modem_cldma.c 138 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858
  1. /*
  2. * this is a CLDMA modem driver.
  3. *
  4. * V0.1: Xiao Wang <xiao.wang@mediatek.com>
  5. */
  6. #include <linux/list.h>
  7. #include <linux/device.h>
  8. #include <linux/module.h>
  9. #include <linux/kernel.h>
  10. #include <linux/err.h>
  11. #include <linux/kdev_t.h>
  12. #include <linux/slab.h>
  13. #include <linux/wait.h>
  14. #include <linux/sched.h>
  15. #include <linux/kthread.h>
  16. #include <linux/delay.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/timer.h>
  19. #include <linux/fs.h>
  20. #include <linux/netdevice.h>
  21. #include <linux/random.h>
  22. #include <linux/platform_device.h>
  23. #if defined(CONFIG_MTK_AEE_FEATURE)
  24. #include <mt-plat/aee.h>
  25. #endif
  26. #include <mt_spm_sleep.h>
  27. #include <mt-plat/mt_boot.h>
  28. #include "ccci_config.h"
  29. #include "ccci_core.h"
  30. #include "ccci_bm.h"
  31. #include "ccci_platform.h"
  32. #include "modem_cldma.h"
  33. #include "cldma_platform.h"
  34. #include "cldma_reg.h"
  35. #include "modem_reg_base.h"
  36. #include <mach/mt_pbm.h>
  37. #if defined(CLDMA_TRACE) || defined(CCCI_SKB_TRACE)
  38. #define CREATE_TRACE_POINTS
  39. #include "modem_cldma_events.h"
  40. #endif
  41. #ifdef CONFIG_OF
  42. #include <linux/of.h>
  43. #include <linux/of_fdt.h>
  44. #include <linux/of_irq.h>
  45. #include <linux/of_address.h>
  46. #endif
  47. #ifdef ENABLE_CLDMA_AP_SIDE
  48. #include <linux/syscore_ops.h>
  49. #endif
  50. #if defined(ENABLE_32K_CLK_LESS)
  51. #include <mt-plat/mtk_rtc.h>
  52. #endif
  53. static unsigned int trace_sample_time = 200000000;
  54. static int md_cd_ccif_send(struct ccci_modem *md, int channel_id);
  55. /* CLDMA setting */
  56. /* always keep this in mind: what if there are more than 1 modems using CLDMA... */
  57. /*
  58. * we use this as rgpd->data_allow_len, so skb length must be >= this size, check ccci_bm.c's skb pool design.
  59. * channel 3 is for network in normal mode, but for mdlogger_ctrl in exception mode, so choose the max packet size.
  60. */
  61. static int net_rx_queue_buffer_size[CLDMA_RXQ_NUM] = { 0, 0, 0, SKB_1_5K, SKB_1_5K, SKB_1_5K, 0, 0 };
  62. static int normal_rx_queue_buffer_size[CLDMA_RXQ_NUM] = { SKB_4K, SKB_4K, SKB_4K, SKB_4K, 0, 0, SKB_4K, SKB_16 };
  63. #if 0 /* for debug log dump convenience */
  64. static int net_rx_queue_buffer_number[CLDMA_RXQ_NUM] = { 0, 0, 0, 16, 16, 16, 0, 0 };
  65. static int net_tx_queue_buffer_number[CLDMA_TXQ_NUM] = { 0, 0, 0, 16, 16, 16, 0, 0 };
  66. #else
  67. static int net_rx_queue_buffer_number[CLDMA_RXQ_NUM] = { 0, 0, 0, 256, 256, 64, 0, 0 };
  68. static int net_tx_queue_buffer_number[CLDMA_TXQ_NUM] = { 0, 0, 0, 256, 256, 64, 0, 0 };
  69. #endif
  70. static int normal_rx_queue_buffer_number[CLDMA_RXQ_NUM] = { 16, 16, 16, 16, 0, 0, 16, 2 };
  71. static int normal_tx_queue_buffer_number[CLDMA_TXQ_NUM] = { 16, 16, 16, 16, 0, 0, 16, 2 };
  72. static int net_rx_queue2ring[CLDMA_RXQ_NUM] = { -1, -1, -1, 0, 1, 2, -1, -1 };
  73. static int net_tx_queue2ring[CLDMA_TXQ_NUM] = { -1, -1, -1, 0, 1, 2, -1, -1 };
  74. static int normal_rx_queue2ring[CLDMA_RXQ_NUM] = { 0, 1, 2, 3, -1, -1, 4, 5 };
  75. static int normal_tx_queue2ring[CLDMA_TXQ_NUM] = { 0, 1, 2, 3, -1, -1, 4, 5 };
  76. static int net_rx_ring2queue[NET_RXQ_NUM] = { 3, 4, 5 };
  77. static int net_tx_ring2queue[NET_TXQ_NUM] = { 3, 4, 5 };
  78. static int normal_rx_ring2queue[NORMAL_RXQ_NUM] = { 0, 1, 2, 3, 6, 7 };
  79. static int normal_tx_ring2queue[NORMAL_TXQ_NUM] = { 0, 1, 2, 3, 6, 7 };
  80. static const unsigned char high_priority_queue_mask = 0x00;
  81. #define NET_TX_QUEUE_MASK 0x38 /* 3, 4, 5 */
  82. #define NET_RX_QUEUE_MASK 0x38 /* 3, 4, 5 */
  83. #define NAPI_QUEUE_MASK NET_RX_QUEUE_MASK /* Rx, only Rx-exclusive port can enable NAPI */
  84. #define NORMAL_TX_QUEUE_MASK 0xCF /* 0, 1, 2, 3, 6, 7 */
  85. #define NORMAL_RX_QUEUE_MASK 0xCF /* 0, 1, 2, 3, 6, 7 */
  86. #define NONSTOP_QUEUE_MASK 0xF0 /* Rx, for convenience, queue 0,1,2,3 are non-stop */
  87. #define NONSTOP_QUEUE_MASK_32 0xF0F0F0F0
  88. #define CLDMA_CG_POLL 6
  89. #define CLDMA_ACTIVE_T 20
  90. #define BOOT_TIMER_ON 20/*10*/
  91. #define LOW_PRIORITY_QUEUE (0x4)
  92. #define TAG "mcd"
  93. #define IS_NET_QUE(md, qno) \
  94. ((md->md_state != EXCEPTION || md->ex_stage != EX_INIT_DONE) && ((1<<qno) & NET_RX_QUEUE_MASK))
  95. static void cldma_dump_gpd_queue(struct ccci_modem *md, unsigned int qno)
  96. {
  97. unsigned int *tmp;
  98. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  99. struct cldma_request *req = NULL;
  100. #ifdef CLDMA_DUMP_BD
  101. struct cldma_request *req_bd = NULL;
  102. #endif
  103. /* use request's link head to traverse */
  104. CCCI_INF_MSG(md->index, TAG, " dump txq %d request\n", qno);
  105. list_for_each_entry(req, &md_ctrl->txq[qno].tr_ring->gpd_ring, entry) {
  106. tmp = (unsigned int *)req->gpd;
  107. CCCI_INF_MSG(md->index, TAG, " 0x%p: %X %X %X %X\n", req->gpd,
  108. *tmp, *(tmp + 1), *(tmp + 2), *(tmp + 3));
  109. #ifdef CLDMA_DUMP_BD
  110. list_for_each_entry(req_bd, &req->bd, entry) {
  111. tmp = (unsigned int *)req_bd->gpd;
  112. CCCI_INF_MSG(md->index, TAG, "-0x%p: %X %X %X %X\n", req_bd->gpd,
  113. *tmp, *(tmp + 1), *(tmp + 2), *(tmp + 3));
  114. }
  115. #endif
  116. }
  117. /* use request's link head to traverse */
  118. CCCI_INF_MSG(md->index, TAG, " dump rxq %d, tr_ring=%p -> gpd_ring=0x%p\n", qno, md_ctrl->rxq[qno].tr_ring,
  119. &md_ctrl->rxq[qno].tr_ring->gpd_ring);
  120. list_for_each_entry(req, &md_ctrl->rxq[qno].tr_ring->gpd_ring, entry) {
  121. tmp = (unsigned int *)req->gpd;
  122. CCCI_INF_MSG(md->index, TAG, " 0x%p/0x%p: %X %X %X %X\n", req->gpd, req->skb,
  123. *tmp, *(tmp + 1), *(tmp + 2), *(tmp + 3));
  124. }
  125. }
  126. static void cldma_dump_all_gpd(struct ccci_modem *md)
  127. {
  128. int i;
  129. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  130. for (i = 0; i < QUEUE_LEN(md_ctrl->txq); i++)
  131. cldma_dump_gpd_queue(md, i);
  132. }
  133. #if TRAFFIC_MONITOR_INTERVAL
  134. void md_cd_traffic_monitor_func(unsigned long data)
  135. {
  136. struct ccci_modem *md = (struct ccci_modem *)data;
  137. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  138. struct ccci_port *port;
  139. unsigned long long port_full = 0; /* hardcode, port number should not be larger than 64 */
  140. unsigned int i;
  141. for (i = 0; i < md->port_number; i++) {
  142. port = md->ports + i;
  143. if (port->flags & PORT_F_RX_FULLED)
  144. port_full |= (1 << i);
  145. if (port->tx_busy_count != 0 || port->rx_busy_count != 0) {
  146. CCCI_INF_MSG(md->index, TAG, "port %s busy count %d/%d\n", port->name,
  147. port->tx_busy_count, port->rx_busy_count);
  148. port->tx_busy_count = 0;
  149. port->rx_busy_count = 0;
  150. }
  151. if (port->ops->dump_info)
  152. port->ops->dump_info(port, 0);
  153. }
  154. for (i = 0; i < QUEUE_LEN(md_ctrl->txq); i++) {
  155. if (md_ctrl->txq[i].busy_count != 0) {
  156. CCCI_INF_MSG(md->index, TAG, "Txq%d busy count %d\n", i, md_ctrl->txq[i].busy_count);
  157. md_ctrl->txq[i].busy_count = 0;
  158. }
  159. }
  160. #ifdef ENABLE_CLDMA_TIMER
  161. CCCI_INF_MSG(md->index, TAG, "traffic(tx_timer): [3]%llu %llu, [4]%llu %llu, [5]%llu %llu\n",
  162. md_ctrl->txq[3].timeout_start, md_ctrl->txq[3].timeout_end,
  163. md_ctrl->txq[4].timeout_start, md_ctrl->txq[4].timeout_end,
  164. md_ctrl->txq[5].timeout_start, md_ctrl->txq[5].timeout_end);
  165. md_cd_lock_cldma_clock_src(1);
  166. CCCI_INF_MSG(md->index, TAG,
  167. "traffic(tx_done_timer): CLDMA_AP_L2TIMR0=0x%x [3]%d %llu, [4]%d %llu, [5]%d %llu\n",
  168. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2TIMR0),
  169. md_ctrl->tx_done_last_count[3], md_ctrl->tx_done_last_start_time[3],
  170. md_ctrl->tx_done_last_count[4], md_ctrl->tx_done_last_start_time[4],
  171. md_ctrl->tx_done_last_count[5], md_ctrl->tx_done_last_start_time[5]
  172. );
  173. md_cd_lock_cldma_clock_src(0);
  174. #endif
  175. CCCI_INF_MSG(md->index, TAG,
  176. "traffic(%d/%llx):Tx(%x)%d-%d,%d-%d,%d-%d,%d-%d,%d-%d,%d-%d,%d-%d,%d-%d:Rx(%x)%d,%d,%d,%d,%d,%d,%d,%d\n",
  177. md->md_state, port_full,
  178. md_ctrl->txq_active,
  179. md_ctrl->tx_pre_traffic_monitor[0], md_ctrl->tx_traffic_monitor[0],
  180. md_ctrl->tx_pre_traffic_monitor[1], md_ctrl->tx_traffic_monitor[1],
  181. md_ctrl->tx_pre_traffic_monitor[2], md_ctrl->tx_traffic_monitor[2],
  182. md_ctrl->tx_pre_traffic_monitor[3], md_ctrl->tx_traffic_monitor[3],
  183. md_ctrl->tx_pre_traffic_monitor[4], md_ctrl->tx_traffic_monitor[4],
  184. md_ctrl->tx_pre_traffic_monitor[5], md_ctrl->tx_traffic_monitor[5],
  185. md_ctrl->tx_pre_traffic_monitor[6], md_ctrl->tx_traffic_monitor[6],
  186. md_ctrl->tx_pre_traffic_monitor[7], md_ctrl->tx_traffic_monitor[7],
  187. md_ctrl->rxq_active,
  188. md_ctrl->rx_traffic_monitor[0], md_ctrl->rx_traffic_monitor[1],
  189. md_ctrl->rx_traffic_monitor[2], md_ctrl->rx_traffic_monitor[3],
  190. md_ctrl->rx_traffic_monitor[4], md_ctrl->rx_traffic_monitor[5],
  191. md_ctrl->rx_traffic_monitor[6], md_ctrl->rx_traffic_monitor[7]);
  192. CCCI_DBG_MSG(md->index, TAG, "net Rx skb queue:%u %u %u / %u %u %u\n",
  193. md_ctrl->rxq[3].skb_list.max_history, md_ctrl->rxq[4].skb_list.max_history,
  194. md_ctrl->rxq[5].skb_list.max_history, md_ctrl->rxq[3].skb_list.skb_list.qlen,
  195. md_ctrl->rxq[4].skb_list.skb_list.qlen, md_ctrl->rxq[5].skb_list.skb_list.qlen);
  196. ccci_channel_dump_packet_counter(md);
  197. }
  198. #endif
  199. static void cldma_dump_packet_history(struct ccci_modem *md)
  200. {
  201. int i;
  202. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  203. for (i = 0; i < QUEUE_LEN(md_ctrl->txq); i++) {
  204. CCCI_INF_MSG(md->index, TAG, "Current txq%d pos: tr_done=%x, tx_xmit=%x\n", i,
  205. (unsigned int)md_ctrl->txq[i].tr_done->gpd_addr,
  206. (unsigned int)md_ctrl->txq[i].tx_xmit->gpd_addr);
  207. }
  208. for (i = 0; i < QUEUE_LEN(md_ctrl->rxq); i++) {
  209. CCCI_INF_MSG(md->index, TAG, "Current rxq%d pos: tr_done=%x, rx_refill=%x\n", i,
  210. (unsigned int)md_ctrl->rxq[i].tr_done->gpd_addr,
  211. (unsigned int)md_ctrl->rxq[i].rx_refill->gpd_addr);
  212. }
  213. ccci_dump_log_history(md, 1, QUEUE_LEN(md_ctrl->txq), QUEUE_LEN(md_ctrl->rxq));
  214. }
  215. static void cldma_dump_queue_history(struct ccci_modem *md, unsigned int qno)
  216. {
  217. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  218. CCCI_INF_MSG(md->index, TAG, "Current txq%d pos: tr_done=%x, tx_xmit=%x\n", qno,
  219. (unsigned int)md_ctrl->txq[qno].tr_done->gpd_addr, (unsigned int)md_ctrl->txq[qno].tx_xmit->gpd_addr);
  220. CCCI_INF_MSG(md->index, TAG, "Current rxq%d pos: tr_done=%x, rx_refill=%x\n", qno,
  221. (unsigned int)md_ctrl->rxq[qno].tr_done->gpd_addr, (unsigned int)md_ctrl->rxq[qno].rx_refill->gpd_addr);
  222. ccci_dump_log_history(md, 0, qno, qno);
  223. }
  224. #if CHECKSUM_SIZE
  225. static inline void caculate_checksum(char *address, char first_byte)
  226. {
  227. int i;
  228. char sum = first_byte;
  229. for (i = 2; i < CHECKSUM_SIZE; i++)
  230. sum += *(address + i);
  231. *(address + 1) = 0xFF - sum;
  232. }
  233. #else
  234. #define caculate_checksum(address, first_byte)
  235. #endif
  236. static int cldma_queue_broadcast_state(struct ccci_modem *md, MD_STATE state, DIRECTION dir, int index)
  237. {
  238. struct ccci_port *port;
  239. int i, match = 0;
  240. for (i = 0; i < md->port_number; i++) {
  241. port = md->ports + i;
  242. /* consider network data/ack queue design */
  243. if (md->md_state == EXCEPTION)
  244. match = dir == OUT ? index == port->txq_exp_index : index == port->rxq_exp_index;
  245. else
  246. match = dir == OUT ? index == port->txq_index
  247. || index == (port->txq_exp_index & 0x0F) : index == port->rxq_index;
  248. if (match && port->ops->md_state_notice)
  249. port->ops->md_state_notice(port, state);
  250. }
  251. return 0;
  252. }
  253. #ifdef ENABLE_CLDMA_TIMER
  254. static void cldma_timeout_timer_func(unsigned long data)
  255. {
  256. struct md_cd_queue *queue = (struct md_cd_queue *)data;
  257. struct ccci_modem *md = queue->modem;
  258. struct ccci_port *port;
  259. unsigned long long port_full = 0, i;
  260. if (MD_IN_DEBUG(md))
  261. return;
  262. for (i = 0; i < md->port_number; i++) {
  263. port = md->ports + i;
  264. if (port->flags & PORT_F_RX_FULLED)
  265. port_full |= (1 << i);
  266. }
  267. CCCI_ERR_MSG(md->index, TAG, "CLDMA txq%d no response for %d seconds, ports=%llx\n", queue->index,
  268. CLDMA_ACTIVE_T, port_full);
  269. md_cd_traffic_monitor_func((unsigned long)md);
  270. md->ops->dump_info(md, DUMP_FLAG_CLDMA, NULL, queue->index);
  271. CCCI_ERR_MSG(md->index, TAG, "CLDMA no response, force assert md by CCIF_INTERRUPT\n");
  272. md->ops->force_assert(md, CCIF_INTERRUPT);
  273. }
  274. #endif
  275. static int cldma_gpd_rx_refill(struct md_cd_queue *queue)
  276. {
  277. struct ccci_modem *md = queue->modem;
  278. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  279. struct cldma_request *req;
  280. struct cldma_rgpd *rgpd;
  281. struct sk_buff *new_skb = NULL;
  282. int count = 0;
  283. unsigned long flags;
  284. char is_net_queue = IS_NET_QUE(md, queue->index);
  285. while (1) {
  286. spin_lock_irqsave(&queue->ring_lock, flags);
  287. req = queue->rx_refill;
  288. if (req->skb != NULL) {
  289. spin_unlock_irqrestore(&queue->ring_lock, flags);
  290. break;
  291. }
  292. spin_unlock_irqrestore(&queue->ring_lock, flags);
  293. /* allocate a new skb outside of lock */
  294. new_skb = ccci_alloc_skb(queue->tr_ring->pkt_size, !is_net_queue, 1);
  295. if (likely(new_skb)) {
  296. rgpd = (struct cldma_rgpd *)req->gpd;
  297. req->data_buffer_ptr_saved =
  298. dma_map_single(&md->plat_dev->dev, new_skb->data, skb_data_size(new_skb), DMA_FROM_DEVICE);
  299. rgpd->data_buff_bd_ptr = (u32) (req->data_buffer_ptr_saved);
  300. rgpd->data_buff_len = 0;
  301. /* checksum of GPD */
  302. caculate_checksum((char *)rgpd, 0x81);
  303. /* set HWO and mark cldma_request as available*/
  304. spin_lock_irqsave(&queue->ring_lock, flags);
  305. spin_lock(&md_ctrl->cldma_timeout_lock);
  306. cldma_write8(&rgpd->gpd_flags, 0, 0x81);
  307. spin_unlock(&md_ctrl->cldma_timeout_lock);
  308. req->skb = new_skb;
  309. spin_unlock_irqrestore(&queue->ring_lock, flags);
  310. /* step forward */
  311. queue->rx_refill = cldma_ring_step_forward(queue->tr_ring, req);
  312. count++;
  313. } else {
  314. CCCI_ERR_MSG(md->index, TAG, "alloc skb fail on q%d\n", queue->index);
  315. #ifdef CLDMA_TRACE
  316. trace_cldma_error(queue->index, 0, NO_SKB, __LINE__);
  317. #endif
  318. /* don not break out, run again */
  319. msleep(100);
  320. }
  321. }
  322. return count;
  323. }
  324. static int cldma_gpd_rx_collect(struct md_cd_queue *queue, int budget, int blocking, int *result,
  325. int *rxbytes)
  326. {
  327. struct ccci_modem *md = queue->modem;
  328. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  329. struct cldma_request *req;
  330. struct cldma_rgpd *rgpd;
  331. struct ccci_request *new_req = NULL;
  332. struct ccci_header ccci_h;
  333. struct sk_buff *skb = NULL;
  334. #ifdef CLDMA_TRACE
  335. unsigned long long req_alloc_time = 0;
  336. unsigned long long port_recv_time = 0;
  337. unsigned long long total_handle_time = 0;
  338. #endif
  339. int ret = 0, count = 0;
  340. unsigned long long skb_bytes = 0;
  341. unsigned long flags;
  342. *result = UNDER_BUDGET;
  343. *rxbytes = 0;
  344. while (1) {
  345. #ifdef CLDMA_TRACE
  346. total_handle_time = sched_clock();
  347. #endif
  348. spin_lock_irqsave(&queue->ring_lock, flags);
  349. req = queue->tr_done;
  350. rgpd = (struct cldma_rgpd *)req->gpd;
  351. if (!((rgpd->gpd_flags & 0x1) == 0 && req->skb)) {
  352. spin_unlock_irqrestore(&queue->ring_lock, flags);
  353. break;
  354. }
  355. spin_unlock_irqrestore(&queue->ring_lock, flags);
  356. skb = req->skb;
  357. /* update skb */
  358. dma_unmap_single(&md->plat_dev->dev, req->data_buffer_ptr_saved,
  359. skb_data_size(req->skb), DMA_FROM_DEVICE);
  360. skb_put(skb, rgpd->data_buff_len);
  361. skb_bytes = skb->len;
  362. ccci_h = *((struct ccci_header *)skb->data);
  363. /* check wakeup source */
  364. if (atomic_cmpxchg(&md->wakeup_src, 1, 0) == 1)
  365. CCCI_INF_MSG(md->index, TAG, "CLDMA_MD wakeup source:(%d/%d)\n", queue->index, ccci_h.channel);
  366. CCCI_DBG_MSG(md->index, TAG, "recv Rx msg (%x %x %x %x) rxq=%d len=%d\n",
  367. ccci_h.data[0], ccci_h.data[1], *(((u32 *)&ccci_h) + 2), ccci_h.reserved, queue->index,
  368. rgpd->data_buff_len);
  369. /*
  370. * allocate a new wrapper, do nothing if this failed, just wait someone to collect this queue again,
  371. * if lucky enough. for network queue, no wrapper is used, here we assume CCMNI port must can
  372. * handle skb directly.
  373. */
  374. #ifdef CLDMA_TRACE
  375. req_alloc_time = sched_clock();
  376. #endif
  377. new_req = ccci_alloc_req(IN, -1, blocking, 0);
  378. #ifdef CLDMA_TRACE
  379. port_recv_time = sched_clock();
  380. req_alloc_time = port_recv_time - req_alloc_time;
  381. #endif
  382. if (unlikely(!new_req)) {
  383. CCCI_ERR_MSG(md->index, TAG, "alloc req fail on q%d\n", queue->index);
  384. *result = NO_REQ;
  385. #ifdef CLDMA_TRACE
  386. trace_cldma_error(queue->index, ccci_h.channel, NO_REQ, __LINE__);
  387. #endif
  388. goto leave_skb_in_ring;
  389. }
  390. new_req->skb = skb;
  391. INIT_LIST_HEAD(&new_req->entry); /* as port will run list_del */
  392. ret = ccci_port_recv_request(md, new_req, skb);
  393. #ifdef CLDMA_TRACE
  394. port_recv_time = (sched_clock() - port_recv_time);
  395. #endif
  396. CCCI_DBG_MSG(md->index, TAG, "Rx port recv req ret=%d\n", ret);
  397. spin_lock_irqsave(&queue->ring_lock, flags);
  398. if (ret >= 0 || ret == -CCCI_ERR_DROP_PACKET) {
  399. /* mark cldma_request as available */
  400. req->skb = NULL;
  401. rgpd->data_buff_bd_ptr = 0;
  402. /* step forward */
  403. queue->tr_done = cldma_ring_step_forward(queue->tr_ring, req);
  404. spin_unlock_irqrestore(&queue->ring_lock, flags);
  405. /* update log */
  406. ccci_chk_rx_seq_num(md, &ccci_h, queue->index);
  407. #if TRAFFIC_MONITOR_INTERVAL
  408. md_ctrl->rx_traffic_monitor[queue->index]++;
  409. #endif
  410. *rxbytes += skb_bytes;
  411. ccci_dump_log_add(md, IN, (int)queue->index, &ccci_h, (ret >= 0 ? 0 : 1));
  412. ccci_channel_update_packet_counter(md, &ccci_h);
  413. /*
  414. * here must queue work for each packet, think this flow:
  415. collect work sets 1st req->skb to NULL; refill work runs;
  416. * refill work sees next req->skb is not null and quits!;
  417. collect works set 2nd seq->skb to NULL. if we don't queue
  418. * work for the 2nd req, it will not be refilled,
  419. and calls assert if md_cd_clear_all_queue runs after.
  420. */
  421. queue_work(queue->refill_worker, &queue->cldma_refill_work);
  422. } else {
  423. spin_unlock_irqrestore(&queue->ring_lock, flags);
  424. *result = PORT_REFUSE;
  425. #ifdef CLDMA_TRACE
  426. trace_cldma_error(queue->index, ccci_h.channel, PORT_REFUSE, __LINE__);
  427. #endif
  428. leave_skb_in_ring:
  429. /* undo skb, as it remains in buffer and will be handled later */
  430. skb_reset_tail_pointer(skb);
  431. skb->len = 0;
  432. if (new_req) {
  433. /* free the wrapper */
  434. list_del(&new_req->entry);
  435. new_req->policy = NOOP;
  436. ccci_free_req(new_req);
  437. }
  438. break;
  439. }
  440. #ifdef CLDMA_TRACE
  441. total_handle_time = (sched_clock() - total_handle_time);
  442. trace_cldma_rx(queue->index, ccci_h.channel, req_alloc_time, port_recv_time, count,
  443. total_handle_time, skb_bytes);
  444. #endif
  445. /* check budget */
  446. if (count++ >= budget)
  447. *result = REACH_BUDGET;
  448. }
  449. /*
  450. * do not use if(count == RING_BUFFER_SIZE) to resume Rx queue.
  451. * resume Rx queue every time. we may not handle all RX ring buffer at one time due to
  452. * user can refuse to receive patckets. so when a queue is stopped after it consumes all
  453. * GPD, there is a chance that "count" never reaches ring buffer size and the queue is stopped
  454. * permanentely.
  455. *
  456. * resume after all RGPD handled also makes budget useless when it is less than ring buffer length.
  457. */
  458. /* if result == 0, that means all skb have been handled */
  459. CCCI_DBG_MSG(md->index, TAG, "CLDMA Rxq%d collected, result=%d, count=%d\n", queue->index, *result, count);
  460. return count;
  461. }
  462. /*
  463. * a no lock version for net queue, as net queue does not support flow control,
  464. * may be called from workqueue or NAPI context
  465. */
  466. static int cldma_gpd_net_rx_collect(struct md_cd_queue *queue, int budget, int blocking, int *result,
  467. int *rxbytes)
  468. {
  469. struct ccci_modem *md = queue->modem;
  470. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  471. struct cldma_request *req;
  472. struct cldma_rgpd *rgpd;
  473. struct sk_buff *skb = NULL;
  474. struct sk_buff *new_skb = NULL;
  475. #ifdef CLDMA_TRACE
  476. unsigned long long port_recv_time = 0;
  477. unsigned long long skb_alloc_time = 0;
  478. unsigned long long total_handle_time = 0;
  479. unsigned long long temp_time = 0;
  480. #endif
  481. int count = 0;
  482. unsigned long long skb_bytes = 0;
  483. char using_napi = md->capability & MODEM_CAP_NAPI;
  484. unsigned long flags;
  485. *result = UNDER_BUDGET;
  486. *rxbytes = 0;
  487. while (1) {
  488. #ifdef CLDMA_TRACE
  489. total_handle_time = port_recv_time = sched_clock();
  490. #endif
  491. req = queue->tr_done;
  492. rgpd = (struct cldma_rgpd *)req->gpd;
  493. if (!((rgpd->gpd_flags & 0x1) == 0 && req->skb))
  494. break;
  495. skb = req->skb;
  496. /* mark cldma_request as available */
  497. req->skb = NULL;
  498. rgpd->data_buff_bd_ptr = 0;
  499. /* update skb */
  500. dma_unmap_single(&md->plat_dev->dev, req->data_buffer_ptr_saved, skb_data_size(skb), DMA_FROM_DEVICE);
  501. skb_put(skb, rgpd->data_buff_len);
  502. skb_bytes = skb->len;
  503. *rxbytes += skb_bytes;
  504. ccci_chk_rx_seq_num(md, (struct ccci_header *)skb->data, queue->index);
  505. /* upload skb */
  506. if (using_napi) {
  507. ccci_port_recv_request(md, NULL, skb);
  508. } else {
  509. ccci_skb_enqueue(&queue->skb_list, skb);
  510. wake_up_all(&queue->rx_wq);
  511. }
  512. /* step forward */
  513. queue->tr_done = cldma_ring_step_forward(queue->tr_ring, req);
  514. #ifdef CLDMA_TRACE
  515. port_recv_time = ((skb_alloc_time = sched_clock()) - port_recv_time);
  516. #endif
  517. /* refill */
  518. req = queue->rx_refill;
  519. if (!req->skb) {
  520. new_skb = ccci_alloc_skb(queue->tr_ring->pkt_size, 0, blocking);
  521. if (likely(new_skb)) {
  522. rgpd = (struct cldma_rgpd *)req->gpd;
  523. req->data_buffer_ptr_saved =
  524. dma_map_single(&md->plat_dev->dev, new_skb->data, skb_data_size(new_skb),
  525. DMA_FROM_DEVICE);
  526. rgpd->data_buff_bd_ptr = (u32) (req->data_buffer_ptr_saved);
  527. rgpd->data_buff_len = 0;
  528. /* checksum of GPD */
  529. caculate_checksum((char *)rgpd, 0x81);
  530. /* set HWO, no need to hold ring_lock as no racer */
  531. spin_lock_irqsave(&md_ctrl->cldma_timeout_lock, flags);
  532. cldma_write8(&rgpd->gpd_flags, 0, 0x81);
  533. spin_unlock_irqrestore(&md_ctrl->cldma_timeout_lock, flags);
  534. /* mark cldma_request as available */
  535. req->skb = new_skb;
  536. /* step forward */
  537. queue->rx_refill = cldma_ring_step_forward(queue->tr_ring, req);
  538. } else {
  539. *result = NO_SKB;
  540. CCCI_ERR_MSG(md->index, TAG, "alloc skb fail on q%d\n", queue->index);
  541. }
  542. }
  543. #ifdef CLDMA_TRACE
  544. temp_time = sched_clock();
  545. skb_alloc_time = temp_time - skb_alloc_time;
  546. total_handle_time = temp_time - total_handle_time;
  547. trace_cldma_rx(queue->index, 0, count, port_recv_time, skb_alloc_time, total_handle_time, skb_bytes);
  548. #endif
  549. /* check budget */
  550. if (count++ >= budget) {
  551. *result = REACH_BUDGET;
  552. break;
  553. }
  554. }
  555. md_cd_lock_cldma_clock_src(1);
  556. spin_lock_irqsave(&md_ctrl->cldma_timeout_lock, flags);
  557. if (md_ctrl->rxq_active & (1 << queue->index)) {
  558. /* resume Rx queue */
  559. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_SO_RESUME_CMD,
  560. CLDMA_BM_ALL_QUEUE & (1 << queue->index));
  561. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_SO_RESUME_CMD); /* dummy read */
  562. }
  563. spin_unlock_irqrestore(&md_ctrl->cldma_timeout_lock, flags);
  564. md_cd_lock_cldma_clock_src(0);
  565. return count;
  566. }
  567. static int cldma_net_rx_push_thread(void *arg)
  568. {
  569. struct sk_buff *skb = NULL;
  570. struct md_cd_queue *queue = (struct md_cd_queue *)arg;
  571. struct ccci_modem *md = queue->modem;
  572. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  573. struct ccci_header *ccci_h;
  574. int count = 0;
  575. int ret;
  576. while (1) {
  577. if (skb_queue_empty(&queue->skb_list.skb_list)) {
  578. count = 0;
  579. ret = wait_event_interruptible(queue->rx_wq, !skb_queue_empty(&queue->skb_list.skb_list));
  580. if (ret == -ERESTARTSYS)
  581. continue; /* FIXME */
  582. }
  583. if (kthread_should_stop())
  584. break;
  585. #ifdef CCCI_SKB_TRACE
  586. md->netif_rx_profile[4] = sched_clock();
  587. #endif
  588. skb = ccci_skb_dequeue(&queue->skb_list);
  589. if (!skb)
  590. continue;
  591. ccci_h = (struct ccci_header *)skb->data;
  592. /* check wakeup source */
  593. if (atomic_cmpxchg(&md->wakeup_src, 1, 0) == 1)
  594. CCCI_INF_MSG(md->index, TAG, "CLDMA_MD wakeup source:(%d/%d)\n", queue->index, ccci_h->channel);
  595. CCCI_DBG_MSG(md->index, TAG, "recv Rx msg (%x %x %x %x) rxq=%d len=%d\n",
  596. ccci_h->data[0], ccci_h->data[1], *(((u32 *)ccci_h) + 2), ccci_h->reserved, queue->index,
  597. skb->len);
  598. /* update log */
  599. #if TRAFFIC_MONITOR_INTERVAL
  600. md_ctrl->rx_traffic_monitor[queue->index]++;
  601. #endif
  602. ccci_dump_log_add(md, IN, (int)queue->index, ccci_h, 0);
  603. ccci_channel_update_packet_counter(md, ccci_h);
  604. ccci_port_recv_request(md, NULL, skb);
  605. count++;
  606. #ifdef CCCI_SKB_TRACE
  607. md->netif_rx_profile[4] = sched_clock() - md->netif_rx_profile[4];
  608. md->netif_rx_profile[5] = count;
  609. trace_ccci_skb_rx(md->netif_rx_profile);
  610. #endif
  611. }
  612. return 0;
  613. }
  614. static void cldma_rx_refill(struct work_struct *work)
  615. {
  616. struct md_cd_queue *queue = container_of(work, struct md_cd_queue, cldma_refill_work);
  617. struct ccci_modem *md = queue->modem;
  618. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  619. unsigned long flags;
  620. int count;
  621. #ifdef CLDMA_TRACE
  622. unsigned long long total_time = sched_clock();
  623. #endif
  624. count = queue->tr_ring->handle_rx_refill(queue);
  625. CCCI_DBG_MSG(md->index, TAG, "CLDMA Rxq%d refilled, count=%d\n", queue->index, count);
  626. md_cd_lock_cldma_clock_src(1);
  627. spin_lock_irqsave(&md_ctrl->cldma_timeout_lock, flags);
  628. if (md_ctrl->rxq_active & (1 << queue->index)) {
  629. /* resume Rx queue */
  630. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_SO_RESUME_CMD,
  631. CLDMA_BM_ALL_QUEUE & (1 << queue->index));
  632. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_SO_RESUME_CMD); /* dummy read */
  633. }
  634. spin_unlock_irqrestore(&md_ctrl->cldma_timeout_lock, flags);
  635. md_cd_lock_cldma_clock_src(0);
  636. #ifdef CLDMA_TRACE
  637. total_time = sched_clock() - total_time;
  638. trace_cldma_rx_done(queue->index, 30, total_time, count, 0, 0, 0);
  639. #endif
  640. }
  641. static void cldma_rx_done(struct work_struct *work)
  642. {
  643. struct md_cd_queue *queue = container_of(work, struct md_cd_queue, cldma_rx_work);
  644. struct ccci_modem *md = queue->modem;
  645. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  646. int result, rx_bytes;
  647. int rx_total = 0;
  648. int count = 0;
  649. int retry = 0;
  650. unsigned long flags;
  651. unsigned int L2RISAR0 = 0;
  652. unsigned int cldma_rx_active = 0;
  653. #ifdef CLDMA_TRACE
  654. unsigned long long total_time = 0;
  655. unsigned int rx_interal;
  656. static unsigned long long last_leave_time[CLDMA_RXQ_NUM] = { 0 };
  657. static unsigned int sample_time[CLDMA_RXQ_NUM] = { 0 };
  658. static unsigned int sample_bytes[CLDMA_RXQ_NUM] = { 0 };
  659. total_time = sched_clock();
  660. if (last_leave_time[queue->index] == 0)
  661. rx_interal = 0;
  662. else
  663. rx_interal = total_time - last_leave_time[queue->index];
  664. #endif
  665. again:
  666. result = rx_bytes = 0;
  667. count += queue->tr_ring->handle_rx_done(queue, queue->budget, 1, &result, &rx_bytes);
  668. rx_total += rx_bytes;
  669. md_cd_lock_cldma_clock_src(1);
  670. spin_lock_irqsave(&md_ctrl->cldma_timeout_lock, flags);
  671. if (md_ctrl->rxq_active & (1 << queue->index)) {
  672. L2RISAR0 = cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2RISAR0);
  673. cldma_rx_active = cldma_read32(md_ctrl->cldma_md_pdn_base, CLDMA_AP_UL_STATUS);
  674. if (retry < 10000 &&
  675. ((L2RISAR0 & CLDMA_BM_INT_DONE & (1 << queue->index)) ||
  676. (cldma_rx_active & CLDMA_BM_INT_DONE & (1 << queue->index)))) {
  677. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2RISAR0, (1 << queue->index));
  678. #ifdef ENABLE_CLDMA_AP_SIDE
  679. /* clear IP busy register wake up cpu case */
  680. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_CLDMA_IP_BUSY,
  681. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_CLDMA_IP_BUSY));
  682. #endif
  683. spin_unlock_irqrestore(&md_ctrl->cldma_timeout_lock, flags);
  684. md_cd_lock_cldma_clock_src(0);
  685. retry++;
  686. goto again;
  687. }
  688. /* enable RX_DONE interrupt */
  689. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_L2RIMCR0, CLDMA_BM_ALL_QUEUE & (1 << queue->index));
  690. }
  691. spin_unlock_irqrestore(&md_ctrl->cldma_timeout_lock, flags);
  692. md_cd_lock_cldma_clock_src(0);
  693. #ifdef CLDMA_TRACE
  694. if (count) {
  695. last_leave_time[queue->index] = sched_clock();
  696. total_time = last_leave_time[queue->index] - total_time;
  697. sample_time[queue->index] += (total_time + rx_interal);
  698. sample_bytes[queue->index] += rx_total;
  699. trace_cldma_rx_done(queue->index, rx_interal, total_time, count, rx_total, 0, 0);
  700. if (sample_time[queue->index] >= trace_sample_time) {
  701. trace_cldma_rx_done(queue->index, 0, 0, 0, 0,
  702. sample_time[queue->index], sample_bytes[queue->index]);
  703. sample_time[queue->index] = 0;
  704. sample_bytes[queue->index] = 0;
  705. }
  706. } else {
  707. trace_cldma_error(queue->index, -1, 0, __LINE__);
  708. }
  709. #endif
  710. }
  711. /* this function may be called from both workqueue and ISR (timer) */
  712. static int cldma_gpd_bd_tx_collect(struct md_cd_queue *queue, int budget, int blocking, int *result)
  713. {
  714. struct ccci_modem *md = queue->modem;
  715. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  716. unsigned long flags;
  717. struct cldma_request *req;
  718. struct cldma_request *req_bd;
  719. struct cldma_tgpd *tgpd;
  720. struct cldma_tbd *tbd;
  721. struct ccci_header *ccci_h;
  722. int count = 0;
  723. struct sk_buff *skb_free;
  724. DATA_POLICY skb_free_p;
  725. while (1) {
  726. spin_lock_irqsave(&queue->ring_lock, flags);
  727. req = queue->tr_done;
  728. tgpd = (struct cldma_tgpd *)req->gpd;
  729. if (!((tgpd->gpd_flags & 0x1) == 0 && req->skb)) {
  730. spin_unlock_irqrestore(&queue->ring_lock, flags);
  731. break;
  732. }
  733. /* network does not has IOC override needs */
  734. tgpd->non_used = 2;
  735. /* update counter */
  736. queue->budget++;
  737. dma_unmap_single(&md->plat_dev->dev, req->data_buffer_ptr_saved, tgpd->data_buff_len, DMA_TO_DEVICE);
  738. /* update BD */
  739. list_for_each_entry(req_bd, &req->bd, entry) {
  740. tbd = req_bd->gpd;
  741. if (tbd->non_used == 1) {
  742. tbd->non_used = 2;
  743. dma_unmap_single(&md->plat_dev->dev, req_bd->data_buffer_ptr_saved, tbd->data_buff_len,
  744. DMA_TO_DEVICE);
  745. }
  746. }
  747. /* save skb reference */
  748. skb_free = req->skb;
  749. skb_free_p = req->policy;
  750. /* mark cldma_request as available */
  751. req->skb = NULL;
  752. /* step forward */
  753. queue->tr_done = cldma_ring_step_forward(queue->tr_ring, req);
  754. if (likely(md->capability & MODEM_CAP_TXBUSY_STOP))
  755. cldma_queue_broadcast_state(md, TX_IRQ, OUT, queue->index);
  756. spin_unlock_irqrestore(&queue->ring_lock, flags);
  757. count++;
  758. ccci_h = (struct ccci_header *)skb_free->data;
  759. CCCI_DBG_MSG(md->index, TAG, "harvest Tx msg (%x %x %x %x) txq=%d len=%d\n",
  760. ccci_h->data[0], ccci_h->data[1], *(((u32 *) ccci_h) + 2), ccci_h->reserved, queue->index,
  761. tgpd->data_buff_len);
  762. ccci_channel_update_packet_counter(md, ccci_h);
  763. ccci_free_skb(skb_free, skb_free_p);
  764. #if TRAFFIC_MONITOR_INTERVAL
  765. md_ctrl->tx_traffic_monitor[queue->index]++;
  766. #endif
  767. }
  768. if (count)
  769. wake_up_nr(&queue->req_wq, count);
  770. return count;
  771. }
  772. /* this function may be called from both workqueue and ISR (timer) */
  773. static int cldma_gpd_tx_collect(struct md_cd_queue *queue, int budget, int blocking, int *result)
  774. {
  775. struct ccci_modem *md = queue->modem;
  776. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  777. unsigned long flags;
  778. struct cldma_request *req;
  779. struct cldma_tgpd *tgpd;
  780. struct ccci_header *ccci_h;
  781. int count = 0;
  782. struct sk_buff *skb_free;
  783. DATA_POLICY skb_free_p;
  784. dma_addr_t dma_free;
  785. unsigned int dma_len;
  786. while (1) {
  787. spin_lock_irqsave(&queue->ring_lock, flags);
  788. req = queue->tr_done;
  789. tgpd = (struct cldma_tgpd *)req->gpd;
  790. if (!((tgpd->gpd_flags & 0x1) == 0 && req->skb)) {
  791. spin_unlock_irqrestore(&queue->ring_lock, flags);
  792. break;
  793. }
  794. /* restore IOC setting */
  795. if (req->ioc_override & 0x80) {
  796. if (req->ioc_override & 0x1)
  797. tgpd->gpd_flags |= 0x80;
  798. else
  799. tgpd->gpd_flags &= 0x7F;
  800. CCCI_INF_MSG(md->index, TAG, "TX_collect: qno%d, req->ioc_override=0x%x,tgpd->gpd_flags=0x%x\n",
  801. queue->index, req->ioc_override, tgpd->gpd_flags);
  802. }
  803. tgpd->non_used = 2;
  804. /* update counter */
  805. queue->budget++;
  806. /* save skb reference */
  807. dma_free = req->data_buffer_ptr_saved;
  808. dma_len = tgpd->data_buff_len;
  809. skb_free = req->skb;
  810. skb_free_p = req->policy;
  811. /* mark cldma_request as available */
  812. req->skb = NULL;
  813. /* step forward */
  814. queue->tr_done = cldma_ring_step_forward(queue->tr_ring, req);
  815. if (likely(md->capability & MODEM_CAP_TXBUSY_STOP))
  816. cldma_queue_broadcast_state(md, TX_IRQ, OUT, queue->index);
  817. spin_unlock_irqrestore(&queue->ring_lock, flags);
  818. count++;
  819. /*
  820. * After enabled NAPI, when free skb, cosume_skb() will eventually called nf_nat_cleanup_conntrack(),
  821. * which will call spin_unlock_bh() to let softirq to run.
  822. so there is a chance a Rx softirq is triggered (cldma_rx_collect)
  823. * and if it's a TCP packet, it will send ACK
  824. -- another Tx is scheduled which will require queue->ring_lock,
  825. * cause a deadlock!
  826. *
  827. * This should not be an issue any more,
  828. after we start using dev_kfree_skb_any() instead of dev_kfree_skb().
  829. */
  830. dma_unmap_single(&md->plat_dev->dev, dma_free, dma_len, DMA_TO_DEVICE);
  831. ccci_h = (struct ccci_header *)skb_free->data;
  832. CCCI_DBG_MSG(md->index, TAG, "harvest Tx msg (%x %x %x %x) txq=%d len=%d\n",
  833. ccci_h->data[0], ccci_h->data[1], *(((u32 *) ccci_h) + 2), ccci_h->reserved, queue->index,
  834. skb_free->len);
  835. ccci_channel_update_packet_counter(md, ccci_h);
  836. ccci_free_skb(skb_free, skb_free_p);
  837. #if TRAFFIC_MONITOR_INTERVAL
  838. md_ctrl->tx_traffic_monitor[queue->index]++;
  839. #endif
  840. }
  841. if (count)
  842. wake_up_nr(&queue->req_wq, count);
  843. return count;
  844. }
  845. static void cldma_tx_done(struct work_struct *work)
  846. {
  847. struct delayed_work *dwork = to_delayed_work(work);
  848. struct md_cd_queue *queue = container_of(dwork, struct md_cd_queue, cldma_tx_work);
  849. struct ccci_modem *md = queue->modem;
  850. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  851. int result, count;
  852. #ifdef CLDMA_TRACE
  853. unsigned long long total_time = 0;
  854. unsigned int tx_interal;
  855. static unsigned long long leave_time[CLDMA_TXQ_NUM] = { 0 };
  856. total_time = sched_clock();
  857. leave_time[queue->index] = total_time;
  858. if (leave_time[queue->index] == 0)
  859. tx_interal = 0;
  860. else
  861. tx_interal = total_time - leave_time[queue->index];
  862. #endif
  863. #if TRAFFIC_MONITOR_INTERVAL
  864. md_ctrl->tx_done_last_start_time[queue->index] = local_clock();
  865. #endif
  866. count = queue->tr_ring->handle_tx_done(queue, 0, 0, &result);
  867. #if TRAFFIC_MONITOR_INTERVAL
  868. md_ctrl->tx_done_last_count[queue->index] = count;
  869. #endif
  870. if (count) {
  871. queue_delayed_work(queue->worker, &queue->cldma_tx_work, msecs_to_jiffies(10));
  872. } else {
  873. #ifndef CLDMA_NO_TX_IRQ
  874. unsigned long flags;
  875. /* enable TX_DONE interrupt */
  876. md_cd_lock_cldma_clock_src(1);
  877. spin_lock_irqsave(&md_ctrl->cldma_timeout_lock, flags);
  878. if (md_ctrl->txq_active & (1 << queue->index))
  879. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2TIMCR0,
  880. CLDMA_BM_ALL_QUEUE & (1 << queue->index));
  881. spin_unlock_irqrestore(&md_ctrl->cldma_timeout_lock, flags);
  882. md_cd_lock_cldma_clock_src(0);
  883. #endif
  884. }
  885. #ifdef CLDMA_TRACE
  886. if (count) {
  887. leave_time[queue->index] = sched_clock();
  888. total_time = leave_time[queue->index] - total_time;
  889. trace_cldma_tx_done(queue->index, tx_interal, total_time, count);
  890. } else {
  891. trace_cldma_error(queue->index, -1, 0, __LINE__);
  892. }
  893. #endif
  894. }
  895. static void cldma_rx_ring_init(struct ccci_modem *md, struct cldma_ring *ring)
  896. {
  897. int i;
  898. struct cldma_request *item, *first_item = NULL;
  899. struct cldma_rgpd *gpd = NULL, *prev_gpd = NULL;
  900. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  901. if (ring->type == RING_GPD) {
  902. for (i = 0; i < ring->length; i++) {
  903. item = kzalloc(sizeof(struct cldma_request), GFP_KERNEL);
  904. item->gpd = dma_pool_alloc(md_ctrl->gpd_dmapool, GFP_KERNEL, &item->gpd_addr);
  905. item->skb = ccci_alloc_skb(ring->pkt_size, 1, 1);
  906. gpd = (struct cldma_rgpd *)item->gpd;
  907. memset(gpd, 0, sizeof(struct cldma_rgpd));
  908. item->data_buffer_ptr_saved = dma_map_single(&md->plat_dev->dev, item->skb->data,
  909. skb_data_size(item->skb), DMA_FROM_DEVICE);
  910. gpd->data_buff_bd_ptr = (u32) (item->data_buffer_ptr_saved);
  911. gpd->data_allow_len = ring->pkt_size;
  912. gpd->gpd_flags = 0x81; /* IOC|HWO */
  913. if (i == 0) {
  914. first_item = item;
  915. } else {
  916. prev_gpd->next_gpd_ptr = item->gpd_addr;
  917. caculate_checksum((char *)prev_gpd, 0x81);
  918. }
  919. INIT_LIST_HEAD(&item->entry);
  920. list_add_tail(&item->entry, &ring->gpd_ring);
  921. prev_gpd = gpd;
  922. }
  923. gpd->next_gpd_ptr = first_item->gpd_addr;
  924. caculate_checksum((char *)gpd, 0x81);
  925. }
  926. if (ring->type == RING_SPD)
  927. /* TODO: */;
  928. }
  929. static void cldma_tx_ring_init(struct ccci_modem *md, struct cldma_ring *ring)
  930. {
  931. int i, j;
  932. struct cldma_request *item = NULL, *bd_item = NULL, *first_item = NULL;
  933. struct cldma_tgpd *gpd = NULL, *prev_gpd = NULL;
  934. struct cldma_tbd *bd = NULL, *prev_bd = NULL;
  935. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  936. if (ring->type == RING_GPD) {
  937. for (i = 0; i < ring->length; i++) {
  938. item = kzalloc(sizeof(struct cldma_request), GFP_KERNEL);
  939. item->gpd = dma_pool_alloc(md_ctrl->gpd_dmapool, GFP_KERNEL, &item->gpd_addr);
  940. gpd = (struct cldma_tgpd *)item->gpd;
  941. memset(gpd, 0, sizeof(struct cldma_tgpd));
  942. gpd->gpd_flags = 0x80; /* IOC */
  943. if (i == 0)
  944. first_item = item;
  945. else
  946. prev_gpd->next_gpd_ptr = item->gpd_addr;
  947. INIT_LIST_HEAD(&item->bd);
  948. INIT_LIST_HEAD(&item->entry);
  949. list_add_tail(&item->entry, &ring->gpd_ring);
  950. prev_gpd = gpd;
  951. }
  952. gpd->next_gpd_ptr = first_item->gpd_addr;
  953. }
  954. if (ring->type == RING_GPD_BD) {
  955. for (i = 0; i < ring->length; i++) {
  956. item = kzalloc(sizeof(struct cldma_request), GFP_KERNEL);
  957. item->gpd = dma_pool_alloc(md_ctrl->gpd_dmapool, GFP_KERNEL, &item->gpd_addr);
  958. gpd = (struct cldma_tgpd *)item->gpd;
  959. memset(gpd, 0, sizeof(struct cldma_tgpd));
  960. gpd->gpd_flags = 0x82; /* IOC|BDP */
  961. if (i == 0)
  962. first_item = item;
  963. else
  964. prev_gpd->next_gpd_ptr = item->gpd_addr;
  965. INIT_LIST_HEAD(&item->bd);
  966. INIT_LIST_HEAD(&item->entry);
  967. list_add_tail(&item->entry, &ring->gpd_ring);
  968. prev_gpd = gpd;
  969. /* add BD */
  970. for (j = 0; j < MAX_BD_NUM + 1; j++) { /* extra 1 BD for skb head */
  971. bd_item = kzalloc(sizeof(struct cldma_request), GFP_KERNEL);
  972. bd_item->gpd = dma_pool_alloc(md_ctrl->gpd_dmapool, GFP_KERNEL, &bd_item->gpd_addr);
  973. bd = (struct cldma_tbd *)bd_item->gpd;
  974. memset(bd, 0, sizeof(struct cldma_tbd));
  975. if (j == 0)
  976. gpd->data_buff_bd_ptr = bd_item->gpd_addr;
  977. else
  978. prev_bd->next_bd_ptr = bd_item->gpd_addr;
  979. INIT_LIST_HEAD(&bd_item->entry);
  980. list_add_tail(&bd_item->entry, &item->bd);
  981. prev_bd = bd;
  982. }
  983. bd->bd_flags |= 0x1; /* EOL */
  984. }
  985. gpd->next_gpd_ptr = first_item->gpd_addr;
  986. }
  987. }
  988. static void cldma_queue_switch_ring(struct md_cd_queue *queue)
  989. {
  990. struct ccci_modem *md = queue->modem;
  991. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  992. struct cldma_request *req;
  993. if (queue->dir == OUT) {
  994. if ((1 << queue->index) & NET_TX_QUEUE_MASK) {
  995. if (md->ex_stage != EX_INIT_DONE) /* normal mode */
  996. queue->tr_ring = &md_ctrl->net_tx_ring[net_tx_queue2ring[queue->index]];
  997. else if ((1 << queue->index) & NORMAL_TX_QUEUE_MASK) /* if this queue has exception mode */
  998. queue->tr_ring = &md_ctrl->normal_tx_ring[normal_tx_queue2ring[queue->index]];
  999. } else {
  1000. queue->tr_ring = &md_ctrl->normal_tx_ring[normal_tx_queue2ring[queue->index]];
  1001. }
  1002. req = list_first_entry(&queue->tr_ring->gpd_ring, struct cldma_request, entry);
  1003. queue->tr_done = req;
  1004. queue->tx_xmit = req;
  1005. queue->budget = queue->tr_ring->length;
  1006. } else if (queue->dir == IN) {
  1007. if ((1 << queue->index) & NET_TX_QUEUE_MASK) {
  1008. if (md->ex_stage != EX_INIT_DONE) /* normal mode */
  1009. queue->tr_ring = &md_ctrl->net_rx_ring[net_rx_queue2ring[queue->index]];
  1010. else if ((1 << queue->index) & NORMAL_TX_QUEUE_MASK) /* if this queue has exception mode */
  1011. queue->tr_ring = &md_ctrl->normal_rx_ring[normal_rx_queue2ring[queue->index]];
  1012. } else {
  1013. queue->tr_ring = &md_ctrl->normal_rx_ring[normal_rx_queue2ring[queue->index]];
  1014. }
  1015. req = list_first_entry(&queue->tr_ring->gpd_ring, struct cldma_request, entry);
  1016. queue->tr_done = req;
  1017. queue->rx_refill = req;
  1018. queue->budget = queue->tr_ring->length;
  1019. }
  1020. /* work should be flushed by then */
  1021. INIT_WORK(&queue->cldma_rx_work, cldma_rx_done);
  1022. INIT_WORK(&queue->cldma_refill_work, cldma_rx_refill);
  1023. CCCI_DBG_MSG(md->index, TAG, "queue %d/%d switch ring to %p\n", queue->index, queue->dir, queue->tr_ring);
  1024. }
  1025. static void cldma_rx_queue_init(struct md_cd_queue *queue)
  1026. {
  1027. struct ccci_modem *md = queue->modem;
  1028. cldma_queue_switch_ring(queue);
  1029. /*
  1030. * we hope work item of different CLDMA queue can work concurrently, but work items of the same
  1031. * CLDMA queue must be work sequentially as wo didn't implement any lock in rx_done or tx_done.
  1032. */
  1033. if ((1 << queue->index) & LOW_PRIORITY_QUEUE) {
  1034. /* modem logger queue: priority normal */
  1035. queue->worker = alloc_workqueue("md%d_rx%d_worker", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
  1036. md->index + 1, queue->index);
  1037. queue->refill_worker = alloc_workqueue("md%d_rx%d_refill_worker", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
  1038. md->index + 1, queue->index);
  1039. } else {
  1040. queue->worker = alloc_workqueue("md%d_rx%d_worker", WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_HIGHPRI, 1,
  1041. md->index + 1, queue->index);
  1042. queue->refill_worker = alloc_workqueue("md%d_rx%d_refill_worker",
  1043. WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_HIGHPRI, 1, md->index + 1, queue->index);
  1044. }
  1045. ccci_skb_queue_init(&queue->skb_list, queue->tr_ring->pkt_size, SKB_RX_QUEUE_MAX_LEN, 0);
  1046. init_waitqueue_head(&queue->rx_wq);
  1047. if (IS_NET_QUE(md, queue->index))
  1048. queue->rx_thread = kthread_run(cldma_net_rx_push_thread, queue, "cldma_rxq%d", queue->index);
  1049. CCCI_DBG_MSG(md->index, TAG, "rxq%d work=%p\n", queue->index, &queue->cldma_rx_work);
  1050. }
  1051. static void cldma_tx_queue_init(struct md_cd_queue *queue)
  1052. {
  1053. struct ccci_modem *md = queue->modem;
  1054. cldma_queue_switch_ring(queue);
  1055. queue->worker =
  1056. alloc_workqueue("md%d_tx%d_worker", WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_HIGHPRI, 1, md->index + 1,
  1057. queue->index);
  1058. INIT_DELAYED_WORK(&queue->cldma_tx_work, cldma_tx_done);
  1059. CCCI_DBG_MSG(md->index, TAG, "txq%d work=%p\n", queue->index, &queue->cldma_tx_work);
  1060. #ifdef ENABLE_CLDMA_TIMER
  1061. init_timer(&queue->timeout_timer);
  1062. queue->timeout_timer.function = cldma_timeout_timer_func;
  1063. queue->timeout_timer.data = (unsigned long)queue;
  1064. queue->timeout_start = 0;
  1065. queue->timeout_end = 0;
  1066. #endif
  1067. }
  1068. static void cldma_irq_work_cb(struct ccci_modem *md)
  1069. {
  1070. int i, ret;
  1071. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1072. unsigned int L2TIMR0, L2RIMR0, L2TISAR0, L2RISAR0;
  1073. unsigned int L3TIMR0, L3RIMR0, L3TISAR0, L3RISAR0;
  1074. unsigned int coda_version;
  1075. md_cd_lock_cldma_clock_src(1);
  1076. /* get L2 interrupt status */
  1077. L2TISAR0 = cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2TISAR0);
  1078. L2RISAR0 = cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2RISAR0);
  1079. L2TIMR0 = cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2TIMR0);
  1080. L2RIMR0 = cldma_read32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_L2RIMR0);
  1081. /* get L3 interrupt status */
  1082. L3TISAR0 = cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3TISAR0);
  1083. L3RISAR0 = cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3RISAR0);
  1084. L3TIMR0 = cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3TIMR0);
  1085. L3RIMR0 = cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3RIMR0);
  1086. if (atomic_read(&md->wakeup_src) == 1)
  1087. CCCI_INF_MSG(md->index, TAG, "wake up by CLDMA_MD L2(%x/%x) L3(%x/%x)!\n", L2TISAR0, L2RISAR0, L3TISAR0,
  1088. L3RISAR0);
  1089. else
  1090. CCCI_DBG_MSG(md->index, TAG, "CLDMA IRQ L2(%x/%x) L3(%x/%x)!\n", L2TISAR0, L2RISAR0, L3TISAR0,
  1091. L3RISAR0);
  1092. #ifndef CLDMA_NO_TX_IRQ
  1093. L2TISAR0 &= (~L2TIMR0);
  1094. L3TISAR0 &= (~L3TIMR0);
  1095. #endif
  1096. L2RISAR0 &= (~L2RIMR0);
  1097. L3RISAR0 &= (~L3RIMR0);
  1098. if (L2TISAR0 & CLDMA_BM_INT_ERROR)
  1099. /* TODO: */;
  1100. if (L2RISAR0 & CLDMA_BM_INT_ERROR)
  1101. /* TODO: */;
  1102. if (unlikely(!(L2RISAR0 & CLDMA_BM_INT_DONE) && !(L2TISAR0 & CLDMA_BM_INT_DONE))) {
  1103. coda_version = cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_CLDMA_CODA_VERSION);
  1104. if (unlikely(coda_version == 0)) {
  1105. CCCI_ERR_MSG(md->index, TAG,
  1106. "no Tx or Rx, L2TISAR0=%X, L3TISAR0=%X, L2RISAR0=%X, L3RISAR0=%X, L2TIMR0=%X, L2RIMR0=%X, CODA_VERSION=%X\n",
  1107. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2TISAR0),
  1108. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3TISAR0),
  1109. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2RISAR0),
  1110. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3RISAR0),
  1111. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2TIMR0),
  1112. cldma_read32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_L2RIMR0),
  1113. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_CLDMA_CODA_VERSION));
  1114. md_cd_check_md_DCM(md);
  1115. }
  1116. }
  1117. /* ack Tx interrupt */
  1118. if (L2TISAR0) {
  1119. #ifdef CLDMA_TRACE
  1120. trace_cldma_irq(CCCI_TRACE_TX_IRQ, (L2TISAR0 & CLDMA_BM_INT_DONE));
  1121. #endif
  1122. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2TISAR0, L2TISAR0);
  1123. for (i = 0; i < QUEUE_LEN(md_ctrl->txq); i++) {
  1124. if (L2TISAR0 & CLDMA_BM_INT_DONE & (1 << i)) {
  1125. #ifdef ENABLE_CLDMA_TIMER
  1126. if (IS_NET_QUE(md, i)) {
  1127. md_ctrl->txq[i].timeout_end = local_clock();
  1128. ret = del_timer(&md_ctrl->txq[i].timeout_timer);
  1129. CCCI_DBG_MSG(md->index, TAG, "qno%d del_timer %d ptr=0x%p\n", i, ret,
  1130. &md_ctrl->txq[i].timeout_timer);
  1131. }
  1132. #endif
  1133. /* disable TX_DONE interrupt */
  1134. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2TIMSR0,
  1135. CLDMA_BM_ALL_QUEUE & (1 << i));
  1136. ret = queue_delayed_work(md_ctrl->txq[i].worker, &md_ctrl->txq[i].cldma_tx_work,
  1137. msecs_to_jiffies(10));
  1138. CCCI_DBG_MSG(md->index, TAG, "qno%d queue_delayed_work=%d\n", i, ret);
  1139. }
  1140. }
  1141. }
  1142. /* ack Rx interrupt */
  1143. if (L2RISAR0) {
  1144. #ifdef CLDMA_TRACE
  1145. trace_cldma_irq(CCCI_TRACE_RX_IRQ, (L2RISAR0 & CLDMA_BM_INT_DONE));
  1146. #endif
  1147. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2RISAR0, L2RISAR0);
  1148. /* clear MD2AP_PEER_WAKEUP when get RX_DONE */
  1149. #ifdef MD_PEER_WAKEUP
  1150. if (L2RISAR0 & CLDMA_BM_INT_DONE)
  1151. cldma_write32(md_ctrl->md_peer_wakeup, 0, cldma_read32(md_ctrl->md_peer_wakeup, 0) & ~0x01);
  1152. #endif
  1153. #ifdef ENABLE_CLDMA_AP_SIDE
  1154. /* clear IP busy register wake up cpu case */
  1155. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_CLDMA_IP_BUSY,
  1156. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_CLDMA_IP_BUSY));
  1157. #endif
  1158. for (i = 0; i < QUEUE_LEN(md_ctrl->rxq); i++) {
  1159. if (L2RISAR0 & CLDMA_BM_INT_DONE & (1 << i)) {
  1160. /* disable RX_DONE interrupt */
  1161. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_L2RIMSR0,
  1162. CLDMA_BM_ALL_QUEUE & (1 << i));
  1163. cldma_read32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_L2RIMSR0); /* dummy read */
  1164. if (md->md_state != EXCEPTION && md_ctrl->rxq[i].napi_port) {
  1165. md_ctrl->rxq[i].napi_port->ops->md_state_notice(md_ctrl->rxq[i].napi_port,
  1166. RX_IRQ);
  1167. } else {
  1168. ret = queue_work(md_ctrl->rxq[i].worker,
  1169. &md_ctrl->rxq[i].cldma_rx_work);
  1170. }
  1171. }
  1172. }
  1173. }
  1174. md_cd_lock_cldma_clock_src(0);
  1175. #ifndef ENABLE_CLDMA_AP_SIDE
  1176. enable_irq(md_ctrl->cldma_irq_id);
  1177. #endif
  1178. }
  1179. static irqreturn_t cldma_isr(int irq, void *data)
  1180. {
  1181. struct ccci_modem *md = (struct ccci_modem *)data;
  1182. #ifndef ENABLE_CLDMA_AP_SIDE
  1183. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1184. #endif
  1185. CCCI_DBG_MSG(md->index, TAG, "CLDMA IRQ!\n");
  1186. #ifdef ENABLE_CLDMA_AP_SIDE
  1187. cldma_irq_work_cb(md);
  1188. #else
  1189. disable_irq_nosync(md_ctrl->cldma_irq_id);
  1190. queue_work(md_ctrl->cldma_irq_worker, &md_ctrl->cldma_irq_work);
  1191. #endif
  1192. return IRQ_HANDLED;
  1193. }
  1194. static void cldma_irq_work(struct work_struct *work)
  1195. {
  1196. struct md_cd_ctrl *md_ctrl = container_of(work, struct md_cd_ctrl, cldma_irq_work);
  1197. struct ccci_modem *md = md_ctrl->modem;
  1198. cldma_irq_work_cb(md);
  1199. }
  1200. static inline void cldma_stop(struct ccci_modem *md)
  1201. {
  1202. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1203. int ret, count, i;
  1204. unsigned long flags;
  1205. #ifdef ENABLE_CLDMA_TIMER
  1206. int qno;
  1207. #endif
  1208. CCCI_INF_MSG(md->index, TAG, "%s from %ps\n", __func__, __builtin_return_address(0));
  1209. spin_lock_irqsave(&md_ctrl->cldma_timeout_lock, flags);
  1210. /* stop all Tx and Rx queues */
  1211. count = 0;
  1212. md_ctrl->txq_active &= (~CLDMA_BM_ALL_QUEUE);
  1213. do {
  1214. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_STOP_CMD, CLDMA_BM_ALL_QUEUE);
  1215. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_STOP_CMD); /* dummy read */
  1216. ret = cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_STATUS);
  1217. if ((++count) % 100000 == 0) {
  1218. CCCI_INF_MSG(md->index, TAG, "stop Tx CLDMA, status=%x, count=%d\n", ret, count);
  1219. CCCI_INF_MSG(md->index, KERN, "Dump MD EX log\n");
  1220. ccci_mem_dump(md->index, md->smem_layout.ccci_exp_smem_base_vir,
  1221. md->smem_layout.ccci_exp_dump_size);
  1222. md_cd_dump_debug_register(md);
  1223. cldma_dump_register(md);
  1224. #if defined(CONFIG_MTK_AEE_FEATURE)
  1225. if (count >= 1600000) {
  1226. aed_md_exception_api(NULL, 0, NULL, 0,
  1227. "md1:\nUNKNOWN Exception\nstop Tx CLDMA failed.\n", DB_OPT_DEFAULT);
  1228. break;
  1229. }
  1230. #endif
  1231. }
  1232. } while (ret != 0);
  1233. count = 0;
  1234. md_ctrl->rxq_active &= (~CLDMA_BM_ALL_QUEUE);
  1235. do {
  1236. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_SO_STOP_CMD, CLDMA_BM_ALL_QUEUE);
  1237. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_SO_STOP_CMD); /* dummy read */
  1238. ret = cldma_read32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_SO_STATUS);
  1239. if ((++count) % 100000 == 0) {
  1240. CCCI_INF_MSG(md->index, TAG, "stop Rx CLDMA, status=%x, count=%d\n", ret, count);
  1241. #if defined(CONFIG_MTK_AEE_FEATURE)
  1242. aee_kernel_dal_show("stop Rx CLDMA failed.\n");
  1243. #endif
  1244. CCCI_INF_MSG(md->index, KERN, "Dump MD EX log\n");
  1245. if ((count < 500000) || (count > 1200000))
  1246. ccci_mem_dump(md->index, md->smem_layout.ccci_exp_smem_base_vir,
  1247. md->smem_layout.ccci_exp_dump_size);
  1248. md_cd_dump_debug_register(md);
  1249. cldma_dump_register(md);
  1250. #if defined(CONFIG_MTK_AEE_FEATURE)
  1251. if (count >= 1600000) {
  1252. aed_md_exception_api(NULL, 0, NULL, 0,
  1253. "md1:\nUNKNOWN Exception\nstop Rx CLDMA failed.\n", DB_OPT_DEFAULT);
  1254. break;
  1255. }
  1256. #endif
  1257. }
  1258. } while (ret != 0);
  1259. /* clear all L2 and L3 interrupts */
  1260. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2TISAR0, CLDMA_BM_INT_ALL);
  1261. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2TISAR1, CLDMA_BM_INT_ALL);
  1262. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2RISAR0, CLDMA_BM_INT_ALL);
  1263. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2RISAR1, CLDMA_BM_INT_ALL);
  1264. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3TISAR0, CLDMA_BM_INT_ALL);
  1265. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3TISAR1, CLDMA_BM_INT_ALL);
  1266. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3RISAR0, CLDMA_BM_INT_ALL);
  1267. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3RISAR1, CLDMA_BM_INT_ALL);
  1268. /* disable all L2 and L3 interrupts */
  1269. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2TIMSR0, CLDMA_BM_INT_ALL);
  1270. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2TIMSR1, CLDMA_BM_INT_ALL);
  1271. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_L2RIMSR0, CLDMA_BM_INT_ALL);
  1272. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_L2RIMSR1, CLDMA_BM_INT_ALL);
  1273. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3TIMSR0, CLDMA_BM_INT_ALL);
  1274. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3TIMSR1, CLDMA_BM_INT_ALL);
  1275. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3RIMSR0, CLDMA_BM_INT_ALL);
  1276. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3RIMSR1, CLDMA_BM_INT_ALL);
  1277. /* stop timer */
  1278. #ifdef ENABLE_CLDMA_TIMER
  1279. for (qno = 0; qno < CLDMA_TXQ_NUM; qno++)
  1280. del_timer(&md_ctrl->txq[qno].timeout_timer);
  1281. #endif
  1282. spin_unlock_irqrestore(&md_ctrl->cldma_timeout_lock, flags);
  1283. /* flush work */
  1284. disable_irq(md_ctrl->cldma_irq_id);
  1285. flush_work(&md_ctrl->cldma_irq_work);
  1286. for (i = 0; i < QUEUE_LEN(md_ctrl->txq); i++)
  1287. flush_delayed_work(&md_ctrl->txq[i].cldma_tx_work);
  1288. for (i = 0; i < QUEUE_LEN(md_ctrl->rxq); i++) {
  1289. flush_work(&md_ctrl->rxq[i].cldma_rx_work);
  1290. flush_work(&md_ctrl->rxq[i].cldma_refill_work);
  1291. }
  1292. }
  1293. static inline void cldma_stop_for_ee(struct ccci_modem *md)
  1294. {
  1295. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1296. int ret, count;
  1297. unsigned long flags;
  1298. CCCI_INF_MSG(md->index, TAG, "%s from %ps\n", __func__, __builtin_return_address(0));
  1299. spin_lock_irqsave(&md_ctrl->cldma_timeout_lock, flags);
  1300. /* stop all Tx and Rx queues, but non-stop Rx ones */
  1301. count = 0;
  1302. md_ctrl->txq_active &= (~CLDMA_BM_ALL_QUEUE);
  1303. do {
  1304. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_STOP_CMD, CLDMA_BM_ALL_QUEUE);
  1305. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_STOP_CMD); /* dummy read */
  1306. ret = cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_STATUS);
  1307. if ((++count) % 100000 == 0) {
  1308. CCCI_INF_MSG(md->index, TAG, "stop Tx CLDMA E, status=%x, count=%d\n", ret, count);
  1309. CCCI_INF_MSG(md->index, TAG, "Dump MD EX log\n");
  1310. ccci_mem_dump(md->index, md->smem_layout.ccci_exp_smem_base_vir,
  1311. md->smem_layout.ccci_exp_dump_size);
  1312. md_cd_dump_debug_register(md);
  1313. cldma_dump_register(md);
  1314. #if defined(CONFIG_MTK_AEE_FEATURE)
  1315. if (count >= 1600000) {
  1316. aed_md_exception_api(NULL, 0, NULL, 0,
  1317. "md1:\nUNKNOWN Exception\nstop Tx CLDMA for EE failed.\n", DB_OPT_DEFAULT);
  1318. break;
  1319. }
  1320. #endif
  1321. }
  1322. } while (ret != 0);
  1323. count = 0;
  1324. md_ctrl->rxq_active &= (~(CLDMA_BM_ALL_QUEUE & NONSTOP_QUEUE_MASK));
  1325. do {
  1326. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_SO_STOP_CMD,
  1327. CLDMA_BM_ALL_QUEUE & NONSTOP_QUEUE_MASK);
  1328. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_SO_STOP_CMD); /* dummy read */
  1329. ret = cldma_read32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_SO_STATUS) & NONSTOP_QUEUE_MASK;
  1330. if ((++count) % 100000 == 0) {
  1331. CCCI_INF_MSG(md->index, TAG, "stop Rx CLDMA E, status=%x, count=%d\n", ret, count);
  1332. CCCI_INF_MSG(md->index, TAG, "Dump MD EX log\n");
  1333. ccci_mem_dump(md->index, md->smem_layout.ccci_exp_smem_base_vir,
  1334. md->smem_layout.ccci_exp_dump_size);
  1335. md_cd_dump_debug_register(md);
  1336. cldma_dump_register(md);
  1337. #if defined(CONFIG_MTK_AEE_FEATURE)
  1338. if (count >= 1600000) {
  1339. aed_md_exception_api(NULL, 0, NULL, 0,
  1340. "md1:\nUNKNOWN Exception\nstop Rx CLDMA for EE failed.\n", DB_OPT_DEFAULT);
  1341. break;
  1342. }
  1343. #endif
  1344. }
  1345. } while (ret != 0);
  1346. /* clear all L2 and L3 interrupts, but non-stop Rx ones */
  1347. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2TISAR0, CLDMA_BM_INT_ALL);
  1348. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2TISAR1, CLDMA_BM_INT_ALL);
  1349. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2RISAR0, CLDMA_BM_INT_ALL & NONSTOP_QUEUE_MASK_32);
  1350. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2RISAR1, CLDMA_BM_INT_ALL & NONSTOP_QUEUE_MASK_32);
  1351. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3TISAR0, CLDMA_BM_INT_ALL);
  1352. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3TISAR1, CLDMA_BM_INT_ALL);
  1353. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3RISAR0, CLDMA_BM_INT_ALL & NONSTOP_QUEUE_MASK_32);
  1354. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3RISAR1, CLDMA_BM_INT_ALL & NONSTOP_QUEUE_MASK_32);
  1355. /* disable all L2 and L3 interrupts, but non-stop Rx ones */
  1356. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2TIMSR0, CLDMA_BM_INT_ALL);
  1357. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2TIMSR1, CLDMA_BM_INT_ALL);
  1358. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_L2RIMSR0,
  1359. (CLDMA_BM_INT_DONE | CLDMA_BM_INT_ERROR) & NONSTOP_QUEUE_MASK_32);
  1360. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_L2RIMSR1, CLDMA_BM_INT_ALL);
  1361. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3TIMSR0, CLDMA_BM_INT_ALL);
  1362. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3TIMSR1, CLDMA_BM_INT_ALL);
  1363. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3RIMSR0, CLDMA_BM_INT_ALL & NONSTOP_QUEUE_MASK_32);
  1364. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3RIMSR1, CLDMA_BM_INT_ALL & NONSTOP_QUEUE_MASK_32);
  1365. spin_unlock_irqrestore(&md_ctrl->cldma_timeout_lock, flags);
  1366. }
  1367. static inline void cldma_reset(struct ccci_modem *md)
  1368. {
  1369. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1370. CCCI_INF_MSG(md->index, TAG, "%s from %ps\n", __func__, __builtin_return_address(0));
  1371. /* enable OUT DMA & wait RGPD write transaction repsonse */
  1372. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_SO_CFG,
  1373. cldma_read32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_SO_CFG) | 0x5);
  1374. /* enable SPLIT_EN */
  1375. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_BUS_CFG,
  1376. cldma_read32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_BUS_CFG) | 0x02);
  1377. /* set high priority queue */
  1378. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_HPQR, high_priority_queue_mask);
  1379. /* TODO: traffic control value */
  1380. /* set checksum */
  1381. switch (CHECKSUM_SIZE) {
  1382. case 0:
  1383. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_CHECKSUM_CHANNEL_ENABLE, 0);
  1384. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_SO_CHECKSUM_CHANNEL_ENABLE, 0);
  1385. break;
  1386. case 12:
  1387. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_CHECKSUM_CHANNEL_ENABLE, CLDMA_BM_ALL_QUEUE);
  1388. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_SO_CHECKSUM_CHANNEL_ENABLE, CLDMA_BM_ALL_QUEUE);
  1389. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_CFG,
  1390. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_CFG) & ~0x10);
  1391. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_SO_CFG,
  1392. cldma_read32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_SO_CFG) & ~0x10);
  1393. break;
  1394. case 16:
  1395. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_CHECKSUM_CHANNEL_ENABLE, CLDMA_BM_ALL_QUEUE);
  1396. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_SO_CHECKSUM_CHANNEL_ENABLE, CLDMA_BM_ALL_QUEUE);
  1397. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_CFG,
  1398. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_CFG) | 0x10);
  1399. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_SO_CFG,
  1400. cldma_read32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_SO_CFG) | 0x10);
  1401. break;
  1402. }
  1403. /* TODO: enable debug ID? */
  1404. #ifdef MD_CACHE_TO_NONECACHE
  1405. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_ADDR_REMAP_FROM, 0xA0000000);
  1406. #endif
  1407. }
  1408. static inline void cldma_start(struct ccci_modem *md)
  1409. {
  1410. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1411. int i;
  1412. unsigned long flags;
  1413. CCCI_INF_MSG(md->index, TAG, "%s from %ps\n", __func__, __builtin_return_address(0));
  1414. enable_irq(md_ctrl->cldma_irq_id);
  1415. spin_lock_irqsave(&md_ctrl->cldma_timeout_lock, flags);
  1416. /* set start address */
  1417. for (i = 0; i < QUEUE_LEN(md_ctrl->txq); i++) {
  1418. cldma_queue_switch_ring(&md_ctrl->txq[i]);
  1419. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_TQSAR(md_ctrl->txq[i].index),
  1420. md_ctrl->txq[i].tr_done->gpd_addr);
  1421. #ifdef ENABLE_CLDMA_AP_SIDE
  1422. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_TQSABAK(md_ctrl->txq[i].index),
  1423. md_ctrl->txq[i].tr_done->gpd_addr);
  1424. #endif
  1425. }
  1426. for (i = 0; i < QUEUE_LEN(md_ctrl->rxq); i++) {
  1427. cldma_queue_switch_ring(&md_ctrl->rxq[i]);
  1428. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_RQSAR(md_ctrl->rxq[i].index),
  1429. md_ctrl->rxq[i].tr_done->gpd_addr);
  1430. }
  1431. /* wait write done */
  1432. wmb();
  1433. /* start all Tx and Rx queues */
  1434. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_START_CMD, CLDMA_BM_ALL_QUEUE);
  1435. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_START_CMD); /* dummy read */
  1436. #ifdef NO_START_ON_SUSPEND_RESUME
  1437. md_ctrl->txq_started = 1;
  1438. #endif
  1439. md_ctrl->txq_active |= CLDMA_BM_ALL_QUEUE;
  1440. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_SO_START_CMD, CLDMA_BM_ALL_QUEUE);
  1441. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_SO_START_CMD); /* dummy read */
  1442. md_ctrl->rxq_active |= CLDMA_BM_ALL_QUEUE;
  1443. /* enable L2 DONE and ERROR interrupts */
  1444. #ifndef CLDMA_NO_TX_IRQ
  1445. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2TIMCR0, CLDMA_BM_INT_DONE | CLDMA_BM_INT_ERROR);
  1446. #endif
  1447. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_L2RIMCR0, CLDMA_BM_INT_DONE | CLDMA_BM_INT_ERROR);
  1448. /* enable all L3 interrupts */
  1449. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3TIMCR0, CLDMA_BM_INT_ALL);
  1450. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3TIMCR1, CLDMA_BM_INT_ALL);
  1451. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3RIMCR0, CLDMA_BM_INT_ALL);
  1452. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L3RIMCR1, CLDMA_BM_INT_ALL);
  1453. spin_unlock_irqrestore(&md_ctrl->cldma_timeout_lock, flags);
  1454. }
  1455. /* only allowed when cldma is stopped */
  1456. static void md_cd_clear_all_queue(struct ccci_modem *md, DIRECTION dir)
  1457. {
  1458. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1459. int i;
  1460. struct cldma_request *req = NULL;
  1461. struct cldma_tgpd *tgpd;
  1462. unsigned long flags;
  1463. if (dir == OUT) {
  1464. for (i = 0; i < QUEUE_LEN(md_ctrl->txq); i++) {
  1465. spin_lock_irqsave(&md_ctrl->txq[i].ring_lock, flags);
  1466. req = list_first_entry(&md_ctrl->txq[i].tr_ring->gpd_ring, struct cldma_request, entry);
  1467. md_ctrl->txq[i].tr_done = req;
  1468. md_ctrl->txq[i].tx_xmit = req;
  1469. md_ctrl->txq[i].budget = md_ctrl->txq[i].tr_ring->length;
  1470. md_ctrl->txq[i].debug_id = 0;
  1471. #if PACKET_HISTORY_DEPTH
  1472. md->tx_history_ptr[i] = 0;
  1473. #endif
  1474. list_for_each_entry(req, &md_ctrl->txq[i].tr_ring->gpd_ring, entry) {
  1475. tgpd = (struct cldma_tgpd *)req->gpd;
  1476. cldma_write8(&tgpd->gpd_flags, 0, cldma_read8(&tgpd->gpd_flags, 0) & ~0x1);
  1477. if (md_ctrl->txq[i].tr_ring->type != RING_GPD_BD)
  1478. cldma_write32(&tgpd->data_buff_bd_ptr, 0, 0);
  1479. cldma_write16(&tgpd->data_buff_len, 0, 0);
  1480. if (req->skb) {
  1481. ccci_free_skb(req->skb, req->policy);
  1482. req->skb = NULL;
  1483. }
  1484. }
  1485. spin_unlock_irqrestore(&md_ctrl->txq[i].ring_lock, flags);
  1486. }
  1487. } else if (dir == IN) {
  1488. struct cldma_rgpd *rgpd;
  1489. for (i = 0; i < QUEUE_LEN(md_ctrl->rxq); i++) {
  1490. spin_lock_irqsave(&md_ctrl->rxq[i].ring_lock, flags);
  1491. req = list_first_entry(&md_ctrl->rxq[i].tr_ring->gpd_ring, struct cldma_request, entry);
  1492. md_ctrl->rxq[i].tr_done = req;
  1493. md_ctrl->rxq[i].rx_refill = req;
  1494. #if PACKET_HISTORY_DEPTH
  1495. md->rx_history_ptr[i] = 0;
  1496. #endif
  1497. list_for_each_entry(req, &md_ctrl->rxq[i].tr_ring->gpd_ring, entry) {
  1498. rgpd = (struct cldma_rgpd *)req->gpd;
  1499. cldma_write8(&rgpd->gpd_flags, 0, 0x81);
  1500. cldma_write16(&rgpd->data_buff_len, 0, 0);
  1501. caculate_checksum((char *)rgpd, 0x81);
  1502. if (req->skb != NULL) {
  1503. req->skb->len = 0;
  1504. skb_reset_tail_pointer(req->skb);
  1505. }
  1506. }
  1507. spin_unlock_irqrestore(&md_ctrl->rxq[i].ring_lock, flags);
  1508. list_for_each_entry(req, &md_ctrl->rxq[i].tr_ring->gpd_ring, entry) {
  1509. rgpd = (struct cldma_rgpd *)req->gpd;
  1510. if (req->skb == NULL) {
  1511. struct md_cd_queue *queue = &md_ctrl->rxq[i];
  1512. /*which queue*/
  1513. CCCI_INF_MSG(md->index, TAG, "skb NULL in Rx queue %d/%d\n",
  1514. i, queue->index);
  1515. /*if ((1 << queue->index) & NET_TX_QUEUE_MASK)
  1516. req->skb = ccci_alloc_skb(queue->tr_ring->pkt_size, 0, 1);
  1517. else */
  1518. req->skb = ccci_alloc_skb(queue->tr_ring->pkt_size, 1, 1);
  1519. req->data_buffer_ptr_saved =
  1520. dma_map_single(&md->plat_dev->dev, req->skb->data,
  1521. skb_data_size(req->skb), DMA_FROM_DEVICE);
  1522. rgpd->data_buff_bd_ptr = (u32) (req->data_buffer_ptr_saved);
  1523. caculate_checksum((char *)rgpd, 0x81);
  1524. }
  1525. }
  1526. }
  1527. }
  1528. }
  1529. static int md_cd_stop_queue(struct ccci_modem *md, unsigned char qno, DIRECTION dir)
  1530. {
  1531. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1532. int count, ret;
  1533. unsigned long flags;
  1534. if (dir == OUT && qno >= QUEUE_LEN(md_ctrl->txq))
  1535. return -CCCI_ERR_INVALID_QUEUE_INDEX;
  1536. if (dir == IN && qno >= QUEUE_LEN(md_ctrl->rxq))
  1537. return -CCCI_ERR_INVALID_QUEUE_INDEX;
  1538. if (dir == IN) {
  1539. /* disable RX_DONE queue and interrupt */
  1540. md_cd_lock_cldma_clock_src(1);
  1541. spin_lock_irqsave(&md_ctrl->cldma_timeout_lock, flags);
  1542. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_L2RIMSR0, CLDMA_BM_ALL_QUEUE & (1 << qno));
  1543. count = 0;
  1544. md_ctrl->rxq_active &= (~(CLDMA_BM_ALL_QUEUE & (1 << qno)));
  1545. do {
  1546. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_SO_STOP_CMD,
  1547. CLDMA_BM_ALL_QUEUE & (1 << qno));
  1548. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_SO_STOP_CMD); /* dummy read */
  1549. ret = cldma_read32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_SO_STATUS) & (1 << qno);
  1550. CCCI_INF_MSG(md->index, TAG, "stop Rx CLDMA queue %d, status=%x, count=%d\n", qno, ret,
  1551. count++);
  1552. } while (ret != 0);
  1553. spin_unlock_irqrestore(&md_ctrl->cldma_timeout_lock, flags);
  1554. md_cd_lock_cldma_clock_src(0);
  1555. }
  1556. return 0;
  1557. }
  1558. static int md_cd_start_queue(struct ccci_modem *md, unsigned char qno, DIRECTION dir)
  1559. {
  1560. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1561. struct cldma_request *req = NULL;
  1562. struct cldma_rgpd *rgpd;
  1563. unsigned long flags;
  1564. if (dir == OUT && qno >= QUEUE_LEN(md_ctrl->txq))
  1565. return -CCCI_ERR_INVALID_QUEUE_INDEX;
  1566. if (dir == IN && qno >= QUEUE_LEN(md_ctrl->rxq))
  1567. return -CCCI_ERR_INVALID_QUEUE_INDEX;
  1568. if (dir == IN) {
  1569. /* reset Rx ring buffer */
  1570. req = list_first_entry(&md_ctrl->rxq[qno].tr_ring->gpd_ring, struct cldma_request, entry);
  1571. md_ctrl->rxq[qno].tr_done = req;
  1572. md_ctrl->rxq[qno].rx_refill = req;
  1573. #if PACKET_HISTORY_DEPTH
  1574. md->rx_history_ptr[qno] = 0;
  1575. #endif
  1576. list_for_each_entry(req, &md_ctrl->txq[qno].tr_ring->gpd_ring, entry) {
  1577. rgpd = (struct cldma_rgpd *)req->gpd;
  1578. cldma_write8(&rgpd->gpd_flags, 0, 0x81);
  1579. cldma_write16(&rgpd->data_buff_len, 0, 0);
  1580. req->skb->len = 0;
  1581. skb_reset_tail_pointer(req->skb);
  1582. }
  1583. /* enable queue and RX_DONE interrupt */
  1584. md_cd_lock_cldma_clock_src(1);
  1585. spin_lock_irqsave(&md_ctrl->cldma_timeout_lock, flags);
  1586. if (md->md_state != RESET && md->md_state != GATED && md->md_state != INVALID) {
  1587. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_RQSAR(md_ctrl->rxq[qno].index),
  1588. md_ctrl->rxq[qno].tr_done->gpd_addr);
  1589. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_SO_START_CMD,
  1590. CLDMA_BM_ALL_QUEUE & (1 << qno));
  1591. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_L2RIMCR0, CLDMA_BM_ALL_QUEUE & (1 << qno));
  1592. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_SO_START_CMD); /* dummy read */
  1593. md_ctrl->rxq_active |= (CLDMA_BM_ALL_QUEUE & (1 << qno));
  1594. }
  1595. spin_unlock_irqrestore(&md_ctrl->cldma_timeout_lock, flags);
  1596. md_cd_lock_cldma_clock_src(0);
  1597. }
  1598. return 0;
  1599. }
  1600. void ccif_enable_irq(struct ccci_modem *md)
  1601. {
  1602. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1603. if (atomic_read(&md_ctrl->ccif_irq_enabled) == 0) {
  1604. enable_irq(md_ctrl->ap_ccif_irq_id);
  1605. atomic_inc(&md_ctrl->ccif_irq_enabled);
  1606. CCCI_INF_MSG(md->index, TAG, "enable ccif irq\n");
  1607. }
  1608. }
  1609. void ccif_disable_irq(struct ccci_modem *md)
  1610. {
  1611. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1612. if (atomic_read(&md_ctrl->ccif_irq_enabled) == 1) {
  1613. disable_irq_nosync(md_ctrl->ap_ccif_irq_id);
  1614. atomic_dec(&md_ctrl->ccif_irq_enabled);
  1615. CCCI_INF_MSG(md->index, TAG, "Disable ccif irq\n");
  1616. }
  1617. }
  1618. void wdt_enable_irq(struct ccci_modem *md)
  1619. {
  1620. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1621. if (atomic_read(&md_ctrl->wdt_enabled) == 0) {
  1622. enable_irq(md_ctrl->md_wdt_irq_id);
  1623. atomic_inc(&md_ctrl->wdt_enabled);
  1624. CCCI_INF_MSG(md->index, TAG, "enable wdt irq\n");
  1625. }
  1626. }
  1627. void wdt_disable_irq(struct ccci_modem *md)
  1628. {
  1629. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1630. if (atomic_read(&md_ctrl->wdt_enabled) == 1) {
  1631. /*may be called in isr, so use disable_irq_nosync.
  1632. if use disable_irq in isr, system will hang */
  1633. disable_irq_nosync(md_ctrl->md_wdt_irq_id);
  1634. atomic_dec(&md_ctrl->wdt_enabled);
  1635. CCCI_INF_MSG(md->index, TAG, "disable wdt irq\n");
  1636. }
  1637. }
  1638. static int wdt_executed = 0;
  1639. static void md_cd_wdt_work(struct work_struct *work)
  1640. {
  1641. struct md_cd_ctrl *md_ctrl = container_of(work, struct md_cd_ctrl, wdt_work);
  1642. struct ccci_modem *md = md_ctrl->modem;
  1643. int ret = 0;
  1644. mutex_lock(&md_ctrl->ccif_wdt_mutex);
  1645. wdt_executed = 1;
  1646. mutex_unlock(&md_ctrl->ccif_wdt_mutex);
  1647. /* 1. dump RGU reg */
  1648. CCCI_INF_MSG(md->index, TAG, "Dump MD RGU registers\n");
  1649. md_cd_lock_modem_clock_src(1);
  1650. #ifdef BASE_ADDR_MDRSTCTL
  1651. ccci_write32(md_ctrl->md_pll_base->md_busreg1, 0x94, 0xE7C5);/* pre-action */
  1652. ccci_mem_dump(md->index, md_ctrl->md_rgu_base, 0x8B);
  1653. ccci_mem_dump(md->index, (md_ctrl->md_rgu_base + 0x200), 0x60);
  1654. #else
  1655. ccci_mem_dump(md->index, md_ctrl->md_rgu_base, 0x30);
  1656. #endif
  1657. md_cd_lock_modem_clock_src(0);
  1658. if (md->md_state == INVALID) {
  1659. CCCI_ERR_MSG(md->index, TAG, "md_cd_wdt_work: md_state is INVALID\n");
  1660. return;
  1661. }
  1662. /* 2. wakelock */
  1663. wake_lock_timeout(&md_ctrl->trm_wake_lock, 10 * HZ);
  1664. #if 1
  1665. #ifdef MD_UMOLY_EE_SUPPORT
  1666. if (*((int *)(md->mem_layout.smem_region_vir +
  1667. CCCI_SMEM_OFFSET_MDSS_DEBUG + CCCI_SMEM_OFFSET_EPON_UMOLY)) == 0xBAEBAE10) { /* hardcode */
  1668. #else
  1669. if (*((int *)(md->mem_layout.smem_region_vir + CCCI_SMEM_OFFSET_EPON)) == 0xBAEBAE10) { /* hardcode */
  1670. #endif
  1671. /* 3. reset */
  1672. ret = md->ops->reset(md);
  1673. CCCI_INF_MSG(md->index, TAG, "reset MD after SW WDT %d\n", ret);
  1674. /* 4. send message, only reset MD on non-eng load */
  1675. ccci_send_virtual_md_msg(md, CCCI_MONITOR_CH, CCCI_MD_MSG_RESET, 0);
  1676. #ifdef CONFIG_MTK_ECCCI_C2K
  1677. exec_ccci_kern_func_by_md_id(MD_SYS3, ID_RESET_MD, NULL, 0);
  1678. #else
  1679. #ifdef CONFIG_MTK_SVLTE_SUPPORT
  1680. c2k_reset_modem();
  1681. #endif
  1682. #endif
  1683. } else {
  1684. if (md->critical_user_active[2] == 0) {
  1685. ret = md->ops->reset(md);
  1686. CCCI_INF_MSG(md->index, TAG, "mdlogger closed,reset MD after WDT %d\n", ret);
  1687. /* 4. send message, only reset MD on non-eng load */
  1688. ccci_send_virtual_md_msg(md, CCCI_MONITOR_CH, CCCI_MD_MSG_RESET, 0);
  1689. } else {
  1690. md_cd_dump_debug_register(md);
  1691. ccci_md_exception_notify(md, MD_WDT);
  1692. }
  1693. }
  1694. #endif /* Mask by chao for build error */
  1695. }
  1696. static irqreturn_t md_cd_wdt_isr(int irq, void *data)
  1697. {
  1698. struct ccci_modem *md = (struct ccci_modem *)data;
  1699. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1700. CCCI_ERR_MSG(md->index, TAG, "MD WDT IRQ\n");
  1701. ccif_disable_irq(md);
  1702. #ifndef DISABLE_MD_WDT_PROCESS
  1703. #ifdef ENABLE_DSP_SMEM_SHARE_MPU_REGION
  1704. ccci_set_exp_region_protection(md);
  1705. #endif
  1706. /* 1. disable MD WDT */
  1707. del_timer(&md_ctrl->bus_timeout_timer);
  1708. #ifdef ENABLE_MD_WDT_DBG
  1709. unsigned int state;
  1710. state = cldma_read32(md_ctrl->md_rgu_base, WDT_MD_STA);
  1711. cldma_write32(md_ctrl->md_rgu_base, WDT_MD_MODE, WDT_MD_MODE_KEY);
  1712. CCCI_INF_MSG(md->index, TAG, "WDT IRQ disabled for debug, state=%X\n", state);
  1713. #ifdef L1_BASE_ADDR_L1RGU
  1714. state = cldma_read32(md_ctrl->l1_rgu_base, REG_L1RSTCTL_WDT_STA);
  1715. cldma_write32(md_ctrl->l1_rgu_base, REG_L1RSTCTL_WDT_MODE, L1_WDT_MD_MODE_KEY);
  1716. CCCI_INF_MSG(md->index, TAG, "WDT IRQ disabled for debug, L1 state=%X\n", state);
  1717. #endif
  1718. #endif
  1719. /* 2. start a work queue to do the reset, because we used flush_work which is not designed for ISR */
  1720. schedule_work(&md_ctrl->wdt_work);
  1721. #endif
  1722. return IRQ_HANDLED;
  1723. }
  1724. void md_cd_ap2md_bus_timeout_timer_func(unsigned long data)
  1725. {
  1726. struct ccci_modem *md = (struct ccci_modem *)data;
  1727. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1728. CCCI_INF_MSG(md->index, TAG, "MD bus timeout but no WDT IRQ\n");
  1729. /* same as WDT ISR */
  1730. schedule_work(&md_ctrl->wdt_work);
  1731. }
  1732. #if 0
  1733. static irqreturn_t md_cd_ap2md_bus_timeout_isr(int irq, void *data)
  1734. {
  1735. struct ccci_modem *md = (struct ccci_modem *)data;
  1736. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1737. CCCI_INF_MSG(md->index, TAG, "MD bus timeout IRQ\n");
  1738. mod_timer(&md_ctrl->bus_timeout_timer, jiffies + 5 * HZ);
  1739. return IRQ_HANDLED;
  1740. }
  1741. #endif
  1742. static int md_cd_ccif_send(struct ccci_modem *md, int channel_id)
  1743. {
  1744. int busy = 0;
  1745. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1746. busy = cldma_read32(md_ctrl->ap_ccif_base, APCCIF_BUSY);
  1747. if (busy & (1 << channel_id))
  1748. return -1;
  1749. cldma_write32(md_ctrl->ap_ccif_base, APCCIF_BUSY, 1 << channel_id);
  1750. cldma_write32(md_ctrl->ap_ccif_base, APCCIF_TCHNUM, channel_id);
  1751. return 0;
  1752. }
  1753. static void md_cd_ccif_delayed_work(struct ccci_modem *md)
  1754. {
  1755. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1756. int i;
  1757. #if defined (CONFIG_MTK_AEE_FEATURE)
  1758. aee_kernel_dal_show("Modem exception dump start, please wait up to 5 minutes.\n");
  1759. #endif
  1760. /* stop CLDMA, we don't want to get CLDMA IRQ when MD is reseting CLDMA after it got cleaq_ack */
  1761. cldma_stop(md);
  1762. for (i = 0; i < QUEUE_LEN(md_ctrl->txq); i++)
  1763. flush_delayed_work(&md_ctrl->txq[i].cldma_tx_work);
  1764. for (i = 0; i < QUEUE_LEN(md_ctrl->rxq); i++) {
  1765. flush_work(&md_ctrl->rxq[i].cldma_rx_work);
  1766. flush_work(&md_ctrl->rxq[i].cldma_refill_work);
  1767. }
  1768. /* tell MD to reset CLDMA */
  1769. md_cd_ccif_send(md, H2D_EXCEPTION_CLEARQ_ACK);
  1770. CCCI_INF_MSG(md->index, TAG, "send clearq_ack to MD\n");
  1771. }
  1772. static void md_cd_exception(struct ccci_modem *md, HIF_EX_STAGE stage)
  1773. {
  1774. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1775. volatile unsigned int SO_CFG;
  1776. CCCI_ERR_MSG(md->index, TAG, "MD exception HIF %d\n", stage);
  1777. /* in exception mode, MD won't sleep, so we do not need to request MD resource first */
  1778. switch (stage) {
  1779. case HIF_EX_INIT:
  1780. #ifdef ENABLE_DSP_SMEM_SHARE_MPU_REGION
  1781. ccci_set_exp_region_protection(md);
  1782. #endif
  1783. if (*((int *)(md->mem_layout.smem_region_vir + CCCI_SMEM_OFFSET_SEQERR)) != 0) {
  1784. CCCI_ERR_MSG(md->index, KERN, "MD found wrong sequence number\n");
  1785. md->ops->dump_info(md, DUMP_FLAG_CLDMA, NULL, -1);
  1786. }
  1787. wake_lock_timeout(&md_ctrl->trm_wake_lock, 10 * HZ);
  1788. ccci_md_exception_notify(md, EX_INIT);
  1789. /* disable CLDMA except un-stop queues */
  1790. cldma_stop_for_ee(md);
  1791. /* purge Tx queue */
  1792. md_cd_clear_all_queue(md, OUT);
  1793. /* Rx dispatch does NOT depend on queue index in port structure, so it still can find right port. */
  1794. md_cd_ccif_send(md, H2D_EXCEPTION_ACK);
  1795. break;
  1796. case HIF_EX_INIT_DONE:
  1797. ccci_md_exception_notify(md, EX_DHL_DL_RDY);
  1798. break;
  1799. case HIF_EX_CLEARQ_DONE:
  1800. /* give DHL some time to flush data */
  1801. msleep(2000);
  1802. md_cd_ccif_delayed_work(md);
  1803. break;
  1804. case HIF_EX_ALLQ_RESET:
  1805. /* re-start CLDMA */
  1806. cldma_reset(md);
  1807. /* md_cd_clear_all_queue(md, IN); move to delay work for request skb in it*/ /* purge Rx queue */
  1808. ccci_md_exception_notify(md, EX_INIT_DONE);
  1809. cldma_start(md);
  1810. SO_CFG = cldma_read32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_SO_CFG);
  1811. if ((SO_CFG & 0x1) == 0) { /* write function didn't work */
  1812. CCCI_ERR_MSG(md->index, TAG,
  1813. "Enable AP OUTCLDMA failed. Register can't be wrote. SO_CFG=0x%x\n", SO_CFG);
  1814. cldma_dump_register(md);
  1815. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_SO_CFG,
  1816. cldma_read32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_SO_CFG) | 0x05);
  1817. }
  1818. break;
  1819. default:
  1820. break;
  1821. };
  1822. }
  1823. static void polling_ready(struct md_cd_ctrl *md_ctrl, int step)
  1824. {
  1825. int cnt = 100;
  1826. while (cnt--)
  1827. {
  1828. if (md_ctrl->channel_id & (1 << step))
  1829. break;
  1830. msleep(20);
  1831. }
  1832. }
  1833. static void md_cd_ccif_work(struct work_struct *work)
  1834. {
  1835. struct md_cd_ctrl *md_ctrl = container_of(work, struct md_cd_ctrl, ccif_work);
  1836. struct ccci_modem *md = md_ctrl->modem;
  1837. mutex_lock(&md_ctrl->ccif_wdt_mutex);
  1838. if (!wdt_executed)
  1839. {
  1840. polling_ready(md_ctrl, D2H_EXCEPTION_INIT);
  1841. md_cd_exception(md, HIF_EX_INIT);
  1842. polling_ready(md_ctrl, D2H_EXCEPTION_INIT_DONE);
  1843. md_cd_exception(md, HIF_EX_INIT_DONE);
  1844. polling_ready(md_ctrl, D2H_EXCEPTION_CLEARQ_DONE);
  1845. md_cd_exception(md, HIF_EX_CLEARQ_DONE);
  1846. polling_ready(md_ctrl, D2H_EXCEPTION_ALLQ_RESET);
  1847. md_cd_exception(md, HIF_EX_ALLQ_RESET);
  1848. if(md_ctrl->channel_id & (1<<AP_MD_PEER_WAKEUP))
  1849. wake_lock_timeout(&md_ctrl->peer_wake_lock, HZ);
  1850. if(md_ctrl->channel_id & (1<<AP_MD_SEQ_ERROR)) {
  1851. CCCI_ERR_MSG(md->index, TAG, "MD check seq fail\n");
  1852. md->ops->dump_info(md, DUMP_FLAG_CCIF, NULL, 0);
  1853. }
  1854. }
  1855. mutex_unlock(&md_ctrl->ccif_wdt_mutex);
  1856. }
  1857. static irqreturn_t md_cd_ccif_isr(int irq, void *data)
  1858. {
  1859. struct ccci_modem *md = (struct ccci_modem *)data;
  1860. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1861. wdt_disable_irq(md);
  1862. /* must ack first, otherwise IRQ will rush in */
  1863. md_ctrl->channel_id = cldma_read32(md_ctrl->ap_ccif_base, APCCIF_RCHNUM);
  1864. CCCI_DBG_MSG(md->index, TAG, "MD CCIF IRQ 0x%X\n", md_ctrl->channel_id);
  1865. cldma_write32(md_ctrl->ap_ccif_base, APCCIF_ACK, md_ctrl->channel_id);
  1866. /* only schedule tasklet in EXCEPTION HIF 1 */
  1867. if (md_ctrl->channel_id & (1 << D2H_EXCEPTION_INIT))
  1868. tasklet_hi_schedule(&md_ctrl->ccif_irq_task);
  1869. return IRQ_HANDLED;
  1870. }
  1871. static inline int cldma_sw_init(struct ccci_modem *md)
  1872. {
  1873. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1874. int ret;
  1875. /* do NOT touch CLDMA HW after power on MD */
  1876. /* Copy HW info */
  1877. md_ctrl->ap_ccif_base = (void __iomem *)md_ctrl->hw_info->ap_ccif_base;
  1878. md_ctrl->md_ccif_base = (void __iomem *)md_ctrl->hw_info->md_ccif_base;
  1879. md_ctrl->cldma_irq_id = md_ctrl->hw_info->cldma_irq_id;
  1880. md_ctrl->ap_ccif_irq_id = md_ctrl->hw_info->ap_ccif_irq_id;
  1881. md_ctrl->md_wdt_irq_id = md_ctrl->hw_info->md_wdt_irq_id;
  1882. md_ctrl->ap2md_bus_timeout_irq_id = md_ctrl->hw_info->ap2md_bus_timeout_irq_id;
  1883. /* do NOT touch CLDMA HW after power on MD */
  1884. /* ioremap CLDMA register region */
  1885. md_cd_io_remap_md_side_register(md);
  1886. /* request IRQ */
  1887. ret = request_irq(md_ctrl->hw_info->cldma_irq_id, cldma_isr, md_ctrl->hw_info->cldma_irq_flags, "CLDMA_AP", md);
  1888. if (ret) {
  1889. CCCI_ERR_MSG(md->index, TAG, "request CLDMA_AP IRQ(%d) error %d\n", md_ctrl->hw_info->cldma_irq_id,
  1890. ret);
  1891. return ret;
  1892. }
  1893. disable_irq(md_ctrl->hw_info->cldma_irq_id);
  1894. #ifndef FEATURE_FPGA_PORTING
  1895. ret =
  1896. request_irq(md_ctrl->hw_info->md_wdt_irq_id, md_cd_wdt_isr, md_ctrl->hw_info->md_wdt_irq_flags, "MD_WDT",
  1897. md);
  1898. if (ret) {
  1899. CCCI_ERR_MSG(md->index, TAG, "request MD_WDT IRQ(%d) error %d\n", md_ctrl->hw_info->md_wdt_irq_id, ret);
  1900. return ret;
  1901. }
  1902. atomic_inc(&md_ctrl->wdt_enabled);
  1903. /* IRQ is enabled after requested, so call enable_irq after request_irq will get a unbalance warning */
  1904. ret =
  1905. request_irq(md_ctrl->hw_info->ap_ccif_irq_id, md_cd_ccif_isr, md_ctrl->hw_info->ap_ccif_irq_flags,
  1906. "CCIF0_AP", md);
  1907. if (ret) {
  1908. CCCI_ERR_MSG(md->index, TAG, "request CCIF0_AP IRQ(%d) error %d\n", md_ctrl->hw_info->ap_ccif_irq_id,
  1909. ret);
  1910. return ret;
  1911. }
  1912. atomic_inc(&md_ctrl->ccif_irq_enabled);
  1913. #endif
  1914. return 0;
  1915. }
  1916. static int md_cd_broadcast_state(struct ccci_modem *md, MD_STATE state)
  1917. {
  1918. int i;
  1919. struct ccci_port *port;
  1920. /* only for thoes states which are updated by port_kernel.c */
  1921. switch (state) {
  1922. case READY:
  1923. md_cd_bootup_cleanup(md, 1);
  1924. /* Update time to modem here, to cover case that user set time between HS1 and IPC channel ready. */
  1925. /* only modem 1 need. so add here. */
  1926. notify_time_update();
  1927. break;
  1928. case BOOT_FAIL:
  1929. if (md->md_state != BOOT_FAIL) /* bootup timeout may comes before MD EE */
  1930. md_cd_bootup_cleanup(md, 0);
  1931. return 0;
  1932. case RX_IRQ:
  1933. case TX_IRQ:
  1934. case TX_FULL:
  1935. CCCI_ERR_MSG(md->index, TAG, "%ps broadcast %d to ports!\n", __builtin_return_address(0), state);
  1936. return 0;
  1937. default:
  1938. break;
  1939. };
  1940. if (md->md_state == state) /* must have, due to we broadcast EXCEPTION both in MD_EX and EX_INIT */
  1941. return 1;
  1942. md->md_state = state;
  1943. for (i = 0; i < md->port_number; i++) {
  1944. port = md->ports + i;
  1945. if (port->ops->md_state_notice)
  1946. port->ops->md_state_notice(port, state);
  1947. }
  1948. return 0;
  1949. }
  1950. static int md_cd_init(struct ccci_modem *md)
  1951. {
  1952. int i;
  1953. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1954. struct ccci_port *port = NULL;
  1955. CCCI_INF_MSG(md->index, TAG, "CLDMA modem is initializing\n");
  1956. /* init CLMDA, must before queue init as we set start address there */
  1957. cldma_sw_init(md);
  1958. /* init queue */
  1959. for (i = 0; i < QUEUE_LEN(md_ctrl->txq); i++) {
  1960. md_cd_queue_struct_init(&md_ctrl->txq[i], md, OUT, i);
  1961. cldma_tx_queue_init(&md_ctrl->txq[i]);
  1962. }
  1963. for (i = 0; i < QUEUE_LEN(md_ctrl->rxq); i++) {
  1964. md_cd_queue_struct_init(&md_ctrl->rxq[i], md, IN, i);
  1965. cldma_rx_queue_init(&md_ctrl->rxq[i]);
  1966. }
  1967. /* init port */
  1968. for (i = 0; i < md->port_number; i++) {
  1969. port = md->ports + i;
  1970. ccci_port_struct_init(port, md);
  1971. port->ops->init(port);
  1972. if ((port->flags & PORT_F_RX_EXCLUSIVE) && (port->modem->capability & MODEM_CAP_NAPI) &&
  1973. ((1 << port->rxq_index) & NAPI_QUEUE_MASK) && port->rxq_index != 0xFF) {
  1974. md_ctrl->rxq[port->rxq_index].napi_port = port;
  1975. CCCI_DBG_MSG(md->index, TAG, "queue%d add NAPI port %s\n", port->rxq_index, port->name);
  1976. }
  1977. /* be careful, port->rxq_index may be 0xFF! */
  1978. }
  1979. ccci_setup_channel_mapping(md);
  1980. /* update state */
  1981. md->md_state = GATED;
  1982. return 0;
  1983. }
  1984. #if TRAFFIC_MONITOR_INTERVAL
  1985. static void md_cd_clear_traffic_data(struct ccci_modem *md)
  1986. {
  1987. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1988. memset(md_ctrl->tx_traffic_monitor, 0, sizeof(md_ctrl->tx_traffic_monitor));
  1989. memset(md_ctrl->rx_traffic_monitor, 0, sizeof(md_ctrl->rx_traffic_monitor));
  1990. memset(md_ctrl->tx_pre_traffic_monitor, 0, sizeof(md_ctrl->tx_pre_traffic_monitor));
  1991. }
  1992. #endif
  1993. static void md_ccif_irq_tasklet(unsigned long data)
  1994. {
  1995. struct ccci_modem *md = (struct ccci_modem *)data;
  1996. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  1997. ccif_disable_irq(md);
  1998. schedule_work(&md_ctrl->ccif_work);
  1999. }
  2000. static int md_cd_start(struct ccci_modem *md)
  2001. {
  2002. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  2003. char img_err_str[IMG_ERR_STR_LEN];
  2004. int ret = 0;
  2005. #ifndef ENABLE_CLDMA_AP_SIDE
  2006. int retry, cldma_on = 0;
  2007. #endif
  2008. /* 0. init security, as security depends on dummy_char, which is ready very late. */
  2009. ccci_init_security();
  2010. CCCI_NOTICE_MSG(md->index, TAG, "CLDMA modem is starting\n");
  2011. /* 1. load modem image */
  2012. if (1/*md->config.setting&MD_SETTING_FIRST_BOOT || md->config.setting&MD_SETTING_RELOAD */) {
  2013. ccci_clear_md_region_protection(md);
  2014. ccci_clear_dsp_region_protection(md);
  2015. ret = ccci_load_firmware(md->index, &md->img_info[IMG_MD], img_err_str, md->post_fix);
  2016. if (ret < 0) {
  2017. CCCI_ERR_MSG(md->index, TAG, "load MD firmware fail, %s\n", img_err_str);
  2018. goto out;
  2019. }
  2020. if (md->img_info[IMG_MD].dsp_size != 0 && md->img_info[IMG_MD].dsp_offset != 0xCDCDCDAA) {
  2021. md->img_info[IMG_DSP].address = md->img_info[IMG_MD].address + md->img_info[IMG_MD].dsp_offset;
  2022. ret = ccci_load_firmware(md->index, &md->img_info[IMG_DSP], img_err_str, md->post_fix);
  2023. if (ret < 0) {
  2024. CCCI_ERR_MSG(md->index, TAG, "load DSP firmware fail, %s\n", img_err_str);
  2025. goto out;
  2026. }
  2027. if (md->img_info[IMG_DSP].size > md->img_info[IMG_MD].dsp_size) {
  2028. CCCI_ERR_MSG(md->index, TAG, "DSP image real size too large %d\n",
  2029. md->img_info[IMG_DSP].size);
  2030. goto out;
  2031. }
  2032. md->mem_layout.dsp_region_phy = md->img_info[IMG_DSP].address;
  2033. md->mem_layout.dsp_region_vir = md->mem_layout.md_region_vir + md->img_info[IMG_MD].dsp_offset;
  2034. md->mem_layout.dsp_region_size = ret;
  2035. }
  2036. CCCI_ERR_MSG(md->index, TAG, "load ARMV7 firmware begin[0x%x]<0x%x>\n",
  2037. md->img_info[IMG_MD].arm7_size, md->img_info[IMG_MD].arm7_offset);
  2038. if ((md->img_info[IMG_MD].arm7_size != 0) && (md->img_info[IMG_MD].arm7_offset != 0)) {
  2039. md->img_info[IMG_ARMV7].address = md->img_info[IMG_MD].address+md->img_info[IMG_MD].arm7_offset;
  2040. ret = ccci_load_firmware(md->index, &md->img_info[IMG_ARMV7], img_err_str, md->post_fix);
  2041. if (ret < 0) {
  2042. CCCI_ERR_MSG(md->index, TAG, "load ARMV7 firmware fail, %s\n", img_err_str);
  2043. goto out;
  2044. }
  2045. if (md->img_info[IMG_ARMV7].size > md->img_info[IMG_MD].arm7_size) {
  2046. CCCI_ERR_MSG(md->index, TAG, "ARMV7 image real size too large %d\n",
  2047. md->img_info[IMG_ARMV7].size);
  2048. goto out;
  2049. }
  2050. }
  2051. ret = 0; /* load_std_firmware returns MD image size */
  2052. md->config.setting &= ~MD_SETTING_RELOAD;
  2053. }
  2054. /* 2. clear share memory and ring buffer */
  2055. #if 0 /* no need now, MD will clear share memory itself */
  2056. memset(md->mem_layout.smem_region_vir, 0, md->mem_layout.smem_region_size);
  2057. #endif
  2058. #if 1 /* just in case */
  2059. md_cd_clear_all_queue(md, OUT);
  2060. md_cd_clear_all_queue(md, IN);
  2061. ccci_reset_seq_num(md);
  2062. #endif
  2063. /* 3. enable MPU */
  2064. ccci_set_mem_access_protection(md);
  2065. if (md->mem_layout.dsp_region_phy != 0)
  2066. ccci_set_dsp_region_protection(md, 0);
  2067. /* 4. power on modem, do NOT touch MD register before this */
  2068. if (md->config.setting & MD_SETTING_FIRST_BOOT) {
  2069. #if defined(CONFIG_MTK_LEGACY)
  2070. #ifndef NO_POWER_OFF_ON_STARTMD
  2071. ret = md_cd_power_off(md, 0);
  2072. CCCI_INF_MSG(md->index, TAG, "power off MD first %d\n", ret);
  2073. #endif
  2074. #endif
  2075. md->config.setting &= ~MD_SETTING_FIRST_BOOT;
  2076. }
  2077. #if TRAFFIC_MONITOR_INTERVAL
  2078. md_cd_clear_traffic_data(md);
  2079. #endif
  2080. /* clear all ccif irq before enable it.*/
  2081. cldma_write32(md_ctrl->md_ccif_base, APCCIF_ACK, cldma_read32(md_ctrl->md_ccif_base, APCCIF_RCHNUM));
  2082. cldma_write32(md_ctrl->ap_ccif_base, APCCIF_ACK, cldma_read32(md_ctrl->ap_ccif_base, APCCIF_RCHNUM));
  2083. wdt_executed = 0;
  2084. #ifdef ENABLE_CLDMA_AP_SIDE
  2085. md_cldma_hw_reset(md);
  2086. #endif
  2087. ret = md_cd_power_on(md);
  2088. if (ret) {
  2089. CCCI_ERR_MSG(md->index, TAG, "power on MD fail %d\n", ret);
  2090. goto out;
  2091. }
  2092. #ifdef SET_EMI_STEP_BY_STAGE
  2093. ccci_set_mem_access_protection_1st_stage(md);
  2094. #endif
  2095. /* 5. update mutex */
  2096. atomic_set(&md_ctrl->reset_on_going, 0);
  2097. /* 6. start timer */
  2098. if (!MD_IN_DEBUG(md))
  2099. mod_timer(&md->bootup_timer, jiffies + BOOT_TIMER_ON * HZ);
  2100. /* 7. let modem go */
  2101. md_cd_let_md_go(md);
  2102. wdt_enable_irq(md);
  2103. ccif_enable_irq(md);
  2104. /* 8. start CLDMA */
  2105. #ifdef ENABLE_CLDMA_AP_SIDE
  2106. CCCI_INF_MSG(md->index, TAG, "CLDMA AP side clock is always on\n");
  2107. #else
  2108. retry = CLDMA_CG_POLL;
  2109. while (retry-- > 0) {
  2110. if (!(ccci_read32(md_ctrl->md_global_con0, 0) & (1 << MD_GLOBAL_CON0_CLDMA_BIT))) {
  2111. CCCI_INF_MSG(md->index, TAG, "CLDMA clock is on, retry=%d\n", retry);
  2112. cldma_on = 1;
  2113. break;
  2114. }
  2115. CCCI_INF_MSG(md->index, TAG, "CLDMA clock is still off, retry=%d\n", retry);
  2116. mdelay(1000);
  2117. CCCI_INF_MSG(md->index, TAG, "CLDMA clock is still off, retry=%d\n", retry);
  2118. mdelay(1000);
  2119. }
  2120. if (!cldma_on) {
  2121. ret = -CCCI_ERR_HIF_NOT_POWER_ON;
  2122. CCCI_ERR_MSG(md->index, TAG, "CLDMA clock is off, retry=%d\n", retry);
  2123. goto out;
  2124. }
  2125. #endif
  2126. cldma_reset(md);
  2127. md->ops->broadcast_state(md, BOOTING);
  2128. md->boot_stage = MD_BOOT_STAGE_0;
  2129. md->ex_stage = EX_NONE;
  2130. cldma_start(md);
  2131. out:
  2132. CCCI_NOTICE_MSG(md->index, TAG, "CLDMA modem started %d\n", ret);
  2133. /* used for throttling feature - start */
  2134. ccci_modem_boot_count[md->index]++;
  2135. /* used for throttling feature - end */
  2136. return ret;
  2137. }
  2138. /* only run this in thread context, as we use flush_work in it */
  2139. static void md_cldma_clear(struct ccci_modem *md)
  2140. {
  2141. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  2142. int i;
  2143. unsigned int ret;
  2144. unsigned long flags;
  2145. int retry = 100;
  2146. #ifdef ENABLE_CLDMA_AP_SIDE /* touch MD CLDMA to flush all data from MD to AP */
  2147. ret = cldma_read32(md_ctrl->cldma_md_pdn_base, CLDMA_AP_UL_STATUS);
  2148. for (i = 0; (CLDMA_BM_ALL_QUEUE & ret) && i < QUEUE_LEN(md_ctrl->rxq); i++) {
  2149. if ((CLDMA_BM_ALL_QUEUE & ret) & (1 << i)) {
  2150. CCCI_INF_MSG(md->index, TAG, "MD CLDMA txq=%d is active, need AP rx collect!", i);
  2151. md->ops->give_more(md, i);
  2152. }
  2153. }
  2154. while (retry > 0) {
  2155. ret = cldma_read32(md_ctrl->cldma_md_pdn_base, CLDMA_AP_UL_STATUS);
  2156. if ((CLDMA_BM_ALL_QUEUE & ret) == 0
  2157. && cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_CLDMA_IP_BUSY) == 0) {
  2158. CCCI_INF_MSG(md->index, TAG,
  2159. "MD CLDMA tx status is off, retry=%d, AP_CLDMA_IP_BUSY=0x%x, MD_TX_STATUS=0x%x, AP_RX_STATUS=0x%x\n",
  2160. retry, cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_CLDMA_IP_BUSY),
  2161. cldma_read32(md_ctrl->cldma_md_pdn_base, CLDMA_AP_UL_STATUS),
  2162. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_SO_STATUS));
  2163. break;
  2164. }
  2165. if ((retry % 10) == 0)
  2166. CCCI_INF_MSG(md->index, TAG,
  2167. "MD CLDMA tx is active, retry=%d, AP_CLDMA_IP_BUSY=0x%x, MD_TX_STATUS=0x%x, AP_RX_STATUS=0x%x\n",
  2168. retry, cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_CLDMA_IP_BUSY),
  2169. cldma_read32(md_ctrl->cldma_md_pdn_base, CLDMA_AP_UL_STATUS),
  2170. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_SO_STATUS));
  2171. mdelay(20);
  2172. retry--;
  2173. }
  2174. if (retry == 0 && cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_CLDMA_IP_BUSY) != 0) {
  2175. CCCI_ERR_MSG(md->index, TAG, "md_cldma_clear: wait md tx done failed.\n");
  2176. md_cd_traffic_monitor_func((unsigned long)md);
  2177. cldma_dump_register(md);
  2178. } else {
  2179. CCCI_INF_MSG(md->index, TAG, "md_cldma_clear: md tx done\n");
  2180. }
  2181. #endif
  2182. md_cd_lock_cldma_clock_src(1);
  2183. cldma_stop(md);
  2184. md_cd_lock_cldma_clock_src(0);
  2185. /* 4. reset EE flag */
  2186. spin_lock_irqsave(&md->ctrl_lock, flags);
  2187. md->ee_info_flag = 0; /* must be after broadcast_state(RESET), check port_kernel.c */
  2188. spin_unlock_irqrestore(&md->ctrl_lock, flags);
  2189. /* 5. update state */
  2190. del_timer(&md->bootup_timer);
  2191. /* 6. reset ring buffer */
  2192. md_cd_clear_all_queue(md, OUT);
  2193. /*
  2194. * there is a race condition between md_power_off and CLDMA IRQ. after we get a CLDMA IRQ,
  2195. * if we power off MD before CLDMA tasklet is scheduled, the tasklet will get 0 when reading CLDMA
  2196. * register, and not schedule workqueue to check RGPD. this will leave an HWO=0 RGPD in ring
  2197. * buffer and cause a queue being stopped. so we flush RGPD here to kill this missing RX_DONE interrupt.
  2198. */
  2199. md_cd_clear_all_queue(md, IN);
  2200. #ifdef ENABLE_CLDMA_AP_SIDE
  2201. md_cldma_hw_reset(md);
  2202. #endif
  2203. }
  2204. static int md_cd_reset(struct ccci_modem *md)
  2205. {
  2206. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  2207. /* 1. mutex check */
  2208. if (atomic_add_return(1, &md_ctrl->reset_on_going) > 1) {
  2209. CCCI_INF_MSG(md->index, TAG, "One reset flow is on-going\n");
  2210. return -CCCI_ERR_MD_IN_RESET;
  2211. }
  2212. CCCI_INF_MSG(md->index, TAG, "md_cd_reset:CLDMA modem is resetting\n");
  2213. /* 2. disable WDT IRQ */
  2214. wdt_disable_irq(md);
  2215. /* 3, stop CLDMA */
  2216. md->ops->broadcast_state(md, RESET); /* to block port's write operation */
  2217. md->boot_stage = MD_BOOT_STAGE_0;
  2218. return 0;
  2219. }
  2220. static int check_power_off_en(struct ccci_modem *md)
  2221. {
  2222. #ifdef ENABLE_MD_POWER_OFF_CHECK
  2223. int smem_val;
  2224. if (md->index != MD_SYS1)
  2225. return 1;
  2226. smem_val = *((int *)((long)md->mem_layout.smem_region_vir + 8*1024+31*4));
  2227. CCCI_INF_MSG(md->index, TAG, "share for power off:%x\n", smem_val);
  2228. if (smem_val != 0) {
  2229. CCCI_INF_MSG(md->index, TAG, "[ccci]enable power off check\n");
  2230. return 1;
  2231. }
  2232. CCCI_INF_MSG(md->index, TAG, "disable power off check\n");
  2233. return 0;
  2234. #else
  2235. return 1;
  2236. #endif
  2237. }
  2238. static int md_cd_stop(struct ccci_modem *md, unsigned int timeout)
  2239. {
  2240. int ret = 0, count = 0;
  2241. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  2242. u32 pending;
  2243. int en_power_check;
  2244. CCCI_INF_MSG(md->index, TAG, "CLDMA modem is power off, timeout=%d\n", timeout);
  2245. md->sim_type = 0xEEEEEEEE; /* reset sim_type(MCC/MNC) to 0xEEEEEEEE */
  2246. /* flush work before new start */
  2247. flush_work(&md_ctrl->ccif_work);
  2248. flush_work(&md_ctrl->wdt_work);
  2249. del_timer(&md->ex_monitor);
  2250. del_timer(&md->ex_monitor2);
  2251. md_cd_check_emi_state(md, 1); /* Check EMI before */
  2252. en_power_check = check_power_off_en(md);
  2253. if (timeout) { /* only debug in Flight mode */
  2254. count = 5;
  2255. while (spm_is_md1_sleep() == 0) {
  2256. count--;
  2257. if (count == 0) {
  2258. if (en_power_check) {
  2259. CCCI_INF_MSG(md->index, TAG, "MD is not in sleep mode, dump md status!\n");
  2260. CCCI_INF_MSG(md->index, KERN, "Dump MD EX log\n");
  2261. ccci_mem_dump(md->index, md->smem_layout.ccci_exp_smem_base_vir,
  2262. md->smem_layout.ccci_exp_dump_size);
  2263. md_cd_dump_debug_register(md);
  2264. cldma_dump_register(md);
  2265. #if defined(CONFIG_MTK_AEE_FEATURE)
  2266. #ifdef MD_UMOLY_EE_SUPPORT
  2267. aed_md_exception_api(md->smem_layout.ccci_exp_smem_mdss_debug_vir,
  2268. md->smem_layout.ccci_exp_smem_mdss_debug_size, NULL, 0,
  2269. "After AP send EPOF, MD didn't go to sleep in 4 seconds.",
  2270. DB_OPT_DEFAULT);
  2271. #else
  2272. aed_md_exception_api(NULL, 0, NULL, 0,
  2273. "After AP send EPOF, MD didn't go to sleep in 4 seconds.",
  2274. DB_OPT_DEFAULT);
  2275. #endif
  2276. #endif
  2277. }
  2278. break;
  2279. }
  2280. md_cd_lock_cldma_clock_src(1);
  2281. msleep(1000);
  2282. md_cd_lock_cldma_clock_src(0);
  2283. msleep(20);
  2284. }
  2285. pending = mt_irq_get_pending(md_ctrl->hw_info->md_wdt_irq_id);
  2286. if (pending) {
  2287. CCCI_INF_MSG(md->index, TAG, "WDT IRQ occur.");
  2288. CCCI_INF_MSG(md->index, KERN, "Dump MD EX log\n");
  2289. ccci_mem_dump(md->index, md->smem_layout.ccci_exp_smem_base_vir,
  2290. md->smem_layout.ccci_exp_dump_size);
  2291. md_cd_dump_debug_register(md);
  2292. cldma_dump_register(md);
  2293. #if defined(CONFIG_MTK_AEE_FEATURE)
  2294. aed_md_exception_api(NULL, 0, NULL, 0, "WDT IRQ occur.", DB_OPT_DEFAULT);
  2295. #endif
  2296. }
  2297. }
  2298. #ifndef ENABLE_CLDMA_AP_SIDE
  2299. md_cldma_clear(md);
  2300. #endif
  2301. /* power off MD */
  2302. ret = md_cd_power_off(md, timeout);
  2303. CCCI_INF_MSG(md->index, TAG, "CLDMA modem is power off done, %d\n", ret);
  2304. md->ops->broadcast_state(md, GATED);
  2305. #ifdef ENABLE_CLDMA_AP_SIDE
  2306. md_cldma_clear(md);
  2307. #endif
  2308. /* ACK CCIF for MD. while entering flight mode, we may send something after MD slept */
  2309. cldma_write32(md_ctrl->md_ccif_base, APCCIF_ACK, cldma_read32(md_ctrl->md_ccif_base, APCCIF_RCHNUM));
  2310. md_cd_check_emi_state(md, 0); /* Check EMI after */
  2311. return 0;
  2312. }
  2313. static int md_cd_write_room(struct ccci_modem *md, unsigned char qno)
  2314. {
  2315. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  2316. if (qno >= QUEUE_LEN(md_ctrl->txq))
  2317. return -CCCI_ERR_INVALID_QUEUE_INDEX;
  2318. return md_ctrl->txq[qno].budget;
  2319. }
  2320. /* this is called inside queue->ring_lock */
  2321. static int cldma_gpd_bd_handle_tx_request(struct md_cd_queue *queue, struct cldma_request *tx_req,
  2322. struct sk_buff *skb, DATA_POLICY policy, unsigned int ioc_override)
  2323. {
  2324. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)queue->modem->private_data;
  2325. struct cldma_tgpd *tgpd;
  2326. struct skb_shared_info *info = skb_shinfo(skb);
  2327. int cur_frag;
  2328. struct cldma_tbd *tbd;
  2329. struct cldma_request *tx_req_bd;
  2330. /* network does not has IOC override needs */
  2331. CCCI_DBG_MSG(queue->modem->index, TAG, "SGIO, GPD=%p, frags=%d, len=%d, headlen=%d\n", tx_req->gpd,
  2332. info->nr_frags, skb->len, skb_headlen(skb));
  2333. /* link firt BD to skb's data */
  2334. tx_req_bd = list_first_entry(&tx_req->bd, struct cldma_request, entry);
  2335. /* link rest BD to frags' data */
  2336. for (cur_frag = -1; cur_frag < info->nr_frags; cur_frag++) {
  2337. unsigned int frag_len;
  2338. void *frag_addr;
  2339. if (cur_frag == -1) {
  2340. frag_len = skb_headlen(skb);
  2341. frag_addr = skb->data;
  2342. } else {
  2343. skb_frag_t *frag = info->frags + cur_frag;
  2344. frag_len = skb_frag_size(frag);
  2345. frag_addr = skb_frag_address(frag);
  2346. }
  2347. tbd = tx_req_bd->gpd;
  2348. CCCI_DBG_MSG(queue->modem->index, TAG, "SGIO, BD=%p, frag%d, frag_len=%d\n", tbd, cur_frag, frag_len);
  2349. /* update BD */
  2350. tx_req_bd->data_buffer_ptr_saved =
  2351. dma_map_single(&queue->modem->plat_dev->dev, frag_addr, frag_len, DMA_TO_DEVICE);
  2352. tbd->data_buff_ptr = (u32) (tx_req_bd->data_buffer_ptr_saved);
  2353. tbd->data_buff_len = frag_len;
  2354. tbd->non_used = 1;
  2355. tbd->bd_flags &= ~0x1; /* clear EOL */
  2356. /* checksum of BD */
  2357. caculate_checksum((char *)tbd, tbd->bd_flags);
  2358. /* step forward */
  2359. tx_req_bd = list_entry(tx_req_bd->entry.next, struct cldma_request, entry);
  2360. }
  2361. tbd->bd_flags |= 0x1; /* set EOL */
  2362. caculate_checksum((char *)tbd, tbd->bd_flags);
  2363. tgpd = tx_req->gpd;
  2364. /* update GPD */
  2365. tgpd->data_buff_len = skb->len;
  2366. tgpd->debug_id = queue->debug_id++;
  2367. tgpd->non_used = 1;
  2368. /* checksum of GPD */
  2369. caculate_checksum((char *)tgpd, tgpd->gpd_flags | 0x1);
  2370. /* set HWO */
  2371. spin_lock(&md_ctrl->cldma_timeout_lock);
  2372. if (md_ctrl->txq_active & (1 << queue->index))
  2373. cldma_write8(&tgpd->gpd_flags, 0, cldma_read8(&tgpd->gpd_flags, 0) | 0x1);
  2374. spin_unlock(&md_ctrl->cldma_timeout_lock);
  2375. /* mark cldma_request as available */
  2376. tx_req->skb = skb;
  2377. tx_req->policy = policy;
  2378. return 0;
  2379. }
  2380. /* this is called inside queue->ring_lock */
  2381. static int cldma_gpd_handle_tx_request(struct md_cd_queue *queue, struct cldma_request *tx_req,
  2382. struct sk_buff *skb, DATA_POLICY policy, unsigned int ioc_override)
  2383. {
  2384. struct cldma_tgpd *tgpd;
  2385. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)queue->modem->private_data;
  2386. tgpd = tx_req->gpd;
  2387. /* override current IOC setting */
  2388. if (ioc_override & 0x80) {
  2389. tx_req->ioc_override = 0x80 | (!!(tgpd->gpd_flags & 0x80)); /* backup current IOC setting */
  2390. if (ioc_override & 0x1)
  2391. tgpd->gpd_flags |= 0x80;
  2392. else
  2393. tgpd->gpd_flags &= 0x7F;
  2394. }
  2395. /* update GPD */
  2396. tx_req->data_buffer_ptr_saved =
  2397. dma_map_single(&queue->modem->plat_dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
  2398. tgpd->data_buff_bd_ptr = (u32) (tx_req->data_buffer_ptr_saved);
  2399. tgpd->data_buff_len = skb->len;
  2400. tgpd->debug_id = queue->debug_id++;
  2401. tgpd->non_used = 1;
  2402. /* checksum of GPD */
  2403. caculate_checksum((char *)tgpd, tgpd->gpd_flags | 0x1);
  2404. /*
  2405. * set HWO
  2406. * use cldma_timeout_lock to avoid race conditon with cldma_stop. this lock must cover TGPD setting, as even
  2407. * without a resume operation, CLDMA still can start sending next HWO=1 TGPD if last TGPD was just finished.
  2408. */
  2409. spin_lock(&md_ctrl->cldma_timeout_lock);
  2410. if (md_ctrl->txq_active & (1 << queue->index))
  2411. cldma_write8(&tgpd->gpd_flags, 0, cldma_read8(&tgpd->gpd_flags, 0) | 0x1);
  2412. spin_unlock(&md_ctrl->cldma_timeout_lock);
  2413. /* mark cldma_request as available */
  2414. tx_req->skb = skb;
  2415. tx_req->policy = policy;
  2416. return 0;
  2417. }
  2418. static int md_cd_send_request(struct ccci_modem *md, unsigned char qno, struct ccci_request *req, struct sk_buff *skb)
  2419. {
  2420. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  2421. struct md_cd_queue *queue;
  2422. struct cldma_request *tx_req;
  2423. int ret = 0;
  2424. int blocking;
  2425. struct ccci_header ccci_h;
  2426. unsigned int ioc_override = 0;
  2427. unsigned long flags;
  2428. unsigned int tx_bytes = 0;
  2429. DATA_POLICY policy;
  2430. #ifdef CLDMA_TRACE
  2431. static unsigned long long last_leave_time[CLDMA_TXQ_NUM] = { 0 };
  2432. static unsigned int sample_time[CLDMA_TXQ_NUM] = { 0 };
  2433. static unsigned int sample_bytes[CLDMA_TXQ_NUM] = { 0 };
  2434. unsigned long long total_time = 0;
  2435. unsigned int tx_interal;
  2436. #endif
  2437. #ifdef CLDMA_TRACE
  2438. total_time = sched_clock();
  2439. if (last_leave_time[qno] == 0)
  2440. tx_interal = 0;
  2441. else
  2442. tx_interal = total_time - last_leave_time[qno];
  2443. #endif
  2444. memset(&ccci_h, 0, sizeof(struct ccci_header));
  2445. #if TRAFFIC_MONITOR_INTERVAL
  2446. if ((jiffies - md_ctrl->traffic_stamp) / HZ >= TRAFFIC_MONITOR_INTERVAL) {
  2447. md_ctrl->traffic_stamp = jiffies;
  2448. mod_timer(&md_ctrl->traffic_monitor, jiffies);
  2449. }
  2450. #endif
  2451. if (qno >= QUEUE_LEN(md_ctrl->txq)) {
  2452. ret = -CCCI_ERR_INVALID_QUEUE_INDEX;
  2453. goto __EXIT_FUN;
  2454. }
  2455. if (req) {
  2456. skb = req->skb;
  2457. policy = req->policy;
  2458. ioc_override = req->ioc_override;
  2459. blocking = req->blocking;
  2460. } else {
  2461. policy = FREE; /* here we assume only network use this kind of API */
  2462. ioc_override = 0;
  2463. blocking = 0;
  2464. }
  2465. ccci_h = *(struct ccci_header *)skb->data;
  2466. queue = &md_ctrl->txq[qno];
  2467. tx_bytes = skb->len;
  2468. retry:
  2469. spin_lock_irqsave(&queue->ring_lock, flags);
  2470. /* we use irqsave as network require a lock in softirq, cause a potential deadlock */
  2471. CCCI_DBG_MSG(md->index, TAG, "get a Tx req on q%d free=%d, tx_bytes = %X\n", qno, queue->budget, tx_bytes);
  2472. tx_req = queue->tx_xmit;
  2473. if (tx_req->skb == NULL) {
  2474. ccci_inc_tx_seq_num(md, (struct ccci_header *)skb->data);
  2475. /* wait write done */
  2476. wmb();
  2477. queue->budget--;
  2478. queue->tr_ring->handle_tx_request(queue, tx_req, skb, policy, ioc_override);
  2479. /* step forward */
  2480. queue->tx_xmit = cldma_ring_step_forward(queue->tr_ring, tx_req);
  2481. spin_unlock_irqrestore(&queue->ring_lock, flags);
  2482. /* update log */
  2483. #if TRAFFIC_MONITOR_INTERVAL
  2484. md_ctrl->tx_pre_traffic_monitor[queue->index]++;
  2485. #endif
  2486. ccci_dump_log_add(md, OUT, (int)queue->index, &ccci_h, 0);
  2487. /*
  2488. * make sure TGPD is ready by here, otherwise there is race conditon between ports over the same queue.
  2489. * one port is just setting TGPD, another port may have resumed the queue.
  2490. */
  2491. md_cd_lock_cldma_clock_src(1);
  2492. /* put it outside of spin_lock_irqsave to avoid disabling IRQ too long */
  2493. spin_lock_irqsave(&md_ctrl->cldma_timeout_lock, flags);
  2494. if (md_ctrl->txq_active & (1 << qno)) {
  2495. #ifdef ENABLE_CLDMA_TIMER
  2496. if (IS_NET_QUE(md, qno)) {
  2497. queue->timeout_start = local_clock();
  2498. ret = mod_timer(&queue->timeout_timer, jiffies + CLDMA_ACTIVE_T * HZ);
  2499. CCCI_DBG_MSG(md->index, TAG, "md_ctrl->txq_active=%d, qno%d ,ch%d, start_timer=%d\n",
  2500. md_ctrl->txq_active, qno, ccci_h.channel, ret);
  2501. ret = 0;
  2502. }
  2503. #endif
  2504. #ifdef NO_START_ON_SUSPEND_RESUME
  2505. if (md_ctrl->txq_started) {
  2506. #endif
  2507. /* resume Tx queue */
  2508. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_RESUME_CMD,
  2509. CLDMA_BM_ALL_QUEUE & (1 << qno));
  2510. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_RESUME_CMD);
  2511. /* dummy read to create a non-buffable write */
  2512. #ifdef NO_START_ON_SUSPEND_RESUME
  2513. } else {
  2514. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_START_CMD, CLDMA_BM_ALL_QUEUE);
  2515. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_START_CMD); /* dummy read */
  2516. md_ctrl->txq_started = 1;
  2517. }
  2518. #endif
  2519. #ifndef ENABLE_CLDMA_AP_SIDE
  2520. md_cd_ccif_send(md, AP_MD_PEER_WAKEUP);
  2521. #endif
  2522. } else {
  2523. /*
  2524. * [NOTICE] Dont return error
  2525. * SKB has been put into cldma chain,
  2526. * However, if txq_active is disable, that means cldma_stop for some case,
  2527. * and cldma no need resume again.
  2528. * This package will be dropped by cldma.
  2529. */
  2530. CCCI_INF_MSG(md->index, TAG, "ch=%d qno=%d cldma maybe stop, this package will be dropped!\n",
  2531. ccci_h.channel, qno);
  2532. }
  2533. spin_unlock_irqrestore(&md_ctrl->cldma_timeout_lock, flags);
  2534. md_cd_lock_cldma_clock_src(0);
  2535. } else {
  2536. if (likely(md->capability & MODEM_CAP_TXBUSY_STOP))
  2537. cldma_queue_broadcast_state(md, TX_FULL, OUT, queue->index);
  2538. spin_unlock_irqrestore(&queue->ring_lock, flags);
  2539. /* check CLDMA status */
  2540. md_cd_lock_cldma_clock_src(1);
  2541. if (cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_UL_STATUS) & (1 << qno)) {
  2542. CCCI_DBG_MSG(md->index, TAG, "ch=%d qno=%d free slot 0, CLDMA_AP_UL_STATUS=0x%x\n",
  2543. ccci_h.channel, qno, cldma_read32(md_ctrl->cldma_ap_pdn_base,
  2544. CLDMA_AP_UL_STATUS));
  2545. queue->busy_count++;
  2546. } else {
  2547. if (cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2TIMR0) & (1 << qno))
  2548. CCCI_INF_MSG(md->index, TAG, "ch=%d qno=%d free slot 0, CLDMA_AP_L2TIMR0=0x%x\n",
  2549. ccci_h.channel, qno, cldma_read32(md_ctrl->cldma_ap_pdn_base,
  2550. CLDMA_AP_L2TIMR0));
  2551. }
  2552. md_cd_lock_cldma_clock_src(0);
  2553. #ifdef CLDMA_NO_TX_IRQ
  2554. queue->tr_ring->handle_tx_done(queue, 0, 0, &ret);
  2555. #endif
  2556. if (blocking) {
  2557. ret = wait_event_interruptible_exclusive(queue->req_wq, (queue->budget > 0));
  2558. if (ret == -ERESTARTSYS) {
  2559. ret = -EINTR;
  2560. goto __EXIT_FUN;
  2561. }
  2562. #ifdef CLDMA_TRACE
  2563. trace_cldma_error(qno, ccci_h.channel, ret, __LINE__);
  2564. #endif
  2565. goto retry;
  2566. } else {
  2567. ret = -EBUSY;
  2568. goto __EXIT_FUN;
  2569. }
  2570. }
  2571. __EXIT_FUN:
  2572. if (req && !ret) {
  2573. /* free old request as wrapper, only when we've ate this request */
  2574. req->policy = NOOP;
  2575. ccci_free_req(req);
  2576. }
  2577. #ifdef CLDMA_TRACE
  2578. if (unlikely(ret)) {
  2579. CCCI_DBG_MSG(md->index, TAG, "txq_active=%d, qno=%d is 0,drop ch%d package,ret=%d\n",
  2580. md_ctrl->txq_active, qno, ccci_h.channel, ret);
  2581. trace_cldma_error(qno, ccci_h.channel, ret, __LINE__);
  2582. } else {
  2583. last_leave_time[qno] = sched_clock();
  2584. total_time = last_leave_time[qno] - total_time;
  2585. sample_time[queue->index] += (total_time + tx_interal);
  2586. sample_bytes[queue->index] += tx_bytes;
  2587. trace_cldma_tx(qno, ccci_h.channel, md_ctrl->txq[qno].budget, tx_interal, total_time,
  2588. tx_bytes, 0, 0);
  2589. if (sample_time[queue->index] >= trace_sample_time) {
  2590. trace_cldma_tx(qno, ccci_h.channel, 0, 0, 0, 0,
  2591. sample_time[queue->index], sample_bytes[queue->index]);
  2592. sample_time[queue->index] = 0;
  2593. sample_bytes[queue->index] = 0;
  2594. }
  2595. }
  2596. #endif
  2597. return ret;
  2598. }
  2599. static int md_cd_give_more(struct ccci_modem *md, unsigned char qno)
  2600. {
  2601. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  2602. int ret;
  2603. if (qno >= QUEUE_LEN(md_ctrl->rxq))
  2604. return -CCCI_ERR_INVALID_QUEUE_INDEX;
  2605. CCCI_DBG_MSG(md->index, TAG, "give more on queue %d work %p\n", qno, &md_ctrl->rxq[qno].cldma_rx_work);
  2606. ret = queue_work(md_ctrl->rxq[qno].worker, &md_ctrl->rxq[qno].cldma_rx_work);
  2607. return 0;
  2608. }
  2609. static int md_cd_napi_poll(struct ccci_modem *md, unsigned char qno, struct napi_struct *napi, int weight)
  2610. {
  2611. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  2612. int ret, result, rx_bytes, all_clr = 0;
  2613. unsigned long flags;
  2614. struct md_cd_queue *queue;
  2615. unsigned int L2RISAR0 = 0;
  2616. if (qno >= QUEUE_LEN(md_ctrl->rxq))
  2617. return -CCCI_ERR_INVALID_QUEUE_INDEX;
  2618. queue = &md_ctrl->rxq[qno];
  2619. ret = queue->tr_ring->handle_rx_done(queue, weight, 0, &result, &rx_bytes);
  2620. if (likely(weight < queue->budget))
  2621. all_clr = ret == 0 ? 1 : 0;
  2622. else
  2623. all_clr = ret < queue->budget ? 1 : 0;
  2624. if (likely(all_clr && result != NO_SKB))
  2625. all_clr = 1;
  2626. else
  2627. all_clr = 0;
  2628. md_cd_lock_cldma_clock_src(1);
  2629. L2RISAR0 = cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2RISAR0);
  2630. if (L2RISAR0 & CLDMA_BM_INT_DONE & (1 << queue->index)) {
  2631. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_L2RISAR0, (1 << queue->index));
  2632. all_clr = 0;
  2633. }
  2634. if (all_clr)
  2635. napi_complete(napi);
  2636. spin_lock_irqsave(&md_ctrl->cldma_timeout_lock, flags);
  2637. if (md_ctrl->rxq_active & (1 << qno)) {
  2638. /* resume Rx queue */
  2639. cldma_write32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_SO_RESUME_CMD, CLDMA_BM_ALL_QUEUE & (1 << qno));
  2640. cldma_read32(md_ctrl->cldma_ap_pdn_base, CLDMA_AP_SO_RESUME_CMD); /* dummy read */
  2641. /* enable RX_DONE interrupt */
  2642. if (all_clr)
  2643. cldma_write32(md_ctrl->cldma_ap_ao_base, CLDMA_AP_L2RIMCR0, CLDMA_BM_ALL_QUEUE & (1 << qno));
  2644. }
  2645. spin_unlock_irqrestore(&md_ctrl->cldma_timeout_lock, flags);
  2646. md_cd_lock_cldma_clock_src(0);
  2647. CCCI_DBG_MSG(md->index, TAG, "NAPI poll on queue %d, %d->%d->%d\n", qno, weight, ret, all_clr);
  2648. return ret;
  2649. }
  2650. static struct ccci_port *md_cd_get_port_by_minor(struct ccci_modem *md, int minor)
  2651. {
  2652. int i;
  2653. struct ccci_port *port;
  2654. for (i = 0; i < md->port_number; i++) {
  2655. port = md->ports + i;
  2656. if (port->minor == minor)
  2657. return port;
  2658. }
  2659. return NULL;
  2660. }
  2661. static struct ccci_port *md_cd_get_port_by_channel(struct ccci_modem *md, CCCI_CH ch)
  2662. {
  2663. int i;
  2664. struct ccci_port *port;
  2665. for (i = 0; i < md->port_number; i++) {
  2666. port = md->ports + i;
  2667. if (port->rx_ch == ch || port->tx_ch == ch)
  2668. return port;
  2669. }
  2670. return NULL;
  2671. }
  2672. static void dump_runtime_data_v2(struct ccci_modem *md, struct ap_query_md_feature *ap_feature)
  2673. {
  2674. u8 i = 0;
  2675. CCCI_INF_MSG(md->index, KERN, "head_pattern 0x%x\n", ap_feature->head_pattern);
  2676. for (i = BOOT_INFO; i < AP_RUNTIME_FEATURE_ID_MAX; i++) {
  2677. CCCI_NOTICE_MSG(md->index, KERN, "feature %u: mask %u, version %u\n",
  2678. i, ap_feature->feature_set[i].support_mask, ap_feature->feature_set[i].version);
  2679. }
  2680. CCCI_INF_MSG(md->index, KERN, "share_memory_support 0x%x\n", ap_feature->share_memory_support);
  2681. CCCI_INF_MSG(md->index, KERN, "ap_runtime_data_addr 0x%x\n", ap_feature->ap_runtime_data_addr);
  2682. CCCI_INF_MSG(md->index, KERN, "ap_runtime_data_size 0x%x\n", ap_feature->ap_runtime_data_size);
  2683. CCCI_INF_MSG(md->index, KERN, "md_runtime_data_addr 0x%x\n", ap_feature->md_runtime_data_addr);
  2684. CCCI_INF_MSG(md->index, KERN, "md_runtime_data_size 0x%x\n", ap_feature->md_runtime_data_size);
  2685. CCCI_INF_MSG(md->index, KERN, "set_md_mpu_start_addr 0x%x\n", ap_feature->set_md_mpu_start_addr);
  2686. CCCI_INF_MSG(md->index, KERN, "set_md_mpu_total_size 0x%x\n", ap_feature->set_md_mpu_total_size);
  2687. CCCI_INF_MSG(md->index, KERN, "tail_pattern 0x%x\n", ap_feature->tail_pattern);
  2688. }
  2689. static void dump_runtime_data(struct ccci_modem *md, struct modem_runtime *runtime)
  2690. {
  2691. char ctmp[12];
  2692. int *p;
  2693. p = (int *)ctmp;
  2694. *p = runtime->Prefix;
  2695. p++;
  2696. *p = runtime->Platform_L;
  2697. p++;
  2698. *p = runtime->Platform_H;
  2699. CCCI_INF_MSG(md->index, TAG, "**********************************************\n");
  2700. CCCI_INF_MSG(md->index, TAG, "Prefix %c%c%c%c\n", ctmp[0], ctmp[1],
  2701. ctmp[2], ctmp[3]);
  2702. CCCI_INF_MSG(md->index, TAG, "Platform_L %c%c%c%c\n", ctmp[4], ctmp[5],
  2703. ctmp[6], ctmp[7]);
  2704. CCCI_INF_MSG(md->index, TAG, "Platform_H %c%c%c%c\n", ctmp[8], ctmp[9],
  2705. ctmp[10], ctmp[11]);
  2706. CCCI_INF_MSG(md->index, TAG, "DriverVersion 0x%x\n", runtime->DriverVersion);
  2707. CCCI_INF_MSG(md->index, TAG, "BootChannel %d\n", runtime->BootChannel);
  2708. CCCI_INF_MSG(md->index, TAG, "BootingStartID(Mode) 0x%x\n", runtime->BootingStartID);
  2709. CCCI_INF_MSG(md->index, TAG, "BootAttributes %d\n", runtime->BootAttributes);
  2710. CCCI_INF_MSG(md->index, TAG, "BootReadyID %d\n", runtime->BootReadyID);
  2711. CCCI_INF_MSG(md->index, TAG, "ExceShareMemBase 0x%x\n", runtime->ExceShareMemBase);
  2712. CCCI_INF_MSG(md->index, TAG, "ExceShareMemSize 0x%x\n", runtime->ExceShareMemSize);
  2713. CCCI_INF_MSG(md->index, TAG, "TotalShareMemBase 0x%x\n", runtime->TotalShareMemBase);
  2714. CCCI_INF_MSG(md->index, TAG, "TotalShareMemSize 0x%x\n", runtime->TotalShareMemSize);
  2715. CCCI_INF_MSG(md->index, TAG, "CheckSum %d\n", runtime->CheckSum);
  2716. p = (int *)ctmp;
  2717. *p = runtime->Postfix;
  2718. CCCI_INF_MSG(md->index, TAG, "Postfix %c%c%c%c\n", ctmp[0], ctmp[1], ctmp[2],
  2719. ctmp[3]);
  2720. CCCI_INF_MSG(md->index, TAG, "**********************************************\n");
  2721. p = (int *)ctmp;
  2722. *p = runtime->misc_prefix;
  2723. CCCI_INF_MSG(md->index, TAG, "Prefix %c%c%c%c\n", ctmp[0], ctmp[1],
  2724. ctmp[2], ctmp[3]);
  2725. CCCI_INF_MSG(md->index, TAG, "SupportMask 0x%x\n", runtime->support_mask);
  2726. CCCI_INF_MSG(md->index, TAG, "Index 0x%x\n", runtime->index);
  2727. CCCI_INF_MSG(md->index, TAG, "Next 0x%x\n", runtime->next);
  2728. CCCI_INF_MSG(md->index, TAG, "Feature0 0x%x 0x%x 0x%x 0x%x\n", runtime->feature_0_val[0],
  2729. runtime->feature_0_val[1], runtime->feature_0_val[2], runtime->feature_0_val[3]);
  2730. CCCI_INF_MSG(md->index, TAG, "Feature1 0x%x 0x%x 0x%x 0x%x\n", runtime->feature_1_val[0],
  2731. runtime->feature_1_val[1], runtime->feature_1_val[2], runtime->feature_1_val[3]);
  2732. CCCI_INF_MSG(md->index, TAG, "Feature2 0x%x 0x%x 0x%x 0x%x\n", runtime->feature_2_val[0],
  2733. runtime->feature_2_val[1], runtime->feature_2_val[2], runtime->feature_2_val[3]);
  2734. CCCI_INF_MSG(md->index, TAG, "Feature3 0x%x 0x%x 0x%x 0x%x\n", runtime->feature_3_val[0],
  2735. runtime->feature_3_val[1], runtime->feature_3_val[2], runtime->feature_3_val[3]);
  2736. CCCI_INF_MSG(md->index, TAG, "Feature4 0x%x 0x%x 0x%x 0x%x\n", runtime->feature_4_val[0],
  2737. runtime->feature_4_val[1], runtime->feature_4_val[2], runtime->feature_4_val[3]);
  2738. CCCI_INF_MSG(md->index, TAG, "Feature5 0x%x 0x%x 0x%x 0x%x\n", runtime->feature_5_val[0],
  2739. runtime->feature_5_val[1], runtime->feature_5_val[2], runtime->feature_5_val[3]);
  2740. CCCI_INF_MSG(md->index, TAG, "Feature6 0x%x 0x%x 0x%x 0x%x\n", runtime->feature_6_val[0],
  2741. runtime->feature_6_val[1], runtime->feature_6_val[2], runtime->feature_6_val[3]);
  2742. CCCI_INF_MSG(md->index, TAG, "Feature7 0x%x 0x%x 0x%x 0x%x\n", runtime->feature_7_val[0],
  2743. runtime->feature_7_val[1], runtime->feature_7_val[2], runtime->feature_7_val[3]);
  2744. p = (int *)ctmp;
  2745. *p = runtime->misc_postfix;
  2746. CCCI_INF_MSG(md->index, TAG, "Postfix %c%c%c%c\n", ctmp[0], ctmp[1], ctmp[2],
  2747. ctmp[3]);
  2748. CCCI_INF_MSG(md->index, TAG, "----------------------------------------------\n");
  2749. }
  2750. #ifdef FEATURE_DBM_SUPPORT
  2751. static void eccci_smem_sub_region_init(struct ccci_modem *md)
  2752. {
  2753. volatile int __iomem *addr;
  2754. int i;
  2755. /* Region 0, dbm */
  2756. addr = (volatile int __iomem *)(md->mem_layout.smem_region_vir+CCCI_SMEM_MD1_DBM_OFFSET);
  2757. addr[0] = 0x44444444; /* Guard pattern 1 header */
  2758. addr[1] = 0x44444444; /* Guard pattern 2 header */
  2759. #ifdef DISABLE_PBM_FEATURE
  2760. for (i = 2; i < (10+2); i++)
  2761. addr[i] = 0xFFFFFFFF;
  2762. #else
  2763. for (i = 2; i < (10+2); i++)
  2764. addr[i] = 0x00000000;
  2765. #endif
  2766. addr[i++] = 0x44444444; /* Guard pattern 1 tail */
  2767. addr[i++] = 0x44444444; /* Guard pattern 2 tail */
  2768. /* Notify PBM */
  2769. #ifndef DISABLE_PBM_FEATURE
  2770. init_md_section_level(KR_MD1);
  2771. #endif
  2772. }
  2773. #endif
  2774. static void config_ap_runtime_data(struct ccci_modem *md, struct ap_query_md_feature *ap_feature)
  2775. {
  2776. ap_feature->head_pattern = AP_FEATURE_QUERY_PATTERN;
  2777. /*AP query MD feature set */
  2778. ap_feature->share_memory_support = 1;
  2779. ap_feature->ap_runtime_data_addr = md->smem_layout.ccci_rt_smem_base_phy - md->mem_layout.smem_offset_AP_to_MD;
  2780. ap_feature->ap_runtime_data_size = CCCI_SMEM_SIZE_RUNTIME_AP;
  2781. ap_feature->md_runtime_data_addr = ap_feature->ap_runtime_data_addr + CCCI_SMEM_SIZE_RUNTIME_AP;
  2782. ap_feature->md_runtime_data_size = CCCI_SMEM_SIZE_RUNTIME_MD;
  2783. ap_feature->set_md_mpu_start_addr = md->mem_layout.smem_region_phy - md->mem_layout.smem_offset_AP_to_MD;
  2784. ap_feature->set_md_mpu_total_size = md->mem_layout.smem_region_size;
  2785. ap_feature->tail_pattern = AP_FEATURE_QUERY_PATTERN;
  2786. }
  2787. static int md_cd_send_runtime_data_v2(struct ccci_modem *md, unsigned int sbp_code)
  2788. {
  2789. int packet_size = sizeof(struct ap_query_md_feature) + sizeof(struct ccci_header);
  2790. struct ccci_request *req = NULL;
  2791. struct ccci_header *ccci_h;
  2792. struct ap_query_md_feature *ap_rt_data;
  2793. int ret;
  2794. req = ccci_alloc_req(OUT, packet_size, 1, 1);
  2795. if (!req)
  2796. return -CCCI_ERR_ALLOCATE_MEMORY_FAIL;
  2797. ccci_h = (struct ccci_header *)req->skb->data;
  2798. ap_rt_data = (struct ap_query_md_feature *)(req->skb->data + sizeof(struct ccci_header));
  2799. CCCI_NOTICE_MSG(md->index, KERN, "new api for sending rt data, sbp_code %u\n", sbp_code);
  2800. ccci_set_ap_region_protection(md);
  2801. /*header */
  2802. ccci_h->data[0] = 0x00;
  2803. ccci_h->data[1] = packet_size;
  2804. ccci_h->reserved = MD_INIT_CHK_ID;
  2805. ccci_h->channel = CCCI_CONTROL_TX;
  2806. memset(ap_rt_data, 0, sizeof(struct ap_query_md_feature));
  2807. config_ap_runtime_data(md, ap_rt_data);
  2808. dump_runtime_data_v2(md, ap_rt_data);
  2809. #ifdef FEATURE_DBM_SUPPORT
  2810. eccci_smem_sub_region_init(md);
  2811. #endif
  2812. skb_put(req->skb, packet_size);
  2813. ret = md->ops->send_request(md, 0, req, NULL); /*hardcode to queue 0 */
  2814. return ret;
  2815. }
  2816. static int md_cd_send_runtime_data(struct ccci_modem *md, unsigned int sbp_code)
  2817. {
  2818. int packet_size = sizeof(struct modem_runtime) + sizeof(struct ccci_header);
  2819. struct ccci_request *req = NULL;
  2820. struct ccci_header *ccci_h;
  2821. struct modem_runtime *runtime;
  2822. struct file *filp = NULL;
  2823. LOGGING_MODE mdlog_flag = MODE_IDLE;
  2824. int ret;
  2825. char str[16];
  2826. char md_logger_cfg_file[32];
  2827. unsigned int random_seed = 0;
  2828. #ifdef FEATURE_MD_GET_CLIB_TIME
  2829. struct timeval t;
  2830. #endif
  2831. if (md->runtime_version == AP_MD_HS_V2) {
  2832. ret = md_cd_send_runtime_data_v2(md, sbp_code);
  2833. return ret;
  2834. }
  2835. snprintf(str, sizeof(str), "%s", AP_PLATFORM_INFO);
  2836. req = ccci_alloc_req(OUT, packet_size, 1, 1);
  2837. if (!req)
  2838. return -CCCI_ERR_ALLOCATE_MEMORY_FAIL;
  2839. ccci_h = (struct ccci_header *)req->skb->data;
  2840. runtime = (struct modem_runtime *)(req->skb->data + sizeof(struct ccci_header));
  2841. ccci_set_ap_region_protection(md);
  2842. /* header */
  2843. ccci_h->data[0] = 0x00;
  2844. ccci_h->data[1] = packet_size;
  2845. ccci_h->reserved = MD_INIT_CHK_ID;
  2846. ccci_h->channel = CCCI_CONTROL_TX;
  2847. memset(runtime, 0, sizeof(struct modem_runtime));
  2848. /* runtime data, little endian for string */
  2849. runtime->Prefix = 0x46494343; /* "CCIF" */
  2850. runtime->Postfix = 0x46494343; /* "CCIF" */
  2851. runtime->Platform_L = *((int *)str);
  2852. runtime->Platform_H = *((int *)&str[4]);
  2853. runtime->BootChannel = CCCI_CONTROL_RX;
  2854. runtime->DriverVersion = CCCI_DRIVER_VER;
  2855. if (md->index == 0)
  2856. snprintf(md_logger_cfg_file, 32, "%s", MD1_LOGGER_FILE_PATH);
  2857. else
  2858. snprintf(md_logger_cfg_file, 32, "%s", MD2_LOGGER_FILE_PATH);
  2859. filp = filp_open(md_logger_cfg_file, O_RDONLY, 0777);
  2860. if (!IS_ERR(filp)) {
  2861. ret = kernel_read(filp, 0, (char *)&mdlog_flag, sizeof(int));
  2862. if (ret != sizeof(int))
  2863. mdlog_flag = MODE_IDLE;
  2864. } else {
  2865. CCCI_ERR_MSG(md->index, TAG, "open %s fail", md_logger_cfg_file);
  2866. filp = NULL;
  2867. }
  2868. if (filp != NULL)
  2869. filp_close(filp, NULL);
  2870. if (is_meta_mode() || is_advanced_meta_mode())
  2871. runtime->BootingStartID = ((char)mdlog_flag << 8 | META_BOOT_ID);
  2872. else
  2873. runtime->BootingStartID = ((char)mdlog_flag << 8 | NORMAL_BOOT_ID);
  2874. /* share memory layout */
  2875. runtime->ExceShareMemBase = md->mem_layout.smem_region_phy - md->mem_layout.smem_offset_AP_to_MD;
  2876. runtime->ExceShareMemSize = md->mem_layout.smem_region_size;
  2877. #ifdef FEATURE_MD1MD3_SHARE_MEM
  2878. runtime->TotalShareMemBase = md->mem_layout.smem_region_phy - md->mem_layout.smem_offset_AP_to_MD;
  2879. runtime->TotalShareMemSize = md->mem_layout.smem_region_size + md->mem_layout.md1_md3_smem_size;
  2880. runtime->MD1MD3ShareMemBase = md->mem_layout.md1_md3_smem_phy - md->mem_layout.smem_offset_AP_to_MD;
  2881. runtime->MD1MD3ShareMemSize = md->mem_layout.md1_md3_smem_size;
  2882. #else
  2883. runtime->TotalShareMemBase = md->mem_layout.smem_region_phy - md->mem_layout.smem_offset_AP_to_MD;
  2884. runtime->TotalShareMemSize = md->mem_layout.smem_region_size;
  2885. #endif
  2886. /* misc region, little endian for string */
  2887. runtime->misc_prefix = 0x4353494D; /* "MISC" */
  2888. runtime->misc_postfix = 0x4353494D; /* "MISC" */
  2889. runtime->index = 0;
  2890. runtime->next = 0;
  2891. /* 32K clock less */
  2892. #if defined(ENABLE_32K_CLK_LESS)
  2893. if (crystal_exist_status()) {
  2894. CCCI_DBG_MSG(md->index, TAG, "MISC_32K_LESS no support, crystal_exist_status 1\n");
  2895. runtime->support_mask |= (FEATURE_NOT_SUPPORT << (MISC_32K_LESS * 2));
  2896. } else {
  2897. CCCI_DBG_MSG(md->index, TAG, "MISC_32K_LESS support\n");
  2898. runtime->support_mask |= (FEATURE_SUPPORT << (MISC_32K_LESS * 2));
  2899. }
  2900. #else
  2901. CCCI_DBG_MSG(md->index, TAG, "ENABLE_32K_CLK_LESS disabled\n");
  2902. runtime->support_mask |= (FEATURE_NOT_SUPPORT << (MISC_32K_LESS * 2));
  2903. #endif
  2904. /* random seed */
  2905. get_random_bytes(&random_seed, sizeof(int));
  2906. runtime->feature_2_val[0] = random_seed;
  2907. runtime->support_mask |= (FEATURE_SUPPORT << (MISC_RAND_SEED * 2));
  2908. /* SBP + WM_ID */
  2909. if ((sbp_code > 0) || (md->config.load_type)) {
  2910. runtime->support_mask |= (FEATURE_SUPPORT << (MISC_MD_SBP_SETTING * 2));
  2911. runtime->feature_4_val[0] = sbp_code;
  2912. if (md->config.load_type < modem_ultg)
  2913. runtime->feature_4_val[1] = 0;
  2914. else
  2915. runtime->feature_4_val[1] = get_md_wm_id_map(md->config.load_type);
  2916. }
  2917. /* CCCI debug */
  2918. #if defined(FEATURE_SEQ_CHECK_EN) || defined(FEATURE_POLL_MD_EN)
  2919. runtime->support_mask |= (FEATURE_SUPPORT << (MISC_MD_SEQ_CHECK * 2));
  2920. runtime->feature_5_val[0] = 0;
  2921. #ifdef FEATURE_SEQ_CHECK_EN
  2922. runtime->feature_5_val[0] |= (1 << 0);
  2923. #endif
  2924. #ifdef FEATURE_POLL_MD_EN
  2925. runtime->feature_5_val[0] |= (1 << 1);
  2926. #endif
  2927. #endif
  2928. #ifdef FEATURE_MD_GET_CLIB_TIME
  2929. CCCI_DBG_MSG(md->index, TAG, "FEATURE_MD_GET_CLIB_TIME is on\n");
  2930. runtime->support_mask |= (FEATURE_SUPPORT << (MISC_MD_CLIB_TIME * 2));
  2931. do_gettimeofday(&t);
  2932. /* set seconds information */
  2933. runtime->feature_6_val[0] = ((unsigned int *)&t.tv_sec)[0];
  2934. runtime->feature_6_val[1] = ((unsigned int *)&t.tv_sec)[1];
  2935. runtime->feature_6_val[2] = current_time_zone; /* sys_tz.tz_minuteswest; */
  2936. runtime->feature_6_val[3] = sys_tz.tz_dsttime; /* not used for now */
  2937. #endif
  2938. #ifdef FEATURE_C2K_ALWAYS_ON
  2939. runtime->support_mask |= (FEATURE_SUPPORT << (MISC_MD_C2K_ON * 2));
  2940. runtime->feature_7_val[0] = (0
  2941. #ifdef CONFIG_MTK_C2K_SUPPORT
  2942. | (1 << 0)
  2943. #endif
  2944. #ifdef CONFIG_MTK_SVLTE_SUPPORT
  2945. | (1 << 1)
  2946. #endif
  2947. #ifdef CONFIG_MTK_SRLTE_SUPPORT
  2948. | (1 << 2)
  2949. #endif
  2950. #ifdef CONFIG_MTK_C2K_OM_SOLUTION1
  2951. | (1 << 3)
  2952. #endif
  2953. #ifdef CONFIG_CT6M_SUPPORT
  2954. | (1 << 4)
  2955. #endif
  2956. );
  2957. #endif
  2958. dump_runtime_data(md, runtime);
  2959. #ifdef FEATURE_DBM_SUPPORT
  2960. eccci_smem_sub_region_init(md);
  2961. #endif
  2962. skb_put(req->skb, packet_size);
  2963. ret = md->ops->send_request(md, 0, req, NULL); /* hardcode to queue 0 */
  2964. return ret;
  2965. }
  2966. static int md_cd_force_assert(struct ccci_modem *md, MD_COMM_TYPE type)
  2967. {
  2968. struct ccci_request *req = NULL;
  2969. struct ccci_header *ccci_h;
  2970. CCCI_INF_MSG(md->index, TAG, "force assert MD using %d\n", type);
  2971. switch (type) {
  2972. case CCCI_MESSAGE:
  2973. req = ccci_alloc_req(OUT, sizeof(struct ccci_header), 1, 1);
  2974. if (req) {
  2975. req->policy = RECYCLE;
  2976. ccci_h = (struct ccci_header *)skb_put(req->skb, sizeof(struct ccci_header));
  2977. ccci_h->data[0] = 0xFFFFFFFF;
  2978. ccci_h->data[1] = 0x5A5A5A5A;
  2979. /* ccci_h->channel = CCCI_FORCE_ASSERT_CH; */
  2980. *(((u32 *) ccci_h) + 2) = CCCI_FORCE_ASSERT_CH;
  2981. ccci_h->reserved = 0xA5A5A5A5;
  2982. return md->ops->send_request(md, 0, req, NULL); /* hardcode to queue 0 */
  2983. }
  2984. return -CCCI_ERR_ALLOCATE_MEMORY_FAIL;
  2985. case CCIF_INTERRUPT:
  2986. md_cd_ccif_send(md, H2D_FORCE_MD_ASSERT);
  2987. break;
  2988. case CCIF_INTR_SEQ:
  2989. md_cd_ccif_send(md, AP_MD_SEQ_ERROR);
  2990. break;
  2991. };
  2992. return 0;
  2993. }
  2994. static void md_cd_dump_ccif_reg(struct ccci_modem *md)
  2995. {
  2996. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  2997. CCCI_INF_MSG(md->index, TAG, "AP_CON(%p)=%x\n", md_ctrl->ap_ccif_base + APCCIF_CON,
  2998. cldma_read32(md_ctrl->ap_ccif_base, APCCIF_CON));
  2999. CCCI_INF_MSG(md->index, TAG, "AP_BUSY(%p)=%x\n", md_ctrl->ap_ccif_base + APCCIF_BUSY,
  3000. cldma_read32(md_ctrl->ap_ccif_base, APCCIF_BUSY));
  3001. CCCI_INF_MSG(md->index, TAG, "AP_START(%p)=%x\n", md_ctrl->ap_ccif_base + APCCIF_START,
  3002. cldma_read32(md_ctrl->ap_ccif_base, APCCIF_START));
  3003. CCCI_INF_MSG(md->index, TAG, "AP_TCHNUM(%p)=%x\n", md_ctrl->ap_ccif_base + APCCIF_TCHNUM,
  3004. cldma_read32(md_ctrl->ap_ccif_base, APCCIF_TCHNUM));
  3005. CCCI_INF_MSG(md->index, TAG, "AP_RCHNUM(%p)=%x\n", md_ctrl->ap_ccif_base + APCCIF_RCHNUM,
  3006. cldma_read32(md_ctrl->ap_ccif_base, APCCIF_RCHNUM));
  3007. CCCI_INF_MSG(md->index, TAG, "AP_ACK(%p)=%x\n", md_ctrl->ap_ccif_base + APCCIF_ACK,
  3008. cldma_read32(md_ctrl->ap_ccif_base, APCCIF_ACK));
  3009. CCCI_INF_MSG(md->index, TAG, "MD_CON(%p)=%x\n", md_ctrl->md_ccif_base + APCCIF_CON,
  3010. cldma_read32(md_ctrl->md_ccif_base, APCCIF_CON));
  3011. CCCI_INF_MSG(md->index, TAG, "MD_BUSY(%p)=%x\n", md_ctrl->md_ccif_base + APCCIF_BUSY,
  3012. cldma_read32(md_ctrl->md_ccif_base, APCCIF_BUSY));
  3013. CCCI_INF_MSG(md->index, TAG, "MD_START(%p)=%x\n", md_ctrl->md_ccif_base + APCCIF_START,
  3014. cldma_read32(md_ctrl->md_ccif_base, APCCIF_START));
  3015. CCCI_INF_MSG(md->index, TAG, "MD_TCHNUM(%p)=%x\n", md_ctrl->md_ccif_base + APCCIF_TCHNUM,
  3016. cldma_read32(md_ctrl->md_ccif_base, APCCIF_TCHNUM));
  3017. CCCI_INF_MSG(md->index, TAG, "MD_RCHNUM(%p)=%x\n", md_ctrl->md_ccif_base + APCCIF_RCHNUM,
  3018. cldma_read32(md_ctrl->md_ccif_base, APCCIF_RCHNUM));
  3019. CCCI_INF_MSG(md->index, TAG, "MD_ACK(%p)=%x\n", md_ctrl->md_ccif_base + APCCIF_ACK,
  3020. cldma_read32(md_ctrl->md_ccif_base, APCCIF_ACK));
  3021. }
  3022. static int md_cd_dump_info(struct ccci_modem *md, MODEM_DUMP_FLAG flag, void *buff, int length)
  3023. {
  3024. struct md_cd_ctrl *md_ctrl = (struct md_cd_ctrl *)md->private_data;
  3025. if (flag & DUMP_FLAG_CCIF_REG) {
  3026. CCCI_INF_MSG(md->index, TAG, "Dump CCIF REG\n");
  3027. md_cd_dump_ccif_reg(md);
  3028. }
  3029. if (flag & DUMP_FLAG_CCIF) {
  3030. int i;
  3031. unsigned int *dest_buff = NULL;
  3032. unsigned char ccif_sram[CCCC_SMEM_CCIF_SRAM_SIZE] = { 0 };
  3033. int sram_size = md_ctrl->hw_info->sram_size;
  3034. if (buff)
  3035. dest_buff = (unsigned int *)buff;
  3036. else
  3037. dest_buff = (unsigned int *)ccif_sram;
  3038. if (length < sizeof(ccif_sram) && length > 0) {
  3039. CCCI_ERR_MSG(md->index, TAG, "dump CCIF SRAM length illegal %d/%zu\n", length,
  3040. sizeof(ccif_sram));
  3041. dest_buff = (unsigned int *)ccif_sram;
  3042. } else {
  3043. length = sizeof(ccif_sram);
  3044. }
  3045. for (i = 0; i < length / sizeof(unsigned int); i++) {
  3046. *(dest_buff + i) = cldma_read32(md_ctrl->ap_ccif_base,
  3047. APCCIF_CHDATA + (sram_size - length) +
  3048. i * sizeof(unsigned int));
  3049. }
  3050. CCCI_INF_MSG(md->index, TAG, "Dump CCIF SRAM (last 16bytes)\n");
  3051. ccci_mem_dump(md->index, dest_buff, length);
  3052. }
  3053. if (flag & DUMP_FLAG_CLDMA) {
  3054. cldma_dump_register(md);
  3055. if (length == -1) {
  3056. cldma_dump_packet_history(md);
  3057. cldma_dump_all_gpd(md);
  3058. }
  3059. if (length >= 0 && length < CLDMA_TXQ_NUM) {
  3060. cldma_dump_queue_history(md, length);
  3061. cldma_dump_gpd_queue(md, length);
  3062. }
  3063. }
  3064. if (flag & DUMP_FLAG_REG)
  3065. md_cd_dump_debug_register(md);
  3066. if (flag & DUMP_FLAG_SMEM) {
  3067. CCCI_INF_MSG(md->index, TAG, "Dump share memory\n");
  3068. ccci_mem_dump(md->index, md->smem_layout.ccci_exp_smem_base_vir, md->smem_layout.ccci_exp_dump_size);
  3069. }
  3070. if (flag & DUMP_FLAG_IMAGE) {
  3071. CCCI_INF_MSG(md->index, KERN, "Dump MD image memory\n");
  3072. ccci_mem_dump(md->index, (void *)md->mem_layout.md_region_vir, MD_IMG_DUMP_SIZE);
  3073. }
  3074. if (flag & DUMP_FLAG_LAYOUT) {
  3075. CCCI_INF_MSG(md->index, KERN, "Dump MD layout struct\n");
  3076. ccci_mem_dump(md->index, &md->mem_layout, sizeof(struct ccci_mem_layout));
  3077. }
  3078. if (flag & DUMP_FLAG_QUEUE_0) {
  3079. cldma_dump_register(md);
  3080. cldma_dump_queue_history(md, 0);
  3081. cldma_dump_gpd_queue(md, 0);
  3082. }
  3083. if (flag & DUMP_FLAG_QUEUE_0_1) {
  3084. cldma_dump_register(md);
  3085. cldma_dump_queue_history(md, 0);
  3086. cldma_dump_queue_history(md, 1);
  3087. cldma_dump_gpd_queue(md, 0);
  3088. cldma_dump_gpd_queue(md, 1);
  3089. }
  3090. if (flag & DUMP_FLAG_SMEM_MDSLP) {
  3091. ccci_cmpt_mem_dump(md->index, md->smem_layout.ccci_exp_smem_sleep_debug_vir,
  3092. md->smem_layout.ccci_exp_smem_sleep_debug_size);
  3093. }
  3094. if (flag & DUMP_FLAG_MD_WDT) {
  3095. CCCI_INF_MSG(md->index, KERN, "Dump MD RGU registers\n");
  3096. md_cd_lock_modem_clock_src(1);
  3097. #ifdef BASE_ADDR_MDRSTCTL
  3098. ccci_mem_dump(md->index, md_ctrl->md_rgu_base, 0x88);
  3099. ccci_mem_dump(md->index, (md_ctrl->md_rgu_base + 0x200), 0x5c);
  3100. #else
  3101. ccci_mem_dump(md->index, md_ctrl->md_rgu_base, 0x30);
  3102. #endif
  3103. md_cd_lock_modem_clock_src(0);
  3104. CCCI_INF_MSG(md->index, KERN, "wdt_enabled=%d\n", atomic_read(&md_ctrl->wdt_enabled));
  3105. mt_irq_dump_status(md_ctrl->hw_info->md_wdt_irq_id);
  3106. }
  3107. return length;
  3108. }
  3109. static int md_cd_ee_callback(struct ccci_modem *md, MODEM_EE_FLAG flag)
  3110. {
  3111. if (flag & EE_FLAG_ENABLE_WDT)
  3112. wdt_enable_irq(md);
  3113. if (flag & EE_FLAG_DISABLE_WDT)
  3114. wdt_disable_irq(md);
  3115. return 0;
  3116. }
  3117. static struct ccci_modem_ops md_cd_ops = {
  3118. .init = &md_cd_init,
  3119. .start = &md_cd_start,
  3120. .stop = &md_cd_stop,
  3121. .reset = &md_cd_reset,
  3122. .send_request = &md_cd_send_request,
  3123. .give_more = &md_cd_give_more,
  3124. .napi_poll = &md_cd_napi_poll,
  3125. .send_runtime_data = &md_cd_send_runtime_data,
  3126. .broadcast_state = &md_cd_broadcast_state,
  3127. .force_assert = &md_cd_force_assert,
  3128. .dump_info = &md_cd_dump_info,
  3129. .write_room = &md_cd_write_room,
  3130. .stop_queue = &md_cd_stop_queue,
  3131. .start_queue = &md_cd_start_queue,
  3132. .get_port_by_minor = &md_cd_get_port_by_minor,
  3133. .get_port_by_channel = &md_cd_get_port_by_channel,
  3134. /* .low_power_notify = &md_cd_low_power_notify, */
  3135. .ee_callback = &md_cd_ee_callback,
  3136. };
  3137. static ssize_t md_cd_dump_show(struct ccci_modem *md, char *buf)
  3138. {
  3139. int count = 0;
  3140. count = snprintf(buf, 256, "support: ccif cldma register smem image layout\n");
  3141. return count;
  3142. }
  3143. static ssize_t md_cd_dump_store(struct ccci_modem *md, const char *buf, size_t count)
  3144. {
  3145. /* echo will bring "xxx\n" here, so we eliminate the "\n" during comparing */
  3146. if (strncmp(buf, "ccif", count - 1) == 0)
  3147. md->ops->dump_info(md, DUMP_FLAG_CCIF_REG | DUMP_FLAG_CCIF, NULL, 0);
  3148. if (strncmp(buf, "cldma", count - 1) == 0)
  3149. md->ops->dump_info(md, DUMP_FLAG_CLDMA, NULL, -1);
  3150. if (strncmp(buf, "register", count - 1) == 0)
  3151. md->ops->dump_info(md, DUMP_FLAG_REG, NULL, 0);
  3152. if (strncmp(buf, "smem", count - 1) == 0)
  3153. md->ops->dump_info(md, DUMP_FLAG_SMEM, NULL, 0);
  3154. if (strncmp(buf, "image", count - 1) == 0)
  3155. md->ops->dump_info(md, DUMP_FLAG_IMAGE, NULL, 0);
  3156. if (strncmp(buf, "layout", count - 1) == 0)
  3157. md->ops->dump_info(md, DUMP_FLAG_LAYOUT, NULL, 0);
  3158. if (strncmp(buf, "mdslp", count - 1) == 0)
  3159. md->ops->dump_info(md, DUMP_FLAG_SMEM_MDSLP, NULL, 0);
  3160. return count;
  3161. }
  3162. static ssize_t md_cd_control_show(struct ccci_modem *md, char *buf)
  3163. {
  3164. int count = 0;
  3165. count = snprintf(buf, 256, "support: cldma_reset cldma_stop ccif_assert md_type trace_sample\n");
  3166. return count;
  3167. }
  3168. static ssize_t md_cd_control_store(struct ccci_modem *md, const char *buf, size_t count)
  3169. {
  3170. int size = 0;
  3171. if (strncmp(buf, "cldma_reset", count - 1) == 0) {
  3172. CCCI_INF_MSG(md->index, TAG, "reset CLDMA\n");
  3173. md_cd_lock_cldma_clock_src(1);
  3174. cldma_stop(md);
  3175. md_cd_clear_all_queue(md, OUT);
  3176. md_cd_clear_all_queue(md, IN);
  3177. cldma_reset(md);
  3178. cldma_start(md);
  3179. md_cd_lock_cldma_clock_src(0);
  3180. }
  3181. if (strncmp(buf, "cldma_stop", count - 1) == 0) {
  3182. CCCI_INF_MSG(md->index, TAG, "stop CLDMA\n");
  3183. md_cd_lock_cldma_clock_src(1);
  3184. cldma_stop(md);
  3185. md_cd_lock_cldma_clock_src(0);
  3186. }
  3187. if (strncmp(buf, "ccif_assert", count - 1) == 0) {
  3188. CCCI_INF_MSG(md->index, TAG, "use CCIF to force MD assert\n");
  3189. md->ops->force_assert(md, CCIF_INTERRUPT);
  3190. }
  3191. if (strncmp(buf, "ccci_trm", count - 1) == 0) {
  3192. CCCI_INF_MSG(md->index, TAG, "TRM triggered\n");
  3193. md->ops->reset(md);
  3194. ccci_send_virtual_md_msg(md, CCCI_MONITOR_CH, CCCI_MD_MSG_RESET, 0);
  3195. }
  3196. size = strlen("md_type=");
  3197. if (strncmp(buf, "md_type=", size) == 0) {
  3198. md->config.load_type_saving = buf[size] - '0';
  3199. CCCI_INF_MSG(md->index, TAG, "md_type_store %d\n", md->config.load_type_saving);
  3200. ccci_send_virtual_md_msg(md, CCCI_MONITOR_CH, CCCI_MD_MSG_STORE_NVRAM_MD_TYPE, 0);
  3201. }
  3202. size = strlen("trace_sample=");
  3203. if (strncmp(buf, "trace_sample=", size) == 0) {
  3204. trace_sample_time = (buf[size] - '0') * 100000000;
  3205. CCCI_INF_MSG(md->index, TAG, "trace_sample_time %u\n", trace_sample_time);
  3206. }
  3207. return count;
  3208. }
  3209. static ssize_t md_cd_filter_show(struct ccci_modem *md, char *buf)
  3210. {
  3211. int count = 0;
  3212. int i;
  3213. count += snprintf(buf + count, 128, "register port:");
  3214. for (i = 0; i < GF_PORT_LIST_MAX; i++) {
  3215. if (gf_port_list_reg[i] != 0)
  3216. count += snprintf(buf + count, 128, "%d,", gf_port_list_reg[i]);
  3217. else
  3218. break;
  3219. }
  3220. count += snprintf(buf + count, 128, "\n");
  3221. count += snprintf(buf + count, 128, "unregister port:");
  3222. for (i = 0; i < GF_PORT_LIST_MAX; i++) {
  3223. if (gf_port_list_unreg[i] != 0)
  3224. count += snprintf(buf + count, 128, "%d,", gf_port_list_unreg[i]);
  3225. else
  3226. break;
  3227. }
  3228. count += snprintf(buf + count, 128, "\n");
  3229. return count;
  3230. }
  3231. static ssize_t md_cd_filter_store(struct ccci_modem *md, const char *buf, size_t count)
  3232. {
  3233. char command[16];
  3234. int start_id = 0, end_id = 0, i, temp_valu;
  3235. temp_valu = sscanf(buf, "%s %d %d%*s", command, &start_id, &end_id);
  3236. if (temp_valu < 0)
  3237. CCCI_ERR_MSG(md->index, TAG, "sscanf retrun fail: %d\n", temp_valu);
  3238. CCCI_INF_MSG(md->index, TAG, "%s from %d to %d\n", command, start_id, end_id);
  3239. if (strncmp(command, "add", sizeof(command)) == 0) {
  3240. memset(gf_port_list_reg, 0, sizeof(gf_port_list_reg));
  3241. for (i = 0; i < GF_PORT_LIST_MAX && i <= (end_id - start_id); i++)
  3242. gf_port_list_reg[i] = start_id + i;
  3243. ccci_ipc_set_garbage_filter(md, 1);
  3244. }
  3245. if (strncmp(command, "remove", sizeof(command)) == 0) {
  3246. memset(gf_port_list_unreg, 0, sizeof(gf_port_list_unreg));
  3247. for (i = 0; i < GF_PORT_LIST_MAX && i <= (end_id - start_id); i++)
  3248. gf_port_list_unreg[i] = start_id + i;
  3249. ccci_ipc_set_garbage_filter(md, 0);
  3250. }
  3251. return count;
  3252. }
  3253. static ssize_t md_cd_parameter_show(struct ccci_modem *md, char *buf)
  3254. {
  3255. int count = 0;
  3256. count += snprintf(buf + count, 128, "CHECKSUM_SIZE=%d\n", CHECKSUM_SIZE);
  3257. count += snprintf(buf + count, 128, "PACKET_HISTORY_DEPTH=%d\n", PACKET_HISTORY_DEPTH);
  3258. count += snprintf(buf + count, 128, "BD_NUM=%ld\n", MAX_BD_NUM);
  3259. count += snprintf(buf + count, 128, "NET_buffer_number=(%d, %d)\n",
  3260. net_tx_queue_buffer_number[3], net_rx_queue_buffer_number[3]);
  3261. return count;
  3262. }
  3263. static ssize_t md_cd_parameter_store(struct ccci_modem *md, const char *buf, size_t count)
  3264. {
  3265. return count;
  3266. }
  3267. static unsigned int md_rxd_switcher;
  3268. static ssize_t md_cd_rxd_show(struct ccci_modem *md, char *buf)
  3269. {
  3270. ssize_t count = 0;
  3271. count += snprintf(buf, 128, "md_rxd=%d\n", md_rxd_switcher);
  3272. return count;
  3273. }
  3274. static ssize_t md_cd_rxd_store(struct ccci_modem *md, const char *buf, size_t count)
  3275. {
  3276. int ret;
  3277. ret = kstrtoint(buf, 10, &md_rxd_switcher);
  3278. if (ret < 0)
  3279. CCCI_ERR_MSG(md->index, TAG, "sscanf retrun fail: %d\n", ret);
  3280. return count;
  3281. }
  3282. CCCI_MD_ATTR(NULL, dump, 0660, md_cd_dump_show, md_cd_dump_store);
  3283. CCCI_MD_ATTR(NULL, control, 0660, md_cd_control_show, md_cd_control_store);
  3284. CCCI_MD_ATTR(NULL, filter, 0660, md_cd_filter_show, md_cd_filter_store);
  3285. CCCI_MD_ATTR(NULL, parameter, 0660, md_cd_parameter_show, md_cd_parameter_store);
  3286. CCCI_MD_ATTR(NULL, md_rxd, 0660, md_cd_rxd_show, md_cd_rxd_store);
  3287. static void md_cd_sysfs_init(struct ccci_modem *md)
  3288. {
  3289. int ret;
  3290. ccci_md_attr_dump.modem = md;
  3291. ret = sysfs_create_file(&md->kobj, &ccci_md_attr_dump.attr);
  3292. if (ret)
  3293. CCCI_ERR_MSG(md->index, TAG, "fail to add sysfs node %s %d\n", ccci_md_attr_dump.attr.name, ret);
  3294. ccci_md_attr_control.modem = md;
  3295. ret = sysfs_create_file(&md->kobj, &ccci_md_attr_control.attr);
  3296. if (ret)
  3297. CCCI_ERR_MSG(md->index, TAG, "fail to add sysfs node %s %d\n", ccci_md_attr_control.attr.name, ret);
  3298. ccci_md_attr_parameter.modem = md;
  3299. ret = sysfs_create_file(&md->kobj, &ccci_md_attr_parameter.attr);
  3300. if (ret)
  3301. CCCI_ERR_MSG(md->index, TAG, "fail to add sysfs node %s %d\n", ccci_md_attr_parameter.attr.name, ret);
  3302. ccci_md_attr_filter.modem = md;
  3303. ret = sysfs_create_file(&md->kobj, &ccci_md_attr_filter.attr);
  3304. if (ret)
  3305. CCCI_ERR_MSG(md->index, TAG, "fail to add sysfs node %s %d\n", ccci_md_attr_filter.attr.name, ret);
  3306. ccci_md_attr_md_rxd.modem = md;
  3307. ret = sysfs_create_file(&md->kobj, &ccci_md_attr_md_rxd.attr);
  3308. if (ret)
  3309. CCCI_ERR_MSG(md->index, TAG, "fail to add sysfs node %s %d\n", ccci_md_attr_md_rxd.attr.name, ret);
  3310. }
  3311. #ifdef ENABLE_CLDMA_AP_SIDE
  3312. static struct syscore_ops md_cldma_sysops = {
  3313. .suspend = ccci_modem_syssuspend,
  3314. .resume = ccci_modem_sysresume,
  3315. };
  3316. #endif
  3317. #define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
  3318. static u64 cldma_dmamask = DMA_BIT_MASK((sizeof(unsigned long) << 3));
  3319. static int ccci_modem_probe(struct platform_device *plat_dev)
  3320. {
  3321. struct ccci_modem *md;
  3322. struct md_cd_ctrl *md_ctrl;
  3323. int md_id, i;
  3324. struct ccci_dev_cfg dev_cfg;
  3325. int ret;
  3326. int sram_size;
  3327. struct md_hw_info *md_hw;
  3328. /* Allocate modem hardware info structure memory */
  3329. md_hw = kzalloc(sizeof(struct md_hw_info), GFP_KERNEL);
  3330. if (md_hw == NULL) {
  3331. CCCI_ERR_MSG(-1, TAG, "md_cldma_probe:alloc md hw mem fail\n");
  3332. return -1;
  3333. }
  3334. ret = md_cd_get_modem_hw_info(plat_dev, &dev_cfg, md_hw);
  3335. if (ret != 0) {
  3336. CCCI_ERR_MSG(-1, TAG, "md_cldma_probe:get hw info fail(%d)\n", ret);
  3337. kfree(md_hw);
  3338. md_hw = NULL;
  3339. return -1;
  3340. }
  3341. /* Allocate md ctrl memory and do initialize */
  3342. md = ccci_allocate_modem(sizeof(struct md_cd_ctrl));
  3343. if (md == NULL) {
  3344. CCCI_ERR_MSG(-1, TAG, "md_cldma_probe:alloc modem ctrl mem fail\n");
  3345. kfree(md_hw);
  3346. md_hw = NULL;
  3347. return -1;
  3348. }
  3349. md->index = md_id = dev_cfg.index;
  3350. md->major = dev_cfg.major;
  3351. md->minor_base = dev_cfg.minor_base;
  3352. md->capability = dev_cfg.capability;
  3353. md->plat_dev = plat_dev;
  3354. md->plat_dev->dev.dma_mask = &cldma_dmamask;
  3355. md->plat_dev->dev.coherent_dma_mask = cldma_dmamask;
  3356. md->ops = &md_cd_ops;
  3357. CCCI_INF_MSG(md_id, TAG, "md_cldma_probe:md=%p,md->private_data=%p\n", md, md->private_data);
  3358. /* init modem private data */
  3359. md_ctrl = (struct md_cd_ctrl *)md->private_data;
  3360. md_ctrl->modem = md;
  3361. md_ctrl->hw_info = md_hw;
  3362. md_ctrl->txq_active = 0;
  3363. md_ctrl->rxq_active = 0;
  3364. snprintf(md_ctrl->trm_wakelock_name, sizeof(md_ctrl->trm_wakelock_name), "md%d_cldma_trm", md_id + 1);
  3365. wake_lock_init(&md_ctrl->trm_wake_lock, WAKE_LOCK_SUSPEND, md_ctrl->trm_wakelock_name);
  3366. snprintf(md_ctrl->peer_wakelock_name, sizeof(md_ctrl->peer_wakelock_name), "md%d_cldma_peer", md_id + 1);
  3367. wake_lock_init(&md_ctrl->peer_wake_lock, WAKE_LOCK_SUSPEND, md_ctrl->peer_wakelock_name);
  3368. INIT_WORK(&md_ctrl->ccif_work, md_cd_ccif_work);
  3369. tasklet_init(&md_ctrl->ccif_irq_task, md_ccif_irq_tasklet,
  3370. (unsigned long)md);
  3371. mutex_init(&md_ctrl->ccif_wdt_mutex);
  3372. init_timer(&md_ctrl->bus_timeout_timer);
  3373. md_ctrl->bus_timeout_timer.function = md_cd_ap2md_bus_timeout_timer_func;
  3374. md_ctrl->bus_timeout_timer.data = (unsigned long)md;
  3375. spin_lock_init(&md_ctrl->cldma_timeout_lock);
  3376. md_ctrl->gpd_dmapool = dma_pool_create("cldma_request_DMA", &plat_dev->dev, sizeof(struct cldma_tgpd), 16, 0);
  3377. for (i = 0; i < NET_TXQ_NUM; i++) {
  3378. INIT_LIST_HEAD(&md_ctrl->net_tx_ring[i].gpd_ring);
  3379. md_ctrl->net_tx_ring[i].length = net_tx_queue_buffer_number[net_tx_ring2queue[i]];
  3380. #ifdef CLDMA_NET_TX_BD
  3381. md_ctrl->net_tx_ring[i].type = RING_GPD_BD;
  3382. md_ctrl->net_tx_ring[i].handle_tx_request = &cldma_gpd_bd_handle_tx_request;
  3383. md_ctrl->net_tx_ring[i].handle_tx_done = &cldma_gpd_bd_tx_collect;
  3384. #else
  3385. md_ctrl->net_tx_ring[i].type = RING_GPD;
  3386. md_ctrl->net_tx_ring[i].handle_tx_request = &cldma_gpd_handle_tx_request;
  3387. md_ctrl->net_tx_ring[i].handle_tx_done = &cldma_gpd_tx_collect;
  3388. #endif
  3389. cldma_tx_ring_init(md, &md_ctrl->net_tx_ring[i]);
  3390. CCCI_DBG_MSG(md->index, TAG, "net_tx_ring %d: %p\n", i, &md_ctrl->net_tx_ring[i]);
  3391. }
  3392. for (i = 0; i < NET_RXQ_NUM; i++) {
  3393. INIT_LIST_HEAD(&md_ctrl->net_rx_ring[i].gpd_ring);
  3394. md_ctrl->net_rx_ring[i].length = net_rx_queue_buffer_number[net_rx_ring2queue[i]];
  3395. md_ctrl->net_rx_ring[i].pkt_size = net_rx_queue_buffer_size[net_rx_ring2queue[i]];
  3396. md_ctrl->net_rx_ring[i].type = RING_GPD;
  3397. md_ctrl->net_rx_ring[i].handle_rx_done = &cldma_gpd_net_rx_collect;
  3398. md_ctrl->net_rx_ring[i].handle_rx_refill = &cldma_gpd_rx_refill;
  3399. cldma_rx_ring_init(md, &md_ctrl->net_rx_ring[i]);
  3400. CCCI_DBG_MSG(md->index, TAG, "net_rx_ring %d: %p\n", i, &md_ctrl->net_rx_ring[i]);
  3401. }
  3402. for (i = 0; i < NORMAL_TXQ_NUM; i++) {
  3403. INIT_LIST_HEAD(&md_ctrl->normal_tx_ring[i].gpd_ring);
  3404. md_ctrl->normal_tx_ring[i].length = normal_tx_queue_buffer_number[normal_tx_ring2queue[i]];
  3405. #if 0
  3406. md_ctrl->normal_tx_ring[i].type = RING_GPD_BD;
  3407. md_ctrl->normal_tx_ring[i].handle_tx_request = &cldma_gpd_bd_handle_tx_request;
  3408. md_ctrl->normal_tx_ring[i].handle_tx_done = &cldma_gpd_bd_tx_collect;
  3409. #else
  3410. md_ctrl->normal_tx_ring[i].type = RING_GPD;
  3411. md_ctrl->normal_tx_ring[i].handle_tx_request = &cldma_gpd_handle_tx_request;
  3412. md_ctrl->normal_tx_ring[i].handle_tx_done = &cldma_gpd_tx_collect;
  3413. #endif
  3414. cldma_tx_ring_init(md, &md_ctrl->normal_tx_ring[i]);
  3415. CCCI_DBG_MSG(md->index, TAG, "normal_tx_ring %d: %p\n", i, &md_ctrl->normal_tx_ring[i]);
  3416. }
  3417. for (i = 0; i < NORMAL_RXQ_NUM; i++) {
  3418. INIT_LIST_HEAD(&md_ctrl->normal_rx_ring[i].gpd_ring);
  3419. md_ctrl->normal_rx_ring[i].length = normal_rx_queue_buffer_number[normal_rx_ring2queue[i]];
  3420. md_ctrl->normal_rx_ring[i].pkt_size = normal_rx_queue_buffer_size[normal_rx_ring2queue[i]];
  3421. md_ctrl->normal_rx_ring[i].type = RING_GPD;
  3422. md_ctrl->normal_rx_ring[i].handle_rx_done = &cldma_gpd_rx_collect;
  3423. md_ctrl->normal_rx_ring[i].handle_rx_refill = &cldma_gpd_rx_refill;
  3424. cldma_rx_ring_init(md, &md_ctrl->normal_rx_ring[i]);
  3425. CCCI_DBG_MSG(md->index, TAG, "normal_rx_ring %d: %p\n", i, &md_ctrl->normal_rx_ring[i]);
  3426. }
  3427. md_ctrl->cldma_irq_worker =
  3428. alloc_workqueue("md%d_cldma_worker", WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_HIGHPRI, 1, md->index + 1);
  3429. INIT_WORK(&md_ctrl->cldma_irq_work, cldma_irq_work);
  3430. md_ctrl->channel_id = 0;
  3431. atomic_set(&md_ctrl->reset_on_going, 0);
  3432. atomic_set(&md_ctrl->wdt_enabled, 0);
  3433. atomic_set(&md_ctrl->ccif_irq_enabled, 0);
  3434. INIT_WORK(&md_ctrl->wdt_work, md_cd_wdt_work);
  3435. #if TRAFFIC_MONITOR_INTERVAL
  3436. init_timer(&md_ctrl->traffic_monitor);
  3437. md_ctrl->traffic_monitor.function = md_cd_traffic_monitor_func;
  3438. md_ctrl->traffic_monitor.data = (unsigned long)md;
  3439. #endif
  3440. /* register modem */
  3441. ccci_register_modem(md);
  3442. #ifdef ENABLE_CLDMA_AP_SIDE
  3443. /* register SYS CORE suspend resume call back */
  3444. register_syscore_ops(&md_cldma_sysops);
  3445. #endif
  3446. /* add sysfs entries */
  3447. md_cd_sysfs_init(md);
  3448. /* hook up to device */
  3449. plat_dev->dev.platform_data = md;
  3450. #ifndef FEATURE_FPGA_PORTING
  3451. /* init CCIF */
  3452. sram_size = md_ctrl->hw_info->sram_size;
  3453. cldma_write32(md_ctrl->ap_ccif_base, APCCIF_CON, 0x01); /* arbitration */
  3454. cldma_write32(md_ctrl->ap_ccif_base, APCCIF_ACK, 0xFFFF);
  3455. for (i = 0; i < sram_size / sizeof(u32); i++)
  3456. cldma_write32(md_ctrl->ap_ccif_base, APCCIF_CHDATA + i * sizeof(u32), 0);
  3457. #endif
  3458. #ifdef FEATURE_FPGA_PORTING
  3459. md_cd_clear_all_queue(md, OUT);
  3460. md_cd_clear_all_queue(md, IN);
  3461. ccci_reset_seq_num(md);
  3462. CCCI_INF_MSG(md_id, TAG, "cldma_reset\n");
  3463. cldma_reset(md);
  3464. CCCI_INF_MSG(md_id, TAG, "cldma_start\n");
  3465. cldma_start(md);
  3466. CCCI_INF_MSG(md_id, TAG, "wait md package...\n");
  3467. {
  3468. struct cldma_tgpd *md_tgpd;
  3469. struct ccci_header *md_ccci_h;
  3470. unsigned int md_tgpd_addr;
  3471. CCCI_INF_MSG(md_id, TAG, "Write md check sum\n");
  3472. cldma_write32(md_ctrl->cldma_md_pdn_base, CLDMA_AP_UL_CHECKSUM_CHANNEL_ENABLE, 0);
  3473. cldma_write32(md_ctrl->cldma_md_ao_base, CLDMA_AP_SO_CHECKSUM_CHANNEL_ENABLE, 0);
  3474. CCCI_INF_MSG(md_id, TAG, "Build md ccif_header\n");
  3475. md_ccci_h = (struct ccci_header *)md->mem_layout.md_region_vir;
  3476. memset(md_ccci_h, 0, sizeof(struct ccci_header));
  3477. md_ccci_h->reserved = MD_INIT_CHK_ID;
  3478. CCCI_INF_MSG(md_id, TAG, "Build md cldma_tgpd\n");
  3479. md_tgpd = (struct cldma_tgpd *)(md->mem_layout.md_region_vir + sizeof(struct ccci_header));
  3480. memset(md_tgpd, 0, sizeof(struct cldma_tgpd));
  3481. /* update GPD */
  3482. md_tgpd->data_buff_bd_ptr = 0;
  3483. md_tgpd->data_buff_len = sizeof(struct ccci_header);
  3484. md_tgpd->debug_id = 0;
  3485. /* checksum of GPD */
  3486. caculate_checksum((char *)md_tgpd, md_tgpd->gpd_flags | 0x1);
  3487. /* resume Tx queue */
  3488. cldma_write8(&md_tgpd->gpd_flags, 0, cldma_read8(&md_tgpd->gpd_flags, 0) | 0x1);
  3489. md_tgpd_addr = 0 + sizeof(struct ccci_header);
  3490. cldma_write32(md_ctrl->cldma_md_pdn_base, CLDMA_AP_UL_START_ADDR_0, md_tgpd_addr);
  3491. #ifdef ENABLE_CLDMA_AP_SIDE
  3492. cldma_write32(md_ctrl->cldma_md_ao_base, CLDMA_AP_UL_START_ADDR_BK_0, md_tgpd_addr);
  3493. #endif
  3494. CCCI_INF_MSG(md_id, TAG, "Start md_tgpd_addr = 0x%x\n",
  3495. cldma_read32(md_ctrl->cldma_md_pdn_base, CLDMA_AP_UL_START_ADDR_0));
  3496. cldma_write32(md_ctrl->cldma_md_pdn_base, CLDMA_AP_UL_START_CMD, CLDMA_BM_ALL_QUEUE & (1 << 0));
  3497. CCCI_INF_MSG(md_id, TAG, "Start md_tgpd_start cmd = 0x%x\n",
  3498. cldma_read32(md_ctrl->cldma_md_pdn_base, CLDMA_AP_UL_START_CMD));
  3499. CCCI_INF_MSG(md_id, TAG, "Start md cldma_tgpd done\n");
  3500. #ifdef NO_START_ON_SUSPEND_RESUME
  3501. md_ctrl->txq_started = 1;
  3502. #endif
  3503. }
  3504. #endif
  3505. return 0;
  3506. }
  3507. static const struct dev_pm_ops ccci_modem_pm_ops = {
  3508. .suspend = ccci_modem_pm_suspend,
  3509. .resume = ccci_modem_pm_resume,
  3510. .freeze = ccci_modem_pm_suspend,
  3511. .thaw = ccci_modem_pm_resume,
  3512. .poweroff = ccci_modem_pm_suspend,
  3513. .restore = ccci_modem_pm_resume,
  3514. .restore_noirq = ccci_modem_pm_restore_noirq,
  3515. };
  3516. #ifdef CONFIG_OF
  3517. static const struct of_device_id mdcldma_of_ids[] = {
  3518. {.compatible = "mediatek,mdcldma",},
  3519. {}
  3520. };
  3521. #endif
  3522. static struct platform_driver modem_cldma_driver = {
  3523. .driver = {
  3524. .name = "cldma_modem",
  3525. #ifdef CONFIG_OF
  3526. .of_match_table = mdcldma_of_ids,
  3527. #endif
  3528. #ifdef CONFIG_PM
  3529. .pm = &ccci_modem_pm_ops,
  3530. #endif
  3531. },
  3532. .probe = ccci_modem_probe,
  3533. .remove = ccci_modem_remove,
  3534. .shutdown = ccci_modem_shutdown,
  3535. .suspend = ccci_modem_suspend,
  3536. .resume = ccci_modem_resume,
  3537. };
  3538. static int __init modem_cd_init(void)
  3539. {
  3540. int ret;
  3541. #ifdef TEST_MESSAGE_FOR_BRINGUP
  3542. /* temp for bringup */
  3543. register_ccci_sys_call_back(0, TEST_MSG_ID_MD2AP, ccci_sysmsg_echo_test);
  3544. register_ccci_sys_call_back(0, TEST_MSG_ID_L1CORE_MD2AP, ccci_sysmsg_echo_test_l1core);
  3545. /* */
  3546. #endif
  3547. ret = platform_driver_register(&modem_cldma_driver);
  3548. if (ret) {
  3549. CCCI_ERR_MSG(-1, TAG, "clmda modem platform driver register fail(%d)\n", ret);
  3550. return ret;
  3551. }
  3552. return 0;
  3553. }
  3554. module_init(modem_cd_init);
  3555. MODULE_AUTHOR("Xiao Wang <xiao.wang@mediatek.com>");
  3556. MODULE_DESCRIPTION("CLDMA modem driver v0.1");
  3557. MODULE_LICENSE("GPL");