mt_freqhopping.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462
  1. #include <linux/module.h>
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/kthread.h>
  5. #include <linux/delay.h>
  6. #include <linux/proc_fs.h>
  7. #include <linux/uaccess.h>
  8. #include <linux/io.h>
  9. #include <linux/platform_device.h>
  10. #include <linux/miscdevice.h>
  11. #include <linux/sched_clock.h>
  12. #include <linux/vmalloc.h>
  13. #include <linux/dma-mapping.h>
  14. /* #include <board-custom.h> */
  15. #include "mach/mt_freqhopping.h"
  16. #include "mach/mt_fhreg.h"
  17. /* #include "mach/mt_typedefs.h" */
  18. #include "sync_write.h"
  19. #include "mt_dramc.h"
  20. #include "mt_freqhopping_drv.h"
  21. #include <linux/seq_file.h>
  22. /* #include <mach/mt_chip.h> */
  23. #ifdef CONFIG_OF
  24. #include <linux/of_address.h>
  25. static void __iomem *g_fhctl_base;
  26. static void __iomem *g_apmixed_base;
  27. static void __iomem *g_ddrphy_base;
  28. #endif
  29. /* masks */
  30. #define MASK_FRDDSX_DYS (0xFU<<20)
  31. #define MASK_FRDDSX_DTS (0xFU<<16)
  32. #define FH_FHCTLX_SRHMODE (0x1U<<5)
  33. #define FH_SFSTRX_BP (0x1U<<4)
  34. #define FH_SFSTRX_EN (0x1U<<2)
  35. #define FH_FRDDSX_EN (0x1U<<1)
  36. #define FH_FHCTLX_EN (0x1U<<0)
  37. #define FH_FRDDSX_DNLMT (0xFFU<<16)
  38. #define FH_FRDDSX_UPLMT (0xFFU)
  39. #define FH_FHCTLX_PLL_TGL_ORG (0x1U<<31)
  40. #define FH_FHCTLX_PLL_ORG (0xFFFFFU)
  41. #define FH_FHCTLX_PAUSE (0x1U<<31)
  42. #define FH_FHCTLX_PRD (0x1U<<30)
  43. #define FH_SFSTRX_PRD (0x1U<<29)
  44. #define FH_FRDDSX_PRD (0x1U<<28)
  45. #define FH_FHCTLX_STATE (0xFU<<24)
  46. #define FH_FHCTLX_PLL_CHG (0x1U<<21)
  47. #define FH_FHCTLX_PLL_DDS (0xFFFFFU)
  48. #define USER_DEFINE_SETTING_ID (1)
  49. #define MASK21b (0x1FFFFF)
  50. #define BIT32 (1U<<31)
  51. static DEFINE_SPINLOCK(g_fh_lock);
  52. #define PERCENT_TO_DDSLMT(dDS, pERCENT_M10) (((dDS * pERCENT_M10) >> 5) / 100)
  53. static unsigned int g_initialize;
  54. #ifndef PER_PROJECT_FH_SETTING
  55. /* default VCO freq. */
  56. #define ARMPLL_DEF_FREQ 1599000
  57. #define MAINPLL_DEF_FREQ 1092000
  58. #define MEMPLL_DEF_FREQ 160000 /* /< It is 160Mbps provided from DRAM expert. */
  59. #define MMPLL_DEF_FREQ 1092000
  60. #define VENCPLL_DEF_FREQ 1518002
  61. #define MSDCPLL_DEF_FREQ 1600000
  62. #define TVDPLL_DEF_FREQ 1782000
  63. /* keep track the status of each PLL */
  64. static fh_pll_t g_fh_pll[FH_PLL_NUM] = {
  65. {FH_FH_ENABLE_SSC, FH_PLL_ENABLE, 0, ARMPLL_DEF_FREQ, 0},
  66. {FH_FH_ENABLE_SSC, FH_PLL_ENABLE, 0, MAINPLL_DEF_FREQ, 0},
  67. {FH_FH_ENABLE_SSC, FH_PLL_ENABLE, 0, MEMPLL_DEF_FREQ, 0},
  68. {FH_FH_DISABLE, FH_PLL_ENABLE, 0, MMPLL_DEF_FREQ, 0},
  69. {FH_FH_ENABLE_SSC, FH_PLL_ENABLE, 0, VENCPLL_DEF_FREQ, 0},
  70. {FH_FH_ENABLE_SSC, FH_PLL_ENABLE, 0, MSDCPLL_DEF_FREQ, 0},
  71. {FH_FH_DISABLE, FH_PLL_ENABLE, 0, TVDPLL_DEF_FREQ, 0}
  72. };
  73. static const struct freqhopping_ssc ssc_armpll_setting[] = {
  74. {0, 0, 0, 0, 0, 0}, /* Means disable */
  75. {0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, /* Means User-Define */
  76. #if defined(CONFIG_ARCH_MT6735M)
  77. {ARMPLL_DEF_FREQ, 0, 9, 0, 2, 0xF6000}, /* 0 ~ -2% */
  78. #else
  79. {ARMPLL_DEF_FREQ, 0, 9, 0, 2, 0xF6000}, /* 0 ~ -2% */
  80. #endif
  81. {0, 0, 0, 0, 0, 0} /* EOF */
  82. };
  83. static const struct freqhopping_ssc ssc_mainpll_setting[] = {
  84. {0, 0, 0, 0, 0, 0},
  85. {0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
  86. {MAINPLL_DEF_FREQ, 0, 9, 0, 8, 0xA8000}, /* 0 ~ -8% */
  87. {0, 0, 0, 0, 0, 0}
  88. };
  89. static const struct freqhopping_ssc ssc_mempll_setting[] = {
  90. {0, 0, 0, 0, 0, 0},
  91. {0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
  92. {MEMPLL_DEF_FREQ, 0, 5, 0, 8, 0x1C000}, /* 0 ~ -8% */
  93. {0, 0, 0, 0, 0, 0}
  94. };
  95. static const struct freqhopping_ssc ssc_mmpll_setting[] = {
  96. {0, 0, 0, 0, 0, 0},
  97. {0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
  98. {MMPLL_DEF_FREQ, 0, 9, 0, 8, 0xD8000}, /* 0~-8% */
  99. {0, 0, 0, 0, 0, 0}
  100. };
  101. static const struct freqhopping_ssc ssc_vencpll_setting[] = {
  102. {0, 0, 0, 0, 0, 0},
  103. {0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
  104. {VENCPLL_DEF_FREQ, 0, 9, 0, 4, 0xE989E}, /* 0~-4% */
  105. {0, 0, 0, 0, 0, 0}
  106. };
  107. static const struct freqhopping_ssc ssc_msdcpll_setting[] = {
  108. {0, 0, 0, 0, 0, 0},
  109. {0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
  110. {MSDCPLL_DEF_FREQ, 0, 9, 0, 8, 0xF6276}, /* 0 ~ -8% */
  111. {0, 0, 0, 0, 0, 0}
  112. };
  113. static const struct freqhopping_ssc ssc_tvdpll_setting[] = {
  114. {0, 0, 0, 0, 0, 0},
  115. {0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
  116. {TVDPLL_DEF_FREQ, 0, 9, 0, 8, 0x112276}, /* 0~-8% */
  117. {0, 0, 0, 0, 0, 0}
  118. };
  119. static const unsigned int g_default_freq[] = {
  120. ARMPLL_DEF_FREQ, MAINPLL_DEF_FREQ,
  121. MEMPLL_DEF_FREQ, MMPLL_DEF_FREQ,
  122. VENCPLL_DEF_FREQ, MSDCPLL_DEF_FREQ,
  123. TVDPLL_DEF_FREQ
  124. };
  125. static struct freqhopping_ssc mt_ssc_fhpll_userdefined[FH_PLL_NUM] = {
  126. {0, 1, 1, 2, 2, 0}, /* ARMPLL */
  127. {0, 1, 1, 2, 2, 0}, /* MAINPLL */
  128. {0, 1, 1, 2, 2, 0}, /* MEMPLL */
  129. {0, 1, 1, 2, 2, 0}, /* MMPLL */
  130. {0, 1, 1, 2, 2, 0}, /* VENCPLL */
  131. {0, 1, 1, 2, 2, 0}, /* MSDCPLL */
  132. {0, 1, 1, 2, 2, 0} /* TVDPLL */
  133. };
  134. #else /* PER_PROJECT_FH_SETTING */
  135. PER_PROJECT_FH_SETTING
  136. #endif /* PER_PROJECT_FH_SETTING */
  137. static const struct freqhopping_ssc *g_ssc_setting[] = {
  138. ssc_armpll_setting,
  139. ssc_mainpll_setting,
  140. ssc_mempll_setting,
  141. ssc_mmpll_setting,
  142. ssc_vencpll_setting,
  143. ssc_msdcpll_setting,
  144. ssc_tvdpll_setting
  145. };
  146. static const unsigned int g_ssc_setting_size[] = {
  147. sizeof(ssc_armpll_setting) / sizeof(ssc_armpll_setting[0]),
  148. sizeof(ssc_mainpll_setting) / sizeof(ssc_mainpll_setting[0]),
  149. sizeof(ssc_mempll_setting) / sizeof(ssc_mempll_setting[0]),
  150. sizeof(ssc_mmpll_setting) / sizeof(ssc_mmpll_setting[0]),
  151. sizeof(ssc_vencpll_setting) / sizeof(ssc_vencpll_setting[0]),
  152. sizeof(ssc_msdcpll_setting) / sizeof(ssc_msdcpll_setting[0]),
  153. sizeof(ssc_tvdpll_setting) / sizeof(ssc_tvdpll_setting[0])
  154. };
  155. #ifdef CONFIG_OF
  156. static unsigned long g_reg_dds[FH_PLL_NUM];
  157. static unsigned long g_reg_cfg[FH_PLL_NUM];
  158. static unsigned long g_reg_updnlmt[FH_PLL_NUM];
  159. static unsigned long g_reg_mon[FH_PLL_NUM];
  160. static unsigned long g_reg_dvfs[FH_PLL_NUM];
  161. static unsigned long g_reg_pll_con1[FH_PLL_NUM];
  162. #else
  163. static const unsigned long g_reg_pll_con1[] = {
  164. REG_ARMPLL_CON1, REG_MAINPLL_CON1,
  165. REG_MEMPLL_CON1, REG_MMPLL_CON1,
  166. REG_VENCPLL_CON1, REG_MSDCPLL_CON1, REG_TVDPLL_CON1
  167. };
  168. static const unsigned long g_reg_dds[] = {
  169. REG_FHCTL0_DDS, REG_FHCTL1_DDS, REG_FHCTL2_DDS,
  170. REG_FHCTL3_DDS, REG_FHCTL4_DDS, REG_FHCTL5_DDS,
  171. REG_FHCTL6_DDS
  172. };
  173. static const unsigned long g_reg_cfg[] = {
  174. REG_FHCTL0_CFG, REG_FHCTL1_CFG, REG_FHCTL2_CFG,
  175. REG_FHCTL3_CFG, REG_FHCTL4_CFG, REG_FHCTL5_CFG,
  176. REG_FHCTL6_CFG
  177. };
  178. static const unsigned long g_reg_updnlmt[] = {
  179. REG_FHCTL0_UPDNLMT, REG_FHCTL1_UPDNLMT, REG_FHCTL2_UPDNLMT,
  180. REG_FHCTL3_UPDNLMT, REG_FHCTL4_UPDNLMT, REG_FHCTL5_UPDNLMT,
  181. REG_FHCTL6_UPDNLMT
  182. };
  183. static const unsigned long g_reg_mon[] = {
  184. REG_FHCTL0_MON, REG_FHCTL1_MON, REG_FHCTL2_MON,
  185. REG_FHCTL3_MON, REG_FHCTL4_MON, REG_FHCTL5_MON,
  186. REG_FHCTL6_MON
  187. };
  188. static const unsigned long g_reg_dvfs[] = {
  189. REG_FHCTL0_DVFS, REG_FHCTL1_DVFS, REG_FHCTL2_DVFS,
  190. REG_FHCTL3_DVFS, REG_FHCTL4_DVFS, REG_FHCTL5_DVFS,
  191. REG_FHCTL6_DVFS
  192. };
  193. #endif /* CONFIG_OF */
  194. #define VALIDATE_PLLID(id) BUG_ON(id >= FH_PLL_NUM)
  195. /* caller: clk mgr */
  196. static void mt_fh_hal_default_conf(void)
  197. {
  198. FH_MSG_DEBUG("%s", __func__);
  199. freqhopping_config(FH_ARM_PLLID, g_default_freq[FH_ARM_PLLID], true);
  200. freqhopping_config(FH_MAIN_PLLID, g_default_freq[FH_MAIN_PLLID], true);
  201. freqhopping_config(FH_MEM_PLLID, g_default_freq[FH_MEM_PLLID], true);
  202. /* freqhopping_config(FH_MM_PLLID, g_default_freq[FH_MM_PLLID], true); */
  203. freqhopping_config(FH_VENC_PLLID, g_default_freq[FH_VENC_PLLID], true);
  204. freqhopping_config(FH_MSDC_PLLID, g_default_freq[FH_MSDC_PLLID], true);
  205. /* freqhopping_config(FH_TVD_PLLID, g_default_freq[FH_TVD_PLLID], true); */
  206. }
  207. static void fh_switch2fhctl(enum FH_PLL_ID pll_id, int i_control)
  208. {
  209. unsigned int mask = 0;
  210. VALIDATE_PLLID(pll_id);
  211. mask = 0x1U << pll_id;
  212. /* FIXME: clock should be turned on/off at entry functions */
  213. /* Turn on clock */
  214. /* if (i_control == 1) */
  215. /* fh_set_field(REG_FHCTL_CLK_CON, mask, i_control); */
  216. /* Release software reset */
  217. /* fh_set_field(REG_FHCTL_RST_CON, mask, 0); */
  218. /* Switch to FHCTL_CORE controller */
  219. fh_set_field(REG_FHCTL_HP_EN, mask, i_control);
  220. /* Turn off clock */
  221. /* if (i_control == 0) */
  222. /* fh_set_field(REG_FHCTL_CLK_CON, mask, i_control); */
  223. }
  224. static void fh_sync_ncpo_to_fhctl_dds(enum FH_PLL_ID pll_id)
  225. {
  226. unsigned long reg_src = 0;
  227. unsigned long reg_dst = 0;
  228. VALIDATE_PLLID(pll_id);
  229. reg_src = g_reg_pll_con1[pll_id];
  230. reg_dst = g_reg_dds[pll_id];
  231. if (pll_id == FH_MEM_PLLID) {
  232. /* MEMPLL_CON1 field mapping. Integer: [31:25] =>
  233. FHCTL_DDS[20:14] ; Fraction: [24:1] => FHCTL_DDS[13:0] */
  234. fh_write32(reg_dst, (((fh_read32(reg_src) & 0xFFFFFFFE) >> 11) & MASK21b) | BIT32);
  235. } else {
  236. fh_write32(reg_dst, (fh_read32(reg_src) & MASK21b) | BIT32);
  237. }
  238. }
  239. static void __enable_ssc(unsigned int pll_id, const struct freqhopping_ssc *setting)
  240. {
  241. unsigned long flags = 0;
  242. const unsigned long reg_cfg = g_reg_cfg[pll_id];
  243. const unsigned long reg_updnlmt = g_reg_updnlmt[pll_id];
  244. const unsigned long reg_dds = g_reg_dds[pll_id];
  245. /* FH_MSG_DEBUG("%s: %x~%x df:%d dt:%d dds:%x", */
  246. /* __func__ , setting->lowbnd, setting->upbnd */
  247. /* ,setting->df ,setting->dt ,setting->dds); */
  248. mb();
  249. local_irq_save(flags);
  250. g_fh_pll[pll_id].fh_status = FH_FH_ENABLE_SSC;
  251. /* Set the relative parameter registers (dt/df/upbnd/downbnd) */
  252. fh_set_field(reg_cfg, MASK_FRDDSX_DYS, setting->df);
  253. fh_set_field(reg_cfg, MASK_FRDDSX_DTS, setting->dt);
  254. fh_sync_ncpo_to_fhctl_dds(pll_id);
  255. /* TODO: Not setting upper due to they are all 0? */
  256. fh_write32(reg_updnlmt,
  257. (PERCENT_TO_DDSLMT((fh_read32(reg_dds) & MASK21b), setting->lowbnd) << 16));
  258. /* Switch to FHCTL */
  259. fh_switch2fhctl(pll_id, 1);
  260. mb();
  261. /* Enable SSC */
  262. fh_set_field(reg_cfg, FH_FRDDSX_EN, 1);
  263. /* Enable Hopping control */
  264. fh_set_field(reg_cfg, FH_FHCTLX_EN, 1);
  265. local_irq_restore(flags);
  266. }
  267. static void __disable_ssc(unsigned int pll_id, const struct freqhopping_ssc *ssc_setting)
  268. {
  269. unsigned long flags = 0;
  270. unsigned long reg_cfg = g_reg_cfg[pll_id];
  271. /* FH_MSG_DEBUG("Calling %s", __func__); */
  272. local_irq_save(flags);
  273. /* Set the relative registers */
  274. fh_set_field(reg_cfg, FH_FRDDSX_EN, 0);
  275. fh_set_field(reg_cfg, FH_FHCTLX_EN, 0);
  276. mb();
  277. fh_switch2fhctl(pll_id, 0);
  278. g_fh_pll[pll_id].fh_status = FH_FH_DISABLE;
  279. local_irq_restore(flags);
  280. mb();
  281. }
  282. /* freq is in KHz, return at which number of entry in mt_ssc_xxx_setting[] */
  283. static noinline int __freq_to_index(enum FH_PLL_ID pll_id, int freq)
  284. {
  285. unsigned int retVal = 0;
  286. unsigned int i = 2; /* 0 is disable, 1 is user defines, so start from 2 */
  287. const unsigned int size = g_ssc_setting_size[pll_id];
  288. while (i < size) {
  289. if (freq == g_ssc_setting[pll_id][i].freq) {
  290. retVal = i;
  291. break;
  292. }
  293. ++i;
  294. }
  295. return retVal;
  296. }
  297. static int __freqhopping_ctrl(struct freqhopping_ioctl *fh_ctl, bool enable)
  298. {
  299. const struct freqhopping_ssc *pSSC_setting = NULL;
  300. unsigned int ssc_setting_id = 0;
  301. int retVal = 1;
  302. fh_pll_t *pfh_pll = NULL;
  303. /* FH_MSG("%s for pll %d", __func__, fh_ctl->pll_id); */
  304. /* Check the out of range of frequency hopping PLL ID */
  305. VALIDATE_PLLID(fh_ctl->pll_id);
  306. pfh_pll = &g_fh_pll[fh_ctl->pll_id];
  307. pfh_pll->curr_freq = g_default_freq[fh_ctl->pll_id];
  308. if ((enable == true) && (pfh_pll->fh_status == FH_FH_ENABLE_SSC)) {
  309. __disable_ssc(fh_ctl->pll_id, pSSC_setting);
  310. } else if ((enable == false) && (pfh_pll->fh_status == FH_FH_DISABLE)) {
  311. retVal = 0;
  312. goto Exit;
  313. }
  314. /* enable freq. hopping @ fh_ctl->pll_id */
  315. if (enable == true) {
  316. if (pfh_pll->pll_status == FH_PLL_DISABLE) {
  317. pfh_pll->fh_status = FH_FH_ENABLE_SSC;
  318. retVal = 0;
  319. goto Exit;
  320. } else {
  321. if (pfh_pll->user_defined == true) {
  322. FH_MSG("Apply user defined setting");
  323. pSSC_setting = &mt_ssc_fhpll_userdefined[fh_ctl->pll_id];
  324. pfh_pll->setting_id = USER_DEFINE_SETTING_ID;
  325. } else {
  326. if (pfh_pll->curr_freq != 0) {
  327. ssc_setting_id = pfh_pll->setting_id =
  328. __freq_to_index(fh_ctl->pll_id, pfh_pll->curr_freq);
  329. } else {
  330. ssc_setting_id = 0;
  331. }
  332. if (ssc_setting_id == 0) {
  333. FH_MSG("!!! No corresponding setting found !!!");
  334. /* just disable FH & exit */
  335. __disable_ssc(fh_ctl->pll_id, pSSC_setting);
  336. goto Exit;
  337. }
  338. pSSC_setting = &g_ssc_setting[fh_ctl->pll_id][ssc_setting_id];
  339. } /* user defined */
  340. if (pSSC_setting == NULL) {
  341. FH_MSG("SSC_setting is NULL!");
  342. /* disable FH & exit */
  343. __disable_ssc(fh_ctl->pll_id, pSSC_setting);
  344. goto Exit;
  345. }
  346. __enable_ssc(fh_ctl->pll_id, pSSC_setting);
  347. retVal = 0;
  348. }
  349. } else { /* disable req. hopping @ fh_ctl->pll_id */
  350. __disable_ssc(fh_ctl->pll_id, pSSC_setting);
  351. retVal = 0;
  352. }
  353. Exit:
  354. return retVal;
  355. }
  356. static void wait_dds_stable(unsigned int target_dds, unsigned long reg_mon, unsigned int wait_count)
  357. {
  358. unsigned int fh_dds = 0;
  359. unsigned int i = 0;
  360. fh_dds = fh_read32(reg_mon) & MASK21b;
  361. while ((target_dds != fh_dds) && (i < wait_count)) {
  362. udelay(10);
  363. #if 0
  364. if (unlikely(i > 100)) {
  365. BUG_ON(1);
  366. break;
  367. }
  368. #endif
  369. fh_dds = (fh_read32(reg_mon)) & MASK21b;
  370. ++i;
  371. }
  372. /* FH_MSG("target_dds = %d, fh_dds = %d, i = %d", target_dds, fh_dds, i); */
  373. }
  374. #define MEASURE_TIME 0
  375. /* FOR MEMPLL DFS, use DMA dummy read */
  376. /* Chihhao.Chen has to confirm with SS8
  377. regarding below API implement on kernel-3.18
  378. (Below APIs are just for build pass. Added by Konrad)
  379. */
  380. __weak int DFS_APDMA_END(void)
  381. {
  382. return 0;
  383. }
  384. __weak int DFS_APDMA_Enable(void)
  385. {
  386. return 0;
  387. }
  388. __weak void DFS_APDMA_dummy_read_preinit(void)
  389. {
  390. }
  391. __weak void DFS_APDMA_dummy_read_deinit(void)
  392. {
  393. }
  394. /*************************************************/
  395. #if MEASURE_TIME
  396. #include <linux/time.h>
  397. #endif
  398. static void wait_mempll_dds_stable(unsigned int target_dds,
  399. unsigned long reg_mon, unsigned int wait_count)
  400. {
  401. unsigned int fh_dds = 0;
  402. unsigned int i = 0;
  403. #if MEASURE_TIME
  404. unsigned int slope = 0;
  405. struct timespec now, start;
  406. getnstimeofday(&start);
  407. #endif
  408. DFS_APDMA_dummy_read_preinit();
  409. fh_dds = fh_read32(reg_mon) & MASK21b;
  410. while ((target_dds != fh_dds) && (i < wait_count)) {
  411. DFS_APDMA_Enable();
  412. fh_dds = (fh_read32(reg_mon)) & MASK21b;
  413. DFS_APDMA_END();
  414. ++i;
  415. }
  416. DFS_APDMA_dummy_read_deinit();
  417. #if MEASURE_TIME
  418. getnstimeofday(&now);
  419. now = timespec_sub(now, start);
  420. slope = fh_read32(REG_FHCTL_SLOPE0);
  421. /* FH_MSG( "[wait_mempll_dds_stable] time:%lu.%06lu count:%d dds:0x%x slope0:0x%x\n",
  422. (unsigned long) now.tv_sec, (unsigned long) now.tv_nsec / NSEC_PER_USEC, i, fh_dds, slope); */
  423. #else
  424. /* FH_MSG("mempll target_dds = 0x%x, fh_dds = 0x%x, i = %d\n", target_dds, fh_dds, i); */
  425. #endif
  426. }
  427. static int mt_fh_hal_dvfs(enum FH_PLL_ID pll_id, unsigned int dds_value)
  428. {
  429. unsigned long flags = 0;
  430. /* FH_MSG("%s for pll %d:",__func__, pll_id); */
  431. VALIDATE_PLLID(pll_id);
  432. local_irq_save(flags);
  433. /* 1. sync ncpo to DDS of FHCTL */
  434. fh_sync_ncpo_to_fhctl_dds(pll_id);
  435. /* FH_MSG("1. sync ncpo to DDS of FHCTL"); */
  436. /* FH_MSG("FHCTL%d_DDS: 0x%08x", pll_id, */
  437. /* (fh_read32(g_reg_dds[pll_id])&MASK21b)); */
  438. /* 2. enable DVFS and Hopping control */
  439. {
  440. unsigned long reg_cfg = g_reg_cfg[pll_id];
  441. fh_set_field(reg_cfg, FH_SFSTRX_EN, 1); /* enable dvfs mode */
  442. fh_set_field(reg_cfg, FH_FHCTLX_EN, 1); /* enable hopping control */
  443. }
  444. /* for slope setting. */
  445. /* TODO: Does this need to be changed? */
  446. fh_write32(REG_FHCTL_SLOPE0, 0x6003c97);
  447. if (pll_id == FH_MEM_PLLID) {
  448. #if defined(CONFIG_ARCH_MT6735) /* D1 slope */
  449. fh_write32(REG_FHCTL_SLOPE1, 0xFF00095A);
  450. #elif defined(CONFIG_ARCH_MT6735M) /* D2 slope */
  451. fh_write32(REG_FHCTL_SLOPE1, 0xFF000693);
  452. #else
  453. fh_write32(REG_FHCTL_SLOPE1, 0xFF000877);
  454. #endif
  455. } else {
  456. #if defined(CONFIG_ARCH_MT6735M) /* D2 slope */
  457. fh_write32(REG_FHCTL_SLOPE1, 0xFF0023F8);
  458. #else
  459. fh_write32(REG_FHCTL_SLOPE1, 0xFF003414);
  460. #endif
  461. }
  462. /* FH_MSG("2. enable DVFS and Hopping control"); */
  463. /* 3. switch to hopping control */
  464. fh_switch2fhctl(pll_id, 1);
  465. mb();
  466. /* FH_MSG("3. switch to hopping control"); */
  467. /* 4. set DFS DDS */
  468. {
  469. unsigned long dvfs_req = g_reg_dvfs[pll_id];
  470. fh_write32(dvfs_req, (dds_value) | (BIT32)); /* set dds */
  471. /* FH_MSG("4. set DFS DDS"); */
  472. FH_MSG_DEBUG("FHCTL%d_DDS: 0x%08x", pll_id,
  473. (fh_read32(g_reg_dds[pll_id]) & MASK21b));
  474. FH_MSG_DEBUG("FHCTL%d_DVFS: 0x%08x", pll_id, (fh_read32(dvfs_req) & MASK21b));
  475. }
  476. /* 4.1 ensure jump to target DDS */
  477. if (pll_id == FH_MEM_PLLID) {
  478. /* mempll need dummy read */
  479. wait_mempll_dds_stable(dds_value, g_reg_mon[pll_id], 10000);
  480. } else {
  481. wait_dds_stable(dds_value, g_reg_mon[pll_id], 100);
  482. }
  483. /* FH_MSG("4.1 ensure jump to target DDS"); */
  484. /* 5. write back to ncpo */
  485. /* FH_MSG("5. write back to ncpo"); */
  486. {
  487. unsigned long reg_pll_con1 = 0;
  488. reg_pll_con1 = g_reg_pll_con1[pll_id];
  489. if (pll_id == FH_MEM_PLLID) {
  490. FH_MSG_DEBUG("Org MEMPLL_CON1:0x%08x MEMPLL_CON1>>11_DDS: 0x%08x",
  491. fh_read32(reg_pll_con1),
  492. ((fh_read32(reg_pll_con1) & 0xFFFFFFFE) >> 11) & MASK21b);
  493. if (fh_read32(reg_pll_con1) & 0x1) {
  494. fh_write32(reg_pll_con1,
  495. (((fh_read32(g_reg_dds[pll_id]) & MASK21b) << 11) &
  496. 0xFFFFF800));
  497. } else {
  498. fh_write32(reg_pll_con1,
  499. (((fh_read32(g_reg_dds[pll_id]) & MASK21b) << 11) &
  500. 0xFFFFF800) | 0x1);
  501. }
  502. FH_MSG_DEBUG("New MEMPLL_CON1:0x%08x MEMPLL_CON1>>11_DDS: 0x%08x",
  503. fh_read32(reg_pll_con1),
  504. ((fh_read32(reg_pll_con1) & 0xFFFFFFFE) >> 11) & MASK21b);
  505. } else {
  506. FH_MSG_DEBUG("Org PLL_CON1: 0x%08x", (fh_read32(reg_pll_con1) & MASK21b));
  507. fh_write32(reg_pll_con1, (fh_read32(g_reg_mon[pll_id]) & MASK21b)
  508. | (fh_read32(reg_pll_con1) & 0xFFE00000) | (BIT32));
  509. FH_MSG_DEBUG("New PLL_CON1: 0x%08x", (fh_read32(reg_pll_con1) & MASK21b));
  510. }
  511. }
  512. /* 6. switch to register control */
  513. fh_switch2fhctl(pll_id, 0);
  514. mb();
  515. /* FH_MSG("6. switch to register control"); */
  516. local_irq_restore(flags);
  517. return 0;
  518. }
  519. /* armpll dfs mdoe */
  520. static int mt_fh_hal_dfs_armpll(unsigned int pll, unsigned int dds)
  521. {
  522. unsigned long flags = 0;
  523. unsigned long reg_cfg = 0;
  524. if (g_initialize == 0) {
  525. FH_MSG("(Warning) %s FHCTL isn't ready.", __func__);
  526. return -1;
  527. }
  528. /* FH_MSG("%s for pll %d dds %d", __func__, pll, dds); */
  529. switch (pll) {
  530. case FH_ARM_PLLID:
  531. reg_cfg = g_reg_cfg[pll];
  532. /* FH_MSG("(PLL_CON1): 0x%x",(fh_read32(g_reg_pll_con1[pll])&MASK21b)); */
  533. break;
  534. default:
  535. BUG_ON(1);
  536. return 1;
  537. };
  538. /* TODO: provelock issue spin_lock(&g_fh_lock); */
  539. spin_lock_irqsave(&g_fh_lock, flags);
  540. if (g_fh_pll[pll].fh_status == FH_FH_ENABLE_SSC) {
  541. unsigned int pll_dds = 0;
  542. unsigned int fh_dds = 0;
  543. /* only when SSC is enable, turn off armpll hopping */
  544. fh_set_field(reg_cfg, FH_FRDDSX_EN, 0); /* disable SSC mode */
  545. fh_set_field(reg_cfg, FH_SFSTRX_EN, 0); /* disable dvfs mode */
  546. fh_set_field(reg_cfg, FH_FHCTLX_EN, 0); /* disable hopping control */
  547. pll_dds = (fh_read32(g_reg_dds[pll])) & MASK21b;
  548. fh_dds = (fh_read32(g_reg_mon[pll])) & MASK21b;
  549. /* FH_MSG(">p:f< %x:%x",pll_dds,fh_dds); */
  550. wait_dds_stable(pll_dds, g_reg_mon[pll], 100);
  551. }
  552. /* FH_MSG("target dds: 0x%x",dds); */
  553. mt_fh_hal_dvfs(pll, dds);
  554. if (g_fh_pll[pll].fh_status == FH_FH_ENABLE_SSC) {
  555. const struct freqhopping_ssc *p_setting = &ssc_armpll_setting[2];
  556. fh_set_field(reg_cfg, FH_FRDDSX_EN, 0); /* disable SSC mode */
  557. fh_set_field(reg_cfg, FH_SFSTRX_EN, 0); /* disable dvfs mode */
  558. fh_set_field(reg_cfg, FH_FHCTLX_EN, 0); /* disable hopping control */
  559. fh_sync_ncpo_to_fhctl_dds(pll);
  560. /* FH_MSG("Enable armpll SSC mode"); */
  561. /* FH_MSG("DDS: 0x%08x", (fh_read32(g_reg_dds[pll])&MASK21b)); */
  562. fh_set_field(reg_cfg, MASK_FRDDSX_DYS, p_setting->df);
  563. fh_set_field(reg_cfg, MASK_FRDDSX_DTS, p_setting->dt);
  564. fh_write32(g_reg_updnlmt[pll],
  565. (PERCENT_TO_DDSLMT
  566. ((fh_read32(g_reg_dds[pll]) & MASK21b), p_setting->lowbnd) << 16));
  567. /* FH_MSG("UPDNLMT: 0x%08x", fh_read32(g_reg_updnlmt[pll])); */
  568. fh_switch2fhctl(pll, 1);
  569. fh_set_field(reg_cfg, FH_FRDDSX_EN, 1); /* enable SSC mode */
  570. fh_set_field(reg_cfg, FH_FHCTLX_EN, 1); /* enable hopping control */
  571. /* FH_MSG("CFG: 0x%08x", fh_read32(reg_cfg)); */
  572. }
  573. spin_unlock_irqrestore(&g_fh_lock, flags);
  574. return 0;
  575. }
  576. static int mt_fh_hal_dfs_mmpll(unsigned int target_dds)
  577. { /* mmpll dfs mode */
  578. unsigned long flags = 0;
  579. const unsigned int pll_id = FH_MM_PLLID;
  580. const unsigned long reg_cfg = g_reg_cfg[pll_id];
  581. if (g_initialize == 0) {
  582. FH_MSG("(Warning) %s FHCTL isn't ready. ", __func__);
  583. return -1;
  584. }
  585. /* FH_MSG("%s, current dds(MMPLL_CON1): 0x%x, target dds %d", */
  586. /* __func__,(fh_read32(g_reg_pll_con1[pll_id])&MASK21b), */
  587. /* target_dds); */
  588. spin_lock_irqsave(&g_fh_lock, flags);
  589. if (g_fh_pll[pll_id].fh_status == FH_FH_ENABLE_SSC) {
  590. unsigned int pll_dds = 0;
  591. unsigned int fh_dds = 0;
  592. /* only when SSC is enable, turn off MEMPLL hopping */
  593. fh_set_field(reg_cfg, FH_FRDDSX_EN, 0); /* disable SSC mode */
  594. fh_set_field(reg_cfg, FH_SFSTRX_EN, 0); /* disable dvfs mode */
  595. fh_set_field(reg_cfg, FH_FHCTLX_EN, 0); /* disable hopping control */
  596. pll_dds = (fh_read32(g_reg_dds[pll_id])) & MASK21b;
  597. fh_dds = (fh_read32(g_reg_mon[pll_id])) & MASK21b;
  598. /* FH_MSG(">p:f< %x:%x",pll_dds,fh_dds); */
  599. wait_dds_stable(pll_dds, g_reg_mon[pll_id], 100);
  600. }
  601. /* FH_MSG("target dds: 0x%x",target_dds); */
  602. mt_fh_hal_dvfs(pll_id, target_dds);
  603. if (g_fh_pll[pll_id].fh_status == FH_FH_ENABLE_SSC) {
  604. const struct freqhopping_ssc *p_setting = &ssc_mmpll_setting[2];
  605. fh_set_field(reg_cfg, FH_FRDDSX_EN, 0); /* disable SSC mode */
  606. fh_set_field(reg_cfg, FH_SFSTRX_EN, 0); /* disable dvfs mode */
  607. fh_set_field(reg_cfg, FH_FHCTLX_EN, 0); /* disable hopping control */
  608. fh_sync_ncpo_to_fhctl_dds(pll_id);
  609. /* FH_MSG("Enable mmpll SSC mode"); */
  610. /* FH_MSG("DDS: 0x%08x", (fh_read32(g_reg_dds[pll_id])&MASK21b)); */
  611. fh_set_field(reg_cfg, MASK_FRDDSX_DYS, p_setting->df);
  612. fh_set_field(reg_cfg, MASK_FRDDSX_DTS, p_setting->dt);
  613. fh_write32(g_reg_updnlmt[pll_id],
  614. (PERCENT_TO_DDSLMT
  615. ((fh_read32(g_reg_dds[pll_id]) & MASK21b), p_setting->lowbnd) << 16));
  616. /* FH_MSG("UPDNLMT: 0x%08x", fh_read32(g_reg_updnlmt[pll_id])); */
  617. fh_switch2fhctl(pll_id, 1);
  618. fh_set_field(reg_cfg, FH_FRDDSX_EN, 1); /* enable SSC mode */
  619. fh_set_field(reg_cfg, FH_FHCTLX_EN, 1); /* enable hopping control */
  620. /* FH_MSG("CFG: 0x%08x", fh_read32(reg_cfg)); */
  621. }
  622. spin_unlock_irqrestore(&g_fh_lock, flags);
  623. return 0;
  624. }
  625. static int mt_fh_hal_dfs_vencpll(unsigned int target_freq)
  626. {
  627. unsigned long flags = 0;
  628. const unsigned int pll_id = FH_VENC_PLLID;
  629. const unsigned long reg_cfg = g_reg_cfg[pll_id];
  630. if (g_initialize == 0) {
  631. FH_MSG("(Warning) %s FHCTL isn't ready. ", __func__);
  632. return -1;
  633. }
  634. /* FH_MSG_DEBUG("%s current dds(VENCPLL_CON1): 0x%x",__func__, */
  635. /* (fh_read32(g_reg_pll_con1[pll_id])&MASK21b)); */
  636. /* TODO: provelock issue spin_lock(&g_fh_lock); */
  637. spin_lock_irqsave(&g_fh_lock, flags);
  638. if (g_fh_pll[pll_id].fh_status == FH_FH_ENABLE_SSC) {
  639. unsigned int fh_dds = 0;
  640. unsigned int pll_dds = 0;
  641. fh_set_field(reg_cfg, FH_FRDDSX_EN, 0); /* disable SSC mode */
  642. fh_set_field(reg_cfg, FH_SFSTRX_EN, 0); /* disable dvfs mode */
  643. fh_set_field(reg_cfg, FH_FHCTLX_EN, 0); /* disable hopping control */
  644. pll_dds = (fh_read32(g_reg_dds[pll_id])) & MASK21b;
  645. fh_dds = (fh_read32(g_reg_mon[pll_id])) & MASK21b;
  646. /* FH_MSG(">p:f< %x:%x",pll_dds,fh_dds); */
  647. wait_dds_stable(pll_dds, g_reg_mon[pll_id], 100);
  648. }
  649. /* FH_MSG("target dds: 0x%x",target_freq); */
  650. mt_fh_hal_dvfs(pll_id, target_freq);
  651. if (g_fh_pll[pll_id].fh_status == FH_FH_ENABLE_SSC) {
  652. const struct freqhopping_ssc *p_setting = &ssc_vencpll_setting[2];
  653. fh_set_field(reg_cfg, FH_FRDDSX_EN, 0); /* disable SSC mode */
  654. fh_set_field(reg_cfg, FH_SFSTRX_EN, 0); /* disable dvfs mode */
  655. fh_set_field(reg_cfg, FH_FHCTLX_EN, 0); /* disable hopping control */
  656. fh_sync_ncpo_to_fhctl_dds(pll_id);
  657. /* FH_MSG("Enable vencpll SSC mode"); */
  658. /* FH_MSG("DDS: 0x%08x", (fh_read32(g_reg_dds[pll_id])&MASK21b)); */
  659. fh_set_field(reg_cfg, MASK_FRDDSX_DYS, p_setting->df);
  660. fh_set_field(reg_cfg, MASK_FRDDSX_DTS, p_setting->dt);
  661. fh_write32(g_reg_updnlmt[pll_id],
  662. (PERCENT_TO_DDSLMT
  663. ((fh_read32(g_reg_dds[pll_id]) & MASK21b), p_setting->lowbnd) << 16));
  664. /* FH_MSG("UPDNLMT: 0x%08x", fh_read32(g_reg_updnlmt[pll_id])); */
  665. fh_switch2fhctl(pll_id, 1);
  666. fh_set_field(reg_cfg, FH_FRDDSX_EN, 1); /* enable SSC mode */
  667. fh_set_field(reg_cfg, FH_FHCTLX_EN, 1); /* enable hopping control */
  668. /* FH_MSG("CFG: 0x%08x", fh_read32(reg_cfg)); */
  669. }
  670. spin_unlock_irqrestore(&g_fh_lock, flags);
  671. return 0;
  672. }
  673. /* ************************************************** */
  674. /* mt_fh_hal_dfs_mempll() */
  675. /* ************************************************** */
  676. static int mt_fh_hal_dfs_mempll(unsigned int target_dds)
  677. {
  678. unsigned long flags = 0;
  679. const unsigned int pll_id = FH_MEM_PLLID;
  680. const unsigned long reg_cfg = g_reg_cfg[pll_id];
  681. /* FH_MSG("%s, current dds(MEMPLL_CON1): 0x%x, target dds: 0x%x", */
  682. /* __func__,(((fh_read32(g_reg_pll_con1[pll_id])&0xFFFFFFFE)>>11)&MASK21b), */
  683. /* target_dds); */
  684. spin_lock_irqsave(&g_fh_lock, flags);
  685. if (g_fh_pll[pll_id].fh_status == FH_FH_ENABLE_SSC) {
  686. unsigned int pll_dds = 0;
  687. unsigned int fh_dds = 0;
  688. fh_set_field(reg_cfg, FH_FRDDSX_EN, 0); /* disable SSC mode */
  689. fh_set_field(reg_cfg, FH_SFSTRX_EN, 0); /* disable dvfs mode */
  690. fh_set_field(reg_cfg, FH_FHCTLX_EN, 0); /* disable hopping control */
  691. pll_dds = (fh_read32(g_reg_dds[pll_id])) & MASK21b;
  692. fh_dds = (fh_read32(g_reg_mon[pll_id])) & MASK21b;
  693. /* FH_MSG(">p:f< %x:%x",pll_dds,fh_dds); */
  694. wait_dds_stable(pll_dds, g_reg_mon[pll_id], 100);
  695. }
  696. fh_write32(REG_FHCTL2_CFG, (fh_read32(REG_FHCTL2_CFG) | 0x20));
  697. mt_fh_hal_dvfs(pll_id, target_dds);
  698. if (g_fh_pll[pll_id].fh_status == FH_FH_ENABLE_SSC) {
  699. const struct freqhopping_ssc *p_setting = &ssc_mempll_setting[2];
  700. fh_set_field(reg_cfg, FH_FRDDSX_EN, 0); /* disable SSC mode */
  701. fh_set_field(reg_cfg, FH_SFSTRX_EN, 0); /* disable dvfs mode */
  702. fh_set_field(reg_cfg, FH_FHCTLX_EN, 0); /* disable hopping control */
  703. fh_sync_ncpo_to_fhctl_dds(pll_id);
  704. /* FH_MSG("Enable mempll SSC mode"); */
  705. /* FH_MSG("DDS: 0x%08x", (fh_read32(g_reg_dds[pll_id])&MASK21b)); */
  706. fh_set_field(reg_cfg, MASK_FRDDSX_DYS, p_setting->df);
  707. fh_set_field(reg_cfg, MASK_FRDDSX_DTS, p_setting->dt);
  708. fh_write32(g_reg_updnlmt[pll_id],
  709. (PERCENT_TO_DDSLMT
  710. ((fh_read32(g_reg_dds[pll_id]) & MASK21b), p_setting->lowbnd) << 16));
  711. /* FH_MSG("UPDNLMT: 0x%08x", fh_read32(g_reg_updnlmt[pll_id])); */
  712. fh_switch2fhctl(pll_id, 1);
  713. fh_set_field(reg_cfg, FH_FRDDSX_EN, 1); /* enable SSC mode */
  714. fh_set_field(reg_cfg, FH_FHCTLX_EN, 1); /* enable hopping control */
  715. /* FH_MSG("CFG: 0x%08x", fh_read32(reg_cfg)); */
  716. }
  717. spin_unlock_irqrestore(&g_fh_lock, flags);
  718. return 0;
  719. }
  720. static int mt_fh_hal_l2h_dvfs_mempll(void)
  721. {
  722. FH_BUG_ON(1);
  723. return 0;
  724. }
  725. static int mt_fh_hal_h2l_dvfs_mempll(void)
  726. {
  727. FH_BUG_ON(1);
  728. return 0;
  729. }
  730. static int mt_fh_hal_dram_overclock(int clk)
  731. {
  732. FH_BUG_ON(1);
  733. return 0;
  734. }
  735. static int mt_fh_hal_get_dramc(void)
  736. {
  737. FH_BUG_ON(1);
  738. return 0;
  739. }
  740. static void mt_fh_hal_popod_save(void)
  741. {
  742. const unsigned int pll_id = FH_MAIN_PLLID;
  743. FH_MSG_DEBUG("EN: %s", __func__);
  744. /* disable maipll SSC mode */
  745. if (g_fh_pll[pll_id].fh_status == FH_FH_ENABLE_SSC) {
  746. unsigned int fh_dds = 0;
  747. unsigned int pll_dds = 0;
  748. const unsigned long reg_cfg = g_reg_cfg[pll_id];
  749. /* only when SSC is enable, turn off MAINPLL hopping */
  750. fh_set_field(reg_cfg, FH_FRDDSX_EN, 0); /* disable SSC mode */
  751. fh_set_field(reg_cfg, FH_SFSTRX_EN, 0); /* disable dvfs mode */
  752. fh_set_field(reg_cfg, FH_FHCTLX_EN, 0); /* disable hopping control */
  753. pll_dds = (fh_read32(g_reg_dds[pll_id])) & MASK21b;
  754. fh_dds = (fh_read32(g_reg_mon[pll_id])) & MASK21b;
  755. FH_MSG("Org pll_dds:%x fh_dds:%x", pll_dds, fh_dds);
  756. wait_dds_stable(pll_dds, g_reg_mon[pll_id], 100);
  757. /* write back to ncpo, only for MAINPLL. Don't need to add MEMPLL handle. */
  758. fh_write32(g_reg_pll_con1[pll_id],
  759. (fh_read32(g_reg_dds[pll_id]) & MASK21b) |
  760. (fh_read32(g_reg_pll_con1[pll_id]) & 0xFFE00000) | (BIT32));
  761. FH_MSG("MAINPLL_CON1: 0x%08x", (fh_read32(g_reg_pll_con1[pll_id]) & MASK21b));
  762. /* switch to register control */
  763. fh_switch2fhctl(pll_id, 0);
  764. mb();
  765. }
  766. }
  767. static void mt_fh_hal_popod_restore(void)
  768. {
  769. const unsigned int pll_id = FH_MAIN_PLLID;
  770. FH_MSG_DEBUG("EN: %s", __func__);
  771. /* enable maipll SSC mode */
  772. if (g_fh_pll[pll_id].fh_status == FH_FH_ENABLE_SSC) {
  773. const struct freqhopping_ssc *p_setting = &ssc_mainpll_setting[2];
  774. const unsigned long reg_cfg = g_reg_cfg[pll_id];
  775. fh_set_field(reg_cfg, FH_FRDDSX_EN, 0); /* disable SSC mode */
  776. fh_set_field(reg_cfg, FH_SFSTRX_EN, 0); /* disable dvfs mode */
  777. fh_set_field(reg_cfg, FH_FHCTLX_EN, 0); /* disable hopping control */
  778. fh_sync_ncpo_to_fhctl_dds(pll_id);
  779. FH_MSG("Enable mainpll SSC mode");
  780. FH_MSG("sync ncpo to DDS of FHCTL");
  781. FH_MSG("FHCTL1_DDS: 0x%08x", (fh_read32(g_reg_dds[pll_id]) & MASK21b));
  782. fh_set_field(reg_cfg, MASK_FRDDSX_DYS, p_setting->df);
  783. fh_set_field(reg_cfg, MASK_FRDDSX_DTS, p_setting->dt);
  784. fh_write32(g_reg_updnlmt[pll_id],
  785. (PERCENT_TO_DDSLMT
  786. ((fh_read32(g_reg_dds[pll_id]) & MASK21b), p_setting->lowbnd) << 16));
  787. FH_MSG("REG_FHCTL2_UPDNLMT: 0x%08x", fh_read32(g_reg_updnlmt[pll_id]));
  788. fh_switch2fhctl(pll_id, 1);
  789. fh_set_field(reg_cfg, FH_FRDDSX_EN, 1); /* enable SSC mode */
  790. fh_set_field(reg_cfg, FH_FHCTLX_EN, 1); /* enable hopping control */
  791. FH_MSG("REG_FHCTL2_CFG: 0x%08x", fh_read32(reg_cfg));
  792. }
  793. }
  794. static int fh_dramc_proc_read(struct seq_file *m, void *v)
  795. {
  796. return 0;
  797. }
  798. static int fh_dramc_proc_write(struct file *file, const char *buffer, unsigned long count,
  799. void *data)
  800. {
  801. return 0;
  802. }
  803. static int fh_dvfs_proc_read(struct seq_file *m, void *v)
  804. {
  805. int i = 0;
  806. FH_MSG("EN: %s", __func__);
  807. seq_puts(m, "DVFS:\r\n");
  808. seq_puts(m, "CFG: 0x3 is SSC mode; 0x5 is DVFS mode \r\n");
  809. for (i = 0; i < FH_PLL_NUM; ++i) {
  810. seq_printf(m, "FHCTL%d: CFG:0x%08x DVFS:0x%08x\r\n",
  811. i, fh_read32(g_reg_cfg[i]), fh_read32(g_reg_dvfs[i]));
  812. }
  813. return 0;
  814. }
  815. static int fh_dvfs_proc_write(struct file *file, const char *buffer, unsigned long count,
  816. void *data)
  817. {
  818. unsigned int p1, p2, p3, p4, p5;
  819. p1 = p2 = p3 = p4 = p5 = 0;
  820. FH_MSG("EN: %s", __func__);
  821. if (count == 0)
  822. return -1;
  823. FH_MSG("EN: p1=%d p2=%d p3=%d", p1, p2, p3);
  824. switch (p1) {
  825. case FH_ARM_PLLID:
  826. FH_MSG("MEMPLL Slope change enter\n");
  827. mt_fh_hal_dfs_mempll((fh_read32(REG_FHCTL2_DDS) & MASK21b));
  828. FH_MSG("MEMPLL Slope change completed\n");
  829. /* mt_fh_hal_dfs_armpll(p2, p3); */
  830. /* FH_MSG("ARMPLL DFS completed\n"); */
  831. break;
  832. };
  833. return count;
  834. }
  835. /* #define UINT_MAX (unsigned int)(-1) */
  836. static int fh_dumpregs_proc_read(struct seq_file *m, void *v)
  837. {
  838. int i = 0;
  839. static unsigned int dds_max[FH_PLL_NUM] = { 0 };
  840. static unsigned int dds_min[FH_PLL_NUM] = {
  841. UINT_MAX, UINT_MAX, UINT_MAX, UINT_MAX, UINT_MAX,
  842. UINT_MAX, UINT_MAX
  843. };
  844. FH_MSG("EN: %s", __func__);
  845. for (i = 0; i < FH_PLL_NUM; ++i) {
  846. const unsigned int mon = fh_read32(g_reg_mon[i]);
  847. const unsigned int dds = mon & MASK21b;
  848. seq_printf(m, "FHCTL%d CFG, UPDNLMT, DDS, MON\r\n", i);
  849. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\r\n",
  850. fh_read32(g_reg_cfg[i]), fh_read32(g_reg_updnlmt[i]),
  851. fh_read32(g_reg_dds[i]), mon);
  852. if (dds > dds_max[i])
  853. dds_max[i] = dds;
  854. if (dds < dds_min[i])
  855. dds_min[i] = dds;
  856. }
  857. seq_printf(m, "\r\nFHCTL_HP_EN:\r\n0x%08x\r\n", fh_read32(REG_FHCTL_HP_EN));
  858. if (fh_read32(REG_FHCTL2_CFG) & 0x20) {
  859. seq_printf(m, "mempll slope: Uni-slope; REG_FHCTL2_CFG[5]:0x%x\r\n",
  860. (fh_read32(REG_FHCTL2_CFG) & 0x20));
  861. seq_printf(m, "mempll slope: Uni-slope; REG_FHCTL_SLOPE1:0x%08x\r\n",
  862. fh_read32(REG_FHCTL_SLOPE1));
  863. } else {
  864. seq_printf(m, "mempll slope: Multi-slope; REG_FHCTL2_CFG[5]:0x%x\r\n",
  865. (fh_read32(REG_FHCTL2_CFG) & 0x20));
  866. }
  867. seq_puts(m, "\r\nPLL_CON0 :\r\n");
  868. seq_printf(m, "ARM:0x%08x MAIN:0x%08x ",
  869. fh_read32(REG_ARMPLL_CON0), fh_read32(REG_MAINPLL_CON0));
  870. seq_printf(m, "MM:0x%08x VENC:0x%08x MSDC:0x%08x TVD:0x%08x\r\n",
  871. fh_read32(REG_MMPLL_CON0), fh_read32(REG_VENCPLL_CON0),
  872. fh_read32(REG_MSDCPLL_CON0), fh_read32(REG_TVDPLL_CON0));
  873. seq_puts(m, "\r\nPLL_CON1 :\r\n");
  874. seq_printf(m, "ARM:0x%08x MAIN:0x%08x MEM:0x%08x ",
  875. fh_read32(REG_ARMPLL_CON1),
  876. fh_read32(REG_MAINPLL_CON1), fh_read32(REG_MEMPLL_CON1));
  877. seq_printf(m, "MM:0x%08x VENC:0x%08x MSDC:0x%08x TVD:0x%08x\r\n",
  878. fh_read32(REG_MMPLL_CON1), fh_read32(REG_VENCPLL_CON1),
  879. fh_read32(REG_MSDCPLL_CON1), fh_read32(REG_TVDPLL_CON1));
  880. seq_puts(m, "\r\nRecorded dds range\r\n");
  881. for (i = 0; i < FH_PLL_NUM; ++i)
  882. seq_printf(m, "Pll%d dds max 0x%06x, min 0x%06x\r\n", i, dds_max[i], dds_min[i]);
  883. return 0;
  884. }
  885. static void __reg_tbl_init(void)
  886. {
  887. #ifdef CONFIG_OF
  888. int i = 0;
  889. const unsigned long reg_dds[] = {
  890. REG_FHCTL0_DDS, REG_FHCTL1_DDS, REG_FHCTL2_DDS,
  891. REG_FHCTL3_DDS, REG_FHCTL4_DDS, REG_FHCTL5_DDS,
  892. REG_FHCTL6_DDS
  893. };
  894. const unsigned long reg_cfg[] = {
  895. REG_FHCTL0_CFG, REG_FHCTL1_CFG, REG_FHCTL2_CFG,
  896. REG_FHCTL3_CFG, REG_FHCTL4_CFG, REG_FHCTL5_CFG,
  897. REG_FHCTL6_CFG
  898. };
  899. const unsigned long reg_updnlmt[] = {
  900. REG_FHCTL0_UPDNLMT, REG_FHCTL1_UPDNLMT, REG_FHCTL2_UPDNLMT,
  901. REG_FHCTL3_UPDNLMT, REG_FHCTL4_UPDNLMT, REG_FHCTL5_UPDNLMT,
  902. REG_FHCTL6_UPDNLMT
  903. };
  904. const unsigned long reg_mon[] = {
  905. REG_FHCTL0_MON, REG_FHCTL1_MON, REG_FHCTL2_MON,
  906. REG_FHCTL3_MON, REG_FHCTL4_MON, REG_FHCTL5_MON,
  907. REG_FHCTL6_MON
  908. };
  909. const unsigned long reg_dvfs[] = {
  910. REG_FHCTL0_DVFS, REG_FHCTL1_DVFS, REG_FHCTL2_DVFS,
  911. REG_FHCTL3_DVFS, REG_FHCTL4_DVFS, REG_FHCTL5_DVFS,
  912. REG_FHCTL6_DVFS
  913. };
  914. const unsigned long reg_pll_con1[] = {
  915. REG_ARMPLL_CON1, REG_MAINPLL_CON1,
  916. REG_MEMPLL_CON1, REG_MMPLL_CON1, REG_VENCPLL_CON1,
  917. REG_MSDCPLL_CON1, REG_TVDPLL_CON1
  918. };
  919. FH_MSG_DEBUG("EN: %s", __func__);
  920. for (i = 0; i < FH_PLL_NUM; ++i) {
  921. g_reg_dds[i] = reg_dds[i];
  922. g_reg_cfg[i] = reg_cfg[i];
  923. g_reg_updnlmt[i] = reg_updnlmt[i];
  924. g_reg_mon[i] = reg_mon[i];
  925. g_reg_dvfs[i] = reg_dvfs[i];
  926. g_reg_pll_con1[i] = reg_pll_con1[i];
  927. }
  928. #endif
  929. }
  930. #ifdef CONFIG_OF
  931. /* Device Tree Initialize */
  932. static int __reg_base_addr_init(void)
  933. {
  934. struct device_node *fhctl_node;
  935. struct device_node *apmixed_node;
  936. /* Init FHCTL base address */
  937. fhctl_node = of_find_compatible_node(NULL, NULL, "mediatek,FHCTL");
  938. if (!fhctl_node) {
  939. FH_MSG_DEBUG(" Error, Cannot find FHCTL device tree node");
  940. /* g_fhctl_base = (void *)FHCTL_BASE; */
  941. } else {
  942. g_fhctl_base = of_iomap(fhctl_node, 0);
  943. if (!g_fhctl_base) {
  944. FH_MSG_DEBUG("Error, FHCTL iomap failed");
  945. /* g_fhctl_base = (void *)FHCTL_BASE; */
  946. } else {
  947. FH_MSG_DEBUG("FHCTL base address:0x%lx", (unsigned long)g_fhctl_base);
  948. }
  949. } /* if-else */
  950. /* Init APMIXED base address */
  951. apmixed_node = of_find_compatible_node(NULL, NULL, "mediatek,APMIXED");
  952. if (!apmixed_node) {
  953. FH_MSG_DEBUG(" Error, Cannot find APMIXED device tree node");
  954. /* g_apmixed_base = (void *)APMIXED_BASE; */
  955. } else {
  956. g_apmixed_base = of_iomap(apmixed_node, 0);
  957. if (!g_apmixed_base) {
  958. FH_MSG_DEBUG("Error, APMIXED iomap failed");
  959. /* g_apmixed_base = (void *)APMIXED_BASE; */
  960. } else {
  961. FH_MSG_DEBUG("APMIXED base address:0x%lx", (unsigned long)g_apmixed_base);
  962. }
  963. } /* if-else */
  964. /* Init DDRPHY base address */
  965. g_ddrphy_base = mt_ddrphy_base_get();
  966. if (!g_ddrphy_base) {
  967. FH_MSG_DEBUG("Error, FHCTL DDRPHY failed");
  968. /* g_ddrphy_base = (void *)DDRPHY_BASE; */
  969. } else {
  970. FH_MSG_DEBUG("DDRPHY base address:0x%lx", (unsigned long)g_ddrphy_base);
  971. }
  972. __reg_tbl_init();
  973. return 0;
  974. }
  975. #endif
  976. /* TODO: __init void mt_freqhopping_init(void) */
  977. static void mt_fh_hal_init(void)
  978. {
  979. int i = 0;
  980. unsigned long flags = 0;
  981. FH_MSG_DEBUG("EN: %s", __func__);
  982. if (g_initialize == 1)
  983. return;
  984. #ifdef CONFIG_OF
  985. /* Init relevant register base address by device tree */
  986. __reg_base_addr_init();
  987. #endif
  988. for (i = 0; i < FH_PLL_NUM; ++i) {
  989. unsigned int mask = 1 << i;
  990. spin_lock_irqsave(&g_fh_lock, flags);
  991. /* TODO: clock should be turned on only when FH is needed */
  992. /* Turn on all clock */
  993. fh_set_field(REG_FHCTL_CLK_CON, mask, 1);
  994. /* Release software-reset to reset */
  995. fh_set_field(REG_FHCTL_RST_CON, mask, 0);
  996. fh_set_field(REG_FHCTL_RST_CON, mask, 1);
  997. g_fh_pll[i].setting_id = 0;
  998. fh_write32(g_reg_cfg[i], 0x00000000); /* No SSC and FH enabled */
  999. fh_write32(g_reg_updnlmt[i], 0x00000000); /* clear all the settings */
  1000. fh_write32(g_reg_dds[i], 0x00000000); /* clear all the settings */
  1001. spin_unlock_irqrestore(&g_fh_lock, flags);
  1002. }
  1003. g_initialize = 1;
  1004. }
  1005. static void mt_fh_hal_lock(unsigned long *flags)
  1006. {
  1007. spin_lock_irqsave(&g_fh_lock, *flags);
  1008. }
  1009. static void mt_fh_hal_unlock(unsigned long *flags)
  1010. {
  1011. spin_unlock_irqrestore(&g_fh_lock, *flags);
  1012. }
  1013. static int mt_fh_hal_get_init(void)
  1014. {
  1015. return g_initialize;
  1016. }
  1017. static int mt_fh_hal_is_support_DFS_mode(void)
  1018. {
  1019. return true;
  1020. }
  1021. /* TODO: module_init(mt_freqhopping_init); */
  1022. /* TODO: module_exit(cpufreq_exit); */
  1023. static int __fh_debug_proc_read(struct seq_file *m, void *v, fh_pll_t *pll)
  1024. {
  1025. FH_MSG("EN: %s", __func__);
  1026. seq_puts(m, "\r\n[freqhopping debug flag]\r\n");
  1027. seq_puts(m, "===============================================\r\n");
  1028. seq_puts(m, "id=ARMPLL=MAINPLL=MEMPLL=MMPLL=VENCPLL=MSDCPLL=TVDPLL\r\n");
  1029. seq_printf(m, " =%04d==%04d==%04d==%04d==%04d==%04d==%04d=\r\n",
  1030. pll[FH_ARM_PLLID].fh_status, pll[FH_MAIN_PLLID].fh_status,
  1031. pll[FH_MEM_PLLID].fh_status, pll[FH_MM_PLLID].fh_status,
  1032. pll[FH_VENC_PLLID].fh_status, pll[FH_MSDC_PLLID].fh_status,
  1033. pll[FH_TVD_PLLID].fh_status);
  1034. seq_printf(m, " =%04d==%04d==%04d==%04d==%04d==%04d==%04d=\r\n",
  1035. pll[FH_ARM_PLLID].setting_id, pll[FH_MAIN_PLLID].setting_id,
  1036. pll[FH_MEM_PLLID].setting_id, pll[FH_MM_PLLID].setting_id,
  1037. pll[FH_VENC_PLLID].setting_id, pll[FH_MSDC_PLLID].setting_id,
  1038. pll[FH_TVD_PLLID].setting_id);
  1039. return 0;
  1040. }
  1041. /* *********************************************************************** */
  1042. /* This function would support special request. */
  1043. /* [History] */
  1044. /* (2014.8.13) K2 HQA desence SA required MEMPLL to enable SSC -2~-4%. */
  1045. /* We implement API mt_freqhopping_devctl() to */
  1046. /* complete -2~-4% SSC. (DVFS to -2% freq and enable 0~-2% SSC) */
  1047. /* */
  1048. /* *********************************************************************** */
  1049. static int fh_ioctl_dvfs_ssc(unsigned int ctlid, void *arg)
  1050. {
  1051. struct freqhopping_ioctl *fh_ctl = arg;
  1052. switch (ctlid) {
  1053. case FH_DCTL_CMD_DVFS: /* < PLL DVFS */
  1054. {
  1055. mt_fh_hal_dvfs(fh_ctl->pll_id, fh_ctl->ssc_setting.dds);
  1056. }
  1057. break;
  1058. case FH_DCTL_CMD_DVFS_SSC_ENABLE: /* < PLL DVFS and enable SSC */
  1059. {
  1060. __disable_ssc(fh_ctl->pll_id, &(fh_ctl->ssc_setting));
  1061. mt_fh_hal_dvfs(fh_ctl->pll_id, fh_ctl->ssc_setting.dds);
  1062. __enable_ssc(fh_ctl->pll_id, &(fh_ctl->ssc_setting));
  1063. }
  1064. break;
  1065. case FH_DCTL_CMD_DVFS_SSC_DISABLE: /* < PLL DVFS and disable SSC */
  1066. {
  1067. __disable_ssc(fh_ctl->pll_id, &(fh_ctl->ssc_setting));
  1068. mt_fh_hal_dvfs(fh_ctl->pll_id, fh_ctl->ssc_setting.dds);
  1069. }
  1070. break;
  1071. case FH_DCTL_CMD_SSC_ENABLE: /* < SSC enable */
  1072. {
  1073. __enable_ssc(fh_ctl->pll_id, &(fh_ctl->ssc_setting));
  1074. }
  1075. break;
  1076. case FH_DCTL_CMD_SSC_DISABLE: /* < SSC disable */
  1077. {
  1078. __disable_ssc(fh_ctl->pll_id, &(fh_ctl->ssc_setting));
  1079. }
  1080. break;
  1081. default:
  1082. break;
  1083. };
  1084. return 0;
  1085. }
  1086. static void __ioctl(unsigned int ctlid, void *arg)
  1087. {
  1088. switch (ctlid) {
  1089. case FH_IO_PROC_READ:
  1090. {
  1091. FH_IO_PROC_READ_T *tmp = (FH_IO_PROC_READ_T *) (arg);
  1092. __fh_debug_proc_read(tmp->m, tmp->v, tmp->pll);
  1093. }
  1094. break;
  1095. case FH_DCTL_CMD_DVFS: /* < PLL DVFS */
  1096. case FH_DCTL_CMD_DVFS_SSC_ENABLE: /* < PLL DVFS and enable SSC */
  1097. case FH_DCTL_CMD_DVFS_SSC_DISABLE: /* < PLL DVFS and disable SSC */
  1098. case FH_DCTL_CMD_SSC_ENABLE: /* < SSC enable */
  1099. case FH_DCTL_CMD_SSC_DISABLE: /* < SSC disable */
  1100. {
  1101. fh_ioctl_dvfs_ssc(ctlid, arg);
  1102. }
  1103. break;
  1104. default:
  1105. FH_MSG("Unrecognized ctlid %d", ctlid);
  1106. break;
  1107. };
  1108. }
  1109. static struct mt_fh_hal_driver g_fh_hal_drv = {
  1110. .fh_pll = g_fh_pll,
  1111. .fh_usrdef = mt_ssc_fhpll_userdefined,
  1112. .mempll = FH_MEM_PLLID,
  1113. .lvdspll = FH_MAX_PLLID + 1,
  1114. .mainpll = FH_MAIN_PLLID,
  1115. .msdcpll = FH_MSDC_PLLID,
  1116. .mmpll = FH_MM_PLLID,
  1117. .vencpll = FH_VENC_PLLID,
  1118. .pll_cnt = FH_PLL_NUM,
  1119. .proc.clk_gen_read = NULL,
  1120. .proc.clk_gen_write = NULL,
  1121. .proc.dramc_read = fh_dramc_proc_read,
  1122. .proc.dramc_write = fh_dramc_proc_write,
  1123. .proc.dumpregs_read = fh_dumpregs_proc_read,
  1124. .proc.dvfs_read = fh_dvfs_proc_read,
  1125. .proc.dvfs_write = fh_dvfs_proc_write,
  1126. .mt_fh_hal_init = mt_fh_hal_init,
  1127. .mt_fh_hal_ctrl = __freqhopping_ctrl,
  1128. .mt_fh_lock = mt_fh_hal_lock,
  1129. .mt_fh_unlock = mt_fh_hal_unlock,
  1130. .mt_fh_get_init = mt_fh_hal_get_init,
  1131. .mt_fh_popod_restore = mt_fh_hal_popod_restore,
  1132. .mt_fh_popod_save = mt_fh_hal_popod_save,
  1133. .mt_l2h_mempll = NULL,
  1134. .mt_h2l_mempll = NULL,
  1135. .mt_dfs_armpll = mt_fh_hal_dfs_armpll,
  1136. .mt_dfs_mmpll = mt_fh_hal_dfs_mmpll,
  1137. .mt_dfs_vencpll = mt_fh_hal_dfs_vencpll, /* TODO: should set to NULL */
  1138. .mt_dfs_mempll = mt_fh_hal_dfs_mempll,
  1139. .mt_is_support_DFS_mode = mt_fh_hal_is_support_DFS_mode,
  1140. .mt_l2h_dvfs_mempll = mt_fh_hal_l2h_dvfs_mempll, /* TODO: should set to NULL */
  1141. .mt_h2l_dvfs_mempll = mt_fh_hal_h2l_dvfs_mempll, /* TODO: should set to NULL */
  1142. .mt_dram_overclock = mt_fh_hal_dram_overclock,
  1143. .mt_get_dramc = mt_fh_hal_get_dramc,
  1144. .mt_fh_default_conf = mt_fh_hal_default_conf,
  1145. .ioctl = __ioctl
  1146. };
  1147. struct mt_fh_hal_driver *mt_get_fh_hal_drv(void)
  1148. {
  1149. return &g_fh_hal_drv;
  1150. }
  1151. /* TODO: module_exit(cpufreq_exit); */