tc90522.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838
  1. /*
  2. * Toshiba TC90522 Demodulator
  3. *
  4. * Copyright (C) 2014 Akihiro Tsukada <tskd08@gmail.com>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation version 2.
  9. *
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. */
  16. /*
  17. * NOTICE:
  18. * This driver is incomplete and lacks init/config of the chips,
  19. * as the necessary info is not disclosed.
  20. * It assumes that users of this driver (such as a PCI bridge of
  21. * DTV receiver cards) properly init and configure the chip
  22. * via I2C *before* calling this driver's init() function.
  23. *
  24. * Currently, PT3 driver is the only one that uses this driver,
  25. * and contains init/config code in its firmware.
  26. * Thus some part of the code might be dependent on PT3 specific config.
  27. */
  28. #include <linux/kernel.h>
  29. #include <linux/math64.h>
  30. #include <linux/dvb/frontend.h>
  31. #include "dvb_math.h"
  32. #include "tc90522.h"
  33. #define TC90522_I2C_THRU_REG 0xfe
  34. #define TC90522_MODULE_IDX(addr) (((u8)(addr) & 0x02U) >> 1)
  35. struct tc90522_state {
  36. struct tc90522_config cfg;
  37. struct dvb_frontend fe;
  38. struct i2c_client *i2c_client;
  39. struct i2c_adapter tuner_i2c;
  40. bool lna;
  41. };
  42. struct reg_val {
  43. u8 reg;
  44. u8 val;
  45. };
  46. static int
  47. reg_write(struct tc90522_state *state, const struct reg_val *regs, int num)
  48. {
  49. int i, ret;
  50. struct i2c_msg msg;
  51. ret = 0;
  52. msg.addr = state->i2c_client->addr;
  53. msg.flags = 0;
  54. msg.len = 2;
  55. for (i = 0; i < num; i++) {
  56. msg.buf = (u8 *)&regs[i];
  57. ret = i2c_transfer(state->i2c_client->adapter, &msg, 1);
  58. if (ret == 0)
  59. ret = -EIO;
  60. if (ret < 0)
  61. return ret;
  62. }
  63. return 0;
  64. }
  65. static int reg_read(struct tc90522_state *state, u8 reg, u8 *val, u8 len)
  66. {
  67. struct i2c_msg msgs[2] = {
  68. {
  69. .addr = state->i2c_client->addr,
  70. .flags = 0,
  71. .buf = &reg,
  72. .len = 1,
  73. },
  74. {
  75. .addr = state->i2c_client->addr,
  76. .flags = I2C_M_RD,
  77. .buf = val,
  78. .len = len,
  79. },
  80. };
  81. int ret;
  82. ret = i2c_transfer(state->i2c_client->adapter, msgs, ARRAY_SIZE(msgs));
  83. if (ret == ARRAY_SIZE(msgs))
  84. ret = 0;
  85. else if (ret >= 0)
  86. ret = -EIO;
  87. return ret;
  88. }
  89. static struct tc90522_state *cfg_to_state(struct tc90522_config *c)
  90. {
  91. return container_of(c, struct tc90522_state, cfg);
  92. }
  93. static int tc90522s_set_tsid(struct dvb_frontend *fe)
  94. {
  95. struct reg_val set_tsid[] = {
  96. { 0x8f, 00 },
  97. { 0x90, 00 }
  98. };
  99. set_tsid[0].val = (fe->dtv_property_cache.stream_id & 0xff00) >> 8;
  100. set_tsid[1].val = fe->dtv_property_cache.stream_id & 0xff;
  101. return reg_write(fe->demodulator_priv, set_tsid, ARRAY_SIZE(set_tsid));
  102. }
  103. static int tc90522t_set_layers(struct dvb_frontend *fe)
  104. {
  105. struct reg_val rv;
  106. u8 laysel;
  107. laysel = ~fe->dtv_property_cache.isdbt_layer_enabled & 0x07;
  108. laysel = (laysel & 0x01) << 2 | (laysel & 0x02) | (laysel & 0x04) >> 2;
  109. rv.reg = 0x71;
  110. rv.val = laysel;
  111. return reg_write(fe->demodulator_priv, &rv, 1);
  112. }
  113. /* frontend ops */
  114. static int tc90522s_read_status(struct dvb_frontend *fe, fe_status_t *status)
  115. {
  116. struct tc90522_state *state;
  117. int ret;
  118. u8 reg;
  119. state = fe->demodulator_priv;
  120. ret = reg_read(state, 0xc3, &reg, 1);
  121. if (ret < 0)
  122. return ret;
  123. *status = 0;
  124. if (reg & 0x80) /* input level under min ? */
  125. return 0;
  126. *status |= FE_HAS_SIGNAL;
  127. if (reg & 0x60) /* carrier? */
  128. return 0;
  129. *status |= FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC;
  130. if (reg & 0x10)
  131. return 0;
  132. if (reg_read(state, 0xc5, &reg, 1) < 0 || !(reg & 0x03))
  133. return 0;
  134. *status |= FE_HAS_LOCK;
  135. return 0;
  136. }
  137. static int tc90522t_read_status(struct dvb_frontend *fe, fe_status_t *status)
  138. {
  139. struct tc90522_state *state;
  140. int ret;
  141. u8 reg;
  142. state = fe->demodulator_priv;
  143. ret = reg_read(state, 0x96, &reg, 1);
  144. if (ret < 0)
  145. return ret;
  146. *status = 0;
  147. if (reg & 0xe0) {
  148. *status = FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI
  149. | FE_HAS_SYNC | FE_HAS_LOCK;
  150. return 0;
  151. }
  152. ret = reg_read(state, 0x80, &reg, 1);
  153. if (ret < 0)
  154. return ret;
  155. if (reg & 0xf0)
  156. return 0;
  157. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER;
  158. if (reg & 0x0c)
  159. return 0;
  160. *status |= FE_HAS_SYNC | FE_HAS_VITERBI;
  161. if (reg & 0x02)
  162. return 0;
  163. *status |= FE_HAS_LOCK;
  164. return 0;
  165. }
  166. static const fe_code_rate_t fec_conv_sat[] = {
  167. FEC_NONE, /* unused */
  168. FEC_1_2, /* for BPSK */
  169. FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_7_8, /* for QPSK */
  170. FEC_2_3, /* for 8PSK. (trellis code) */
  171. };
  172. static int tc90522s_get_frontend(struct dvb_frontend *fe)
  173. {
  174. struct tc90522_state *state;
  175. struct dtv_frontend_properties *c;
  176. struct dtv_fe_stats *stats;
  177. int ret, i;
  178. int layers;
  179. u8 val[10];
  180. u32 cndat;
  181. state = fe->demodulator_priv;
  182. c = &fe->dtv_property_cache;
  183. c->delivery_system = SYS_ISDBS;
  184. layers = 0;
  185. ret = reg_read(state, 0xe6, val, 5);
  186. if (ret == 0) {
  187. u8 v;
  188. c->stream_id = val[0] << 8 | val[1];
  189. /* high/single layer */
  190. v = (val[2] & 0x70) >> 4;
  191. c->modulation = (v == 7) ? PSK_8 : QPSK;
  192. c->fec_inner = fec_conv_sat[v];
  193. c->layer[0].fec = c->fec_inner;
  194. c->layer[0].modulation = c->modulation;
  195. c->layer[0].segment_count = val[3] & 0x3f; /* slots */
  196. /* low layer */
  197. v = (val[2] & 0x07);
  198. c->layer[1].fec = fec_conv_sat[v];
  199. if (v == 0) /* no low layer */
  200. c->layer[1].segment_count = 0;
  201. else
  202. c->layer[1].segment_count = val[4] & 0x3f; /* slots */
  203. /* actually, BPSK if v==1, but not defined in fe_modulation_t */
  204. c->layer[1].modulation = QPSK;
  205. layers = (v > 0) ? 2 : 1;
  206. }
  207. /* statistics */
  208. stats = &c->strength;
  209. stats->len = 0;
  210. /* let the connected tuner set RSSI property cache */
  211. if (fe->ops.tuner_ops.get_rf_strength) {
  212. u16 dummy;
  213. fe->ops.tuner_ops.get_rf_strength(fe, &dummy);
  214. }
  215. stats = &c->cnr;
  216. stats->len = 1;
  217. stats->stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  218. cndat = 0;
  219. ret = reg_read(state, 0xbc, val, 2);
  220. if (ret == 0)
  221. cndat = val[0] << 8 | val[1];
  222. if (cndat >= 3000) {
  223. u32 p, p4;
  224. s64 cn;
  225. cndat -= 3000; /* cndat: 4.12 fixed point float */
  226. /*
  227. * cnr[mdB] = -1634.6 * P^5 + 14341 * P^4 - 50259 * P^3
  228. * + 88977 * P^2 - 89565 * P + 58857
  229. * (P = sqrt(cndat) / 64)
  230. */
  231. /* p := sqrt(cndat) << 8 = P << 14, 2.14 fixed point float */
  232. /* cn = cnr << 3 */
  233. p = int_sqrt(cndat << 16);
  234. p4 = cndat * cndat;
  235. cn = div64_s64(-16346LL * p4 * p, 10) >> 35;
  236. cn += (14341LL * p4) >> 21;
  237. cn -= (50259LL * cndat * p) >> 23;
  238. cn += (88977LL * cndat) >> 9;
  239. cn -= (89565LL * p) >> 11;
  240. cn += 58857 << 3;
  241. stats->stat[0].svalue = cn >> 3;
  242. stats->stat[0].scale = FE_SCALE_DECIBEL;
  243. }
  244. /* per-layer post viterbi BER (or PER? config dependent?) */
  245. stats = &c->post_bit_error;
  246. memset(stats, 0, sizeof(*stats));
  247. stats->len = layers;
  248. ret = reg_read(state, 0xeb, val, 10);
  249. if (ret < 0)
  250. for (i = 0; i < layers; i++)
  251. stats->stat[i].scale = FE_SCALE_NOT_AVAILABLE;
  252. else {
  253. for (i = 0; i < layers; i++) {
  254. stats->stat[i].scale = FE_SCALE_COUNTER;
  255. stats->stat[i].uvalue = val[i * 5] << 16
  256. | val[i * 5 + 1] << 8 | val[i * 5 + 2];
  257. }
  258. }
  259. stats = &c->post_bit_count;
  260. memset(stats, 0, sizeof(*stats));
  261. stats->len = layers;
  262. if (ret < 0)
  263. for (i = 0; i < layers; i++)
  264. stats->stat[i].scale = FE_SCALE_NOT_AVAILABLE;
  265. else {
  266. for (i = 0; i < layers; i++) {
  267. stats->stat[i].scale = FE_SCALE_COUNTER;
  268. stats->stat[i].uvalue =
  269. val[i * 5 + 3] << 8 | val[i * 5 + 4];
  270. stats->stat[i].uvalue *= 204 * 8;
  271. }
  272. }
  273. return 0;
  274. }
  275. static const fe_transmit_mode_t tm_conv[] = {
  276. TRANSMISSION_MODE_2K,
  277. TRANSMISSION_MODE_4K,
  278. TRANSMISSION_MODE_8K,
  279. 0
  280. };
  281. static const fe_code_rate_t fec_conv_ter[] = {
  282. FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_7_8, 0, 0, 0
  283. };
  284. static const fe_modulation_t mod_conv[] = {
  285. DQPSK, QPSK, QAM_16, QAM_64, 0, 0, 0, 0
  286. };
  287. static int tc90522t_get_frontend(struct dvb_frontend *fe)
  288. {
  289. struct tc90522_state *state;
  290. struct dtv_frontend_properties *c;
  291. struct dtv_fe_stats *stats;
  292. int ret, i;
  293. int layers;
  294. u8 val[15], mode;
  295. u32 cndat;
  296. state = fe->demodulator_priv;
  297. c = &fe->dtv_property_cache;
  298. c->delivery_system = SYS_ISDBT;
  299. c->bandwidth_hz = 6000000;
  300. mode = 1;
  301. ret = reg_read(state, 0xb0, val, 1);
  302. if (ret == 0) {
  303. mode = (val[0] & 0xc0) >> 2;
  304. c->transmission_mode = tm_conv[mode];
  305. c->guard_interval = (val[0] & 0x30) >> 4;
  306. }
  307. ret = reg_read(state, 0xb2, val, 6);
  308. layers = 0;
  309. if (ret == 0) {
  310. u8 v;
  311. c->isdbt_partial_reception = val[0] & 0x01;
  312. c->isdbt_sb_mode = (val[0] & 0xc0) == 0x40;
  313. /* layer A */
  314. v = (val[2] & 0x78) >> 3;
  315. if (v == 0x0f)
  316. c->layer[0].segment_count = 0;
  317. else {
  318. layers++;
  319. c->layer[0].segment_count = v;
  320. c->layer[0].fec = fec_conv_ter[(val[1] & 0x1c) >> 2];
  321. c->layer[0].modulation = mod_conv[(val[1] & 0xe0) >> 5];
  322. v = (val[1] & 0x03) << 1 | (val[2] & 0x80) >> 7;
  323. c->layer[0].interleaving = v;
  324. }
  325. /* layer B */
  326. v = (val[3] & 0x03) << 1 | (val[4] & 0xc0) >> 6;
  327. if (v == 0x0f)
  328. c->layer[1].segment_count = 0;
  329. else {
  330. layers++;
  331. c->layer[1].segment_count = v;
  332. c->layer[1].fec = fec_conv_ter[(val[3] & 0xe0) >> 5];
  333. c->layer[1].modulation = mod_conv[(val[2] & 0x07)];
  334. c->layer[1].interleaving = (val[3] & 0x1c) >> 2;
  335. }
  336. /* layer C */
  337. v = (val[5] & 0x1e) >> 1;
  338. if (v == 0x0f)
  339. c->layer[2].segment_count = 0;
  340. else {
  341. layers++;
  342. c->layer[2].segment_count = v;
  343. c->layer[2].fec = fec_conv_ter[(val[4] & 0x07)];
  344. c->layer[2].modulation = mod_conv[(val[4] & 0x38) >> 3];
  345. c->layer[2].interleaving = (val[5] & 0xe0) >> 5;
  346. }
  347. }
  348. /* statistics */
  349. stats = &c->strength;
  350. stats->len = 0;
  351. /* let the connected tuner set RSSI property cache */
  352. if (fe->ops.tuner_ops.get_rf_strength) {
  353. u16 dummy;
  354. fe->ops.tuner_ops.get_rf_strength(fe, &dummy);
  355. }
  356. stats = &c->cnr;
  357. stats->len = 1;
  358. stats->stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  359. cndat = 0;
  360. ret = reg_read(state, 0x8b, val, 3);
  361. if (ret == 0)
  362. cndat = val[0] << 16 | val[1] << 8 | val[2];
  363. if (cndat != 0) {
  364. u32 p, tmp;
  365. s64 cn;
  366. /*
  367. * cnr[mdB] = 0.024 P^4 - 1.6 P^3 + 39.8 P^2 + 549.1 P + 3096.5
  368. * (P = 10log10(5505024/cndat))
  369. */
  370. /* cn = cnr << 3 (61.3 fixed point float */
  371. /* p = 10log10(5505024/cndat) << 24 (8.24 fixed point float)*/
  372. p = intlog10(5505024) - intlog10(cndat);
  373. p *= 10;
  374. cn = 24772;
  375. cn += div64_s64(43827LL * p, 10) >> 24;
  376. tmp = p >> 8;
  377. cn += div64_s64(3184LL * tmp * tmp, 10) >> 32;
  378. tmp = p >> 13;
  379. cn -= div64_s64(128LL * tmp * tmp * tmp, 10) >> 33;
  380. tmp = p >> 18;
  381. cn += div64_s64(192LL * tmp * tmp * tmp * tmp, 1000) >> 24;
  382. stats->stat[0].svalue = cn >> 3;
  383. stats->stat[0].scale = FE_SCALE_DECIBEL;
  384. }
  385. /* per-layer post viterbi BER (or PER? config dependent?) */
  386. stats = &c->post_bit_error;
  387. memset(stats, 0, sizeof(*stats));
  388. stats->len = layers;
  389. ret = reg_read(state, 0x9d, val, 15);
  390. if (ret < 0)
  391. for (i = 0; i < layers; i++)
  392. stats->stat[i].scale = FE_SCALE_NOT_AVAILABLE;
  393. else {
  394. for (i = 0; i < layers; i++) {
  395. stats->stat[i].scale = FE_SCALE_COUNTER;
  396. stats->stat[i].uvalue = val[i * 3] << 16
  397. | val[i * 3 + 1] << 8 | val[i * 3 + 2];
  398. }
  399. }
  400. stats = &c->post_bit_count;
  401. memset(stats, 0, sizeof(*stats));
  402. stats->len = layers;
  403. if (ret < 0)
  404. for (i = 0; i < layers; i++)
  405. stats->stat[i].scale = FE_SCALE_NOT_AVAILABLE;
  406. else {
  407. for (i = 0; i < layers; i++) {
  408. stats->stat[i].scale = FE_SCALE_COUNTER;
  409. stats->stat[i].uvalue =
  410. val[9 + i * 2] << 8 | val[9 + i * 2 + 1];
  411. stats->stat[i].uvalue *= 204 * 8;
  412. }
  413. }
  414. return 0;
  415. }
  416. static const struct reg_val reset_sat = { 0x03, 0x01 };
  417. static const struct reg_val reset_ter = { 0x01, 0x40 };
  418. static int tc90522_set_frontend(struct dvb_frontend *fe)
  419. {
  420. struct tc90522_state *state;
  421. int ret;
  422. state = fe->demodulator_priv;
  423. if (fe->ops.tuner_ops.set_params)
  424. ret = fe->ops.tuner_ops.set_params(fe);
  425. else
  426. ret = -ENODEV;
  427. if (ret < 0)
  428. goto failed;
  429. if (fe->ops.delsys[0] == SYS_ISDBS) {
  430. ret = tc90522s_set_tsid(fe);
  431. if (ret < 0)
  432. goto failed;
  433. ret = reg_write(state, &reset_sat, 1);
  434. } else {
  435. ret = tc90522t_set_layers(fe);
  436. if (ret < 0)
  437. goto failed;
  438. ret = reg_write(state, &reset_ter, 1);
  439. }
  440. if (ret < 0)
  441. goto failed;
  442. return 0;
  443. failed:
  444. dev_warn(&state->tuner_i2c.dev, "(%s) failed. [adap%d-fe%d]\n",
  445. __func__, fe->dvb->num, fe->id);
  446. return ret;
  447. }
  448. static int tc90522_get_tune_settings(struct dvb_frontend *fe,
  449. struct dvb_frontend_tune_settings *settings)
  450. {
  451. if (fe->ops.delsys[0] == SYS_ISDBS) {
  452. settings->min_delay_ms = 250;
  453. settings->step_size = 1000;
  454. settings->max_drift = settings->step_size * 2;
  455. } else {
  456. settings->min_delay_ms = 400;
  457. settings->step_size = 142857;
  458. settings->max_drift = settings->step_size;
  459. }
  460. return 0;
  461. }
  462. static int tc90522_set_if_agc(struct dvb_frontend *fe, bool on)
  463. {
  464. struct reg_val agc_sat[] = {
  465. { 0x0a, 0x00 },
  466. { 0x10, 0x30 },
  467. { 0x11, 0x00 },
  468. { 0x03, 0x01 },
  469. };
  470. struct reg_val agc_ter[] = {
  471. { 0x25, 0x00 },
  472. { 0x23, 0x4c },
  473. { 0x01, 0x40 },
  474. };
  475. struct tc90522_state *state;
  476. struct reg_val *rv;
  477. int num;
  478. state = fe->demodulator_priv;
  479. if (fe->ops.delsys[0] == SYS_ISDBS) {
  480. agc_sat[0].val = on ? 0xff : 0x00;
  481. agc_sat[1].val |= 0x80;
  482. agc_sat[1].val |= on ? 0x01 : 0x00;
  483. agc_sat[2].val |= on ? 0x40 : 0x00;
  484. rv = agc_sat;
  485. num = ARRAY_SIZE(agc_sat);
  486. } else {
  487. agc_ter[0].val = on ? 0x40 : 0x00;
  488. agc_ter[1].val |= on ? 0x00 : 0x01;
  489. rv = agc_ter;
  490. num = ARRAY_SIZE(agc_ter);
  491. }
  492. return reg_write(state, rv, num);
  493. }
  494. static const struct reg_val sleep_sat = { 0x17, 0x01 };
  495. static const struct reg_val sleep_ter = { 0x03, 0x90 };
  496. static int tc90522_sleep(struct dvb_frontend *fe)
  497. {
  498. struct tc90522_state *state;
  499. int ret;
  500. state = fe->demodulator_priv;
  501. if (fe->ops.delsys[0] == SYS_ISDBS)
  502. ret = reg_write(state, &sleep_sat, 1);
  503. else {
  504. ret = reg_write(state, &sleep_ter, 1);
  505. if (ret == 0 && fe->ops.set_lna &&
  506. fe->dtv_property_cache.lna == LNA_AUTO) {
  507. fe->dtv_property_cache.lna = 0;
  508. ret = fe->ops.set_lna(fe);
  509. fe->dtv_property_cache.lna = LNA_AUTO;
  510. }
  511. }
  512. if (ret < 0)
  513. dev_warn(&state->tuner_i2c.dev,
  514. "(%s) failed. [adap%d-fe%d]\n",
  515. __func__, fe->dvb->num, fe->id);
  516. return ret;
  517. }
  518. static const struct reg_val wakeup_sat = { 0x17, 0x00 };
  519. static const struct reg_val wakeup_ter = { 0x03, 0x80 };
  520. static int tc90522_init(struct dvb_frontend *fe)
  521. {
  522. struct tc90522_state *state;
  523. int ret;
  524. /*
  525. * Because the init sequence is not public,
  526. * the parent device/driver should have init'ed the device before.
  527. * just wake up the device here.
  528. */
  529. state = fe->demodulator_priv;
  530. if (fe->ops.delsys[0] == SYS_ISDBS)
  531. ret = reg_write(state, &wakeup_sat, 1);
  532. else {
  533. ret = reg_write(state, &wakeup_ter, 1);
  534. if (ret == 0 && fe->ops.set_lna &&
  535. fe->dtv_property_cache.lna == LNA_AUTO) {
  536. fe->dtv_property_cache.lna = 1;
  537. ret = fe->ops.set_lna(fe);
  538. fe->dtv_property_cache.lna = LNA_AUTO;
  539. }
  540. }
  541. if (ret < 0) {
  542. dev_warn(&state->tuner_i2c.dev,
  543. "(%s) failed. [adap%d-fe%d]\n",
  544. __func__, fe->dvb->num, fe->id);
  545. return ret;
  546. }
  547. /* prefer 'all-layers' to 'none' as a default */
  548. if (fe->dtv_property_cache.isdbt_layer_enabled == 0)
  549. fe->dtv_property_cache.isdbt_layer_enabled = 7;
  550. return tc90522_set_if_agc(fe, true);
  551. }
  552. /*
  553. * tuner I2C adapter functions
  554. */
  555. static int
  556. tc90522_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
  557. {
  558. struct tc90522_state *state;
  559. struct i2c_msg *new_msgs;
  560. int i, j;
  561. int ret, rd_num;
  562. u8 wbuf[256];
  563. u8 *p, *bufend;
  564. if (num <= 0)
  565. return -EINVAL;
  566. rd_num = 0;
  567. for (i = 0; i < num; i++)
  568. if (msgs[i].flags & I2C_M_RD)
  569. rd_num++;
  570. new_msgs = kmalloc(sizeof(*new_msgs) * (num + rd_num), GFP_KERNEL);
  571. if (!new_msgs)
  572. return -ENOMEM;
  573. state = i2c_get_adapdata(adap);
  574. p = wbuf;
  575. bufend = wbuf + sizeof(wbuf);
  576. for (i = 0, j = 0; i < num; i++, j++) {
  577. new_msgs[j].addr = state->i2c_client->addr;
  578. new_msgs[j].flags = msgs[i].flags;
  579. if (msgs[i].flags & I2C_M_RD) {
  580. new_msgs[j].flags &= ~I2C_M_RD;
  581. if (p + 2 > bufend)
  582. break;
  583. p[0] = TC90522_I2C_THRU_REG;
  584. p[1] = msgs[i].addr << 1 | 0x01;
  585. new_msgs[j].buf = p;
  586. new_msgs[j].len = 2;
  587. p += 2;
  588. j++;
  589. new_msgs[j].addr = state->i2c_client->addr;
  590. new_msgs[j].flags = msgs[i].flags;
  591. new_msgs[j].buf = msgs[i].buf;
  592. new_msgs[j].len = msgs[i].len;
  593. continue;
  594. }
  595. if (p + msgs[i].len + 2 > bufend)
  596. break;
  597. p[0] = TC90522_I2C_THRU_REG;
  598. p[1] = msgs[i].addr << 1;
  599. memcpy(p + 2, msgs[i].buf, msgs[i].len);
  600. new_msgs[j].buf = p;
  601. new_msgs[j].len = msgs[i].len + 2;
  602. p += new_msgs[j].len;
  603. }
  604. if (i < num)
  605. ret = -ENOMEM;
  606. else
  607. ret = i2c_transfer(state->i2c_client->adapter, new_msgs, j);
  608. if (ret >= 0 && ret < j)
  609. ret = -EIO;
  610. kfree(new_msgs);
  611. return (ret == j) ? num : ret;
  612. }
  613. static u32 tc90522_functionality(struct i2c_adapter *adap)
  614. {
  615. return I2C_FUNC_I2C;
  616. }
  617. static const struct i2c_algorithm tc90522_tuner_i2c_algo = {
  618. .master_xfer = &tc90522_master_xfer,
  619. .functionality = &tc90522_functionality,
  620. };
  621. /*
  622. * I2C driver functions
  623. */
  624. static const struct dvb_frontend_ops tc90522_ops_sat = {
  625. .delsys = { SYS_ISDBS },
  626. .info = {
  627. .name = "Toshiba TC90522 ISDB-S module",
  628. .frequency_min = 950000,
  629. .frequency_max = 2150000,
  630. .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_AUTO |
  631. FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO |
  632. FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO,
  633. },
  634. .init = tc90522_init,
  635. .sleep = tc90522_sleep,
  636. .set_frontend = tc90522_set_frontend,
  637. .get_tune_settings = tc90522_get_tune_settings,
  638. .get_frontend = tc90522s_get_frontend,
  639. .read_status = tc90522s_read_status,
  640. };
  641. static const struct dvb_frontend_ops tc90522_ops_ter = {
  642. .delsys = { SYS_ISDBT },
  643. .info = {
  644. .name = "Toshiba TC90522 ISDB-T module",
  645. .frequency_min = 470000000,
  646. .frequency_max = 770000000,
  647. .frequency_stepsize = 142857,
  648. .caps = FE_CAN_INVERSION_AUTO |
  649. FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  650. FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
  651. FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 |
  652. FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO |
  653. FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER |
  654. FE_CAN_HIERARCHY_AUTO,
  655. },
  656. .init = tc90522_init,
  657. .sleep = tc90522_sleep,
  658. .set_frontend = tc90522_set_frontend,
  659. .get_tune_settings = tc90522_get_tune_settings,
  660. .get_frontend = tc90522t_get_frontend,
  661. .read_status = tc90522t_read_status,
  662. };
  663. static int tc90522_probe(struct i2c_client *client,
  664. const struct i2c_device_id *id)
  665. {
  666. struct tc90522_state *state;
  667. struct tc90522_config *cfg;
  668. const struct dvb_frontend_ops *ops;
  669. struct i2c_adapter *adap;
  670. int ret;
  671. state = kzalloc(sizeof(*state), GFP_KERNEL);
  672. if (!state)
  673. return -ENOMEM;
  674. state->i2c_client = client;
  675. cfg = client->dev.platform_data;
  676. memcpy(&state->cfg, cfg, sizeof(state->cfg));
  677. cfg->fe = state->cfg.fe = &state->fe;
  678. ops = id->driver_data == 0 ? &tc90522_ops_sat : &tc90522_ops_ter;
  679. memcpy(&state->fe.ops, ops, sizeof(*ops));
  680. state->fe.demodulator_priv = state;
  681. adap = &state->tuner_i2c;
  682. adap->owner = THIS_MODULE;
  683. adap->algo = &tc90522_tuner_i2c_algo;
  684. adap->dev.parent = &client->dev;
  685. strlcpy(adap->name, "tc90522_sub", sizeof(adap->name));
  686. i2c_set_adapdata(adap, state);
  687. ret = i2c_add_adapter(adap);
  688. if (ret < 0)
  689. goto err;
  690. cfg->tuner_i2c = state->cfg.tuner_i2c = adap;
  691. i2c_set_clientdata(client, &state->cfg);
  692. dev_info(&client->dev, "Toshiba TC90522 attached.\n");
  693. return 0;
  694. err:
  695. kfree(state);
  696. return ret;
  697. }
  698. static int tc90522_remove(struct i2c_client *client)
  699. {
  700. struct tc90522_state *state;
  701. state = cfg_to_state(i2c_get_clientdata(client));
  702. i2c_del_adapter(&state->tuner_i2c);
  703. kfree(state);
  704. return 0;
  705. }
  706. static const struct i2c_device_id tc90522_id[] = {
  707. { TC90522_I2C_DEV_SAT, 0 },
  708. { TC90522_I2C_DEV_TER, 1 },
  709. {}
  710. };
  711. MODULE_DEVICE_TABLE(i2c, tc90522_id);
  712. static struct i2c_driver tc90522_driver = {
  713. .driver = {
  714. .name = "tc90522",
  715. },
  716. .probe = tc90522_probe,
  717. .remove = tc90522_remove,
  718. .id_table = tc90522_id,
  719. };
  720. module_i2c_driver(tc90522_driver);
  721. MODULE_DESCRIPTION("Toshiba TC90522 frontend");
  722. MODULE_AUTHOR("Akihiro TSUKADA");
  723. MODULE_LICENSE("GPL");