spi-nor.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136
  1. /*
  2. * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
  3. * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
  4. *
  5. * Copyright (C) 2005, Intec Automation Inc.
  6. * Copyright (C) 2014, Freescale Semiconductor, Inc.
  7. *
  8. * This code is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/err.h>
  13. #include <linux/errno.h>
  14. #include <linux/module.h>
  15. #include <linux/device.h>
  16. #include <linux/mutex.h>
  17. #include <linux/math64.h>
  18. #include <linux/mtd/cfi.h>
  19. #include <linux/mtd/mtd.h>
  20. #include <linux/of_platform.h>
  21. #include <linux/spi/flash.h>
  22. #include <linux/mtd/spi-nor.h>
  23. /* Define max times to check status register before we give up. */
  24. #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
  25. #define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
  26. static const struct spi_device_id *spi_nor_match_id(const char *name);
  27. /*
  28. * Read the status register, returning its value in the location
  29. * Return the status register value.
  30. * Returns negative if error occurred.
  31. */
  32. static int read_sr(struct spi_nor *nor)
  33. {
  34. int ret;
  35. u8 val;
  36. ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
  37. if (ret < 0) {
  38. pr_err("error %d reading SR\n", (int) ret);
  39. return ret;
  40. }
  41. return val;
  42. }
  43. /*
  44. * Read the flag status register, returning its value in the location
  45. * Return the status register value.
  46. * Returns negative if error occurred.
  47. */
  48. static int read_fsr(struct spi_nor *nor)
  49. {
  50. int ret;
  51. u8 val;
  52. ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
  53. if (ret < 0) {
  54. pr_err("error %d reading FSR\n", ret);
  55. return ret;
  56. }
  57. return val;
  58. }
  59. /*
  60. * Read configuration register, returning its value in the
  61. * location. Return the configuration register value.
  62. * Returns negative if error occured.
  63. */
  64. static int read_cr(struct spi_nor *nor)
  65. {
  66. int ret;
  67. u8 val;
  68. ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
  69. if (ret < 0) {
  70. dev_err(nor->dev, "error %d reading CR\n", ret);
  71. return ret;
  72. }
  73. return val;
  74. }
  75. /*
  76. * Dummy Cycle calculation for different type of read.
  77. * It can be used to support more commands with
  78. * different dummy cycle requirements.
  79. */
  80. static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
  81. {
  82. switch (nor->flash_read) {
  83. case SPI_NOR_FAST:
  84. case SPI_NOR_DUAL:
  85. case SPI_NOR_QUAD:
  86. return 1;
  87. case SPI_NOR_NORMAL:
  88. return 0;
  89. }
  90. return 0;
  91. }
  92. /*
  93. * Write status register 1 byte
  94. * Returns negative if error occurred.
  95. */
  96. static inline int write_sr(struct spi_nor *nor, u8 val)
  97. {
  98. nor->cmd_buf[0] = val;
  99. return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
  100. }
  101. /*
  102. * Set write enable latch with Write Enable command.
  103. * Returns negative if error occurred.
  104. */
  105. static inline int write_enable(struct spi_nor *nor)
  106. {
  107. return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
  108. }
  109. /*
  110. * Send write disble instruction to the chip.
  111. */
  112. static inline int write_disable(struct spi_nor *nor)
  113. {
  114. return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
  115. }
  116. static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
  117. {
  118. return mtd->priv;
  119. }
  120. /* Enable/disable 4-byte addressing mode. */
  121. static inline int set_4byte(struct spi_nor *nor, u32 jedec_id, int enable)
  122. {
  123. int status;
  124. bool need_wren = false;
  125. u8 cmd;
  126. switch (JEDEC_MFR(jedec_id)) {
  127. case CFI_MFR_ST: /* Micron, actually */
  128. /* Some Micron need WREN command; all will accept it */
  129. need_wren = true;
  130. case CFI_MFR_MACRONIX:
  131. case 0xEF /* winbond */:
  132. if (need_wren)
  133. write_enable(nor);
  134. cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
  135. status = nor->write_reg(nor, cmd, NULL, 0, 0);
  136. if (need_wren)
  137. write_disable(nor);
  138. return status;
  139. default:
  140. /* Spansion style */
  141. nor->cmd_buf[0] = enable << 7;
  142. return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
  143. }
  144. }
  145. static int spi_nor_wait_till_ready(struct spi_nor *nor)
  146. {
  147. unsigned long deadline;
  148. int sr;
  149. deadline = jiffies + MAX_READY_WAIT_JIFFIES;
  150. do {
  151. cond_resched();
  152. sr = read_sr(nor);
  153. if (sr < 0)
  154. break;
  155. else if (!(sr & SR_WIP))
  156. return 0;
  157. } while (!time_after_eq(jiffies, deadline));
  158. return -ETIMEDOUT;
  159. }
  160. static int spi_nor_wait_till_fsr_ready(struct spi_nor *nor)
  161. {
  162. unsigned long deadline;
  163. int sr;
  164. int fsr;
  165. deadline = jiffies + MAX_READY_WAIT_JIFFIES;
  166. do {
  167. cond_resched();
  168. sr = read_sr(nor);
  169. if (sr < 0) {
  170. break;
  171. } else if (!(sr & SR_WIP)) {
  172. fsr = read_fsr(nor);
  173. if (fsr < 0)
  174. break;
  175. if (fsr & FSR_READY)
  176. return 0;
  177. }
  178. } while (!time_after_eq(jiffies, deadline));
  179. return -ETIMEDOUT;
  180. }
  181. /*
  182. * Service routine to read status register until ready, or timeout occurs.
  183. * Returns non-zero if error.
  184. */
  185. static int wait_till_ready(struct spi_nor *nor)
  186. {
  187. return nor->wait_till_ready(nor);
  188. }
  189. /*
  190. * Erase the whole flash memory
  191. *
  192. * Returns 0 if successful, non-zero otherwise.
  193. */
  194. static int erase_chip(struct spi_nor *nor)
  195. {
  196. int ret;
  197. dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));
  198. /* Wait until finished previous write command. */
  199. ret = wait_till_ready(nor);
  200. if (ret)
  201. return ret;
  202. /* Send write enable, then erase commands. */
  203. write_enable(nor);
  204. return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
  205. }
  206. static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  207. {
  208. int ret = 0;
  209. mutex_lock(&nor->lock);
  210. if (nor->prepare) {
  211. ret = nor->prepare(nor, ops);
  212. if (ret) {
  213. dev_err(nor->dev, "failed in the preparation.\n");
  214. mutex_unlock(&nor->lock);
  215. return ret;
  216. }
  217. }
  218. return ret;
  219. }
  220. static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  221. {
  222. if (nor->unprepare)
  223. nor->unprepare(nor, ops);
  224. mutex_unlock(&nor->lock);
  225. }
  226. /*
  227. * Erase an address range on the nor chip. The address range may extend
  228. * one or more erase sectors. Return an error is there is a problem erasing.
  229. */
  230. static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
  231. {
  232. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  233. u32 addr, len;
  234. uint32_t rem;
  235. int ret;
  236. dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
  237. (long long)instr->len);
  238. div_u64_rem(instr->len, mtd->erasesize, &rem);
  239. if (rem)
  240. return -EINVAL;
  241. addr = instr->addr;
  242. len = instr->len;
  243. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
  244. if (ret)
  245. return ret;
  246. /* whole-chip erase? */
  247. if (len == mtd->size) {
  248. if (erase_chip(nor)) {
  249. ret = -EIO;
  250. goto erase_err;
  251. }
  252. /* REVISIT in some cases we could speed up erasing large regions
  253. * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
  254. * to use "small sector erase", but that's not always optimal.
  255. */
  256. /* "sector"-at-a-time erase */
  257. } else {
  258. while (len) {
  259. if (nor->erase(nor, addr)) {
  260. ret = -EIO;
  261. goto erase_err;
  262. }
  263. addr += mtd->erasesize;
  264. len -= mtd->erasesize;
  265. }
  266. }
  267. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
  268. instr->state = MTD_ERASE_DONE;
  269. mtd_erase_callback(instr);
  270. return ret;
  271. erase_err:
  272. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
  273. instr->state = MTD_ERASE_FAILED;
  274. return ret;
  275. }
  276. static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  277. {
  278. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  279. uint32_t offset = ofs;
  280. uint8_t status_old, status_new;
  281. int ret = 0;
  282. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
  283. if (ret)
  284. return ret;
  285. /* Wait until finished previous command */
  286. ret = wait_till_ready(nor);
  287. if (ret)
  288. goto err;
  289. status_old = read_sr(nor);
  290. if (offset < mtd->size - (mtd->size / 2))
  291. status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
  292. else if (offset < mtd->size - (mtd->size / 4))
  293. status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
  294. else if (offset < mtd->size - (mtd->size / 8))
  295. status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
  296. else if (offset < mtd->size - (mtd->size / 16))
  297. status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
  298. else if (offset < mtd->size - (mtd->size / 32))
  299. status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
  300. else if (offset < mtd->size - (mtd->size / 64))
  301. status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
  302. else
  303. status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
  304. /* Only modify protection if it will not unlock other areas */
  305. if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
  306. (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
  307. write_enable(nor);
  308. ret = write_sr(nor, status_new);
  309. if (ret)
  310. goto err;
  311. }
  312. err:
  313. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
  314. return ret;
  315. }
  316. static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  317. {
  318. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  319. uint32_t offset = ofs;
  320. uint8_t status_old, status_new;
  321. int ret = 0;
  322. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
  323. if (ret)
  324. return ret;
  325. /* Wait until finished previous command */
  326. ret = wait_till_ready(nor);
  327. if (ret)
  328. goto err;
  329. status_old = read_sr(nor);
  330. if (offset+len > mtd->size - (mtd->size / 64))
  331. status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
  332. else if (offset+len > mtd->size - (mtd->size / 32))
  333. status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
  334. else if (offset+len > mtd->size - (mtd->size / 16))
  335. status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
  336. else if (offset+len > mtd->size - (mtd->size / 8))
  337. status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
  338. else if (offset+len > mtd->size - (mtd->size / 4))
  339. status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
  340. else if (offset+len > mtd->size - (mtd->size / 2))
  341. status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
  342. else
  343. status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
  344. /* Only modify protection if it will not lock other areas */
  345. if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
  346. (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
  347. write_enable(nor);
  348. ret = write_sr(nor, status_new);
  349. if (ret)
  350. goto err;
  351. }
  352. err:
  353. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
  354. return ret;
  355. }
  356. struct flash_info {
  357. /* JEDEC id zero means "no ID" (most older chips); otherwise it has
  358. * a high byte of zero plus three data bytes: the manufacturer id,
  359. * then a two byte device id.
  360. */
  361. u32 jedec_id;
  362. u16 ext_id;
  363. /* The size listed here is what works with SPINOR_OP_SE, which isn't
  364. * necessarily called a "sector" by the vendor.
  365. */
  366. unsigned sector_size;
  367. u16 n_sectors;
  368. u16 page_size;
  369. u16 addr_width;
  370. u16 flags;
  371. #define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */
  372. #define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
  373. #define SST_WRITE 0x04 /* use SST byte programming */
  374. #define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
  375. #define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */
  376. #define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
  377. #define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
  378. #define USE_FSR 0x80 /* use flag status register */
  379. };
  380. #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
  381. ((kernel_ulong_t)&(struct flash_info) { \
  382. .jedec_id = (_jedec_id), \
  383. .ext_id = (_ext_id), \
  384. .sector_size = (_sector_size), \
  385. .n_sectors = (_n_sectors), \
  386. .page_size = 256, \
  387. .flags = (_flags), \
  388. })
  389. #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
  390. ((kernel_ulong_t)&(struct flash_info) { \
  391. .sector_size = (_sector_size), \
  392. .n_sectors = (_n_sectors), \
  393. .page_size = (_page_size), \
  394. .addr_width = (_addr_width), \
  395. .flags = (_flags), \
  396. })
  397. /* NOTE: double check command sets and memory organization when you add
  398. * more nor chips. This current list focusses on newer chips, which
  399. * have been converging on command sets which including JEDEC ID.
  400. */
  401. static const struct spi_device_id spi_nor_ids[] = {
  402. /* Atmel -- some are (confusingly) marketed as "DataFlash" */
  403. { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
  404. { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
  405. { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
  406. { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
  407. { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
  408. { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
  409. { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
  410. { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
  411. { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
  412. { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
  413. /* EON -- en25xxx */
  414. { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
  415. { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
  416. { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
  417. { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
  418. { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
  419. { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
  420. { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
  421. /* ESMT */
  422. { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
  423. /* Everspin */
  424. { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  425. { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  426. /* GigaDevice */
  427. { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
  428. { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
  429. /* Intel/Numonyx -- xxxs33b */
  430. { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
  431. { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
  432. { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
  433. /* Macronix */
  434. { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
  435. { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
  436. { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
  437. { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
  438. { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
  439. { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
  440. { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
  441. { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
  442. { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
  443. { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
  444. { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
  445. { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
  446. { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
  447. /* Micron */
  448. { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
  449. { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
  450. { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
  451. { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },
  452. { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
  453. { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, USE_FSR) },
  454. { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, USE_FSR) },
  455. /* PMC */
  456. { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
  457. { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
  458. { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
  459. /* Spansion -- single (large) sector size only, at least
  460. * for the chips listed here (without boot sectors).
  461. */
  462. { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
  463. { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
  464. { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
  465. { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
  466. { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
  467. { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
  468. { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
  469. { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
  470. { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
  471. { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
  472. { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
  473. { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
  474. { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
  475. { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
  476. { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
  477. { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
  478. { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
  479. { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
  480. /* SST -- large erase sizes are "overlays", "sectors" are 4K */
  481. { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
  482. { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
  483. { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
  484. { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
  485. { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
  486. { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
  487. { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
  488. { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
  489. { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
  490. /* ST Microelectronics -- newer production may have feature updates */
  491. { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
  492. { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
  493. { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
  494. { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
  495. { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
  496. { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
  497. { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
  498. { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
  499. { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
  500. { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
  501. { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
  502. { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
  503. { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
  504. { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
  505. { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
  506. { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
  507. { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
  508. { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
  509. { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
  510. { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
  511. { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
  512. { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
  513. { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
  514. { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
  515. { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
  516. { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
  517. { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
  518. { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
  519. { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
  520. { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
  521. { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
  522. /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
  523. { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
  524. { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
  525. { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
  526. { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
  527. { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
  528. { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
  529. { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
  530. { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
  531. { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
  532. { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
  533. { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
  534. { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
  535. { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
  536. { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
  537. /* Catalyst / On Semiconductor -- non-JEDEC */
  538. { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  539. { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  540. { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  541. { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  542. { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  543. { },
  544. };
  545. static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
  546. {
  547. int tmp;
  548. u8 id[5];
  549. u32 jedec;
  550. u16 ext_jedec;
  551. struct flash_info *info;
  552. tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, 5);
  553. if (tmp < 0) {
  554. dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
  555. return ERR_PTR(tmp);
  556. }
  557. jedec = id[0];
  558. jedec = jedec << 8;
  559. jedec |= id[1];
  560. jedec = jedec << 8;
  561. jedec |= id[2];
  562. ext_jedec = id[3] << 8 | id[4];
  563. for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
  564. info = (void *)spi_nor_ids[tmp].driver_data;
  565. if (info->jedec_id == jedec) {
  566. if (info->ext_id == 0 || info->ext_id == ext_jedec)
  567. return &spi_nor_ids[tmp];
  568. }
  569. }
  570. dev_err(nor->dev, "unrecognized JEDEC id %06x\n", jedec);
  571. return ERR_PTR(-ENODEV);
  572. }
  573. static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
  574. size_t *retlen, u_char *buf)
  575. {
  576. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  577. int ret;
  578. dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
  579. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
  580. if (ret)
  581. return ret;
  582. ret = nor->read(nor, from, len, retlen, buf);
  583. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
  584. return ret;
  585. }
  586. static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
  587. size_t *retlen, const u_char *buf)
  588. {
  589. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  590. size_t actual;
  591. int ret;
  592. dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
  593. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
  594. if (ret)
  595. return ret;
  596. /* Wait until finished previous write command. */
  597. ret = wait_till_ready(nor);
  598. if (ret)
  599. goto time_out;
  600. write_enable(nor);
  601. nor->sst_write_second = false;
  602. actual = to % 2;
  603. /* Start write from odd address. */
  604. if (actual) {
  605. nor->program_opcode = SPINOR_OP_BP;
  606. /* write one byte. */
  607. nor->write(nor, to, 1, retlen, buf);
  608. ret = wait_till_ready(nor);
  609. if (ret)
  610. goto time_out;
  611. }
  612. to += actual;
  613. /* Write out most of the data here. */
  614. for (; actual < len - 1; actual += 2) {
  615. nor->program_opcode = SPINOR_OP_AAI_WP;
  616. /* write two bytes. */
  617. nor->write(nor, to, 2, retlen, buf + actual);
  618. ret = wait_till_ready(nor);
  619. if (ret)
  620. goto time_out;
  621. to += 2;
  622. nor->sst_write_second = true;
  623. }
  624. nor->sst_write_second = false;
  625. write_disable(nor);
  626. ret = wait_till_ready(nor);
  627. if (ret)
  628. goto time_out;
  629. /* Write out trailing byte if it exists. */
  630. if (actual != len) {
  631. write_enable(nor);
  632. nor->program_opcode = SPINOR_OP_BP;
  633. nor->write(nor, to, 1, retlen, buf + actual);
  634. ret = wait_till_ready(nor);
  635. if (ret)
  636. goto time_out;
  637. write_disable(nor);
  638. }
  639. time_out:
  640. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
  641. return ret;
  642. }
  643. /*
  644. * Write an address range to the nor chip. Data must be written in
  645. * FLASH_PAGESIZE chunks. The address range may be any size provided
  646. * it is within the physical boundaries.
  647. */
  648. static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
  649. size_t *retlen, const u_char *buf)
  650. {
  651. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  652. u32 page_offset, page_size, i;
  653. int ret;
  654. dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
  655. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
  656. if (ret)
  657. return ret;
  658. /* Wait until finished previous write command. */
  659. ret = wait_till_ready(nor);
  660. if (ret)
  661. goto write_err;
  662. write_enable(nor);
  663. page_offset = to & (nor->page_size - 1);
  664. /* do all the bytes fit onto one page? */
  665. if (page_offset + len <= nor->page_size) {
  666. nor->write(nor, to, len, retlen, buf);
  667. } else {
  668. /* the size of data remaining on the first page */
  669. page_size = nor->page_size - page_offset;
  670. nor->write(nor, to, page_size, retlen, buf);
  671. /* write everything in nor->page_size chunks */
  672. for (i = page_size; i < len; i += page_size) {
  673. page_size = len - i;
  674. if (page_size > nor->page_size)
  675. page_size = nor->page_size;
  676. wait_till_ready(nor);
  677. write_enable(nor);
  678. nor->write(nor, to + i, page_size, retlen, buf + i);
  679. }
  680. }
  681. write_err:
  682. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
  683. return 0;
  684. }
  685. static int macronix_quad_enable(struct spi_nor *nor)
  686. {
  687. int ret, val;
  688. val = read_sr(nor);
  689. write_enable(nor);
  690. nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
  691. nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
  692. if (wait_till_ready(nor))
  693. return 1;
  694. ret = read_sr(nor);
  695. if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
  696. dev_err(nor->dev, "Macronix Quad bit not set\n");
  697. return -EINVAL;
  698. }
  699. return 0;
  700. }
  701. /*
  702. * Write status Register and configuration register with 2 bytes
  703. * The first byte will be written to the status register, while the
  704. * second byte will be written to the configuration register.
  705. * Return negative if error occured.
  706. */
  707. static int write_sr_cr(struct spi_nor *nor, u16 val)
  708. {
  709. nor->cmd_buf[0] = val & 0xff;
  710. nor->cmd_buf[1] = (val >> 8);
  711. return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
  712. }
  713. static int spansion_quad_enable(struct spi_nor *nor)
  714. {
  715. int ret;
  716. int quad_en = CR_QUAD_EN_SPAN << 8;
  717. write_enable(nor);
  718. ret = write_sr_cr(nor, quad_en);
  719. if (ret < 0) {
  720. dev_err(nor->dev,
  721. "error while writing configuration register\n");
  722. return -EINVAL;
  723. }
  724. /* read back and check it */
  725. ret = read_cr(nor);
  726. if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
  727. dev_err(nor->dev, "Spansion Quad bit not set\n");
  728. return -EINVAL;
  729. }
  730. return 0;
  731. }
  732. static int set_quad_mode(struct spi_nor *nor, u32 jedec_id)
  733. {
  734. int status;
  735. switch (JEDEC_MFR(jedec_id)) {
  736. case CFI_MFR_MACRONIX:
  737. status = macronix_quad_enable(nor);
  738. if (status) {
  739. dev_err(nor->dev, "Macronix quad-read not enabled\n");
  740. return -EINVAL;
  741. }
  742. return status;
  743. default:
  744. status = spansion_quad_enable(nor);
  745. if (status) {
  746. dev_err(nor->dev, "Spansion quad-read not enabled\n");
  747. return -EINVAL;
  748. }
  749. return status;
  750. }
  751. }
  752. static int spi_nor_check(struct spi_nor *nor)
  753. {
  754. if (!nor->dev || !nor->read || !nor->write ||
  755. !nor->read_reg || !nor->write_reg || !nor->erase) {
  756. pr_err("spi-nor: please fill all the necessary fields!\n");
  757. return -EINVAL;
  758. }
  759. if (!nor->read_id)
  760. nor->read_id = spi_nor_read_id;
  761. if (!nor->wait_till_ready)
  762. nor->wait_till_ready = spi_nor_wait_till_ready;
  763. return 0;
  764. }
  765. int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
  766. {
  767. const struct spi_device_id *id = NULL;
  768. struct flash_info *info;
  769. struct device *dev = nor->dev;
  770. struct mtd_info *mtd = nor->mtd;
  771. struct device_node *np = dev->of_node;
  772. int ret;
  773. int i;
  774. ret = spi_nor_check(nor);
  775. if (ret)
  776. return ret;
  777. id = spi_nor_match_id(name);
  778. if (!id)
  779. return -ENOENT;
  780. info = (void *)id->driver_data;
  781. if (info->jedec_id) {
  782. const struct spi_device_id *jid;
  783. jid = nor->read_id(nor);
  784. if (IS_ERR(jid)) {
  785. return PTR_ERR(jid);
  786. } else if (jid != id) {
  787. /*
  788. * JEDEC knows better, so overwrite platform ID. We
  789. * can't trust partitions any longer, but we'll let
  790. * mtd apply them anyway, since some partitions may be
  791. * marked read-only, and we don't want to lose that
  792. * information, even if it's not 100% accurate.
  793. */
  794. dev_warn(dev, "found %s, expected %s\n",
  795. jid->name, id->name);
  796. id = jid;
  797. info = (void *)jid->driver_data;
  798. }
  799. }
  800. mutex_init(&nor->lock);
  801. /*
  802. * Atmel, SST and Intel/Numonyx serial nor tend to power
  803. * up with the software protection bits set
  804. */
  805. if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
  806. JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
  807. JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
  808. write_enable(nor);
  809. write_sr(nor, 0);
  810. }
  811. if (!mtd->name)
  812. mtd->name = dev_name(dev);
  813. mtd->type = MTD_NORFLASH;
  814. mtd->writesize = 1;
  815. mtd->flags = MTD_CAP_NORFLASH;
  816. mtd->size = info->sector_size * info->n_sectors;
  817. mtd->_erase = spi_nor_erase;
  818. mtd->_read = spi_nor_read;
  819. /* nor protection support for STmicro chips */
  820. if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
  821. mtd->_lock = spi_nor_lock;
  822. mtd->_unlock = spi_nor_unlock;
  823. }
  824. /* sst nor chips use AAI word program */
  825. if (info->flags & SST_WRITE)
  826. mtd->_write = sst_write;
  827. else
  828. mtd->_write = spi_nor_write;
  829. if ((info->flags & USE_FSR) &&
  830. nor->wait_till_ready == spi_nor_wait_till_ready)
  831. nor->wait_till_ready = spi_nor_wait_till_fsr_ready;
  832. #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
  833. /* prefer "small sector" erase if possible */
  834. if (info->flags & SECT_4K) {
  835. nor->erase_opcode = SPINOR_OP_BE_4K;
  836. mtd->erasesize = 4096;
  837. } else if (info->flags & SECT_4K_PMC) {
  838. nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
  839. mtd->erasesize = 4096;
  840. } else
  841. #endif
  842. {
  843. nor->erase_opcode = SPINOR_OP_SE;
  844. mtd->erasesize = info->sector_size;
  845. }
  846. if (info->flags & SPI_NOR_NO_ERASE)
  847. mtd->flags |= MTD_NO_ERASE;
  848. mtd->dev.parent = dev;
  849. nor->page_size = info->page_size;
  850. mtd->writebufsize = nor->page_size;
  851. if (np) {
  852. /* If we were instantiated by DT, use it */
  853. if (of_property_read_bool(np, "m25p,fast-read"))
  854. nor->flash_read = SPI_NOR_FAST;
  855. else
  856. nor->flash_read = SPI_NOR_NORMAL;
  857. } else {
  858. /* If we weren't instantiated by DT, default to fast-read */
  859. nor->flash_read = SPI_NOR_FAST;
  860. }
  861. /* Some devices cannot do fast-read, no matter what DT tells us */
  862. if (info->flags & SPI_NOR_NO_FR)
  863. nor->flash_read = SPI_NOR_NORMAL;
  864. /* Quad/Dual-read mode takes precedence over fast/normal */
  865. if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
  866. ret = set_quad_mode(nor, info->jedec_id);
  867. if (ret) {
  868. dev_err(dev, "quad mode not supported\n");
  869. return ret;
  870. }
  871. nor->flash_read = SPI_NOR_QUAD;
  872. } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
  873. nor->flash_read = SPI_NOR_DUAL;
  874. }
  875. /* Default commands */
  876. switch (nor->flash_read) {
  877. case SPI_NOR_QUAD:
  878. nor->read_opcode = SPINOR_OP_READ_1_1_4;
  879. break;
  880. case SPI_NOR_DUAL:
  881. nor->read_opcode = SPINOR_OP_READ_1_1_2;
  882. break;
  883. case SPI_NOR_FAST:
  884. nor->read_opcode = SPINOR_OP_READ_FAST;
  885. break;
  886. case SPI_NOR_NORMAL:
  887. nor->read_opcode = SPINOR_OP_READ;
  888. break;
  889. default:
  890. dev_err(dev, "No Read opcode defined\n");
  891. return -EINVAL;
  892. }
  893. nor->program_opcode = SPINOR_OP_PP;
  894. if (info->addr_width)
  895. nor->addr_width = info->addr_width;
  896. else if (mtd->size > 0x1000000) {
  897. /* enable 4-byte addressing if the device exceeds 16MiB */
  898. nor->addr_width = 4;
  899. if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
  900. /* Dedicated 4-byte command set */
  901. switch (nor->flash_read) {
  902. case SPI_NOR_QUAD:
  903. nor->read_opcode = SPINOR_OP_READ4_1_1_4;
  904. break;
  905. case SPI_NOR_DUAL:
  906. nor->read_opcode = SPINOR_OP_READ4_1_1_2;
  907. break;
  908. case SPI_NOR_FAST:
  909. nor->read_opcode = SPINOR_OP_READ4_FAST;
  910. break;
  911. case SPI_NOR_NORMAL:
  912. nor->read_opcode = SPINOR_OP_READ4;
  913. break;
  914. }
  915. nor->program_opcode = SPINOR_OP_PP_4B;
  916. /* No small sector erase for 4-byte command set */
  917. nor->erase_opcode = SPINOR_OP_SE_4B;
  918. mtd->erasesize = info->sector_size;
  919. } else
  920. set_4byte(nor, info->jedec_id, 1);
  921. } else {
  922. nor->addr_width = 3;
  923. }
  924. nor->read_dummy = spi_nor_read_dummy_cycles(nor);
  925. dev_info(dev, "%s (%lld Kbytes)\n", id->name,
  926. (long long)mtd->size >> 10);
  927. dev_dbg(dev,
  928. "mtd .name = %s, .size = 0x%llx (%lldMiB), "
  929. ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
  930. mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
  931. mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
  932. if (mtd->numeraseregions)
  933. for (i = 0; i < mtd->numeraseregions; i++)
  934. dev_dbg(dev,
  935. "mtd.eraseregions[%d] = { .offset = 0x%llx, "
  936. ".erasesize = 0x%.8x (%uKiB), "
  937. ".numblocks = %d }\n",
  938. i, (long long)mtd->eraseregions[i].offset,
  939. mtd->eraseregions[i].erasesize,
  940. mtd->eraseregions[i].erasesize / 1024,
  941. mtd->eraseregions[i].numblocks);
  942. return 0;
  943. }
  944. EXPORT_SYMBOL_GPL(spi_nor_scan);
  945. static const struct spi_device_id *spi_nor_match_id(const char *name)
  946. {
  947. const struct spi_device_id *id = spi_nor_ids;
  948. while (id->name[0]) {
  949. if (!strcmp(name, id->name))
  950. return id;
  951. id++;
  952. }
  953. return NULL;
  954. }
  955. MODULE_LICENSE("GPL");
  956. MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
  957. MODULE_AUTHOR("Mike Lavender");
  958. MODULE_DESCRIPTION("framework for SPI NOR");