mt_irtx_pwm.c 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302
  1. #include <linux/cdev.h>
  2. #include <linux/device.h>
  3. #include <linux/fs.h>
  4. #include <linux/uaccess.h>
  5. #include <linux/wait.h>
  6. #include <linux/module.h>
  7. #include <linux/slab.h>
  8. #include <linux/uaccess.h>
  9. #include <linux/kthread.h>
  10. #include <linux/poll.h>
  11. #include <linux/time.h>
  12. #include <linux/delay.h>
  13. #include <linux/kobject.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/irq.h>
  18. #include <linux/clk.h>
  19. #ifdef CONFIG_OF
  20. #include <linux/of.h>
  21. #include <linux/of_fdt.h>
  22. #include <linux/of_irq.h>
  23. #include <linux/of_address.h>
  24. #endif
  25. #include <mt-plat/mt_pwm.h>
  26. #include <mach/mt_pwm_hal.h>
  27. #include "mt_irtx.h"
  28. struct mt_irtx mt_irtx_dev;
  29. void __iomem *irtx_reg_base;
  30. unsigned int irtx_irq;
  31. static atomic_t ir_usage_cnt;
  32. int get_ir_device(void)
  33. {
  34. if (atomic_cmpxchg(&ir_usage_cnt, 0, 1) != 0)
  35. return -EBUSY;
  36. return 0;
  37. }
  38. int put_ir_device(void)
  39. {
  40. if (atomic_cmpxchg(&ir_usage_cnt, 1, 0) != 1)
  41. return -EFAULT;
  42. return 0;
  43. }
  44. struct pwm_spec_config irtx_pwm_config = {
  45. .pwm_no = 0,
  46. .mode = PWM_MODE_MEMORY,
  47. .clk_div = CLK_DIV1,
  48. .clk_src = PWM_CLK_NEW_MODE_BLOCK,
  49. .pmic_pad = 0,
  50. .PWM_MODE_MEMORY_REGS.IDLE_VALUE = IDLE_FALSE,
  51. .PWM_MODE_MEMORY_REGS.GUARD_VALUE = GUARD_FALSE,
  52. .PWM_MODE_MEMORY_REGS.STOP_BITPOS_VALUE = 31,
  53. .PWM_MODE_MEMORY_REGS.HDURATION = 25, /* 1 microseconds, assume clock source is 26M */
  54. .PWM_MODE_MEMORY_REGS.LDURATION = 25,
  55. .PWM_MODE_MEMORY_REGS.GDURATION = 0,
  56. .PWM_MODE_MEMORY_REGS.WAVE_NUM = 1,
  57. };
  58. static int dev_char_open(struct inode *inode, struct file *file)
  59. {
  60. int ret = 0;
  61. ret = get_ir_device();
  62. if (ret) {
  63. pr_err("[IRTX] device busy\n");
  64. goto exit;
  65. }
  66. pr_debug("[IRTX] open by %s\n", current->comm);
  67. nonseekable_open(inode, file);
  68. exit:
  69. return ret;
  70. }
  71. static int dev_char_close(struct inode *inode, struct file *file)
  72. {
  73. int ret = 0;
  74. ret = put_ir_device();
  75. if (ret) {
  76. pr_err("[IRTX] device close without open\n");
  77. goto exit;
  78. }
  79. pr_debug("[IRTX] close by %s\n", current->comm);
  80. exit:
  81. return ret;
  82. }
  83. static ssize_t dev_char_read(struct file *file, char *buf, size_t count, loff_t *ppos)
  84. {
  85. return 0;
  86. }
  87. static long dev_char_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  88. {
  89. int ret = 0;
  90. unsigned int para = 0;
  91. switch (cmd) {
  92. case IRTX_IOC_GET_SOLUTTION_TYPE:
  93. ret = put_user(1, (unsigned int __user *)arg);
  94. break;
  95. case IRTX_IOC_SET_IRTX_LED_EN:
  96. if (copy_from_user(&para, (void __user *)arg, sizeof(unsigned int))) {
  97. pr_err("[IRTX] IRTX_IOC_SET_IRTX_LED_EN: copy_from_user fail!\n");
  98. ret = -EFAULT;
  99. } else {
  100. /* TODO */
  101. }
  102. break;
  103. default:
  104. pr_err("[IRTX] unknown ioctl cmd 0x%x\n", cmd);
  105. ret = -ENOTTY;
  106. break;
  107. }
  108. return ret;
  109. }
  110. static ssize_t dev_char_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
  111. {
  112. dma_addr_t wave_phy;
  113. void *wave_vir;
  114. int ret, i;
  115. int buf_size = (count + 3) / 4; /* when count is 5... */
  116. unsigned char *data_ptr;
  117. pr_debug("[IRTX] irtx write len=0x%x, pwm=%d\n", (unsigned int)count, (unsigned int)irtx_pwm_config.pwm_no);
  118. wave_vir = dma_alloc_coherent(&mt_irtx_dev.plat_dev->dev, count, &wave_phy, GFP_KERNEL);
  119. if (!wave_vir) {
  120. pr_err("[IRTX] alloc memory fail\n");
  121. return -ENOMEM;
  122. }
  123. ret = copy_from_user(wave_vir, buf, count);
  124. if (ret) {
  125. pr_err("[IRTX] write, copy from user fail %d\n", ret);
  126. goto exit;
  127. }
  128. /* invert bit */
  129. if (mt_irtx_dev.pwm_data_invert) {
  130. pr_debug("[IRTX] invert data\n");
  131. for (i = 0; i < count; i++) {
  132. data_ptr = (unsigned char *)wave_vir + i;
  133. *data_ptr = ~(*data_ptr);
  134. }
  135. }
  136. mt_set_intr_enable(0);
  137. mt_set_intr_enable(1);
  138. mt_pwm_26M_clk_enable_hal(1);
  139. pr_debug("[IRTX] irtx before read IRTXCFG:0x%x\n", (irtx_read32(mt_irtx_dev.reg_base, IRTXCFG)));
  140. irtx_pwm_config.PWM_MODE_MEMORY_REGS.BUF0_BASE_ADDR = (u32 *) wave_phy;
  141. irtx_pwm_config.PWM_MODE_MEMORY_REGS.BUF0_SIZE = (buf_size ? (buf_size - 1) : 0);
  142. mt_set_intr_ack(0);
  143. mt_set_intr_ack(1);
  144. ret = pwm_set_spec_config(&irtx_pwm_config);
  145. pr_debug("[IRTX] pwm is triggered, %d\n", ret);
  146. msleep(count * 8 / 1000);
  147. msleep(100);
  148. ret = count;
  149. exit:
  150. pr_debug("[IRTX] done, clean up\n");
  151. dma_free_coherent(&mt_irtx_dev.plat_dev->dev, count, wave_vir, wave_phy);
  152. mt_pwm_disable(irtx_pwm_config.pwm_no, irtx_pwm_config.pmic_pad);
  153. return ret;
  154. }
  155. #define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
  156. static u64 irtx_dma_mask = DMA_BIT_MASK((sizeof(unsigned long) << 3)); /* TODO: 3? */
  157. static struct file_operations const char_dev_fops = {
  158. .owner = THIS_MODULE,
  159. .open = &dev_char_open,
  160. .read = &dev_char_read,
  161. .write = &dev_char_write,
  162. .release = &dev_char_close,
  163. .unlocked_ioctl = &dev_char_ioctl,
  164. };
  165. #define irtx_driver_name "mt_irtx"
  166. static int irtx_probe(struct platform_device *plat_dev)
  167. {
  168. struct cdev *c_dev;
  169. dev_t dev_t_irtx;
  170. struct device *dev = NULL;
  171. static void *dev_class;
  172. u32 major = 0, minor = 0;
  173. int ret = 0;
  174. #ifdef CONFIG_OF
  175. if (plat_dev->dev.of_node == NULL) {
  176. pr_err("[IRTX] irtx OF node is NULL\n");
  177. return -1;
  178. }
  179. of_property_read_u32(plat_dev->dev.of_node, "major", &major);
  180. mt_irtx_dev.reg_base = of_iomap(plat_dev->dev.of_node, 0);
  181. mt_irtx_dev.irq = irq_of_parse_and_map(plat_dev->dev.of_node, 0);
  182. of_property_read_u32(plat_dev->dev.of_node, "pwm_ch", &mt_irtx_dev.pwm_ch);
  183. of_property_read_u32(plat_dev->dev.of_node, "pwm_data_invert", &mt_irtx_dev.pwm_data_invert);
  184. pr_debug("[IRTX] device tree info: major=%d pwm=%d invert=%d\n",
  185. major, mt_irtx_dev.pwm_ch, mt_irtx_dev.pwm_data_invert);
  186. #endif
  187. if (!major) {
  188. ret = alloc_chrdev_region(&dev_t_irtx, 0, 1, irtx_driver_name);
  189. if (ret) {
  190. pr_err("[IRTX] alloc_chrdev_region fail ret=%d\n", ret);
  191. goto exit;
  192. } else {
  193. major = MAJOR(dev_t_irtx);
  194. minor = MINOR(dev_t_irtx);
  195. }
  196. } else {
  197. dev_t_irtx = MKDEV(major, minor);
  198. ret = register_chrdev_region(dev_t_irtx, 1, irtx_driver_name);
  199. if (ret) {
  200. pr_err("[IRTX] register_chrdev_region fail ret=%d\n", ret);
  201. goto exit;
  202. }
  203. }
  204. irtx_pwm_config.pwm_no = mt_irtx_dev.pwm_ch;
  205. mt_irtx_dev.plat_dev = plat_dev;
  206. mt_irtx_dev.plat_dev->dev.dma_mask = &irtx_dma_mask;
  207. mt_irtx_dev.plat_dev->dev.coherent_dma_mask = irtx_dma_mask;
  208. c_dev = kmalloc(sizeof(struct cdev), GFP_KERNEL);
  209. if (!c_dev) {
  210. /* pr_err("[IRTX] kmalloc cdev fail\n"); */
  211. goto exit;
  212. }
  213. cdev_init(c_dev, &char_dev_fops);
  214. c_dev->owner = THIS_MODULE;
  215. ret = cdev_add(c_dev, dev_t_irtx, 1);
  216. if (ret) {
  217. pr_err("[IRTX] cdev_add fail ret=%d\n", ret);
  218. goto exit;
  219. }
  220. dev_class = class_create(THIS_MODULE, irtx_driver_name);
  221. dev = device_create(dev_class, NULL, dev_t_irtx, NULL, "irtx");
  222. if (IS_ERR(dev)) {
  223. ret = PTR_ERR(dev);
  224. pr_err("[IRTX] device_create fail ret=%d\n", ret);
  225. goto exit;
  226. }
  227. exit:
  228. pr_debug("[IRTX] irtx probe ret=%d\n", ret);
  229. return ret;
  230. }
  231. #ifdef CONFIG_OF
  232. static const struct of_device_id irtx_of_ids[] = {
  233. {.compatible = "mediatek,irtx-pwm",},
  234. {}
  235. };
  236. #endif
  237. static struct platform_driver irtx_driver = {
  238. .driver = {
  239. .name = "mt_irtx",
  240. },
  241. .probe = irtx_probe,
  242. };
  243. static int __init irtx_init(void)
  244. {
  245. int ret = 0;
  246. pr_debug("[IRTX] irtx init\n");
  247. #ifdef CONFIG_OF
  248. irtx_driver.driver.of_match_table = irtx_of_ids;
  249. #else
  250. pr_err("[IRTX] irtx needs device tree!\n");
  251. BUG_ON(1);
  252. #endif
  253. ret = platform_driver_register(&irtx_driver);
  254. if (ret) {
  255. pr_err("[IRTX] irtx platform driver register fail %d\n", ret);
  256. goto exit;
  257. }
  258. exit:
  259. return ret;
  260. }
  261. module_init(irtx_init);
  262. MODULE_AUTHOR("Xiao Wang <xiao.wang@mediatek.com>");
  263. MODULE_DESCRIPTION("Consumer IR transmitter driver v0.1");