping) {
  321. data = RREG32_DIDT(DIDT_TD_CTRL0);
  322. if (enable)
  323. data |= DIDT_CTRL_EN;
  324. else
  325. data &= ~DIDT_CTRL_EN;
  326. WREG32_DIDT(DIDT_TD_CTRL0, data);
  327. }
  328. if (pi->caps_tcp_ramping) {
  329. data = RREG32_DIDT(DIDT_TCP_CTRL0);
  330. if (enable)
  331. data |= DIDT_CTRL_EN;
  332. else
  333. data &= ~DIDT_CTRL_EN;
  334. WREG32_DIDT(DIDT_TCP_CTRL0, data);
  335. }
  336. }
  337. static int kv_enable_didt(struct radeon_device *rdev, bool enable)
  338. {
  339. struct kv_power_info *pi = kv_get_pi(rdev);
  340. int ret;
  341. if (pi->caps_sq_ramping ||
  342. pi->caps_db_ramping ||
  343. pi->caps_td_ramping ||
  344. pi->caps_tcp_ramping) {
  345. cik_enter_rlc_safe_mode(rdev);
  346. if (enable) {
  347. ret = kv_program_pt_config_registers(rdev, didt_config_kv);
  348. if (ret) {
  349. cik_exit_rlc_safe_mode(rdev);
  350. return ret;
  351. }
  352. }
  353. kv_do_enable_didt(rdev, enable);
  354. cik_exit_rlc_safe_mode(rdev);
  355. }
  356. return 0;
  357. }
  358. #if 0
  359. static void kv_initialize_hardware_cac_manager(struct radeon_device *rdev)
  360. {
  361. struct kv_power_info *pi = kv_get_pi(rdev);
  362. if (pi->caps_cac) {
  363. WREG32_SMC(LCAC_SX0_OVR_SEL, 0);
  364. WREG32_SMC(LCAC_SX0_OVR_VAL, 0);
  365. kv_program_local_cac_table(rdev, sx_local_cac_cfg_kv, sx0_cac_config_reg);
  366. WREG32_SMC(LCAC_MC0_OVR_SEL, 0);
  367. WREG32_SMC(LCAC_MC0_OVR_VAL, 0);
  368. kv_program_local_cac_table(rdev, mc0_local_cac_cfg_kv, mc0_cac_config_reg);
  369. WREG32_SMC(LCAC_MC1_OVR_SEL, 0);
  370. WREG32_SMC(LCAC_MC1_OVR_VAL, 0);
  371. kv_program_local_cac_table(rdev, mc1_local_cac_cfg_kv, mc1_cac_config_reg);
  372. WREG32_SMC(LCAC_MC2_OVR_SEL, 0);
  373. WREG32_SMC(LCAC_MC2_OVR_VAL, 0);
  374. kv_program_local_cac_table(rdev, mc2_local_cac_cfg_kv, mc2_cac_config_reg);
  375. WREG32_SMC(LCAC_MC3_OVR_SEL, 0);
  376. WREG32_SMC(LCAC_MC3_OVR_VAL, 0);
  377. kv_program_local_cac_table(rdev, mc3_local_cac_cfg_kv, mc3_cac_config_reg);
  378. WREG32_SMC(LCAC_CPL_OVR_SEL, 0);
  379. WREG32_SMC(LCAC_CPL_OVR_VAL, 0);
  380. kv_program_local_cac_table(rdev, cpl_local_cac_cfg_kv, cpl_cac_config_reg);
  381. }
  382. }
  383. #endif
  384. static int kv_enable_smc_cac(struct radeon_device *rdev, bool enable)
  385. {
  386. struct kv_power_info *pi = kv_get_pi(rdev);
  387. int ret = 0;
  388. if (pi->caps_cac) {
  389. if (enable) {
  390. ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_EnableCac);
  391. if (ret)
  392. pi->cac_enabled = false;
  393. else
  394. pi->cac_enabled = true;
  395. } else if (pi->cac_enabled) {
  396. kv_notify_message_to_smu(rdev, PPSMC_MSG_DisableCac);
  397. pi->cac_enabled = false;
  398. }
  399. }
  400. return ret;
  401. }
  402. static int kv_process_firmware_header(struct radeon_device *rdev)
  403. {
  404. struct kv_power_info *pi = kv_get_pi(rdev);
  405. u32 tmp;
  406. int ret;
  407. ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION +
  408. offsetof(SMU7_Firmware_Header, DpmTable),
  409. &tmp, pi->sram_end);
  410. if (ret == 0)
  411. pi->dpm_table_start = tmp;
  412. ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION +
  413. offsetof(SMU7_Firmware_Header, SoftRegisters),
  414. &tmp, pi->sram_end);
  415. if (ret == 0)
  416. pi->soft_regs_start = tmp;
  417. return ret;
  418. }
  419. static int kv_enable_dpm_voltage_scaling(struct radeon_device *rdev)
  420. {
  421. struct kv_power_info *pi = kv_get_pi(rdev);
  422. int ret;
  423. pi->graphics_voltage_change_enable = 1;
  424. ret = kv_copy_bytes_to_smc(rdev,
  425. pi->dpm_table_start +
  426. offsetof(SMU7_Fusion_DpmTable, GraphicsVoltageChangeEnable),
  427. &pi->graphics_voltage_change_enable,
  428. sizeof(u8), pi->sram_end);
  429. return ret;
  430. }
  431. static int kv_set_dpm_interval(struct radeon_device *rdev)
  432. {
  433. struct kv_power_info *pi = kv_get_pi(rdev);
  434. int ret;
  435. pi->graphics_interval = 1;
  436. ret = kv_copy_bytes_to_smc(rdev,
  437. pi->dpm_table_start +
  438. offsetof(SMU7_Fusion_DpmTable, GraphicsInterval),
  439. &pi->graphics_interval,
  440. sizeof(u8), pi->sram_end);
  441. return ret;
  442. }
  443. static int kv_set_dpm_boot_state(struct radeon_device *rdev)
  444. {
  445. struct kv_power_info *pi = kv_get_pi(rdev);
  446. int ret;
  447. ret = kv_copy_bytes_to_smc(rdev,
  448. pi->dpm_table_start +
  449. offsetof(SMU7_Fusion_DpmTable, GraphicsBootLevel),
  450. &pi->graphics_boot_level,
  451. sizeof(u8), pi->sram_end);
  452. return ret;
  453. }
  454. static void kv_program_vc(struct radeon_device *rdev)
  455. {
  456. WREG32_SMC(CG_FTV_0, 0x3FFFC100);
  457. }
  458. static void kv_clear_vc(struct radeon_device *rdev)
  459. {
  460. WREG32_SMC(CG_FTV_0, 0);
  461. }
  462. static int kv_set_divider_value(struct radeon_device *rdev,
  463. u32 index, u32 sclk)
  464. {
  465. struct kv_power_info *pi = kv_get_pi(rdev);
  466. struct atom_clock_dividers dividers;
  467. int ret;
  468. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  469. sclk, false, &dividers);
  470. if (ret)
  471. return ret;
  472. pi->graphics_level[index].SclkDid = (u8)dividers.post_div;
  473. pi->graphics_level[index].SclkFrequency = cpu_to_be32(sclk);
  474. return 0;
  475. }
  476. static u32 kv_convert_vid2_to_vid7(struct radeon_device *rdev,
  477. struct sumo_vid_mapping_table *vid_mapping_table,
  478. u32 vid_2bit)
  479. {
  480. struct radeon_clock_voltage_dependency_table *vddc_sclk_table =
  481. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  482. u32 i;
  483. if (vddc_sclk_table && vddc_sclk_table->count) {
  484. if (vid_2bit < vddc_sclk_table->count)
  485. return vddc_sclk_table->entries[vid_2bit].v;
  486. else
  487. return vddc_sclk_table->entries[vddc_sclk_table->count - 1].v;
  488. } else {
  489. for (i = 0; i < vid_mapping_table->num_entries; i++) {
  490. if (vid_mapping_table->entries[i].vid_2bit == vid_2bit)
  491. return vid_mapping_table->entries[i].vid_7bit;
  492. }
  493. return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_7bit;
  494. }
  495. }
  496. static u32 kv_convert_vid7_to_vid2(struct radeon_device *rdev,
  497. struct sumo_vid_mapping_table *vid_mapping_table,
  498. u32 vid_7bit)
  499. {
  500. struct radeon_clock_voltage_dependency_table *vddc_sclk_table =
  501. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  502. u32 i;
  503. if (vddc_sclk_table && vddc_sclk_table->count) {
  504. for (i = 0; i < vddc_sclk_table->count; i++) {
  505. if (vddc_sclk_table->entries[i].v == vid_7bit)
  506. return i;
  507. }
  508. return vddc_sclk_table->count - 1;
  509. } else {
  510. for (i = 0; i < vid_mapping_table->num_entries; i++) {
  511. if (vid_mapping_table->entries[i].vid_7bit == vid_7bit)
  512. return vid_mapping_table->entries[i].vid_2bit;
  513. }
  514. return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_2bit;
  515. }
  516. }
  517. static u16 kv_convert_8bit_index_to_voltage(struct radeon_device *rdev,
  518. u16 voltage)
  519. {
  520. return 6200 - (voltage * 25);
  521. }
  522. static u16 kv_convert_2bit_index_to_voltage(struct radeon_device *rdev,
  523. u32 vid_2bit)
  524. {
  525. struct kv_power_info *pi = kv_get_pi(rdev);
  526. u32 vid_8bit = kv_convert_vid2_to_vid7(rdev,
  527. &pi->sys_info.vid_mapping_table,
  528. vid_2bit);
  529. return kv_convert_8bit_index_to_voltage(rdev, (u16)vid_8bit);
  530. }
  531. static int kv_set_vid(struct radeon_device *rdev, u32 index, u32 vid)
  532. {
  533. struct kv_power_info *pi = kv_get_pi(rdev);
  534. pi->graphics_level[index].VoltageDownH = (u8)pi->voltage_drop_t;
  535. pi->graphics_level[index].MinVddNb =
  536. cpu_to_be32(kv_convert_2bit_index_to_voltage(rdev, vid));
  537. return 0;
  538. }
  539. static int kv_set_at(struct radeon_device *rdev, u32 index, u32 at)
  540. {
  541. struct kv_power_info *pi = kv_get_pi(rdev);
  542. pi->graphics_level[index].AT = cpu_to_be16((u16)at);
  543. return 0;
  544. }
  545. static void kv_dpm_power_level_enable(struct radeon_device *rdev,
  546. u32 index, bool enable)
  547. {
  548. struct kv_power_info *pi = kv_get_pi(rdev);
  549. pi->graphics_level[index].EnabledForActivity = enable ? 1 : 0;
  550. }
  551. static void kv_start_dpm(struct radeon_device *rdev)
  552. {
  553. u32 tmp = RREG32_SMC(GENERAL_PWRMGT);
  554. tmp |= GLOBAL_PWRMGT_EN;
  555. WREG32_SMC(GENERAL_PWRMGT, tmp);
  556. kv_smc_dpm_enable(rdev, true);
  557. }
  558. static void kv_stop_dpm(struct radeon_device *rdev)
  559. {
  560. kv_smc_dpm_enable(rdev, false);
  561. }
  562. static void kv_start_am(struct radeon_device *rdev)
  563. {
  564. u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL);
  565. sclk_pwrmgt_cntl &= ~(RESET_SCLK_CNT | RESET_BUSY_CNT);
  566. sclk_pwrmgt_cntl |= DYNAMIC_PM_EN;
  567. WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
  568. }
  569. static void kv_reset_am(struct radeon_device *rdev)
  570. {
  571. u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL);
  572. sclk_pwrmgt_cntl |= (RESET_SCLK_CNT | RESET_BUSY_CNT);
  573. WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
  574. }
  575. static int kv_freeze_sclk_dpm(struct radeon_device *rdev, bool freeze)
  576. {
  577. return kv_notify_message_to_smu(rdev, freeze ?
  578. PPSMC_MSG_SCLKDPM_FreezeLevel : PPSMC_MSG_SCLKDPM_UnfreezeLevel);
  579. }
  580. static int kv_force_lowest_valid(struct radeon_device *rdev)
  581. {
  582. return kv_force_dpm_lowest(rdev);
  583. }
  584. static int kv_unforce_levels(struct radeon_device *rdev)
  585. {
  586. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
  587. return kv_notify_message_to_smu(rdev, PPSMC_MSG_NoForcedLevel);
  588. else
  589. return kv_set_enabled_levels(rdev);
  590. }
  591. static int kv_update_sclk_t(struct radeon_device *rdev)
  592. {
  593. struct kv_power_info *pi = kv_get_pi(rdev);
  594. u32 low_sclk_interrupt_t = 0;
  595. int ret = 0;
  596. if (pi->caps_sclk_throttle_low_notification) {
  597. low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t);
  598. ret = kv_copy_bytes_to_smc(rdev,
  599. pi->dpm_table_start +
  600. offsetof(SMU7_Fusion_DpmTable, LowSclkInterruptT),
  601. (u8 *)&low_sclk_interrupt_t,
  602. sizeof(u32), pi->sram_end);
  603. }
  604. return ret;
  605. }
  606. static int kv_program_bootup_state(struct radeon_device *rdev)
  607. {
  608. struct kv_power_info *pi = kv_get_pi(rdev);
  609. u32 i;
  610. struct radeon_clock_voltage_dependency_table *table =
  611. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  612. if (table && table->count) {
  613. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  614. if (table->entries[i].clk == pi->boot_pl.sclk)
  615. break;
  616. }
  617. pi->graphics_boot_level = (u8)i;
  618. kv_dpm_power_level_enable(rdev, i, true);
  619. } else {
  620. struct sumo_sclk_voltage_mapping_table *table =
  621. &pi->sys_info.sclk_voltage_mapping_table;
  622. if (table->num_max_dpm_entries == 0)
  623. return -EINVAL;
  624. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  625. if (table->entries[i].sclk_frequency == pi->boot_pl.sclk)
  626. break;
  627. }
  628. pi->graphics_boot_level = (u8)i;
  629. kv_dpm_power_level_enable(rdev, i, true);
  630. }
  631. return 0;
  632. }
  633. static int kv_enable_auto_thermal_throttling(struct radeon_device *rdev)
  634. {
  635. struct kv_power_info *pi = kv_get_pi(rdev);
  636. int ret;
  637. pi->graphics_therm_throttle_enable = 1;
  638. ret = kv_copy_bytes_to_smc(rdev,
  639. pi->dpm_table_start +
  640. offsetof(SMU7_Fusion_DpmTable, GraphicsThermThrottleEnable),
  641. &pi->graphics_therm_throttle_enable,
  642. sizeof(u8), pi->sram_end);
  643. return ret;
  644. }
  645. static int kv_upload_dpm_settings(struct radeon_device *rdev)
  646. {
  647. struct kv_power_info *pi = kv_get_pi(rdev);
  648. int ret;
  649. ret = kv_copy_bytes_to_smc(rdev,
  650. pi->dpm_table_start +
  651. offsetof(SMU7_Fusion_DpmTable, GraphicsLevel),
  652. (u8 *)&pi->graphics_level,
  653. sizeof(SMU7_Fusion_GraphicsLevel) * SMU7_MAX_LEVELS_GRAPHICS,
  654. pi->sram_end);
  655. if (ret)
  656. return ret;
  657. ret = kv_copy_bytes_to_smc(rdev,
  658. pi->dpm_table_start +
  659. offsetof(SMU7_Fusion_DpmTable, GraphicsDpmLevelCount),
  660. &pi->graphics_dpm_level_count,
  661. sizeof(u8), pi->sram_end);
  662. return ret;
  663. }
  664. static u32 kv_get_clock_difference(u32 a, u32 b)
  665. {
  666. return (a >= b) ? a - b : b - a;
  667. }
  668. static u32 kv_get_clk_bypass(struct radeon_device *rdev, u32 clk)
  669. {
  670. struct kv_power_info *pi = kv_get_pi(rdev);
  671. u32 value;
  672. if (pi->caps_enable_dfs_bypass) {
  673. if (kv_get_clock_difference(clk, 40000) < 200)
  674. value = 3;
  675. else if (kv_get_clock_difference(clk, 30000) < 200)
  676. value = 2;
  677. else if (kv_get_clock_difference(clk, 20000) < 200)
  678. value = 7;
  679. else if (kv_get_clock_difference(clk, 15000) < 200)
  680. value = 6;
  681. else if (kv_get_clock_difference(clk, 10000) < 200)
  682. value = 8;
  683. else
  684. value = 0;
  685. } else {
  686. value = 0;
  687. }
  688. return value;
  689. }
  690. static int kv_populate_uvd_table(struct radeon_device *rdev)
  691. {
  692. struct kv_power_info *pi = kv_get_pi(rdev);
  693. struct radeon_uvd_clock_voltage_dependency_table *table =
  694. &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  695. struct atom_clock_dividers dividers;
  696. int ret;
  697. u32 i;
  698. if (table == NULL || table->count == 0)
  699. return 0;
  700. pi->uvd_level_count = 0;
  701. for (i = 0; i < table->count; i++) {
  702. if (pi->high_voltage_t &&
  703. (pi->high_voltage_t < table->entries[i].v))
  704. break;
  705. pi->uvd_level[i].VclkFrequency = cpu_to_be32(table->entries[i].vclk);
  706. pi->uvd_level[i].DclkFrequency = cpu_to_be32(table->entries[i].dclk);
  707. pi->uvd_level[i].MinVddNb = cpu_to_be16(table->entries[i].v);
  708. pi->uvd_level[i].VClkBypassCntl =
  709. (u8)kv_get_clk_bypass(rdev, table->entries[i].vclk);
  710. pi->uvd_level[i].DClkBypassCntl =
  711. (u8)kv_get_clk_bypass(rdev, table->entries[i].dclk);
  712. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  713. table->entries[i].vclk, false, &dividers);
  714. if (ret)
  715. return ret;
  716. pi->uvd_level[i].VclkDivider = (u8)dividers.post_div;
  717. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  718. table->entries[i].dclk, false, &dividers);
  719. if (ret)
  720. return ret;
  721. pi->uvd_level[i].DclkDivider = (u8)dividers.post_div;
  722. pi->uvd_level_count++;
  723. }
  724. ret = kv_copy_bytes_to_smc(rdev,
  725. pi->dpm_table_start +
  726. offsetof(SMU7_Fusion_DpmTable, UvdLevelCount),
  727. (u8 *)&pi->uvd_level_count,
  728. sizeof(u8), pi->sram_end);
  729. if (ret)
  730. return ret;
  731. pi->uvd_interval = 1;
  732. ret = kv_copy_bytes_to_smc(rdev,
  733. pi->dpm_table_start +
  734. offsetof(SMU7_Fusion_DpmTable, UVDInterval),
  735. &pi->uvd_interval,
  736. sizeof(u8), pi->sram_end);
  737. if (ret)
  738. return ret;
  739. ret = kv_copy_bytes_to_smc(rdev,
  740. pi->dpm_table_start +
  741. offsetof(SMU7_Fusion_DpmTable, UvdLevel),
  742. (u8 *)&pi->uvd_level,
  743. sizeof(SMU7_Fusion_UvdLevel) * SMU7_MAX_LEVELS_UVD,
  744. pi->sram_end);
  745. return ret;
  746. }
  747. static int kv_populate_vce_table(struct radeon_device *rdev)
  748. {
  749. struct kv_power_info *pi = kv_get_pi(rdev);
  750. int ret;
  751. u32 i;
  752. struct radeon_vce_clock_voltage_dependency_table *table =
  753. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  754. struct atom_clock_dividers dividers;
  755. if (table == NULL || table->count == 0)
  756. return 0;
  757. pi->vce_level_count = 0;
  758. for (i = 0; i < table->count; i++) {
  759. if (pi->high_voltage_t &&
  760. pi->high_voltage_t < table->entries[i].v)
  761. break;
  762. pi->vce_level[i].Frequency = cpu_to_be32(table->entries[i].evclk);
  763. pi->vce_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  764. pi->vce_level[i].ClkBypassCntl =
  765. (u8)kv_get_clk_bypass(rdev, table->entries[i].evclk);
  766. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  767. table->entries[i].evclk, false, &dividers);
  768. if (ret)
  769. return ret;
  770. pi->vce_level[i].Divider = (u8)dividers.post_div;
  771. pi->vce_level_count++;
  772. }
  773. ret = kv_copy_bytes_to_smc(rdev,
  774. pi->dpm_table_start +
  775. offsetof(SMU7_Fusion_DpmTable, VceLevelCount),
  776. (u8 *)&pi->vce_level_count,
  777. sizeof(u8),
  778. pi->sram_end);
  779. if (ret)
  780. return ret;
  781. pi->vce_interval = 1;
  782. ret = kv_copy_bytes_to_smc(rdev,
  783. pi->dpm_table_start +
  784. offsetof(SMU7_Fusion_DpmTable, VCEInterval),
  785. (u8 *)&pi->vce_interval,
  786. sizeof(u8),
  787. pi->sram_end);
  788. if (ret)
  789. return ret;
  790. ret = kv_copy_bytes_to_smc(rdev,
  791. pi->dpm_table_start +
  792. offsetof(SMU7_Fusion_DpmTable, VceLevel),
  793. (u8 *)&pi->vce_level,
  794. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_VCE,
  795. pi->sram_end);
  796. return ret;
  797. }
  798. static int kv_populate_samu_table(struct radeon_device *rdev)
  799. {
  800. struct kv_power_info *pi = kv_get_pi(rdev);
  801. struct radeon_clock_voltage_dependency_table *table =
  802. &rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  803. struct atom_clock_dividers dividers;
  804. int ret;
  805. u32 i;
  806. if (table == NULL || table->count == 0)
  807. return 0;
  808. pi->samu_level_count = 0;
  809. for (i = 0; i < table->count; i++) {
  810. if (pi->high_voltage_t &&
  811. pi->high_voltage_t < table->entries[i].v)
  812. break;
  813. pi->samu_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
  814. pi->samu_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  815. pi->samu_level[i].ClkBypassCntl =
  816. (u8)kv_get_clk_bypass(rdev, table->entries[i].clk);
  817. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  818. table->entries[i].clk, false, &dividers);
  819. if (ret)
  820. return ret;
  821. pi->samu_level[i].Divider = (u8)dividers.post_div;
  822. pi->samu_level_count++;
  823. }
  824. ret = kv_copy_bytes_to_smc(rdev,
  825. pi->dpm_table_start +
  826. offsetof(SMU7_Fusion_DpmTable, SamuLevelCount),
  827. (u8 *)&pi->samu_level_count,
  828. sizeof(u8),
  829. pi->sram_end);
  830. if (ret)
  831. return ret;
  832. pi->samu_interval = 1;
  833. ret = kv_copy_bytes_to_smc(rdev,
  834. pi->dpm_table_start +
  835. offsetof(SMU7_Fusion_DpmTable, SAMUInterval),
  836. (u8 *)&pi->samu_interval,
  837. sizeof(u8),
  838. pi->sram_end);
  839. if (ret)
  840. return ret;
  841. ret = kv_copy_bytes_to_smc(rdev,
  842. pi->dpm_table_start +
  843. offsetof(SMU7_Fusion_DpmTable, SamuLevel),
  844. (u8 *)&pi->samu_level,
  845. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_SAMU,
  846. pi->sram_end);
  847. if (ret)
  848. return ret;
  849. return ret;
  850. }
  851. static int kv_populate_acp_table(struct radeon_device *rdev)
  852. {
  853. struct kv_power_info *pi = kv_get_pi(rdev);
  854. struct radeon_clock_voltage_dependency_table *table =
  855. &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  856. struct atom_clock_dividers dividers;
  857. int ret;
  858. u32 i;
  859. if (table == NULL || table->count == 0)
  860. return 0;
  861. pi->acp_level_count = 0;
  862. for (i = 0; i < table->count; i++) {
  863. pi->acp_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
  864. pi->acp_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  865. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  866. table->entries[i].clk, false, &dividers);
  867. if (ret)
  868. return ret;
  869. pi->acp_level[i].Divider = (u8)dividers.post_div;
  870. pi->acp_level_count++;
  871. }
  872. ret = kv_copy_bytes_to_smc(rdev,
  873. pi->dpm_table_start +
  874. offsetof(SMU7_Fusion_DpmTable, AcpLevelCount),
  875. (u8 *)&pi->acp_level_count,
  876. sizeof(u8),
  877. pi->sram_end);
  878. if (ret)
  879. return ret;
  880. pi->acp_interval = 1;
  881. ret = kv_copy_bytes_to_smc(rdev,
  882. pi->dpm_table_start +
  883. offsetof(SMU7_Fusion_DpmTable, ACPInterval),
  884. (u8 *)&pi->acp_interval,
  885. sizeof(u8),
  886. pi->sram_end);
  887. if (ret)
  888. return ret;
  889. ret = kv_copy_bytes_to_smc(rdev,
  890. pi->dpm_table_start +
  891. offsetof(SMU7_Fusion_DpmTable, AcpLevel),
  892. (u8 *)&pi->acp_level,
  893. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_ACP,
  894. pi->sram_end);
  895. if (ret)
  896. return ret;
  897. return ret;
  898. }
  899. static void kv_calculate_dfs_bypass_settings(struct radeon_device *rdev)
  900. {
  901. struct kv_power_info *pi = kv_get_pi(rdev);
  902. u32 i;
  903. struct radeon_clock_voltage_dependency_table *table =
  904. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  905. if (table && table->count) {
  906. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  907. if (pi->caps_enable_dfs_bypass) {
  908. if (kv_get_clock_difference(table->entries[i].clk, 40000) < 200)
  909. pi->graphics_level[i].ClkBypassCntl = 3;
  910. else if (kv_get_clock_difference(table->entries[i].clk, 30000) < 200)
  911. pi->graphics_level[i].ClkBypassCntl = 2;
  912. else if (kv_get_clock_difference(table->entries[i].clk, 26600) < 200)
  913. pi->graphics_level[i].ClkBypassCntl = 7;
  914. else if (kv_get_clock_difference(table->entries[i].clk , 20000) < 200)
  915. pi->graphics_level[i].ClkBypassCntl = 6;
  916. else if (kv_get_clock_difference(table->entries[i].clk , 10000) < 200)
  917. pi->graphics_level[i].ClkBypassCntl = 8;
  918. else
  919. pi->graphics_level[i].ClkBypassCntl = 0;
  920. } else {
  921. pi->graphics_level[i].ClkBypassCntl = 0;
  922. }
  923. }
  924. } else {
  925. struct sumo_sclk_voltage_mapping_table *table =
  926. &pi->sys_info.sclk_voltage_mapping_table;
  927. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  928. if (pi->caps_enable_dfs_bypass) {
  929. if (kv_get_clock_difference(table->entries[i].sclk_frequency, 40000) < 200)
  930. pi->graphics_level[i].ClkBypassCntl = 3;
  931. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 30000) < 200)
  932. pi->graphics_level[i].ClkBypassCntl = 2;
  933. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 26600) < 200)
  934. pi->graphics_level[i].ClkBypassCntl = 7;
  935. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 20000) < 200)
  936. pi->graphics_level[i].ClkBypassCntl = 6;
  937. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 10000) < 200)
  938. pi->graphics_level[i].ClkBypassCntl = 8;
  939. else
  940. pi->graphics_level[i].ClkBypassCntl = 0;
  941. } else {
  942. pi->graphics_level[i].ClkBypassCntl = 0;
  943. }
  944. }
  945. }
  946. }
  947. static int kv_enable_ulv(struct radeon_device *rdev, bool enable)
  948. {
  949. return kv_notify_message_to_smu(rdev, enable ?
  950. PPSMC_MSG_EnableULV : PPSMC_MSG_DisableULV);
  951. }
  952. static void kv_reset_acp_boot_level(struct radeon_device *rdev)
  953. {
  954. struct kv_power_info *pi = kv_get_pi(rdev);
  955. pi->acp_boot_level = 0xff;
  956. }
  957. static void kv_update_current_ps(struct radeon_device *rdev,
  958. struct radeon_ps *rps)
  959. {
  960. struct kv_ps *new_ps = kv_get_ps(rps);
  961. struct kv_power_info *pi = kv_get_pi(rdev);
  962. pi->current_rps = *rps;
  963. pi->current_ps = *new_ps;
  964. pi->current_rps.ps_priv = &pi->current_ps;
  965. }
  966. static void kv_update_requested_ps(struct radeon_device *rdev,
  967. struct radeon_ps *rps)
  968. {
  969. struct kv_ps *new_ps = kv_get_ps(rps);
  970. struct kv_power_info *pi = kv_get_pi(rdev);
  971. pi->requested_rps = *rps;
  972. pi->requested_ps = *new_ps;
  973. pi->requested_rps.ps_priv = &pi->requested_ps;
  974. }
  975. void kv_dpm_enable_bapm(struct radeon_device *rdev, bool enable)
  976. {
  977. struct kv_power_info *pi = kv_get_pi(rdev);
  978. int ret;
  979. if (pi->bapm_enable) {
  980. ret = kv_smc_bapm_enable(rdev, enable);
  981. if (ret)
  982. DRM_ERROR("kv_smc_bapm_enable failed\n");
  983. }
  984. }
  985. static void kv_enable_thermal_int(struct radeon_device *rdev, bool enable)
  986. {
  987. u32 thermal_int;
  988. thermal_int = RREG32_SMC(CG_THERMAL_INT_CTRL);
  989. if (enable)
  990. thermal_int |= THERM_INTH_MASK | THERM_INTL_MASK;
  991. else
  992. thermal_int &= ~(THERM_INTH_MASK | THERM_INTL_MASK);
  993. WREG32_SMC(CG_THERMAL_INT_CTRL, thermal_int);
  994. }
  995. int kv_dpm_enable(struct radeon_device *rdev)
  996. {
  997. struct kv_power_info *pi = kv_get_pi(rdev);
  998. int ret;
  999. ret = kv_process_firmware_header(rdev);
  1000. if (ret) {
  1001. DRM_ERROR("kv_process_firmware_header failed\n");
  1002. return ret;
  1003. }
  1004. kv_init_fps_limits(rdev);
  1005. kv_init_graphics_levels(rdev);
  1006. ret = kv_program_bootup_state(rdev);
  1007. if (ret) {
  1008. DRM_ERROR("kv_program_bootup_state failed\n");
  1009. return ret;
  1010. }
  1011. kv_calculate_dfs_bypass_settings(rdev);
  1012. ret = kv_upload_dpm_settings(rdev);
  1013. if (ret) {
  1014. DRM_ERROR("kv_upload_dpm_settings failed\n");
  1015. return ret;
  1016. }
  1017. ret = kv_populate_uvd_table(rdev);
  1018. if (ret) {
  1019. DRM_ERROR("kv_populate_uvd_table failed\n");
  1020. return ret;
  1021. }
  1022. ret = kv_populate_vce_table(rdev);
  1023. if (ret) {
  1024. DRM_ERROR("kv_populate_vce_table failed\n");
  1025. return ret;
  1026. }
  1027. ret = kv_populate_samu_table(rdev);
  1028. if (ret) {
  1029. DRM_ERROR("kv_populate_samu_table failed\n");
  1030. return ret;
  1031. }
  1032. ret = kv_populate_acp_table(rdev);
  1033. if (ret) {
  1034. DRM_ERROR("kv_populate_acp_table failed\n");
  1035. return ret;
  1036. }
  1037. kv_program_vc(rdev);
  1038. #if 0
  1039. kv_initialize_hardware_cac_manager(rdev);
  1040. #endif
  1041. kv_start_am(rdev);
  1042. if (pi->enable_auto_thermal_throttling) {
  1043. ret = kv_enable_auto_thermal_throttling(rdev);
  1044. if (ret) {
  1045. DRM_ERROR("kv_enable_auto_thermal_throttling failed\n");
  1046. return ret;
  1047. }
  1048. }
  1049. ret = kv_enable_dpm_voltage_scaling(rdev);
  1050. if (ret) {
  1051. DRM_ERROR("kv_enable_dpm_voltage_scaling failed\n");
  1052. return ret;
  1053. }
  1054. ret = kv_set_dpm_interval(rdev);
  1055. if (ret) {
  1056. DRM_ERROR("kv_set_dpm_interval failed\n");
  1057. return ret;
  1058. }
  1059. ret = kv_set_dpm_boot_state(rdev);
  1060. if (ret) {
  1061. DRM_ERROR("kv_set_dpm_boot_state failed\n");
  1062. return ret;
  1063. }
  1064. ret = kv_enable_ulv(rdev, true);
  1065. if (ret) {
  1066. DRM_ERROR("kv_enable_ulv failed\n");
  1067. return ret;
  1068. }
  1069. kv_start_dpm(rdev);
  1070. ret = kv_enable_didt(rdev, true);
  1071. if (ret) {
  1072. DRM_ERROR("kv_enable_didt failed\n");
  1073. return ret;
  1074. }
  1075. ret = kv_enable_smc_cac(rdev, true);
  1076. if (ret) {
  1077. DRM_ERROR("kv_enable_smc_cac failed\n");
  1078. return ret;
  1079. }
  1080. kv_reset_acp_boot_level(rdev);
  1081. ret = kv_smc_bapm_enable(rdev, false);
  1082. if (ret) {
  1083. DRM_ERROR("kv_smc_bapm_enable failed\n");
  1084. return ret;
  1085. }
  1086. kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
  1087. return ret;
  1088. }
  1089. int kv_dpm_late_enable(struct radeon_device *rdev)
  1090. {
  1091. int ret = 0;
  1092. if (rdev->irq.installed &&
  1093. r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
  1094. ret = kv_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX);
  1095. if (ret) {
  1096. DRM_ERROR("kv_set_thermal_temperature_range failed\n");
  1097. return ret;
  1098. }
  1099. kv_enable_thermal_int(rdev, true);
  1100. }
  1101. /* powerdown unused blocks for now */
  1102. kv_dpm_powergate_acp(rdev, true);
  1103. kv_dpm_powergate_samu(rdev, true);
  1104. kv_dpm_powergate_vce(rdev, true);
  1105. kv_dpm_powergate_uvd(rdev, true);
  1106. return ret;
  1107. }
  1108. void kv_dpm_disable(struct radeon_device *rdev)
  1109. {
  1110. kv_smc_bapm_enable(rdev, false);
  1111. if (rdev->family == CHIP_MULLINS)
  1112. kv_enable_nb_dpm(rdev, false);
  1113. /* powerup blocks */
  1114. kv_dpm_powergate_acp(rdev, false);
  1115. kv_dpm_powergate_samu(rdev, false);
  1116. kv_dpm_powergate_vce(rdev, false);
  1117. kv_dpm_powergate_uvd(rdev, false);
  1118. kv_enable_smc_cac(rdev, false);
  1119. kv_enable_didt(rdev, false);
  1120. kv_clear_vc(rdev);
  1121. kv_stop_dpm(rdev);
  1122. kv_enable_ulv(rdev, false);
  1123. kv_reset_am(rdev);
  1124. kv_enable_thermal_int(rdev, false);
  1125. kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
  1126. }
  1127. #if 0
  1128. static int kv_write_smc_soft_register(struct radeon_device *rdev,
  1129. u16 reg_offset, u32 value)
  1130. {
  1131. struct kv_power_info *pi = kv_get_pi(rdev);
  1132. return kv_copy_bytes_to_smc(rdev, pi->soft_regs_start + reg_offset,
  1133. (u8 *)&value, sizeof(u16), pi->sram_end);
  1134. }
  1135. static int kv_read_smc_soft_register(struct radeon_device *rdev,
  1136. u16 reg_offset, u32 *value)
  1137. {
  1138. struct kv_power_info *pi = kv_get_pi(rdev);
  1139. return kv_read_smc_sram_dword(rdev, pi->soft_regs_start + reg_offset,
  1140. value, pi->sram_end);
  1141. }
  1142. #endif
  1143. static void kv_init_sclk_t(struct radeon_device *rdev)
  1144. {
  1145. struct kv_power_info *pi = kv_get_pi(rdev);
  1146. pi->low_sclk_interrupt_t = 0;
  1147. }
  1148. static int kv_init_fps_limits(struct radeon_device *rdev)
  1149. {
  1150. struct kv_power_info *pi = kv_get_pi(rdev);
  1151. int ret = 0;
  1152. if (pi->caps_fps) {
  1153. u16 tmp;
  1154. tmp = 45;
  1155. pi->fps_high_t = cpu_to_be16(tmp);
  1156. ret = kv_copy_bytes_to_smc(rdev,
  1157. pi->dpm_table_start +
  1158. offsetof(SMU7_Fusion_DpmTable, FpsHighT),
  1159. (u8 *)&pi->fps_high_t,
  1160. sizeof(u16), pi->sram_end);
  1161. tmp = 30;
  1162. pi->fps_low_t = cpu_to_be16(tmp);
  1163. ret = kv_copy_bytes_to_smc(rdev,
  1164. pi->dpm_table_start +
  1165. offsetof(SMU7_Fusion_DpmTable, FpsLowT),
  1166. (u8 *)&pi->fps_low_t,
  1167. sizeof(u16), pi->sram_end);
  1168. }
  1169. return ret;
  1170. }
  1171. static void kv_init_powergate_state(struct radeon_device *rdev)
  1172. {
  1173. struct kv_power_info *pi = kv_get_pi(rdev);
  1174. pi->uvd_power_gated = false;
  1175. pi->vce_power_gated = false;
  1176. pi->samu_power_gated = false;
  1177. pi->acp_power_gated = false;
  1178. }
  1179. static int kv_enable_uvd_dpm(struct radeon_device *rdev, bool enable)
  1180. {
  1181. return kv_notify_message_to_smu(rdev, enable ?
  1182. PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable);
  1183. }
  1184. static int kv_enable_vce_dpm(struct radeon_device *rdev, bool enable)
  1185. {
  1186. return kv_notify_message_to_smu(rdev, enable ?
  1187. PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable);
  1188. }
  1189. static int kv_enable_samu_dpm(struct radeon_device *rdev, bool enable)
  1190. {
  1191. return kv_notify_message_to_smu(rdev, enable ?
  1192. PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable);
  1193. }
  1194. static int kv_enable_acp_dpm(struct radeon_device *rdev, bool enable)
  1195. {
  1196. return kv_notify_message_to_smu(rdev, enable ?
  1197. PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable);
  1198. }
  1199. static int kv_update_uvd_dpm(struct radeon_device *rdev, bool gate)
  1200. {
  1201. struct kv_power_info *pi = kv_get_pi(rdev);
  1202. struct radeon_uvd_clock_voltage_dependency_table *table =
  1203. &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  1204. int ret;
  1205. u32 mask;
  1206. if (!gate) {
  1207. if (table->count)
  1208. pi->uvd_boot_level = table->count - 1;
  1209. else
  1210. pi->uvd_boot_level = 0;
  1211. if (!pi->caps_uvd_dpm || pi->caps_stable_p_state) {
  1212. mask = 1 << pi->uvd_boot_level;
  1213. } else {
  1214. mask = 0x1f;
  1215. }
  1216. ret = kv_copy_bytes_to_smc(rdev,
  1217. pi->dpm_table_start +
  1218. offsetof(SMU7_Fusion_DpmTable, UvdBootLevel),
  1219. (uint8_t *)&pi->uvd_boot_level,
  1220. sizeof(u8), pi->sram_end);
  1221. if (ret)
  1222. return ret;
  1223. kv_send_msg_to_smc_with_parameter(rdev,
  1224. PPSMC_MSG_UVDDPM_SetEnabledMask,
  1225. mask);
  1226. }
  1227. return kv_enable_uvd_dpm(rdev, !gate);
  1228. }
  1229. static u8 kv_get_vce_boot_level(struct radeon_device *rdev, u32 evclk)
  1230. {
  1231. u8 i;
  1232. struct radeon_vce_clock_voltage_dependency_table *table =
  1233. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1234. for (i = 0; i < table->count; i++) {
  1235. if (table->entries[i].evclk >= evclk)
  1236. break;
  1237. }
  1238. return i;
  1239. }
  1240. static int kv_update_vce_dpm(struct radeon_device *rdev,
  1241. struct radeon_ps *radeon_new_state,
  1242. struct radeon_ps *radeon_current_state)
  1243. {
  1244. struct kv_power_info *pi = kv_get_pi(rdev);
  1245. struct radeon_vce_clock_voltage_dependency_table *table =
  1246. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1247. int ret;
  1248. if (radeon_new_state->evclk > 0 && radeon_current_state->evclk == 0) {
  1249. kv_dpm_powergate_vce(rdev, false);
  1250. /* turn the clocks on when encoding */
  1251. cik_update_cg(rdev, RADEON_CG_BLOCK_VCE, false);
  1252. if (pi->caps_stable_p_state)
  1253. pi->vce_boot_level = table->count - 1;
  1254. else
  1255. pi->vce_boot_level = kv_get_vce_boot_level(rdev, radeon_new_state->evclk);
  1256. ret = kv_copy_bytes_to_smc(rdev,
  1257. pi->dpm_table_start +
  1258. offsetof(SMU7_Fusion_DpmTable, VceBootLevel),
  1259. (u8 *)&pi->vce_boot_level,
  1260. sizeof(u8),
  1261. pi->sram_end);
  1262. if (ret)
  1263. return ret;
  1264. if (pi->caps_stable_p_state)
  1265. kv_send_msg_to_smc_with_parameter(rdev,
  1266. PPSMC_MSG_VCEDPM_SetEnabledMask,
  1267. (1 << pi->vce_boot_level));
  1268. kv_enable_vce_dpm(rdev, true);
  1269. } else if (radeon_new_state->evclk == 0 && radeon_current_state->evclk > 0) {
  1270. kv_enable_vce_dpm(rdev, false);
  1271. /* turn the clocks off when not encoding */
  1272. cik_update_cg(rdev, RADEON_CG_BLOCK_VCE, true);
  1273. kv_dpm_powergate_vce(rdev, true);
  1274. }
  1275. return 0;
  1276. }
  1277. static int kv_update_samu_dpm(struct radeon_device *rdev, bool gate)
  1278. {
  1279. struct kv_power_info *pi = kv_get_pi(rdev);
  1280. struct radeon_clock_voltage_dependency_table *table =
  1281. &rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  1282. int ret;
  1283. if (!gate) {
  1284. if (pi->caps_stable_p_state)
  1285. pi->samu_boot_level = table->count - 1;
  1286. else
  1287. pi->samu_boot_level = 0;
  1288. ret = kv_copy_bytes_to_smc(rdev,
  1289. pi->dpm_table_start +
  1290. offsetof(SMU7_Fusion_DpmTable, SamuBootLevel),
  1291. (u8 *)&pi->samu_boot_level,
  1292. sizeof(u8),
  1293. pi->sram_end);
  1294. if (ret)
  1295. return ret;
  1296. if (pi->caps_stable_p_state)
  1297. kv_send_msg_to_smc_with_parameter(rdev,
  1298. PPSMC_MSG_SAMUDPM_SetEnabledMask,
  1299. (1 << pi->samu_boot_level));
  1300. }
  1301. return kv_enable_samu_dpm(rdev, !gate);
  1302. }
  1303. static u8 kv_get_acp_boot_level(struct radeon_device *rdev)
  1304. {
  1305. u8 i;
  1306. struct radeon_clock_voltage_dependency_table *table =
  1307. &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1308. for (i = 0; i < table->count; i++) {
  1309. if (table->entries[i].clk >= 0) /* XXX */
  1310. break;
  1311. }
  1312. if (i >= table->count)
  1313. i = table->count - 1;
  1314. return i;
  1315. }
  1316. static void kv_update_acp_boot_level(struct radeon_device *rdev)
  1317. {
  1318. struct kv_power_info *pi = kv_get_pi(rdev);
  1319. u8 acp_boot_level;
  1320. if (!pi->caps_stable_p_state) {
  1321. acp_boot_level = kv_get_acp_boot_level(rdev);
  1322. if (acp_boot_level != pi->acp_boot_level) {
  1323. pi->acp_boot_level = acp_boot_level;
  1324. kv_send_msg_to_smc_with_parameter(rdev,
  1325. PPSMC_MSG_ACPDPM_SetEnabledMask,
  1326. (1 << pi->acp_boot_level));
  1327. }
  1328. }
  1329. }
  1330. static int kv_update_acp_dpm(struct radeon_device *rdev, bool gate)
  1331. {
  1332. struct kv_power_info *pi = kv_get_pi(rdev);
  1333. struct radeon_clock_voltage_dependency_table *table =
  1334. &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1335. int ret;
  1336. if (!gate) {
  1337. if (pi->caps_stable_p_state)
  1338. pi->acp_boot_level = table->count - 1;
  1339. else
  1340. pi->acp_boot_level = kv_get_acp_boot_level(rdev);
  1341. ret = kv_copy_bytes_to_smc(rdev,
  1342. pi->dpm_table_start +
  1343. offsetof(SMU7_Fusion_DpmTable, AcpBootLevel),
  1344. (u8 *)&pi->acp_boot_level,
  1345. sizeof(u8),
  1346. pi->sram_end);
  1347. if (ret)
  1348. return ret;
  1349. if (pi->caps_stable_p_state)
  1350. kv_send_msg_to_smc_with_parameter(rdev,
  1351. PPSMC_MSG_ACPDPM_SetEnabledMask,
  1352. (1 << pi->acp_boot_level));
  1353. }
  1354. return kv_enable_acp_dpm(rdev, !gate);
  1355. }
  1356. void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate)
  1357. {
  1358. struct kv_power_info *pi = kv_get_pi(rdev);
  1359. if (pi->uvd_power_gated == gate)
  1360. return;
  1361. pi->uvd_power_gated = gate;
  1362. if (gate) {
  1363. if (pi->caps_uvd_pg) {
  1364. uvd_v1_0_stop(rdev);
  1365. cik_update_cg(rdev, RADEON_CG_BLOCK_UVD, false);
  1366. }
  1367. kv_update_uvd_dpm(rdev, gate);
  1368. if (pi->caps_uvd_pg)
  1369. kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerOFF);
  1370. } else {
  1371. if (pi->caps_uvd_pg) {
  1372. kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerON);
  1373. uvd_v4_2_resume(rdev);
  1374. uvd_v1_0_start(rdev);
  1375. cik_update_cg(rdev, RADEON_CG_BLOCK_UVD, true);
  1376. }
  1377. kv_update_uvd_dpm(rdev, gate);
  1378. }
  1379. }
  1380. static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate)
  1381. {
  1382. struct kv_power_info *pi = kv_get_pi(rdev);
  1383. if (pi->vce_power_gated == gate)
  1384. return;
  1385. pi->vce_power_gated = gate;
  1386. if (gate) {
  1387. if (pi->caps_vce_pg) {
  1388. /* XXX do we need a vce_v1_0_stop() ? */
  1389. kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerOFF);
  1390. }
  1391. } else {
  1392. if (pi->caps_vce_pg) {
  1393. kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerON);
  1394. vce_v2_0_resume(rdev);
  1395. vce_v1_0_start(rdev);
  1396. }
  1397. }
  1398. }
  1399. static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate)
  1400. {
  1401. struct kv_power_info *pi = kv_get_pi(rdev);
  1402. if (pi->samu_power_gated == gate)
  1403. return;
  1404. pi->samu_power_gated = gate;
  1405. if (gate) {
  1406. kv_update_samu_dpm(rdev, true);
  1407. if (pi->caps_samu_pg)
  1408. kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerOFF);
  1409. } else {
  1410. if (pi->caps_samu_pg)
  1411. kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerON);
  1412. kv_update_samu_dpm(rdev, false);
  1413. }
  1414. }
  1415. static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate)
  1416. {
  1417. struct kv_power_info *pi = kv_get_pi(rdev);
  1418. if (pi->acp_power_gated == gate)
  1419. return;
  1420. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
  1421. return;
  1422. pi->acp_power_gated = gate;
  1423. if (gate) {
  1424. kv_update_acp_dpm(rdev, true);
  1425. if (pi->caps_acp_pg)
  1426. kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerOFF);
  1427. } else {
  1428. if (pi->caps_acp_pg)
  1429. kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerON);
  1430. kv_update_acp_dpm(rdev, false);
  1431. }
  1432. }
  1433. static void kv_set_valid_clock_range(struct radeon_device *rdev,
  1434. struct radeon_ps *new_rps)
  1435. {
  1436. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1437. struct kv_power_info *pi = kv_get_pi(rdev);
  1438. u32 i;
  1439. struct radeon_clock_voltage_dependency_table *table =
  1440. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1441. if (table && table->count) {
  1442. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  1443. if ((table->entries[i].clk >= new_ps->levels[0].sclk) ||
  1444. (i == (pi->graphics_dpm_level_count - 1))) {
  1445. pi->lowest_valid = i;
  1446. break;
  1447. }
  1448. }
  1449. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  1450. if (table->entries[i].clk <= new_ps->levels[new_ps->num_levels - 1].sclk)
  1451. break;
  1452. }
  1453. pi->highest_valid = i;
  1454. if (pi->lowest_valid > pi->highest_valid) {
  1455. if ((new_ps->levels[0].sclk - table->entries[pi->highest_valid].clk) >
  1456. (table->entries[pi->lowest_valid].clk - new_ps->levels[new_ps->num_levels - 1].sclk))
  1457. pi->highest_valid = pi->lowest_valid;
  1458. else
  1459. pi->lowest_valid = pi->highest_valid;
  1460. }
  1461. } else {
  1462. struct sumo_sclk_voltage_mapping_table *table =
  1463. &pi->sys_info.sclk_voltage_mapping_table;
  1464. for (i = 0; i < (int)pi->graphics_dpm_level_count; i++) {
  1465. if (table->entries[i].sclk_frequency >= new_ps->levels[0].sclk ||
  1466. i == (int)(pi->graphics_dpm_level_count - 1)) {
  1467. pi->lowest_valid = i;
  1468. break;
  1469. }
  1470. }
  1471. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  1472. if (table->entries[i].sclk_frequency <=
  1473. new_ps->levels[new_ps->num_levels - 1].sclk)
  1474. break;
  1475. }
  1476. pi->highest_valid = i;
  1477. if (pi->lowest_valid > pi->highest_valid) {
  1478. if ((new_ps->levels[0].sclk -
  1479. table->entries[pi->highest_valid].sclk_frequency) >
  1480. (table->entries[pi->lowest_valid].sclk_frequency -
  1481. new_ps->levels[new_ps->num_levels -1].sclk))
  1482. pi->highest_valid = pi->lowest_valid;
  1483. else
  1484. pi->lowest_valid = pi->highest_valid;
  1485. }
  1486. }
  1487. }
  1488. static int kv_update_dfs_bypass_settings(struct radeon_device *rdev,
  1489. struct radeon_ps *new_rps)
  1490. {
  1491. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1492. struct kv_power_info *pi = kv_get_pi(rdev);
  1493. int ret = 0;
  1494. u8 clk_bypass_cntl;
  1495. if (pi->caps_enable_dfs_bypass) {
  1496. clk_bypass_cntl = new_ps->need_dfs_bypass ?
  1497. pi->graphics_level[pi->graphics_boot_level].ClkBypassCntl : 0;
  1498. ret = kv_copy_bytes_to_smc(rdev,
  1499. (pi->dpm_table_start +
  1500. offsetof(SMU7_Fusion_DpmTable, GraphicsLevel) +
  1501. (pi->graphics_boot_level * sizeof(SMU7_Fusion_GraphicsLevel)) +
  1502. offsetof(SMU7_Fusion_GraphicsLevel, ClkBypassCntl)),
  1503. &clk_bypass_cntl,
  1504. sizeof(u8), pi->sram_end);
  1505. }
  1506. return ret;
  1507. }
  1508. static int kv_enable_nb_dpm(struct radeon_device *rdev,
  1509. bool enable)
  1510. {
  1511. struct kv_power_info *pi = kv_get_pi(rdev);
  1512. int ret = 0;
  1513. if (enable) {
  1514. if (pi->enable_nb_dpm && !pi->nb_dpm_enabled) {
  1515. ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_NBDPM_Enable);
  1516. if (ret == 0)
  1517. pi->nb_dpm_enabled = true;
  1518. }
  1519. } else {
  1520. if (pi->enable_nb_dpm && pi->nb_dpm_enabled) {
  1521. ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_NBDPM_Disable);
  1522. if (ret == 0)
  1523. pi->nb_dpm_enabled = false;
  1524. }
  1525. }
  1526. return ret;
  1527. }
  1528. int kv_dpm_force_performance_level(struct radeon_device *rdev,
  1529. enum radeon_dpm_forced_level level)
  1530. {
  1531. int ret;
  1532. if (level == RADEON_DPM_FORCED_LEVEL_HIGH) {
  1533. ret = kv_force_dpm_highest(rdev);
  1534. if (ret)
  1535. return ret;
  1536. } else if (level == RADEON_DPM_FORCED_LEVEL_LOW) {
  1537. ret = kv_force_dpm_lowest(rdev);
  1538. if (ret)
  1539. return ret;
  1540. } else if (level == RADEON_DPM_FORCED_LEVEL_AUTO) {
  1541. ret = kv_unforce_levels(rdev);
  1542. if (ret)
  1543. return ret;
  1544. }
  1545. rdev->pm.dpm.forced_level = level;
  1546. return 0;
  1547. }
  1548. int kv_dpm_pre_set_power_state(struct radeon_device *rdev)
  1549. {
  1550. struct kv_power_info *pi = kv_get_pi(rdev);
  1551. struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps;
  1552. struct radeon_ps *new_ps = &requested_ps;
  1553. kv_update_requested_ps(rdev, new_ps);
  1554. kv_apply_state_adjust_rules(rdev,
  1555. &pi->requested_rps,
  1556. &pi->current_rps);
  1557. return 0;
  1558. }
  1559. int kv_dpm_set_power_state(struct radeon_device *rdev)
  1560. {
  1561. struct kv_power_info *pi = kv_get_pi(rdev);
  1562. struct radeon_ps *new_ps = &pi->requested_rps;
  1563. struct radeon_ps *old_ps = &pi->current_rps;
  1564. int ret;
  1565. if (pi->bapm_enable) {
  1566. ret = kv_smc_bapm_enable(rdev, rdev->pm.dpm.ac_power);
  1567. if (ret) {
  1568. DRM_ERROR("kv_smc_bapm_enable failed\n");
  1569. return ret;
  1570. }
  1571. }
  1572. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) {
  1573. if (pi->enable_dpm) {
  1574. kv_set_valid_clock_range(rdev, new_ps);
  1575. kv_update_dfs_bypass_settings(rdev, new_ps);
  1576. ret = kv_calculate_ds_divider(rdev);
  1577. if (ret) {
  1578. DRM_ERROR("kv_calculate_ds_divider failed\n");
  1579. return ret;
  1580. }
  1581. kv_calculate_nbps_level_settings(rdev);
  1582. kv_calculate_dpm_settings(rdev);
  1583. kv_force_lowest_valid(rdev);
  1584. kv_enable_new_levels(rdev);
  1585. kv_upload_dpm_settings(rdev);
  1586. kv_program_nbps_index_settings(rdev, new_ps);
  1587. kv_unforce_levels(rdev);
  1588. kv_set_enabled_levels(rdev);
  1589. kv_force_lowest_valid(rdev);
  1590. kv_unforce_levels(rdev);
  1591. ret = kv_update_vce_dpm(rdev, new_ps, old_ps);
  1592. if (ret) {
  1593. DRM_ERROR("kv_update_vce_dpm failed\n");
  1594. return ret;
  1595. }
  1596. kv_update_sclk_t(rdev);
  1597. if (rdev->family == CHIP_MULLINS)
  1598. kv_enable_nb_dpm(rdev, true);
  1599. }
  1600. } else {
  1601. if (pi->enable_dpm) {
  1602. kv_set_valid_clock_range(rdev, new_ps);
  1603. kv_update_dfs_bypass_settings(rdev, new_ps);
  1604. ret = kv_calculate_ds_divider(rdev);
  1605. if (ret) {
  1606. DRM_ERROR("kv_calculate_ds_divider failed\n");
  1607. return ret;
  1608. }
  1609. kv_calculate_nbps_level_settings(rdev);
  1610. kv_calculate_dpm_settings(rdev);
  1611. kv_freeze_sclk_dpm(rdev, true);
  1612. kv_upload_dpm_settings(rdev);
  1613. kv_program_nbps_index_settings(rdev, new_ps);
  1614. kv_freeze_sclk_dpm(rdev, false);
  1615. kv_set_enabled_levels(rdev);
  1616. ret = kv_update_vce_dpm(rdev, new_ps, old_ps);
  1617. if (ret) {
  1618. DRM_ERROR("kv_update_vce_dpm failed\n");
  1619. return ret;
  1620. }
  1621. kv_update_acp_boot_level(rdev);
  1622. kv_update_sclk_t(rdev);
  1623. kv_enable_nb_dpm(rdev, true);
  1624. }
  1625. }
  1626. return 0;
  1627. }
  1628. void kv_dpm_post_set_power_state(struct radeon_device *rdev)
  1629. {
  1630. struct kv_power_info *pi = kv_get_pi(rdev);
  1631. struct radeon_ps *new_ps = &pi->requested_rps;
  1632. kv_update_current_ps(rdev, new_ps);
  1633. }
  1634. void kv_dpm_setup_asic(struct radeon_device *rdev)
  1635. {
  1636. sumo_take_smu_control(rdev, true);
  1637. kv_init_powergate_state(rdev);
  1638. kv_init_sclk_t(rdev);
  1639. }
  1640. void kv_dpm_reset_asic(struct radeon_device *rdev)
  1641. {
  1642. struct kv_power_info *pi = kv_get_pi(rdev);
  1643. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) {
  1644. kv_force_lowest_valid(rdev);
  1645. kv_init_graphics_levels(rdev);
  1646. kv_program_bootup_state(rdev);
  1647. kv_upload_dpm_settings(rdev);
  1648. kv_force_lowest_valid(rdev);
  1649. kv_unforce_levels(rdev);
  1650. } else {
  1651. kv_init_graphics_levels(rdev);
  1652. kv_program_bootup_state(rdev);
  1653. kv_freeze_sclk_dpm(rdev, true);
  1654. kv_upload_dpm_settings(rdev);
  1655. kv_freeze_sclk_dpm(rdev, false);
  1656. kv_set_enabled_level(rdev, pi->graphics_boot_level);
  1657. }
  1658. }
  1659. //XXX use sumo_dpm_display_configuration_changed
  1660. static void kv_construct_max_power_limits_table(struct radeon_device *rdev,
  1661. struct radeon_clock_and_voltage_limits *table)
  1662. {
  1663. struct kv_power_info *pi = kv_get_pi(rdev);
  1664. if (pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries > 0) {
  1665. int idx = pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries - 1;
  1666. table->sclk =
  1667. pi->sys_info.sclk_voltage_mapping_table.entries[idx].sclk_frequency;
  1668. table->vddc =
  1669. kv_convert_2bit_index_to_voltage(rdev,
  1670. pi->sys_info.sclk_voltage_mapping_table.entries[idx].vid_2bit);
  1671. }
  1672. table->mclk = pi->sys_info.nbp_memory_clock[0];
  1673. }
  1674. static void kv_patch_voltage_values(struct radeon_device *rdev)
  1675. {
  1676. int i;
  1677. struct radeon_uvd_clock_voltage_dependency_table *uvd_table =
  1678. &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  1679. struct radeon_vce_clock_voltage_dependency_table *vce_table =
  1680. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1681. struct radeon_clock_voltage_dependency_table *samu_table =
  1682. &rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  1683. struct radeon_clock_voltage_dependency_table *acp_table =
  1684. &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1685. if (uvd_table->count) {
  1686. for (i = 0; i < uvd_table->count; i++)
  1687. uvd_table->entries[i].v =
  1688. kv_convert_8bit_index_to_voltage(rdev,
  1689. uvd_table->entries[i].v);
  1690. }
  1691. if (vce_table->count) {
  1692. for (i = 0; i < vce_table->count; i++)
  1693. vce_table->entries[i].v =
  1694. kv_convert_8bit_index_to_voltage(rdev,
  1695. vce_table->entries[i].v);
  1696. }
  1697. if (samu_table->count) {
  1698. for (i = 0; i < samu_table->count; i++)
  1699. samu_table->entries[i].v =
  1700. kv_convert_8bit_index_to_voltage(rdev,
  1701. samu_table->entries[i].v);
  1702. }
  1703. if (acp_table->count) {
  1704. for (i = 0; i < acp_table->count; i++)
  1705. acp_table->entries[i].v =
  1706. kv_convert_8bit_index_to_voltage(rdev,
  1707. acp_table->entries[i].v);
  1708. }
  1709. }
  1710. static void kv_construct_boot_state(struct radeon_device *rdev)
  1711. {
  1712. struct kv_power_info *pi = kv_get_pi(rdev);
  1713. pi->boot_pl.sclk = pi->sys_info.bootup_sclk;
  1714. pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index;
  1715. pi->boot_pl.ds_divider_index = 0;
  1716. pi->boot_pl.ss_divider_index = 0;
  1717. pi->boot_pl.allow_gnb_slow = 1;
  1718. pi->boot_pl.force_nbp_state = 0;
  1719. pi->boot_pl.display_wm = 0;
  1720. pi->boot_pl.vce_wm = 0;
  1721. }
  1722. static int kv_force_dpm_highest(struct radeon_device *rdev)
  1723. {
  1724. int ret;
  1725. u32 enable_mask, i;
  1726. ret = kv_dpm_get_enable_mask(rdev, &enable_mask);
  1727. if (ret)
  1728. return ret;
  1729. for (i = SMU7_MAX_LEVELS_GRAPHICS - 1; i > 0; i--) {
  1730. if (enable_mask & (1 << i))
  1731. break;
  1732. }
  1733. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
  1734. return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i);
  1735. else
  1736. return kv_set_enabled_level(rdev, i);
  1737. }
  1738. static int kv_force_dpm_lowest(struct radeon_device *rdev)
  1739. {
  1740. int ret;
  1741. u32 enable_mask, i;
  1742. ret = kv_dpm_get_enable_mask(rdev, &enable_mask);
  1743. if (ret)
  1744. return ret;
  1745. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
  1746. if (enable_mask & (1 << i))
  1747. break;
  1748. }
  1749. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
  1750. return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i);
  1751. else
  1752. return kv_set_enabled_level(rdev, i);
  1753. }
  1754. static u8 kv_get_sleep_divider_id_from_clock(struct radeon_device *rdev,
  1755. u32 sclk, u32 min_sclk_in_sr)
  1756. {
  1757. struct kv_power_info *pi = kv_get_pi(rdev);
  1758. u32 i;
  1759. u32 temp;
  1760. u32 min = (min_sclk_in_sr > KV_MINIMUM_ENGINE_CLOCK) ?
  1761. min_sclk_in_sr : KV_MINIMUM_ENGINE_CLOCK;
  1762. if (sclk < min)
  1763. return 0;
  1764. if (!pi->caps_sclk_ds)
  1765. return 0;
  1766. for (i = KV_MAX_DEEPSLEEP_DIVIDER_ID; i > 0; i--) {
  1767. temp = sclk / sumo_get_sleep_divider_from_id(i);
  1768. if (temp >= min)
  1769. break;
  1770. }
  1771. return (u8)i;
  1772. }
  1773. static int kv_get_high_voltage_limit(struct radeon_device *rdev, int *limit)
  1774. {
  1775. struct kv_power_info *pi = kv_get_pi(rdev);
  1776. struct radeon_clock_voltage_dependency_table *table =
  1777. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1778. int i;
  1779. if (table && table->count) {
  1780. for (i = table->count - 1; i >= 0; i--) {
  1781. if (pi->high_voltage_t &&
  1782. (kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v) <=
  1783. pi->high_voltage_t)) {
  1784. *limit = i;
  1785. return 0;
  1786. }
  1787. }
  1788. } else {
  1789. struct sumo_sclk_voltage_mapping_table *table =
  1790. &pi->sys_info.sclk_voltage_mapping_table;
  1791. for (i = table->num_max_dpm_entries - 1; i >= 0; i--) {
  1792. if (pi->high_voltage_t &&
  1793. (kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit) <=
  1794. pi->high_voltage_t)) {
  1795. *limit = i;
  1796. return 0;
  1797. }
  1798. }
  1799. }
  1800. *limit = 0;
  1801. return 0;
  1802. }
  1803. static void kv_apply_state_adjust_rules(struct radeon_device *rdev,
  1804. struct radeon_ps *new_rps,
  1805. struct radeon_ps *old_rps)
  1806. {
  1807. struct kv_ps *ps = kv_get_ps(new_rps);
  1808. struct kv_power_info *pi = kv_get_pi(rdev);
  1809. u32 min_sclk = 10000; /* ??? */
  1810. u32 sclk, mclk = 0;
  1811. int i, limit;
  1812. bool force_high;
  1813. struct radeon_clock_voltage_dependency_table *table =
  1814. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1815. u32 stable_p_state_sclk = 0;
  1816. struct radeon_clock_and_voltage_limits *max_limits =
  1817. &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
  1818. if (new_rps->vce_active) {
  1819. new_rps->evclk = rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].evclk;
  1820. new_rps->ecclk = rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].ecclk;
  1821. } else {
  1822. new_rps->evclk = 0;
  1823. new_rps->ecclk = 0;
  1824. }
  1825. mclk = max_limits->mclk;
  1826. sclk = min_sclk;
  1827. if (pi->caps_stable_p_state) {
  1828. stable_p_state_sclk = (max_limits->sclk * 75) / 100;
  1829. for (i = table->count - 1; i >= 0; i++) {
  1830. if (stable_p_state_sclk >= table->entries[i].clk) {
  1831. stable_p_state_sclk = table->entries[i].clk;
  1832. break;
  1833. }
  1834. }
  1835. if (i > 0)
  1836. stable_p_state_sclk = table->entries[0].clk;
  1837. sclk = stable_p_state_sclk;
  1838. }
  1839. if (new_rps->vce_active) {
  1840. if (sclk < rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].sclk)
  1841. sclk = rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].sclk;
  1842. }
  1843. ps->need_dfs_bypass = true;
  1844. for (i = 0; i < ps->num_levels; i++) {
  1845. if (ps->levels[i].sclk < sclk)
  1846. ps->levels[i].sclk = sclk;
  1847. }
  1848. if (table && table->count) {
  1849. for (i = 0; i < ps->num_levels; i++) {
  1850. if (pi->high_voltage_t &&
  1851. (pi->high_voltage_t <
  1852. kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) {
  1853. kv_get_high_voltage_limit(rdev, &limit);
  1854. ps->levels[i].sclk = table->entries[limit].clk;
  1855. }
  1856. }
  1857. } else {
  1858. struct sumo_sclk_voltage_mapping_table *table =
  1859. &pi->sys_info.sclk_voltage_mapping_table;
  1860. for (i = 0; i < ps->num_levels; i++) {
  1861. if (pi->high_voltage_t &&
  1862. (pi->high_voltage_t <
  1863. kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) {
  1864. kv_get_high_voltage_limit(rdev, &limit);
  1865. ps->levels[i].sclk = table->entries[limit].sclk_frequency;
  1866. }
  1867. }
  1868. }
  1869. if (pi->caps_stable_p_state) {
  1870. for (i = 0; i < ps->num_levels; i++) {
  1871. ps->levels[i].sclk = stable_p_state_sclk;
  1872. }
  1873. }
  1874. pi->video_start = new_rps->dclk || new_rps->vclk ||
  1875. new_rps->evclk || new_rps->ecclk;
  1876. if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) ==
  1877. ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)
  1878. pi->battery_state = true;
  1879. else
  1880. pi->battery_state = false;
  1881. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) {
  1882. ps->dpm0_pg_nb_ps_lo = 0x1;
  1883. ps->dpm0_pg_nb_ps_hi = 0x0;
  1884. ps->dpmx_nb_ps_lo = 0x1;
  1885. ps->dpmx_nb_ps_hi = 0x0;
  1886. } else {
  1887. ps->dpm0_pg_nb_ps_lo = 0x3;
  1888. ps->dpm0_pg_nb_ps_hi = 0x0;
  1889. ps->dpmx_nb_ps_lo = 0x3;
  1890. ps->dpmx_nb_ps_hi = 0x0;
  1891. if (pi->sys_info.nb_dpm_enable) {
  1892. force_high = (mclk >= pi->sys_info.nbp_memory_clock[3]) ||
  1893. pi->video_start || (rdev->pm.dpm.new_active_crtc_count >= 3) ||
  1894. pi->disable_nb_ps3_in_battery;
  1895. ps->dpm0_pg_nb_ps_lo = force_high ? 0x2 : 0x3;
  1896. ps->dpm0_pg_nb_ps_hi = 0x2;
  1897. ps->dpmx_nb_ps_lo = force_high ? 0x2 : 0x3;
  1898. ps->dpmx_nb_ps_hi = 0x2;
  1899. }
  1900. }
  1901. }
  1902. static void kv_dpm_power_level_enabled_for_throttle(struct radeon_device *rdev,
  1903. u32 index, bool enable)
  1904. {
  1905. struct kv_power_info *pi = kv_get_pi(rdev);
  1906. pi->graphics_level[index].EnabledForThrottle = enable ? 1 : 0;
  1907. }
  1908. static int kv_calculate_ds_divider(struct radeon_device *rdev)
  1909. {
  1910. struct kv_power_info *pi = kv_get_pi(rdev);
  1911. u32 sclk_in_sr = 10000; /* ??? */
  1912. u32 i;
  1913. if (pi->lowest_valid > pi->highest_valid)
  1914. return -EINVAL;
  1915. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1916. pi->graphics_level[i].DeepSleepDivId =
  1917. kv_get_sleep_divider_id_from_clock(rdev,
  1918. be32_to_cpu(pi->graphics_level[i].SclkFrequency),
  1919. sclk_in_sr);
  1920. }
  1921. return 0;
  1922. }
  1923. static int kv_calculate_nbps_level_settings(struct radeon_device *rdev)
  1924. {
  1925. struct kv_power_info *pi = kv_get_pi(rdev);
  1926. u32 i;
  1927. bool force_high;
  1928. struct radeon_clock_and_voltage_limits *max_limits =
  1929. &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
  1930. u32 mclk = max_limits->mclk;
  1931. if (pi->lowest_valid > pi->highest_valid)
  1932. return -EINVAL;
  1933. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) {
  1934. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1935. pi->graphics_level[i].GnbSlow = 1;
  1936. pi->graphics_level[i].ForceNbPs1 = 0;
  1937. pi->graphics_level[i].UpH = 0;
  1938. }
  1939. if (!pi->sys_info.nb_dpm_enable)
  1940. return 0;
  1941. force_high = ((mclk >= pi->sys_info.nbp_memory_clock[3]) ||
  1942. (rdev->pm.dpm.new_active_crtc_count >= 3) || pi->video_start);
  1943. if (force_high) {
  1944. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  1945. pi->graphics_level[i].GnbSlow = 0;
  1946. } else {
  1947. if (pi->battery_state)
  1948. pi->graphics_level[0].ForceNbPs1 = 1;
  1949. pi->graphics_level[1].GnbSlow = 0;
  1950. pi->graphics_level[2].GnbSlow = 0;
  1951. pi->graphics_level[3].GnbSlow = 0;
  1952. pi->graphics_level[4].GnbSlow = 0;
  1953. }
  1954. } else {
  1955. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1956. pi->graphics_level[i].GnbSlow = 1;
  1957. pi->graphics_level[i].ForceNbPs1 = 0;
  1958. pi->graphics_level[i].UpH = 0;
  1959. }
  1960. if (pi->sys_info.nb_dpm_enable && pi->battery_state) {
  1961. pi->graphics_level[pi->lowest_valid].UpH = 0x28;
  1962. pi->graphics_level[pi->lowest_valid].GnbSlow = 0;
  1963. if (pi->lowest_valid != pi->highest_valid)
  1964. pi->graphics_level[pi->lowest_valid].ForceNbPs1 = 1;
  1965. }
  1966. }
  1967. return 0;
  1968. }
  1969. static int kv_calculate_dpm_settings(struct radeon_device *rdev)
  1970. {
  1971. struct kv_power_info *pi = kv_get_pi(rdev);
  1972. u32 i;
  1973. if (pi->lowest_valid > pi->highest_valid)
  1974. return -EINVAL;
  1975. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  1976. pi->graphics_level[i].DisplayWatermark = (i == pi->highest_valid) ? 1 : 0;
  1977. return 0;
  1978. }
  1979. static void kv_init_graphics_levels(struct radeon_device *rdev)
  1980. {
  1981. struct kv_power_info *pi = kv_get_pi(rdev);
  1982. u32 i;
  1983. struct radeon_clock_voltage_dependency_table *table =
  1984. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1985. if (table && table->count) {
  1986. u32 vid_2bit;
  1987. pi->graphics_dpm_level_count = 0;
  1988. for (i = 0; i < table->count; i++) {
  1989. if (pi->high_voltage_t &&
  1990. (pi->high_voltage_t <
  1991. kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v)))
  1992. break;
  1993. kv_set_divider_value(rdev, i, table->entries[i].clk);
  1994. vid_2bit = kv_convert_vid7_to_vid2(rdev,
  1995. &pi->sys_info.vid_mapping_table,
  1996. table->entries[i].v);
  1997. kv_set_vid(rdev, i, vid_2bit);
  1998. kv_set_at(rdev, i, pi->at[i]);
  1999. kv_dpm_power_level_enabled_for_throttle(rdev, i, true);
  2000. pi->graphics_dpm_level_count++;
  2001. }
  2002. } else {
  2003. struct sumo_sclk_voltage_mapping_table *table =
  2004. &pi->sys_info.sclk_voltage_mapping_table;
  2005. pi->graphics_dpm_level_count = 0;
  2006. for (i = 0; i < table->num_max_dpm_entries; i++) {
  2007. if (pi->high_voltage_t &&
  2008. pi->high_voltage_t <
  2009. kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit))
  2010. break;
  2011. kv_set_divider_value(rdev, i, table->entries[i].sclk_frequency);
  2012. kv_set_vid(rdev, i, table->entries[i].vid_2bit);
  2013. kv_set_at(rdev, i, pi->at[i]);
  2014. kv_dpm_power_level_enabled_for_throttle(rdev, i, true);
  2015. pi->graphics_dpm_level_count++;
  2016. }
  2017. }
  2018. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++)
  2019. kv_dpm_power_level_enable(rdev, i, false);
  2020. }
  2021. static void kv_enable_new_levels(struct radeon_device *rdev)
  2022. {
  2023. struct kv_power_info *pi = kv_get_pi(rdev);
  2024. u32 i;
  2025. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
  2026. if (i >= pi->lowest_valid && i <= pi->highest_valid)
  2027. kv_dpm_power_level_enable(rdev, i, true);
  2028. }
  2029. }
  2030. static int kv_set_enabled_level(struct radeon_device *rdev, u32 level)
  2031. {
  2032. u32 new_mask = (1 << level);
  2033. return kv_send_msg_to_smc_with_parameter(rdev,
  2034. PPSMC_MSG_SCLKDPM_SetEnabledMask,
  2035. new_mask);
  2036. }
  2037. static int kv_set_enabled_levels(struct radeon_device *rdev)
  2038. {
  2039. struct kv_power_info *pi = kv_get_pi(rdev);
  2040. u32 i, new_mask = 0;
  2041. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  2042. new_mask |= (1 << i);
  2043. return kv_send_msg_to_smc_with_parameter(rdev,
  2044. PPSMC_MSG_SCLKDPM_SetEnabledMask,
  2045. new_mask);
  2046. }
  2047. static void kv_program_nbps_index_settings(struct radeon_device *rdev,
  2048. struct radeon_ps *new_rps)
  2049. {
  2050. struct kv_ps *new_ps = kv_get_ps(new_rps);
  2051. struct kv_power_info *pi = kv_get_pi(rdev);
  2052. u32 nbdpmconfig1;
  2053. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
  2054. return;
  2055. if (pi->sys_info.nb_dpm_enable) {
  2056. nbdpmconfig1 = RREG32_SMC(NB_DPM_CONFIG_1);
  2057. nbdpmconfig1 &= ~(Dpm0PgNbPsLo_MASK | Dpm0PgNbPsHi_MASK |
  2058. DpmXNbPsLo_MASK | DpmXNbPsHi_MASK);
  2059. nbdpmconfig1 |= (Dpm0PgNbPsLo(new_ps->dpm0_pg_nb_ps_lo) |
  2060. Dpm0PgNbPsHi(new_ps->dpm0_pg_nb_ps_hi) |
  2061. DpmXNbPsLo(new_ps->dpmx_nb_ps_lo) |
  2062. DpmXNbPsHi(new_ps->dpmx_nb_ps_hi));
  2063. WREG32_SMC(NB_DPM_CONFIG_1, nbdpmconfig1);
  2064. }
  2065. }
  2066. static int kv_set_thermal_temperature_range(struct radeon_device *rdev,
  2067. int min_temp, int max_temp)
  2068. {
  2069. int low_temp = 0 * 1000;
  2070. int high_temp = 255 * 1000;
  2071. u32 tmp;
  2072. if (low_temp < min_temp)
  2073. low_temp = min_temp;
  2074. if (high_temp > max_temp)
  2075. high_temp = max_temp;
  2076. if (high_temp < low_temp) {
  2077. DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
  2078. return -EINVAL;
  2079. }
  2080. tmp = RREG32_SMC(CG_THERMAL_INT_CTRL);
  2081. tmp &= ~(DIG_THERM_INTH_MASK | DIG_THERM_INTL_MASK);
  2082. tmp |= (DIG_THERM_INTH(49 + (high_temp / 1000)) |
  2083. DIG_THERM_INTL(49 + (low_temp / 1000)));
  2084. WREG32_SMC(CG_THERMAL_INT_CTRL, tmp);
  2085. rdev->pm.dpm.thermal.min_temp = low_temp;
  2086. rdev->pm.dpm.thermal.max_temp = high_temp;
  2087. return 0;
  2088. }
  2089. union igp_info {
  2090. struct _ATOM_INTEGRATED_SYSTEM_INFO info;
  2091. struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2;
  2092. struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5;
  2093. struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6;
  2094. struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7;
  2095. struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8;
  2096. };
  2097. static int kv_parse_sys_info_table(struct radeon_device *rdev)
  2098. {
  2099. struct kv_power_info *pi = kv_get_pi(rdev);
  2100. struct radeon_mode_info *mode_info = &rdev->mode_info;
  2101. int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
  2102. union igp_info *igp_info;
  2103. u8 frev, crev;
  2104. u16 data_offset;
  2105. int i;
  2106. if (atom_parse_data_header(mode_info->atom_context, index, NULL,
  2107. &frev, &crev, &data_offset)) {
  2108. igp_info = (union igp_info *)(mode_info->atom_context->bios +
  2109. data_offset);
  2110. if (crev != 8) {
  2111. DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
  2112. return -EINVAL;
  2113. }
  2114. pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_8.ulBootUpEngineClock);
  2115. pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_8.ulBootUpUMAClock);
  2116. pi->sys_info.bootup_nb_voltage_index =
  2117. le16_to_cpu(igp_info->info_8.usBootUpNBVoltage);
  2118. if (igp_info->info_8.ucHtcTmpLmt == 0)
  2119. pi->sys_info.htc_tmp_lmt = 203;
  2120. else
  2121. pi->sys_info.htc_tmp_lmt = igp_info->info_8.ucHtcTmpLmt;
  2122. if (igp_info->info_8.ucHtcHystLmt == 0)
  2123. pi->sys_info.htc_hyst_lmt = 5;
  2124. else
  2125. pi->sys_info.htc_hyst_lmt = igp_info->info_8.ucHtcHystLmt;
  2126. if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) {
  2127. DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n");
  2128. }
  2129. if (le32_to_cpu(igp_info->info_8.ulSystemConfig) & (1 << 3))
  2130. pi->sys_info.nb_dpm_enable = true;
  2131. else
  2132. pi->sys_info.nb_dpm_enable = false;
  2133. for (i = 0; i < KV_NUM_NBPSTATES; i++) {
  2134. pi->sys_info.nbp_memory_clock[i] =
  2135. le32_to_cpu(igp_info->info_8.ulNbpStateMemclkFreq[i]);
  2136. pi->sys_info.nbp_n_clock[i] =
  2137. le32_to_cpu(igp_info->info_8.ulNbpStateNClkFreq[i]);
  2138. }
  2139. if (le32_to_cpu(igp_info->info_8.ulGPUCapInfo) &
  2140. SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS)
  2141. pi->caps_enable_dfs_bypass = true;
  2142. sumo_construct_sclk_voltage_mapping_table(rdev,
  2143. &pi->sys_info.sclk_voltage_mapping_table,
  2144. igp_info->info_8.sAvail_SCLK);
  2145. sumo_construct_vid_mapping_table(rdev,
  2146. &pi->sys_info.vid_mapping_table,
  2147. igp_info->info_8.sAvail_SCLK);
  2148. kv_construct_max_power_limits_table(rdev,
  2149. &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac);
  2150. }
  2151. return 0;
  2152. }
  2153. union power_info {
  2154. struct _ATOM_POWERPLAY_INFO info;
  2155. struct _ATOM_POWERPLAY_INFO_V2 info_2;
  2156. struct _ATOM_POWERPLAY_INFO_V3 info_3;
  2157. struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
  2158. struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
  2159. struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
  2160. };
  2161. union pplib_clock_info {
  2162. struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
  2163. struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
  2164. struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
  2165. struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
  2166. };
  2167. union pplib_power_state {
  2168. struct _ATOM_PPLIB_STATE v1;
  2169. struct _ATOM_PPLIB_STATE_V2 v2;
  2170. };
  2171. static void kv_patch_boot_state(struct radeon_device *rdev,
  2172. struct kv_ps *ps)
  2173. {
  2174. struct kv_power_info *pi = kv_get_pi(rdev);
  2175. ps->num_levels = 1;
  2176. ps->levels[0] = pi->boot_pl;
  2177. }
  2178. static void kv_parse_pplib_non_clock_info(struct radeon_device *rdev,
  2179. struct radeon_ps *rps,
  2180. struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
  2181. u8 table_rev)
  2182. {
  2183. struct kv_ps *ps = kv_get_ps(rps);
  2184. rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
  2185. rps->class = le16_to_cpu(non_clock_info->usClassification);
  2186. rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
  2187. if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
  2188. rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
  2189. rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
  2190. } else {
  2191. rps->vclk = 0;
  2192. rps->dclk = 0;
  2193. }
  2194. if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
  2195. rdev->pm.dpm.boot_ps = rps;
  2196. kv_patch_boot_state(rdev, ps);
  2197. }
  2198. if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
  2199. rdev->pm.dpm.uvd_ps = rps;
  2200. }
  2201. static void kv_parse_pplib_clock_info(struct radeon_device *rdev,
  2202. struct radeon_ps *rps, int index,
  2203. union pplib_clock_info *clock_info)
  2204. {
  2205. struct kv_power_info *pi = kv_get_pi(rdev);
  2206. struct kv_ps *ps = kv_get_ps(rps);
  2207. struct kv_pl *pl = &ps->levels[index];
  2208. u32 sclk;
  2209. sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
  2210. sclk |= clock_info->sumo.ucEngineClockHigh << 16;
  2211. pl->sclk = sclk;
  2212. pl->vddc_index = clock_info->sumo.vddcIndex;
  2213. ps->num_levels = index + 1;
  2214. if (pi->caps_sclk_ds) {
  2215. pl->ds_divider_index = 5;
  2216. pl->ss_divider_index = 5;
  2217. }
  2218. }
  2219. static int kv_parse_power_table(struct radeon_device *rdev)
  2220. {
  2221. struct radeon_mode_info *mode_info = &rdev->mode_info;
  2222. struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
  2223. union pplib_power_state *power_state;
  2224. int i, j, k, non_clock_array_index, clock_array_index;
  2225. union pplib_clock_info *clock_info;
  2226. struct _StateArray *state_array;
  2227. struct _ClockInfoArray *clock_info_array;
  2228. struct _NonClockInfoArray *non_clock_info_array;
  2229. union power_info *power_info;
  2230. int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
  2231. u16 data_offset;
  2232. u8 frev, crev;
  2233. u8 *power_state_offset;
  2234. struct kv_ps *ps;
  2235. if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
  2236. &frev, &crev, &data_offset))
  2237. return -EINVAL;
  2238. power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
  2239. state_array = (struct _StateArray *)
  2240. (mode_info->atom_context->bios + data_offset +
  2241. le16_to_cpu(power_info->pplib.usStateArrayOffset));
  2242. clock_info_array = (struct _ClockInfoArray *)
  2243. (mode_info->atom_context->bios + data_offset +
  2244. le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
  2245. non_clock_info_array = (struct _NonClockInfoArray *)
  2246. (mode_info->atom_context->bios + data_offset +
  2247. le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
  2248. rdev->pm.dpm.ps = kzalloc(sizeof(struct radeon_ps) *
  2249. state_array->ucNumEntries, GFP_KERNEL);
  2250. if (!rdev->pm.dpm.ps)
  2251. return -ENOMEM;
  2252. power_state_offset = (u8 *)state_array->states;
  2253. for (i = 0; i < state_array->ucNumEntries; i++) {
  2254. u8 *idx;
  2255. power_state = (union pplib_power_state *)power_state_offset;
  2256. non_clock_array_index = power_state->v2.nonClockInfoIndex;
  2257. non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
  2258. &non_clock_info_array->nonClockInfo[non_clock_array_index];
  2259. if (!rdev->pm.power_state[i].clock_info)
  2260. return -EINVAL;
  2261. ps = kzalloc(sizeof(struct kv_ps), GFP_KERNEL);
  2262. if (ps == NULL) {
  2263. kfree(rdev->pm.dpm.ps);
  2264. return -ENOMEM;
  2265. }
  2266. rdev->pm.dpm.ps[i].ps_priv = ps;
  2267. k = 0;
  2268. idx = (u8 *)&power_state->v2.clockInfoIndex[0];
  2269. for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
  2270. clock_array_index = idx[j];
  2271. if (clock_array_index >= clock_info_array->ucNumEntries)
  2272. continue;
  2273. if (k >= SUMO_MAX_HARDWARE_POWERLEVELS)
  2274. break;
  2275. clock_info = (union pplib_clock_info *)
  2276. ((u8 *)&clock_info_array->clockInfo[0] +
  2277. (clock_array_index * clock_info_array->ucEntrySize));
  2278. kv_parse_pplib_clock_info(rdev,
  2279. &rdev->pm.dpm.ps[i], k,
  2280. clock_info);
  2281. k++;
  2282. }
  2283. kv_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i],
  2284. non_clock_info,
  2285. non_clock_info_array->ucEntrySize);
  2286. power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
  2287. }
  2288. rdev->pm.dpm.num_ps = state_array->ucNumEntries;
  2289. /* fill in the vce power states */
  2290. for (i = 0; i < RADEON_MAX_VCE_LEVELS; i++) {
  2291. u32 sclk;
  2292. clock_array_index = rdev->pm.dpm.vce_states[i].clk_idx;
  2293. clock_info = (union pplib_clock_info *)
  2294. &clock_info_array->clockInfo[clock_array_index * clock_info_array->ucEntrySize];
  2295. sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
  2296. sclk |= clock_info->sumo.ucEngineClockHigh << 16;
  2297. rdev->pm.dpm.vce_states[i].sclk = sclk;
  2298. rdev->pm.dpm.vce_states[i].mclk = 0;
  2299. }
  2300. return 0;
  2301. }
  2302. int kv_dpm_init(struct radeon_device *rdev)
  2303. {
  2304. struct kv_power_info *pi;
  2305. int ret, i;
  2306. pi = kzalloc(sizeof(struct kv_power_info), GFP_KERNEL);
  2307. if (pi == NULL)
  2308. return -ENOMEM;
  2309. rdev->pm.dpm.priv = pi;
  2310. ret = r600_get_platform_caps(rdev);
  2311. if (ret)
  2312. return ret;
  2313. ret = r600_parse_extended_power_table(rdev);
  2314. if (ret)
  2315. return ret;
  2316. for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++)
  2317. pi->at[i] = TRINITY_AT_DFLT;
  2318. pi->sram_end = SMC_RAM_END;
  2319. /* Enabling nb dpm on an asrock system prevents dpm from working */
  2320. if (rdev->pdev->subsystem_vendor == 0x1849)
  2321. pi->enable_nb_dpm = false;
  2322. else
  2323. pi->enable_nb_dpm = true;
  2324. pi->caps_power_containment = true;
  2325. pi->caps_cac = true;
  2326. pi->enable_didt = false;
  2327. if (pi->enable_didt) {
  2328. pi->caps_sq_ramping = true;
  2329. pi->caps_db_ramping = true;
  2330. pi->caps_td_ramping = true;
  2331. pi->caps_tcp_ramping = true;
  2332. }
  2333. pi->caps_sclk_ds = true;
  2334. pi->enable_auto_thermal_throttling = true;
  2335. pi->disable_nb_ps3_in_battery = false;
  2336. if (radeon_bapm == -1) {
  2337. /* only enable bapm on KB, ML by default */
  2338. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
  2339. pi->bapm_enable = true;
  2340. else
  2341. pi->bapm_enable = false;
  2342. } else if (radeon_bapm == 0) {
  2343. pi->bapm_enable = false;
  2344. } else {
  2345. pi->bapm_enable = true;
  2346. }
  2347. pi->voltage_drop_t = 0;
  2348. pi->caps_sclk_throttle_low_notification = false;
  2349. pi->caps_fps = false; /* true? */
  2350. pi->caps_uvd_pg = true;
  2351. pi->caps_uvd_dpm = true;
  2352. pi->caps_vce_pg = false; /* XXX true */
  2353. pi->caps_samu_pg = false;
  2354. pi->caps_acp_pg = false;
  2355. pi->caps_stable_p_state = false;
  2356. ret = kv_parse_sys_info_table(rdev);
  2357. if (ret)
  2358. return ret;
  2359. kv_patch_voltage_values(rdev);
  2360. kv_construct_boot_state(rdev);
  2361. ret = kv_parse_power_table(rdev);
  2362. if (ret)
  2363. return ret;
  2364. pi->enable_dpm = true;
  2365. return 0;
  2366. }
  2367. void kv_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev,
  2368. struct seq_file *m)
  2369. {
  2370. struct kv_power_info *pi = kv_get_pi(rdev);
  2371. u32 current_index =
  2372. (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_SCLK_INDEX_MASK) >>
  2373. CURR_SCLK_INDEX_SHIFT;
  2374. u32 sclk, tmp;
  2375. u16 vddc;
  2376. if (current_index >= SMU__NUM_SCLK_DPM_STATE) {
  2377. seq_printf(m, "invalid dpm profile %d\n", current_index);
  2378. } else {
  2379. sclk = be32_to_cpu(pi->graphics_level[current_index].SclkFrequency);
  2380. tmp = (RREG32_SMC(SMU_VOLTAGE_STATUS) & SMU_VOLTAGE_CURRENT_LEVEL_MASK) >>
  2381. SMU_VOLTAGE_CURRENT_LEVEL_SHIFT;
  2382. vddc = kv_convert_8bit_index_to_voltage(rdev, (u16)tmp);
  2383. seq_printf(m, "uvd %sabled\n", pi->uvd_power_gated ? "dis" : "en");
  2384. seq_printf(m, "vce %sabled\n", pi->vce_power_gated ? "dis" : "en");
  2385. seq_printf(m, "power level %d sclk: %u vddc: %u\n",
  2386. current_index, sclk, vddc);
  2387. }
  2388. }
  2389. void kv_dpm_print_power_state(struct radeon_device *rdev,
  2390. struct radeon_ps *rps)
  2391. {
  2392. int i;
  2393. struct kv_ps *ps = kv_get_ps(rps);
  2394. r600_dpm_print_class_info(rps->class, rps->class2);
  2395. r600_dpm_print_cap_info(rps->caps);
  2396. printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
  2397. for (i = 0; i < ps->num_levels; i++) {
  2398. struct kv_pl *pl = &ps->levels[i];
  2399. printk("\t\tpower level %d sclk: %u vddc: %u\n",
  2400. i, pl->sclk,
  2401. kv_convert_8bit_index_to_voltage(rdev, pl->vddc_index));
  2402. }
  2403. r600_dpm_print_ps_status(rdev, rps);
  2404. }
  2405. void kv_dpm_fini(struct radeon_device *rdev)
  2406. {
  2407. int i;
  2408. for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
  2409. kfree(rdev->pm.dpm.ps[i].ps_priv);
  2410. }
  2411. kfree(rdev->pm.dpm.ps);
  2412. kfree(rdev->pm.dpm.priv);
  2413. r600_free_extended_power_table(rdev);
  2414. }
  2415. void kv_dpm_display_configuration_changed(struct radeon_device *rdev)
  2416. {
  2417. }
  2418. u32 kv_dpm_get_sclk(struct radeon_device *rdev, bool low)
  2419. {
  2420. struct kv_power_info *pi = kv_get_pi(rdev);
  2421. struct kv_ps *requested_state = kv_get_ps(&pi->requested_rps);
  2422. if (low)
  2423. return requested_state->levels[0].sclk;
  2424. else
  2425. return requested_state->levels[requested_state->num_levels - 1].sclk;
  2426. }
  2427. u32 kv_dpm_get_mclk(struct radeon_device *rdev, bool low)
  2428. {
  2429. struct kv_power_info *pi = kv_get_pi(rdev);
  2430. return pi->sys_info.bootup_uma_clk;
  2431. }