accel.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767
  1. #include "inc/accel.h"
  2. #include "inc/accel_factory.h"
  3. struct acc_context *acc_context_obj = NULL;
  4. static struct acc_init_info *gsensor_init_list[MAX_CHOOSE_G_NUM] = { 0 };
  5. static int64_t getCurNS(void)
  6. {
  7. int64_t ns;
  8. struct timespec time;
  9. time.tv_sec = time.tv_nsec = 0;
  10. get_monotonic_boottime(&time);
  11. ns = time.tv_sec * 1000000000LL + time.tv_nsec;
  12. return ns;
  13. }
  14. static void initTimer(struct hrtimer *timer, enum hrtimer_restart (*callback)(struct hrtimer *))
  15. {
  16. hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  17. timer->function = callback;
  18. }
  19. static void startTimer(struct hrtimer *timer, int delay_ms, bool first)
  20. {
  21. struct acc_context *obj = (struct acc_context *)container_of(timer, struct acc_context, hrTimer);
  22. static int count;
  23. if (obj == NULL) {
  24. ACC_ERR("NULL pointer\n");
  25. return;
  26. }
  27. if (first) {
  28. obj->target_ktime = ktime_add_ns(ktime_get(), (int64_t)delay_ms*1000000);
  29. /* ACC_LOG("%d, cur_nt = %lld, delay_ms = %d, target_nt = %lld\n", count,
  30. getCurNT(), delay_ms, ktime_to_us(obj->target_ktime)); */
  31. count = 0;
  32. } else {
  33. do {
  34. obj->target_ktime = ktime_add_ns(obj->target_ktime, (int64_t)delay_ms*1000000);
  35. } while (ktime_to_ns(obj->target_ktime) < ktime_to_ns(ktime_get()));
  36. /* ACC_LOG("%d, cur_nt = %lld, delay_ms = %d, target_nt = %lld\n", count,
  37. getCurNT(), delay_ms, ktime_to_us(obj->target_ktime)); */
  38. count++;
  39. }
  40. hrtimer_start(timer, obj->target_ktime, HRTIMER_MODE_ABS);
  41. }
  42. static void stopTimer(struct hrtimer *timer)
  43. {
  44. hrtimer_cancel(timer);
  45. }
  46. static void acc_work_func(struct work_struct *work)
  47. {
  48. struct acc_context *cxt = NULL;
  49. int x, y, z, status;
  50. int64_t pre_ns, cur_ns;
  51. int64_t delay_ms;
  52. int err;
  53. cxt = acc_context_obj;
  54. delay_ms = atomic_read(&cxt->delay);
  55. if (NULL == cxt->acc_data.get_data) {
  56. ACC_ERR("acc driver not register data path\n");
  57. return;
  58. }
  59. cur_ns = getCurNS();
  60. err = cxt->acc_data.get_data(&x, &y, &z, &status);
  61. if (err) {
  62. ACC_ERR("get acc data fails!!\n");
  63. goto acc_loop;
  64. } else {
  65. if (0 == x && 0 == y && 0 == z)
  66. goto acc_loop;
  67. cxt->drv_data.acc_data.values[0] = x;
  68. cxt->drv_data.acc_data.values[1] = y;
  69. cxt->drv_data.acc_data.values[2] = z;
  70. cxt->drv_data.acc_data.status = status;
  71. pre_ns = cxt->drv_data.acc_data.time;
  72. cxt->drv_data.acc_data.time = cur_ns;
  73. }
  74. if (true == cxt->is_first_data_after_enable) {
  75. pre_ns = cur_ns;
  76. cxt->is_first_data_after_enable = false;
  77. /* filter -1 value */
  78. if (ACC_INVALID_VALUE == cxt->drv_data.acc_data.values[0] ||
  79. ACC_INVALID_VALUE == cxt->drv_data.acc_data.values[1] ||
  80. ACC_INVALID_VALUE == cxt->drv_data.acc_data.values[2]) {
  81. ACC_LOG(" read invalid data\n");
  82. goto acc_loop;
  83. }
  84. }
  85. /* report data to input device */
  86. /* printk("new acc work run....\n"); */
  87. /* ACC_LOG("acc data[%d,%d,%d]\n" ,cxt->drv_data.acc_data.values[0], */
  88. /* cxt->drv_data.acc_data.values[1],cxt->drv_data.acc_data.values[2]); */
  89. while ((cur_ns - pre_ns) >= delay_ms*1800000LL) {
  90. pre_ns += delay_ms*1000000LL;
  91. acc_data_report(cxt->drv_data.acc_data.values[0],
  92. cxt->drv_data.acc_data.values[1], cxt->drv_data.acc_data.values[2],
  93. cxt->drv_data.acc_data.status, pre_ns);
  94. }
  95. acc_data_report(cxt->drv_data.acc_data.values[0],
  96. cxt->drv_data.acc_data.values[1], cxt->drv_data.acc_data.values[2],
  97. cxt->drv_data.acc_data.status, cxt->drv_data.acc_data.time);
  98. acc_loop:
  99. if (true == cxt->is_polling_run)
  100. startTimer(&cxt->hrTimer, atomic_read(&cxt->delay), false);
  101. }
  102. enum hrtimer_restart acc_poll(struct hrtimer *timer)
  103. {
  104. struct acc_context *obj = (struct acc_context *)container_of(timer, struct acc_context, hrTimer);
  105. queue_work(obj->accel_workqueue, &obj->report);
  106. /* ACC_LOG("cur_ns = %lld\n", getCurNS()); */
  107. return HRTIMER_NORESTART;
  108. }
  109. static struct acc_context *acc_context_alloc_object(void)
  110. {
  111. struct acc_context *obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  112. ACC_LOG("acc_context_alloc_object++++\n");
  113. if (!obj) {
  114. ACC_ERR("Alloc accel object error!\n");
  115. return NULL;
  116. }
  117. atomic_set(&obj->delay, 200); /*5Hz , set work queue delay time 200ms */
  118. atomic_set(&obj->wake, 0);
  119. INIT_WORK(&obj->report, acc_work_func);
  120. obj->accel_workqueue = NULL;
  121. obj->accel_workqueue = create_workqueue("accel_polling");
  122. if (!obj->accel_workqueue) {
  123. kfree(obj);
  124. return NULL;
  125. }
  126. initTimer(&obj->hrTimer, acc_poll);
  127. obj->is_first_data_after_enable = false;
  128. obj->is_polling_run = false;
  129. mutex_init(&obj->acc_op_mutex);
  130. obj->is_batch_enable = false;/* for batch mode init */
  131. obj->cali_sw[ACC_AXIS_X] = 0;
  132. obj->cali_sw[ACC_AXIS_Y] = 0;
  133. obj->cali_sw[ACC_AXIS_Z] = 0;
  134. ACC_LOG("acc_context_alloc_object----\n");
  135. return obj;
  136. }
  137. static int acc_real_enable(int enable)
  138. {
  139. int err = 0;
  140. struct acc_context *cxt = NULL;
  141. cxt = acc_context_obj;
  142. if (1 == enable) {
  143. if (true == cxt->is_active_data || true == cxt->is_active_nodata) {
  144. err = cxt->acc_ctl.enable_nodata(1);
  145. if (err) {
  146. err = cxt->acc_ctl.enable_nodata(1);
  147. if (err) {
  148. err = cxt->acc_ctl.enable_nodata(1);
  149. if (err)
  150. ACC_ERR("acc enable(%d) err 3 timers = %d\n",
  151. enable, err);
  152. }
  153. }
  154. ACC_LOG("acc real enable\n");
  155. }
  156. }
  157. if (0 == enable) {
  158. if (false == cxt->is_active_data && false == cxt->is_active_nodata) {
  159. err = cxt->acc_ctl.enable_nodata(0);
  160. if (err)
  161. ACC_ERR("acc enable(%d) err = %d\n", enable, err);
  162. ACC_LOG("acc real disable\n");
  163. }
  164. }
  165. return err;
  166. }
  167. static int acc_enable_data(int enable)
  168. {
  169. struct acc_context *cxt = NULL;
  170. cxt = acc_context_obj;
  171. if (NULL == cxt->acc_ctl.open_report_data) {
  172. ACC_ERR("no acc control path\n");
  173. return -1;
  174. }
  175. if (1 == enable) {
  176. ACC_LOG("ACC enable data\n");
  177. cxt->is_active_data = true;
  178. cxt->is_first_data_after_enable = true;
  179. cxt->acc_ctl.open_report_data(1);
  180. acc_real_enable(enable);
  181. if (false == cxt->is_polling_run && cxt->is_batch_enable == false) {
  182. if (false == cxt->acc_ctl.is_report_input_direct) {
  183. startTimer(&cxt->hrTimer, atomic_read(&cxt->delay), true);
  184. cxt->is_polling_run = true;
  185. }
  186. }
  187. }
  188. if (0 == enable) {
  189. ACC_LOG("ACC disable\n");
  190. cxt->is_active_data = false;
  191. cxt->acc_ctl.open_report_data(0);
  192. if (true == cxt->is_polling_run) {
  193. if (false == cxt->acc_ctl.is_report_input_direct) {
  194. cxt->is_polling_run = false;
  195. smp_mb();/* for memory barrier */
  196. stopTimer(&cxt->hrTimer);
  197. smp_mb();/* for memory barrier */
  198. cancel_work_sync(&cxt->report);
  199. cxt->drv_data.acc_data.values[0] = ACC_INVALID_VALUE;
  200. cxt->drv_data.acc_data.values[1] = ACC_INVALID_VALUE;
  201. cxt->drv_data.acc_data.values[2] = ACC_INVALID_VALUE;
  202. }
  203. }
  204. acc_real_enable(enable);
  205. }
  206. return 0;
  207. }
  208. int acc_enable_nodata(int enable)
  209. {
  210. struct acc_context *cxt = NULL;
  211. cxt = acc_context_obj;
  212. if (NULL == cxt->acc_ctl.enable_nodata) {
  213. ACC_ERR("acc_enable_nodata:acc ctl path is NULL\n");
  214. return -1;
  215. }
  216. if (1 == enable)
  217. cxt->is_active_nodata = true;
  218. if (0 == enable)
  219. cxt->is_active_nodata = false;
  220. acc_real_enable(enable);
  221. return 0;
  222. }
  223. static ssize_t acc_show_enable_nodata(struct device *dev, struct device_attribute *attr, char *buf)
  224. {
  225. int len = 0;
  226. ACC_LOG(" not support now\n");
  227. return len;
  228. }
  229. static ssize_t acc_store_enable_nodata(struct device *dev, struct device_attribute *attr,
  230. const char *buf, size_t count)
  231. {
  232. struct acc_context *cxt = NULL;
  233. ACC_LOG("acc_store_enable nodata buf=%s\n", buf);
  234. mutex_lock(&acc_context_obj->acc_op_mutex);
  235. cxt = acc_context_obj;
  236. if (NULL == cxt->acc_ctl.enable_nodata) {
  237. ACC_LOG("acc_ctl enable nodata NULL\n");
  238. mutex_unlock(&acc_context_obj->acc_op_mutex);
  239. return count;
  240. }
  241. if (!strncmp(buf, "1", 1)) {
  242. /* cxt->acc_ctl.enable_nodata(1); */
  243. acc_enable_nodata(1);
  244. } else if (!strncmp(buf, "0", 1)) {
  245. /* cxt->acc_ctl.enable_nodata(0); */
  246. acc_enable_nodata(0);
  247. } else {
  248. ACC_ERR(" acc_store enable nodata cmd error !!\n");
  249. }
  250. mutex_unlock(&acc_context_obj->acc_op_mutex);
  251. return count;
  252. }
  253. static ssize_t acc_store_active(struct device *dev, struct device_attribute *attr,
  254. const char *buf, size_t count)
  255. {
  256. struct acc_context *cxt = NULL;
  257. ACC_LOG("acc_store_active buf=%s\n", buf);
  258. mutex_lock(&acc_context_obj->acc_op_mutex);
  259. cxt = acc_context_obj;
  260. if (NULL == cxt->acc_ctl.open_report_data) {
  261. ACC_LOG("acc_ctl enable NULL\n");
  262. mutex_unlock(&acc_context_obj->acc_op_mutex);
  263. return count;
  264. }
  265. if (!strncmp(buf, "1", 1)) {
  266. /* cxt->acc_ctl.enable(1); */
  267. acc_enable_data(1);
  268. } else if (!strncmp(buf, "0", 1)) {
  269. /* cxt->acc_ctl.enable(0); */
  270. acc_enable_data(0);
  271. } else {
  272. ACC_ERR(" acc_store_active error !!\n");
  273. }
  274. mutex_unlock(&acc_context_obj->acc_op_mutex);
  275. ACC_LOG(" acc_store_active done\n");
  276. return count;
  277. }
  278. /*----------------------------------------------------------------------------*/
  279. static ssize_t acc_show_active(struct device *dev, struct device_attribute *attr, char *buf)
  280. {
  281. struct acc_context *cxt = NULL;
  282. int div = 0;
  283. cxt = acc_context_obj;
  284. div = cxt->acc_data.vender_div;
  285. ACC_LOG("acc vender_div value: %d\n", div);
  286. return snprintf(buf, PAGE_SIZE, "%d\n", div);
  287. }
  288. static ssize_t acc_store_delay(struct device *dev, struct device_attribute *attr,
  289. const char *buf, size_t count)
  290. {
  291. int64_t delay = 0;
  292. int64_t mdelay = 0;
  293. int ret = 0;
  294. struct acc_context *cxt = NULL;
  295. mutex_lock(&acc_context_obj->acc_op_mutex);
  296. cxt = acc_context_obj;
  297. if (NULL == cxt->acc_ctl.set_delay) {
  298. ACC_LOG("acc_ctl set_delay NULL\n");
  299. mutex_unlock(&acc_context_obj->acc_op_mutex);
  300. return count;
  301. }
  302. ret = kstrtoll(buf, 10, &delay);
  303. if (ret != 0) {
  304. ACC_ERR("invalid format!!\n");
  305. mutex_unlock(&acc_context_obj->acc_op_mutex);
  306. return count;
  307. }
  308. if (false == cxt->acc_ctl.is_report_input_direct) {
  309. mdelay = delay;
  310. do_div(mdelay, 1000000);
  311. atomic_set(&acc_context_obj->delay, mdelay);
  312. }
  313. cxt->acc_ctl.set_delay(delay);
  314. ACC_LOG(" acc_delay %lld ns\n", delay);
  315. mutex_unlock(&acc_context_obj->acc_op_mutex);
  316. return count;
  317. }
  318. static ssize_t acc_show_delay(struct device *dev, struct device_attribute *attr, char *buf)
  319. {
  320. int len = 0;
  321. ACC_LOG(" not support now\n");
  322. return len;
  323. }
  324. /* need work around again */
  325. static ssize_t acc_show_sensordevnum(struct device *dev,
  326. struct device_attribute *attr, char *buf)
  327. {
  328. unsigned int devnum;
  329. struct acc_context *cxt = NULL;
  330. const char *devname = NULL;
  331. int ret = 0;
  332. cxt = acc_context_obj;
  333. devname = dev_name(&cxt->idev->dev);
  334. ret = sscanf(devname+5, "%d", &devnum);
  335. return snprintf(buf, PAGE_SIZE, "%d\n", devnum);
  336. }
  337. static ssize_t acc_store_batch(struct device *dev, struct device_attribute *attr,
  338. const char *buf, size_t count)
  339. {
  340. struct acc_context *cxt = NULL;
  341. ACC_LOG("acc_store_batch buf=%s\n", buf);
  342. mutex_lock(&acc_context_obj->acc_op_mutex);
  343. cxt = acc_context_obj;
  344. if (cxt->acc_ctl.is_support_batch) {
  345. if (!strncmp(buf, "1", 1)) {
  346. cxt->is_batch_enable = true;
  347. if (true == cxt->is_polling_run) {
  348. cxt->is_polling_run = false;
  349. smp_mb(); /* for memory barrier */
  350. stopTimer(&cxt->hrTimer);
  351. smp_mb(); /* for memory barrier */
  352. cancel_work_sync(&cxt->report);
  353. cxt->drv_data.acc_data.values[0] = ACC_INVALID_VALUE;
  354. cxt->drv_data.acc_data.values[1] = ACC_INVALID_VALUE;
  355. cxt->drv_data.acc_data.values[2] = ACC_INVALID_VALUE;
  356. }
  357. } else if (!strncmp(buf, "0", 1)) {
  358. cxt->is_batch_enable = false;
  359. if (false == cxt->is_polling_run) {
  360. if (false == cxt->acc_ctl.is_report_input_direct && true == cxt->is_active_data) {
  361. startTimer(&cxt->hrTimer, atomic_read(&cxt->delay), true);
  362. cxt->is_polling_run = true;
  363. }
  364. }
  365. } else
  366. ACC_ERR(" acc_store_batch error !!\n");
  367. } else
  368. ACC_LOG(" acc_store_batch mot supported\n");
  369. mutex_unlock(&acc_context_obj->acc_op_mutex);
  370. ACC_LOG(" acc_store_batch done: %d\n", cxt->is_batch_enable);
  371. return count;
  372. }
  373. static ssize_t acc_show_batch(struct device *dev,
  374. struct device_attribute *attr, char *buf)
  375. {
  376. return snprintf(buf, PAGE_SIZE, "%d\n", 0);
  377. }
  378. static ssize_t acc_store_flush(struct device *dev, struct device_attribute *attr,
  379. const char *buf, size_t count)
  380. {
  381. return count;
  382. }
  383. static ssize_t acc_show_flush(struct device *dev,
  384. struct device_attribute *attr, char *buf)
  385. {
  386. return snprintf(buf, PAGE_SIZE, "%d\n", 0);
  387. }
  388. static int gsensor_remove(struct platform_device *pdev)
  389. {
  390. ACC_LOG("gsensor_remove\n");
  391. return 0;
  392. }
  393. static int gsensor_probe(struct platform_device *pdev)
  394. {
  395. ACC_LOG("gsensor_probe\n");
  396. return 0;
  397. }
  398. #ifdef CONFIG_OF
  399. static const struct of_device_id gsensor_of_match[] = {
  400. { .compatible = "mediatek,gsensor", },
  401. {},
  402. };
  403. #endif
  404. static struct platform_driver gsensor_driver = {
  405. .probe = gsensor_probe,
  406. .remove = gsensor_remove,
  407. .driver = {
  408. .name = "gsensor",
  409. #ifdef CONFIG_OF
  410. .of_match_table = gsensor_of_match,
  411. #endif
  412. }
  413. };
  414. static int acc_real_driver_init(void)
  415. {
  416. int i = 0;
  417. int err = 0;
  418. ACC_LOG(" acc_real_driver_init +\n");
  419. for (i = 0; i < MAX_CHOOSE_G_NUM; i++) {
  420. ACC_LOG(" i=%d\n", i);
  421. if (0 != gsensor_init_list[i]) {
  422. ACC_LOG(" acc try to init driver %s\n", gsensor_init_list[i]->name);
  423. err = gsensor_init_list[i]->init();
  424. if (0 == err) {
  425. ACC_LOG(" acc real driver %s probe ok\n",
  426. gsensor_init_list[i]->name);
  427. break;
  428. }
  429. }
  430. }
  431. if (i == MAX_CHOOSE_G_NUM) {
  432. ACC_LOG(" acc_real_driver_init fail\n");
  433. err = -1;
  434. }
  435. return err;
  436. }
  437. int acc_driver_add(struct acc_init_info *obj)
  438. {
  439. int err = 0;
  440. int i = 0;
  441. if (!obj) {
  442. ACC_ERR("ACC driver add fail, acc_init_info is NULL\n");
  443. return -1;
  444. }
  445. for (i = 0; i < MAX_CHOOSE_G_NUM; i++) {
  446. if ((i == 0) && (NULL == gsensor_init_list[0])) {
  447. ACC_LOG("register gensor driver for the first time\n");
  448. if (platform_driver_register(&gsensor_driver))
  449. ACC_ERR("failed to register gensor driver already exist\n");
  450. }
  451. if (NULL == gsensor_init_list[i]) {
  452. obj->platform_diver_addr = &gsensor_driver;
  453. gsensor_init_list[i] = obj;
  454. break;
  455. }
  456. }
  457. if (i >= MAX_CHOOSE_G_NUM) {
  458. ACC_ERR("ACC driver add err\n");
  459. err = -1;
  460. }
  461. return err;
  462. }
  463. EXPORT_SYMBOL_GPL(acc_driver_add);
  464. static int acc_misc_init(struct acc_context *cxt)
  465. {
  466. int err = 0;
  467. cxt->mdev.minor = MISC_DYNAMIC_MINOR;
  468. cxt->mdev.name = ACC_MISC_DEV_NAME;
  469. err = misc_register(&cxt->mdev);
  470. if (err)
  471. ACC_ERR("unable to register acc misc device!!\n");
  472. /* dev_set_drvdata(cxt->mdev.this_device, cxt); */
  473. return err;
  474. }
  475. static int acc_input_init(struct acc_context *cxt)
  476. {
  477. struct input_dev *dev;
  478. int err = 0;
  479. dev = input_allocate_device();
  480. if (NULL == dev)
  481. return -ENOMEM;
  482. dev->name = ACC_INPUTDEV_NAME;
  483. input_set_capability(dev, EV_ABS, EVENT_TYPE_ACCEL_X);
  484. input_set_capability(dev, EV_ABS, EVENT_TYPE_ACCEL_Y);
  485. input_set_capability(dev, EV_ABS, EVENT_TYPE_ACCEL_Z);
  486. input_set_capability(dev, EV_ABS, EVENT_TYPE_ACCEL_STATUS);
  487. input_set_capability(dev, EV_REL, EVENT_TYPE_ACCEL_UPDATE);
  488. input_set_capability(dev, EV_REL, EVENT_TYPE_ACCEL_TIMESTAMP_HI);
  489. input_set_capability(dev, EV_REL, EVENT_TYPE_ACCEL_TIMESTAMP_LO);
  490. input_set_abs_params(dev, EVENT_TYPE_ACCEL_X, ACC_VALUE_MIN, ACC_VALUE_MAX, 0, 0);
  491. input_set_abs_params(dev, EVENT_TYPE_ACCEL_Y, ACC_VALUE_MIN, ACC_VALUE_MAX, 0, 0);
  492. input_set_abs_params(dev, EVENT_TYPE_ACCEL_Z, ACC_VALUE_MIN, ACC_VALUE_MAX, 0, 0);
  493. input_set_abs_params(dev, EVENT_TYPE_ACCEL_STATUS, ACC_STATUS_MIN, ACC_STATUS_MAX, 0, 0);
  494. input_set_drvdata(dev, cxt);
  495. err = input_register_device(dev);
  496. if (err < 0) {
  497. input_free_device(dev);
  498. return err;
  499. }
  500. cxt->idev = dev;
  501. return 0;
  502. }
  503. DEVICE_ATTR(accenablenodata, S_IWUSR | S_IRUGO, acc_show_enable_nodata, acc_store_enable_nodata);
  504. DEVICE_ATTR(accactive, S_IWUSR | S_IRUGO, acc_show_active, acc_store_active);
  505. DEVICE_ATTR(accdelay, S_IWUSR | S_IRUGO, acc_show_delay, acc_store_delay);
  506. DEVICE_ATTR(accbatch, S_IWUSR | S_IRUGO, acc_show_batch, acc_store_batch);
  507. DEVICE_ATTR(accflush, S_IWUSR | S_IRUGO, acc_show_flush, acc_store_flush);
  508. DEVICE_ATTR(accdevnum, S_IWUSR | S_IRUGO, acc_show_sensordevnum, NULL);
  509. static struct attribute *acc_attributes[] = {
  510. &dev_attr_accenablenodata.attr,
  511. &dev_attr_accactive.attr,
  512. &dev_attr_accdelay.attr,
  513. &dev_attr_accbatch.attr,
  514. &dev_attr_accflush.attr,
  515. &dev_attr_accdevnum.attr,
  516. NULL
  517. };
  518. static struct attribute_group acc_attribute_group = {
  519. .attrs = acc_attributes
  520. };
  521. int acc_register_data_path(struct acc_data_path *data)
  522. {
  523. struct acc_context *cxt = NULL;
  524. cxt = acc_context_obj;
  525. cxt->acc_data.get_data = data->get_data;
  526. cxt->acc_data.get_raw_data = data->get_raw_data;
  527. cxt->acc_data.vender_div = data->vender_div;
  528. ACC_LOG("acc register data path vender_div: %d\n", cxt->acc_data.vender_div);
  529. if (NULL == cxt->acc_data.get_data) {
  530. ACC_LOG("acc register data path fail\n");
  531. return -1;
  532. }
  533. return 0;
  534. }
  535. int acc_register_control_path(struct acc_control_path *ctl)
  536. {
  537. struct acc_context *cxt = NULL;
  538. int err = 0;
  539. cxt = acc_context_obj;
  540. cxt->acc_ctl.set_delay = ctl->set_delay;
  541. cxt->acc_ctl.open_report_data = ctl->open_report_data;
  542. cxt->acc_ctl.enable_nodata = ctl->enable_nodata;
  543. cxt->acc_ctl.is_support_batch = ctl->is_support_batch;
  544. cxt->acc_ctl.is_report_input_direct = ctl->is_report_input_direct;
  545. cxt->acc_ctl.acc_calibration = ctl->acc_calibration;
  546. if (NULL == cxt->acc_ctl.set_delay || NULL == cxt->acc_ctl.open_report_data
  547. || NULL == cxt->acc_ctl.enable_nodata) {
  548. ACC_LOG("acc register control path fail\n");
  549. return -1;
  550. }
  551. /* add misc dev for sensor hal control cmd */
  552. err = acc_misc_init(acc_context_obj);
  553. if (err) {
  554. ACC_ERR("unable to register acc misc device!!\n");
  555. return -2;
  556. }
  557. err = sysfs_create_group(&acc_context_obj->mdev.this_device->kobj, &acc_attribute_group);
  558. if (err < 0) {
  559. ACC_ERR("unable to create acc attribute file\n");
  560. return -3;
  561. }
  562. kobject_uevent(&acc_context_obj->mdev.this_device->kobj, KOBJ_ADD);
  563. return 0;
  564. }
  565. int acc_data_report(int x, int y, int z, int status, int64_t nt)
  566. {
  567. /* ACC_LOG("+acc_data_report! %d, %d, %d, %d\n",x,y,z,status); */
  568. struct acc_context *cxt = NULL;
  569. int err = 0;
  570. cxt = acc_context_obj;
  571. input_report_abs(cxt->idev, EVENT_TYPE_ACCEL_X, x);
  572. input_report_abs(cxt->idev, EVENT_TYPE_ACCEL_Y, y);
  573. input_report_abs(cxt->idev, EVENT_TYPE_ACCEL_Z, z);
  574. input_report_abs(cxt->idev, EVENT_TYPE_ACCEL_STATUS, status);
  575. input_report_rel(cxt->idev, EVENT_TYPE_ACCEL_UPDATE, 1);
  576. input_report_rel(cxt->idev, EVENT_TYPE_ACCEL_TIMESTAMP_HI, nt >> 32);
  577. input_report_rel(cxt->idev, EVENT_TYPE_ACCEL_TIMESTAMP_LO, nt & 0xFFFFFFFFLL);
  578. input_sync(cxt->idev);
  579. return err;
  580. }
  581. static int acc_probe(void)
  582. {
  583. int err;
  584. ACC_LOG("+++++++++++++accel_probe!!\n");
  585. acc_context_obj = acc_context_alloc_object();
  586. if (!acc_context_obj) {
  587. err = -ENOMEM;
  588. ACC_ERR("unable to allocate devobj!\n");
  589. goto exit_alloc_data_failed;
  590. }
  591. /* init real acceleration driver */
  592. err = acc_real_driver_init();
  593. if (err) {
  594. ACC_ERR("acc real driver init fail\n");
  595. goto real_driver_init_fail;
  596. }
  597. /* init acc common factory mode misc device */
  598. err = acc_factory_device_init();
  599. if (err)
  600. ACC_ERR("acc factory device already registed\n");
  601. /* init input dev */
  602. err = acc_input_init(acc_context_obj);
  603. if (err) {
  604. ACC_ERR("unable to register acc input device!\n");
  605. goto exit_alloc_input_dev_failed;
  606. }
  607. ACC_LOG("----accel_probe OK !!\n");
  608. return 0;
  609. real_driver_init_fail:
  610. exit_alloc_input_dev_failed:
  611. kfree(acc_context_obj);
  612. exit_alloc_data_failed:
  613. ACC_ERR("----accel_probe fail !!!\n");
  614. return err;
  615. }
  616. static int acc_remove(void)
  617. {
  618. int err = 0;
  619. input_unregister_device(acc_context_obj->idev);
  620. sysfs_remove_group(&acc_context_obj->idev->dev.kobj, &acc_attribute_group);
  621. err = misc_deregister(&acc_context_obj->mdev);
  622. if (err)
  623. ACC_ERR("misc_deregister fail: %d\n", err);
  624. kfree(acc_context_obj);
  625. return 0;
  626. }
  627. static int __init acc_init(void)
  628. {
  629. ACC_LOG("acc_init\n");
  630. if (acc_probe()) {
  631. ACC_ERR("failed to register acc driver\n");
  632. return -ENODEV;
  633. }
  634. return 0;
  635. }
  636. static void __exit acc_exit(void)
  637. {
  638. acc_remove();
  639. platform_driver_unregister(&gsensor_driver);
  640. }
  641. late_initcall(acc_init);
  642. MODULE_LICENSE("GPL");
  643. MODULE_DESCRIPTION("ACCELEROMETER device driver");
  644. MODULE_AUTHOR("Mediatek");