c_can.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278
  1. /*
  2. * CAN bus driver for Bosch C_CAN controller
  3. *
  4. * Copyright (C) 2010 ST Microelectronics
  5. * Bhupesh Sharma <bhupesh.sharma@st.com>
  6. *
  7. * Borrowed heavily from the C_CAN driver originally written by:
  8. * Copyright (C) 2007
  9. * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
  10. * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
  11. *
  12. * TX and RX NAPI implementation has been borrowed from at91 CAN driver
  13. * written by:
  14. * Copyright
  15. * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
  16. * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
  17. *
  18. * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
  19. * Bosch C_CAN user manual can be obtained from:
  20. * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
  21. * users_manual_c_can.pdf
  22. *
  23. * This file is licensed under the terms of the GNU General Public
  24. * License version 2. This program is licensed "as is" without any
  25. * warranty of any kind, whether express or implied.
  26. */
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/delay.h>
  31. #include <linux/netdevice.h>
  32. #include <linux/if_arp.h>
  33. #include <linux/if_ether.h>
  34. #include <linux/list.h>
  35. #include <linux/io.h>
  36. #include <linux/pm_runtime.h>
  37. #include <linux/can.h>
  38. #include <linux/can/dev.h>
  39. #include <linux/can/error.h>
  40. #include <linux/can/led.h>
  41. #include "c_can.h"
  42. /* Number of interface registers */
  43. #define IF_ENUM_REG_LEN 11
  44. #define C_CAN_IFACE(reg, iface) (C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
  45. /* control extension register D_CAN specific */
  46. #define CONTROL_EX_PDR BIT(8)
  47. /* control register */
  48. #define CONTROL_TEST BIT(7)
  49. #define CONTROL_CCE BIT(6)
  50. #define CONTROL_DISABLE_AR BIT(5)
  51. #define CONTROL_ENABLE_AR (0 << 5)
  52. #define CONTROL_EIE BIT(3)
  53. #define CONTROL_SIE BIT(2)
  54. #define CONTROL_IE BIT(1)
  55. #define CONTROL_INIT BIT(0)
  56. #define CONTROL_IRQMSK (CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
  57. /* test register */
  58. #define TEST_RX BIT(7)
  59. #define TEST_TX1 BIT(6)
  60. #define TEST_TX2 BIT(5)
  61. #define TEST_LBACK BIT(4)
  62. #define TEST_SILENT BIT(3)
  63. #define TEST_BASIC BIT(2)
  64. /* status register */
  65. #define STATUS_PDA BIT(10)
  66. #define STATUS_BOFF BIT(7)
  67. #define STATUS_EWARN BIT(6)
  68. #define STATUS_EPASS BIT(5)
  69. #define STATUS_RXOK BIT(4)
  70. #define STATUS_TXOK BIT(3)
  71. /* error counter register */
  72. #define ERR_CNT_TEC_MASK 0xff
  73. #define ERR_CNT_TEC_SHIFT 0
  74. #define ERR_CNT_REC_SHIFT 8
  75. #define ERR_CNT_REC_MASK (0x7f << ERR_CNT_REC_SHIFT)
  76. #define ERR_CNT_RP_SHIFT 15
  77. #define ERR_CNT_RP_MASK (0x1 << ERR_CNT_RP_SHIFT)
  78. /* bit-timing register */
  79. #define BTR_BRP_MASK 0x3f
  80. #define BTR_BRP_SHIFT 0
  81. #define BTR_SJW_SHIFT 6
  82. #define BTR_SJW_MASK (0x3 << BTR_SJW_SHIFT)
  83. #define BTR_TSEG1_SHIFT 8
  84. #define BTR_TSEG1_MASK (0xf << BTR_TSEG1_SHIFT)
  85. #define BTR_TSEG2_SHIFT 12
  86. #define BTR_TSEG2_MASK (0x7 << BTR_TSEG2_SHIFT)
  87. /* brp extension register */
  88. #define BRP_EXT_BRPE_MASK 0x0f
  89. #define BRP_EXT_BRPE_SHIFT 0
  90. /* IFx command request */
  91. #define IF_COMR_BUSY BIT(15)
  92. /* IFx command mask */
  93. #define IF_COMM_WR BIT(7)
  94. #define IF_COMM_MASK BIT(6)
  95. #define IF_COMM_ARB BIT(5)
  96. #define IF_COMM_CONTROL BIT(4)
  97. #define IF_COMM_CLR_INT_PND BIT(3)
  98. #define IF_COMM_TXRQST BIT(2)
  99. #define IF_COMM_CLR_NEWDAT IF_COMM_TXRQST
  100. #define IF_COMM_DATAA BIT(1)
  101. #define IF_COMM_DATAB BIT(0)
  102. /* TX buffer setup */
  103. #define IF_COMM_TX (IF_COMM_ARB | IF_COMM_CONTROL | \
  104. IF_COMM_TXRQST | \
  105. IF_COMM_DATAA | IF_COMM_DATAB)
  106. /* For the low buffers we clear the interrupt bit, but keep newdat */
  107. #define IF_COMM_RCV_LOW (IF_COMM_MASK | IF_COMM_ARB | \
  108. IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
  109. IF_COMM_DATAA | IF_COMM_DATAB)
  110. /* For the high buffers we clear the interrupt bit and newdat */
  111. #define IF_COMM_RCV_HIGH (IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
  112. /* Receive setup of message objects */
  113. #define IF_COMM_RCV_SETUP (IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
  114. /* Invalidation of message objects */
  115. #define IF_COMM_INVAL (IF_COMM_ARB | IF_COMM_CONTROL)
  116. /* IFx arbitration */
  117. #define IF_ARB_MSGVAL BIT(31)
  118. #define IF_ARB_MSGXTD BIT(30)
  119. #define IF_ARB_TRANSMIT BIT(29)
  120. /* IFx message control */
  121. #define IF_MCONT_NEWDAT BIT(15)
  122. #define IF_MCONT_MSGLST BIT(14)
  123. #define IF_MCONT_INTPND BIT(13)
  124. #define IF_MCONT_UMASK BIT(12)
  125. #define IF_MCONT_TXIE BIT(11)
  126. #define IF_MCONT_RXIE BIT(10)
  127. #define IF_MCONT_RMTEN BIT(9)
  128. #define IF_MCONT_TXRQST BIT(8)
  129. #define IF_MCONT_EOB BIT(7)
  130. #define IF_MCONT_DLC_MASK 0xf
  131. #define IF_MCONT_RCV (IF_MCONT_RXIE | IF_MCONT_UMASK)
  132. #define IF_MCONT_RCV_EOB (IF_MCONT_RCV | IF_MCONT_EOB)
  133. #define IF_MCONT_TX (IF_MCONT_TXIE | IF_MCONT_EOB)
  134. /*
  135. * Use IF1 for RX and IF2 for TX
  136. */
  137. #define IF_RX 0
  138. #define IF_TX 1
  139. /* minimum timeout for checking BUSY status */
  140. #define MIN_TIMEOUT_VALUE 6
  141. /* Wait for ~1 sec for INIT bit */
  142. #define INIT_WAIT_MS 1000
  143. /* napi related */
  144. #define C_CAN_NAPI_WEIGHT C_CAN_MSG_OBJ_RX_NUM
  145. /* c_can lec values */
  146. enum c_can_lec_type {
  147. LEC_NO_ERROR = 0,
  148. LEC_STUFF_ERROR,
  149. LEC_FORM_ERROR,
  150. LEC_ACK_ERROR,
  151. LEC_BIT1_ERROR,
  152. LEC_BIT0_ERROR,
  153. LEC_CRC_ERROR,
  154. LEC_UNUSED,
  155. LEC_MASK = LEC_UNUSED,
  156. };
  157. /*
  158. * c_can error types:
  159. * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
  160. */
  161. enum c_can_bus_error_types {
  162. C_CAN_NO_ERROR = 0,
  163. C_CAN_BUS_OFF,
  164. C_CAN_ERROR_WARNING,
  165. C_CAN_ERROR_PASSIVE,
  166. };
  167. static const struct can_bittiming_const c_can_bittiming_const = {
  168. .name = KBUILD_MODNAME,
  169. .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
  170. .tseg1_max = 16,
  171. .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
  172. .tseg2_max = 8,
  173. .sjw_max = 4,
  174. .brp_min = 1,
  175. .brp_max = 1024, /* 6-bit BRP field + 4-bit BRPE field*/
  176. .brp_inc = 1,
  177. };
  178. static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
  179. {
  180. if (priv->device)
  181. pm_runtime_enable(priv->device);
  182. }
  183. static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
  184. {
  185. if (priv->device)
  186. pm_runtime_disable(priv->device);
  187. }
  188. static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
  189. {
  190. if (priv->device)
  191. pm_runtime_get_sync(priv->device);
  192. }
  193. static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
  194. {
  195. if (priv->device)
  196. pm_runtime_put_sync(priv->device);
  197. }
  198. static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
  199. {
  200. if (priv->raminit)
  201. priv->raminit(priv, enable);
  202. }
  203. static void c_can_irq_control(struct c_can_priv *priv, bool enable)
  204. {
  205. u32 ctrl = priv->read_reg(priv, C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
  206. if (enable)
  207. ctrl |= CONTROL_IRQMSK;
  208. priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
  209. }
  210. static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
  211. {
  212. struct c_can_priv *priv = netdev_priv(dev);
  213. int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
  214. priv->write_reg32(priv, reg, (cmd << 16) | obj);
  215. for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
  216. if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
  217. return;
  218. udelay(1);
  219. }
  220. netdev_err(dev, "Updating object timed out\n");
  221. }
  222. static inline void c_can_object_get(struct net_device *dev, int iface,
  223. u32 obj, u32 cmd)
  224. {
  225. c_can_obj_update(dev, iface, cmd, obj);
  226. }
  227. static inline void c_can_object_put(struct net_device *dev, int iface,
  228. u32 obj, u32 cmd)
  229. {
  230. c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
  231. }
  232. /*
  233. * Note: According to documentation clearing TXIE while MSGVAL is set
  234. * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
  235. * load significantly.
  236. */
  237. static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
  238. {
  239. struct c_can_priv *priv = netdev_priv(dev);
  240. priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
  241. c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
  242. }
  243. static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
  244. {
  245. struct c_can_priv *priv = netdev_priv(dev);
  246. priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
  247. priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
  248. c_can_inval_tx_object(dev, iface, obj);
  249. }
  250. static void c_can_setup_tx_object(struct net_device *dev, int iface,
  251. struct can_frame *frame, int idx)
  252. {
  253. struct c_can_priv *priv = netdev_priv(dev);
  254. u16 ctrl = IF_MCONT_TX | frame->can_dlc;
  255. bool rtr = frame->can_id & CAN_RTR_FLAG;
  256. u32 arb = IF_ARB_MSGVAL;
  257. int i;
  258. if (frame->can_id & CAN_EFF_FLAG) {
  259. arb |= frame->can_id & CAN_EFF_MASK;
  260. arb |= IF_ARB_MSGXTD;
  261. } else {
  262. arb |= (frame->can_id & CAN_SFF_MASK) << 18;
  263. }
  264. if (!rtr)
  265. arb |= IF_ARB_TRANSMIT;
  266. /*
  267. * If we change the DIR bit, we need to invalidate the buffer
  268. * first, i.e. clear the MSGVAL flag in the arbiter.
  269. */
  270. if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
  271. u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
  272. c_can_inval_msg_object(dev, iface, obj);
  273. change_bit(idx, &priv->tx_dir);
  274. }
  275. priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
  276. priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
  277. for (i = 0; i < frame->can_dlc; i += 2) {
  278. priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
  279. frame->data[i] | (frame->data[i + 1] << 8));
  280. }
  281. }
  282. static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
  283. int iface)
  284. {
  285. int i;
  286. for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
  287. c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
  288. }
  289. static int c_can_handle_lost_msg_obj(struct net_device *dev,
  290. int iface, int objno, u32 ctrl)
  291. {
  292. struct net_device_stats *stats = &dev->stats;
  293. struct c_can_priv *priv = netdev_priv(dev);
  294. struct can_frame *frame;
  295. struct sk_buff *skb;
  296. ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
  297. priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
  298. c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
  299. stats->rx_errors++;
  300. stats->rx_over_errors++;
  301. /* create an error msg */
  302. skb = alloc_can_err_skb(dev, &frame);
  303. if (unlikely(!skb))
  304. return 0;
  305. frame->can_id |= CAN_ERR_CRTL;
  306. frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  307. netif_receive_skb(skb);
  308. return 1;
  309. }
  310. static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
  311. {
  312. struct net_device_stats *stats = &dev->stats;
  313. struct c_can_priv *priv = netdev_priv(dev);
  314. struct can_frame *frame;
  315. struct sk_buff *skb;
  316. u32 arb, data;
  317. skb = alloc_can_skb(dev, &frame);
  318. if (!skb) {
  319. stats->rx_dropped++;
  320. return -ENOMEM;
  321. }
  322. frame->can_dlc = get_can_dlc(ctrl & 0x0F);
  323. arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
  324. if (arb & IF_ARB_MSGXTD)
  325. frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
  326. else
  327. frame->can_id = (arb >> 18) & CAN_SFF_MASK;
  328. if (arb & IF_ARB_TRANSMIT) {
  329. frame->can_id |= CAN_RTR_FLAG;
  330. } else {
  331. int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
  332. for (i = 0; i < frame->can_dlc; i += 2, dreg ++) {
  333. data = priv->read_reg(priv, dreg);
  334. frame->data[i] = data;
  335. frame->data[i + 1] = data >> 8;
  336. }
  337. }
  338. stats->rx_packets++;
  339. stats->rx_bytes += frame->can_dlc;
  340. netif_receive_skb(skb);
  341. return 0;
  342. }
  343. static void c_can_setup_receive_object(struct net_device *dev, int iface,
  344. u32 obj, u32 mask, u32 id, u32 mcont)
  345. {
  346. struct c_can_priv *priv = netdev_priv(dev);
  347. mask |= BIT(29);
  348. priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
  349. id |= IF_ARB_MSGVAL;
  350. priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
  351. priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
  352. c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
  353. }
  354. static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
  355. struct net_device *dev)
  356. {
  357. struct can_frame *frame = (struct can_frame *)skb->data;
  358. struct c_can_priv *priv = netdev_priv(dev);
  359. u32 idx, obj;
  360. if (can_dropped_invalid_skb(dev, skb))
  361. return NETDEV_TX_OK;
  362. /*
  363. * This is not a FIFO. C/D_CAN sends out the buffers
  364. * prioritized. The lowest buffer number wins.
  365. */
  366. idx = fls(atomic_read(&priv->tx_active));
  367. obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
  368. /* If this is the last buffer, stop the xmit queue */
  369. if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
  370. netif_stop_queue(dev);
  371. /*
  372. * Store the message in the interface so we can call
  373. * can_put_echo_skb(). We must do this before we enable
  374. * transmit as we might race against do_tx().
  375. */
  376. c_can_setup_tx_object(dev, IF_TX, frame, idx);
  377. priv->dlc[idx] = frame->can_dlc;
  378. can_put_echo_skb(skb, dev, idx);
  379. /* Update the active bits */
  380. atomic_add((1 << idx), &priv->tx_active);
  381. /* Start transmission */
  382. c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
  383. return NETDEV_TX_OK;
  384. }
  385. static int c_can_wait_for_ctrl_init(struct net_device *dev,
  386. struct c_can_priv *priv, u32 init)
  387. {
  388. int retry = 0;
  389. while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
  390. udelay(10);
  391. if (retry++ > 1000) {
  392. netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
  393. return -EIO;
  394. }
  395. }
  396. return 0;
  397. }
  398. static int c_can_set_bittiming(struct net_device *dev)
  399. {
  400. unsigned int reg_btr, reg_brpe, ctrl_save;
  401. u8 brp, brpe, sjw, tseg1, tseg2;
  402. u32 ten_bit_brp;
  403. struct c_can_priv *priv = netdev_priv(dev);
  404. const struct can_bittiming *bt = &priv->can.bittiming;
  405. int res;
  406. /* c_can provides a 6-bit brp and 4-bit brpe fields */
  407. ten_bit_brp = bt->brp - 1;
  408. brp = ten_bit_brp & BTR_BRP_MASK;
  409. brpe = ten_bit_brp >> 6;
  410. sjw = bt->sjw - 1;
  411. tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
  412. tseg2 = bt->phase_seg2 - 1;
  413. reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
  414. (tseg2 << BTR_TSEG2_SHIFT);
  415. reg_brpe = brpe & BRP_EXT_BRPE_MASK;
  416. netdev_info(dev,
  417. "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
  418. ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
  419. ctrl_save &= ~CONTROL_INIT;
  420. priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
  421. res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
  422. if (res)
  423. return res;
  424. priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
  425. priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
  426. priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
  427. return c_can_wait_for_ctrl_init(dev, priv, 0);
  428. }
  429. /*
  430. * Configure C_CAN message objects for Tx and Rx purposes:
  431. * C_CAN provides a total of 32 message objects that can be configured
  432. * either for Tx or Rx purposes. Here the first 16 message objects are used as
  433. * a reception FIFO. The end of reception FIFO is signified by the EoB bit
  434. * being SET. The remaining 16 message objects are kept aside for Tx purposes.
  435. * See user guide document for further details on configuring message
  436. * objects.
  437. */
  438. static void c_can_configure_msg_objects(struct net_device *dev)
  439. {
  440. int i;
  441. /* first invalidate all message objects */
  442. for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
  443. c_can_inval_msg_object(dev, IF_RX, i);
  444. /* setup receive message objects */
  445. for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
  446. c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
  447. c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
  448. IF_MCONT_RCV_EOB);
  449. }
  450. /*
  451. * Configure C_CAN chip:
  452. * - enable/disable auto-retransmission
  453. * - set operating mode
  454. * - configure message objects
  455. */
  456. static int c_can_chip_config(struct net_device *dev)
  457. {
  458. struct c_can_priv *priv = netdev_priv(dev);
  459. /* enable automatic retransmission */
  460. priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
  461. if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
  462. (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
  463. /* loopback + silent mode : useful for hot self-test */
  464. priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
  465. priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
  466. } else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  467. /* loopback mode : useful for self-test function */
  468. priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
  469. priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
  470. } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
  471. /* silent mode : bus-monitoring mode */
  472. priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
  473. priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
  474. }
  475. /* configure message objects */
  476. c_can_configure_msg_objects(dev);
  477. /* set a `lec` value so that we can check for updates later */
  478. priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
  479. /* Clear all internal status */
  480. atomic_set(&priv->tx_active, 0);
  481. priv->rxmasked = 0;
  482. priv->tx_dir = 0;
  483. /* set bittiming params */
  484. return c_can_set_bittiming(dev);
  485. }
  486. static int c_can_start(struct net_device *dev)
  487. {
  488. struct c_can_priv *priv = netdev_priv(dev);
  489. int err;
  490. /* basic c_can configuration */
  491. err = c_can_chip_config(dev);
  492. if (err)
  493. return err;
  494. /* Setup the command for new messages */
  495. priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
  496. IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
  497. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  498. return 0;
  499. }
  500. static void c_can_stop(struct net_device *dev)
  501. {
  502. struct c_can_priv *priv = netdev_priv(dev);
  503. c_can_irq_control(priv, false);
  504. /* put ctrl to init on stop to end ongoing transmission */
  505. priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
  506. priv->can.state = CAN_STATE_STOPPED;
  507. }
  508. static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
  509. {
  510. struct c_can_priv *priv = netdev_priv(dev);
  511. int err;
  512. switch (mode) {
  513. case CAN_MODE_START:
  514. err = c_can_start(dev);
  515. if (err)
  516. return err;
  517. netif_wake_queue(dev);
  518. c_can_irq_control(priv, true);
  519. break;
  520. default:
  521. return -EOPNOTSUPP;
  522. }
  523. return 0;
  524. }
  525. static int __c_can_get_berr_counter(const struct net_device *dev,
  526. struct can_berr_counter *bec)
  527. {
  528. unsigned int reg_err_counter;
  529. struct c_can_priv *priv = netdev_priv(dev);
  530. reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
  531. bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
  532. ERR_CNT_REC_SHIFT;
  533. bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
  534. return 0;
  535. }
  536. static int c_can_get_berr_counter(const struct net_device *dev,
  537. struct can_berr_counter *bec)
  538. {
  539. struct c_can_priv *priv = netdev_priv(dev);
  540. int err;
  541. c_can_pm_runtime_get_sync(priv);
  542. err = __c_can_get_berr_counter(dev, bec);
  543. c_can_pm_runtime_put_sync(priv);
  544. return err;
  545. }
  546. static void c_can_do_tx(struct net_device *dev)
  547. {
  548. struct c_can_priv *priv = netdev_priv(dev);
  549. struct net_device_stats *stats = &dev->stats;
  550. u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
  551. clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
  552. while ((idx = ffs(pend))) {
  553. idx--;
  554. pend &= ~(1 << idx);
  555. obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
  556. c_can_inval_tx_object(dev, IF_RX, obj);
  557. can_get_echo_skb(dev, idx);
  558. bytes += priv->dlc[idx];
  559. pkts++;
  560. }
  561. /* Clear the bits in the tx_active mask */
  562. atomic_sub(clr, &priv->tx_active);
  563. if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
  564. netif_wake_queue(dev);
  565. if (pkts) {
  566. stats->tx_bytes += bytes;
  567. stats->tx_packets += pkts;
  568. can_led_event(dev, CAN_LED_EVENT_TX);
  569. }
  570. }
  571. /*
  572. * If we have a gap in the pending bits, that means we either
  573. * raced with the hardware or failed to readout all upper
  574. * objects in the last run due to quota limit.
  575. */
  576. static u32 c_can_adjust_pending(u32 pend)
  577. {
  578. u32 weight, lasts;
  579. if (pend == RECEIVE_OBJECT_BITS)
  580. return pend;
  581. /*
  582. * If the last set bit is larger than the number of pending
  583. * bits we have a gap.
  584. */
  585. weight = hweight32(pend);
  586. lasts = fls(pend);
  587. /* If the bits are linear, nothing to do */
  588. if (lasts == weight)
  589. return pend;
  590. /*
  591. * Find the first set bit after the gap. We walk backwards
  592. * from the last set bit.
  593. */
  594. for (lasts--; pend & (1 << (lasts - 1)); lasts--);
  595. return pend & ~((1 << lasts) - 1);
  596. }
  597. static inline void c_can_rx_object_get(struct net_device *dev,
  598. struct c_can_priv *priv, u32 obj)
  599. {
  600. c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
  601. }
  602. static inline void c_can_rx_finalize(struct net_device *dev,
  603. struct c_can_priv *priv, u32 obj)
  604. {
  605. if (priv->type != BOSCH_D_CAN)
  606. c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
  607. }
  608. static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
  609. u32 pend, int quota)
  610. {
  611. u32 pkts = 0, ctrl, obj;
  612. while ((obj = ffs(pend)) && quota > 0) {
  613. pend &= ~BIT(obj - 1);
  614. c_can_rx_object_get(dev, priv, obj);
  615. ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
  616. if (ctrl & IF_MCONT_MSGLST) {
  617. int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
  618. pkts += n;
  619. quota -= n;
  620. continue;
  621. }
  622. /*
  623. * This really should not happen, but this covers some
  624. * odd HW behaviour. Do not remove that unless you
  625. * want to brick your machine.
  626. */
  627. if (!(ctrl & IF_MCONT_NEWDAT))
  628. continue;
  629. /* read the data from the message object */
  630. c_can_read_msg_object(dev, IF_RX, ctrl);
  631. c_can_rx_finalize(dev, priv, obj);
  632. pkts++;
  633. quota--;
  634. }
  635. return pkts;
  636. }
  637. static inline u32 c_can_get_pending(struct c_can_priv *priv)
  638. {
  639. u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
  640. return pend;
  641. }
  642. /*
  643. * theory of operation:
  644. *
  645. * c_can core saves a received CAN message into the first free message
  646. * object it finds free (starting with the lowest). Bits NEWDAT and
  647. * INTPND are set for this message object indicating that a new message
  648. * has arrived. To work-around this issue, we keep two groups of message
  649. * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
  650. *
  651. * We clear the newdat bit right away.
  652. *
  653. * This can result in packet reordering when the readout is slow.
  654. */
  655. static int c_can_do_rx_poll(struct net_device *dev, int quota)
  656. {
  657. struct c_can_priv *priv = netdev_priv(dev);
  658. u32 pkts = 0, pend = 0, toread, n;
  659. /*
  660. * It is faster to read only one 16bit register. This is only possible
  661. * for a maximum number of 16 objects.
  662. */
  663. BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
  664. "Implementation does not support more message objects than 16");
  665. while (quota > 0) {
  666. if (!pend) {
  667. pend = c_can_get_pending(priv);
  668. if (!pend)
  669. break;
  670. /*
  671. * If the pending field has a gap, handle the
  672. * bits above the gap first.
  673. */
  674. toread = c_can_adjust_pending(pend);
  675. } else {
  676. toread = pend;
  677. }
  678. /* Remove the bits from pend */
  679. pend &= ~toread;
  680. /* Read the objects */
  681. n = c_can_read_objects(dev, priv, toread, quota);
  682. pkts += n;
  683. quota -= n;
  684. }
  685. if (pkts)
  686. can_led_event(dev, CAN_LED_EVENT_RX);
  687. return pkts;
  688. }
  689. static int c_can_handle_state_change(struct net_device *dev,
  690. enum c_can_bus_error_types error_type)
  691. {
  692. unsigned int reg_err_counter;
  693. unsigned int rx_err_passive;
  694. struct c_can_priv *priv = netdev_priv(dev);
  695. struct net_device_stats *stats = &dev->stats;
  696. struct can_frame *cf;
  697. struct sk_buff *skb;
  698. struct can_berr_counter bec;
  699. switch (error_type) {
  700. case C_CAN_ERROR_WARNING:
  701. /* error warning state */
  702. priv->can.can_stats.error_warning++;
  703. priv->can.state = CAN_STATE_ERROR_WARNING;
  704. break;
  705. case C_CAN_ERROR_PASSIVE:
  706. /* error passive state */
  707. priv->can.can_stats.error_passive++;
  708. priv->can.state = CAN_STATE_ERROR_PASSIVE;
  709. break;
  710. case C_CAN_BUS_OFF:
  711. /* bus-off state */
  712. priv->can.state = CAN_STATE_BUS_OFF;
  713. can_bus_off(dev);
  714. break;
  715. default:
  716. break;
  717. }
  718. /* propagate the error condition to the CAN stack */
  719. skb = alloc_can_err_skb(dev, &cf);
  720. if (unlikely(!skb))
  721. return 0;
  722. __c_can_get_berr_counter(dev, &bec);
  723. reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
  724. rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
  725. ERR_CNT_RP_SHIFT;
  726. switch (error_type) {
  727. case C_CAN_ERROR_WARNING:
  728. /* error warning state */
  729. cf->can_id |= CAN_ERR_CRTL;
  730. cf->data[1] = (bec.txerr > bec.rxerr) ?
  731. CAN_ERR_CRTL_TX_WARNING :
  732. CAN_ERR_CRTL_RX_WARNING;
  733. cf->data[6] = bec.txerr;
  734. cf->data[7] = bec.rxerr;
  735. break;
  736. case C_CAN_ERROR_PASSIVE:
  737. /* error passive state */
  738. cf->can_id |= CAN_ERR_CRTL;
  739. if (rx_err_passive)
  740. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  741. if (bec.txerr > 127)
  742. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  743. cf->data[6] = bec.txerr;
  744. cf->data[7] = bec.rxerr;
  745. break;
  746. case C_CAN_BUS_OFF:
  747. /* bus-off state */
  748. cf->can_id |= CAN_ERR_BUSOFF;
  749. can_bus_off(dev);
  750. break;
  751. default:
  752. break;
  753. }
  754. stats->rx_packets++;
  755. stats->rx_bytes += cf->can_dlc;
  756. netif_receive_skb(skb);
  757. return 1;
  758. }
  759. static int c_can_handle_bus_err(struct net_device *dev,
  760. enum c_can_lec_type lec_type)
  761. {
  762. struct c_can_priv *priv = netdev_priv(dev);
  763. struct net_device_stats *stats = &dev->stats;
  764. struct can_frame *cf;
  765. struct sk_buff *skb;
  766. /*
  767. * early exit if no lec update or no error.
  768. * no lec update means that no CAN bus event has been detected
  769. * since CPU wrote 0x7 value to status reg.
  770. */
  771. if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
  772. return 0;
  773. if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
  774. return 0;
  775. /* common for all type of bus errors */
  776. priv->can.can_stats.bus_error++;
  777. stats->rx_errors++;
  778. /* propagate the error condition to the CAN stack */
  779. skb = alloc_can_err_skb(dev, &cf);
  780. if (unlikely(!skb))
  781. return 0;
  782. /*
  783. * check for 'last error code' which tells us the
  784. * type of the last error to occur on the CAN bus
  785. */
  786. cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
  787. cf->data[2] |= CAN_ERR_PROT_UNSPEC;
  788. switch (lec_type) {
  789. case LEC_STUFF_ERROR:
  790. netdev_dbg(dev, "stuff error\n");
  791. cf->data[2] |= CAN_ERR_PROT_STUFF;
  792. break;
  793. case LEC_FORM_ERROR:
  794. netdev_dbg(dev, "form error\n");
  795. cf->data[2] |= CAN_ERR_PROT_FORM;
  796. break;
  797. case LEC_ACK_ERROR:
  798. netdev_dbg(dev, "ack error\n");
  799. cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
  800. CAN_ERR_PROT_LOC_ACK_DEL);
  801. break;
  802. case LEC_BIT1_ERROR:
  803. netdev_dbg(dev, "bit1 error\n");
  804. cf->data[2] |= CAN_ERR_PROT_BIT1;
  805. break;
  806. case LEC_BIT0_ERROR:
  807. netdev_dbg(dev, "bit0 error\n");
  808. cf->data[2] |= CAN_ERR_PROT_BIT0;
  809. break;
  810. case LEC_CRC_ERROR:
  811. netdev_dbg(dev, "CRC error\n");
  812. cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
  813. CAN_ERR_PROT_LOC_CRC_DEL);
  814. break;
  815. default:
  816. break;
  817. }
  818. stats->rx_packets++;
  819. stats->rx_bytes += cf->can_dlc;
  820. netif_receive_skb(skb);
  821. return 1;
  822. }
  823. static int c_can_poll(struct napi_struct *napi, int quota)
  824. {
  825. struct net_device *dev = napi->dev;
  826. struct c_can_priv *priv = netdev_priv(dev);
  827. u16 curr, last = priv->last_status;
  828. int work_done = 0;
  829. priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
  830. /* Ack status on C_CAN. D_CAN is self clearing */
  831. if (priv->type != BOSCH_D_CAN)
  832. priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
  833. /* handle state changes */
  834. if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
  835. netdev_dbg(dev, "entered error warning state\n");
  836. work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
  837. }
  838. if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
  839. netdev_dbg(dev, "entered error passive state\n");
  840. work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
  841. }
  842. if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
  843. netdev_dbg(dev, "entered bus off state\n");
  844. work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
  845. goto end;
  846. }
  847. /* handle bus recovery events */
  848. if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
  849. netdev_dbg(dev, "left bus off state\n");
  850. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  851. }
  852. if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
  853. netdev_dbg(dev, "left error passive state\n");
  854. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  855. }
  856. /* handle lec errors on the bus */
  857. work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
  858. /* Handle Tx/Rx events. We do this unconditionally */
  859. work_done += c_can_do_rx_poll(dev, (quota - work_done));
  860. c_can_do_tx(dev);
  861. end:
  862. if (work_done < quota) {
  863. napi_complete(napi);
  864. /* enable all IRQs if we are not in bus off state */
  865. if (priv->can.state != CAN_STATE_BUS_OFF)
  866. c_can_irq_control(priv, true);
  867. }
  868. return work_done;
  869. }
  870. static irqreturn_t c_can_isr(int irq, void *dev_id)
  871. {
  872. struct net_device *dev = (struct net_device *)dev_id;
  873. struct c_can_priv *priv = netdev_priv(dev);
  874. if (!priv->read_reg(priv, C_CAN_INT_REG))
  875. return IRQ_NONE;
  876. /* disable all interrupts and schedule the NAPI */
  877. c_can_irq_control(priv, false);
  878. napi_schedule(&priv->napi);
  879. return IRQ_HANDLED;
  880. }
  881. static int c_can_open(struct net_device *dev)
  882. {
  883. int err;
  884. struct c_can_priv *priv = netdev_priv(dev);
  885. c_can_pm_runtime_get_sync(priv);
  886. c_can_reset_ram(priv, true);
  887. /* open the can device */
  888. err = open_candev(dev);
  889. if (err) {
  890. netdev_err(dev, "failed to open can device\n");
  891. goto exit_open_fail;
  892. }
  893. /* register interrupt handler */
  894. err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
  895. dev);
  896. if (err < 0) {
  897. netdev_err(dev, "failed to request interrupt\n");
  898. goto exit_irq_fail;
  899. }
  900. /* start the c_can controller */
  901. err = c_can_start(dev);
  902. if (err)
  903. goto exit_start_fail;
  904. can_led_event(dev, CAN_LED_EVENT_OPEN);
  905. napi_enable(&priv->napi);
  906. /* enable status change, error and module interrupts */
  907. c_can_irq_control(priv, true);
  908. netif_start_queue(dev);
  909. return 0;
  910. exit_start_fail:
  911. free_irq(dev->irq, dev);
  912. exit_irq_fail:
  913. close_candev(dev);
  914. exit_open_fail:
  915. c_can_reset_ram(priv, false);
  916. c_can_pm_runtime_put_sync(priv);
  917. return err;
  918. }
  919. static int c_can_close(struct net_device *dev)
  920. {
  921. struct c_can_priv *priv = netdev_priv(dev);
  922. netif_stop_queue(dev);
  923. napi_disable(&priv->napi);
  924. c_can_stop(dev);
  925. free_irq(dev->irq, dev);
  926. close_candev(dev);
  927. c_can_reset_ram(priv, false);
  928. c_can_pm_runtime_put_sync(priv);
  929. can_led_event(dev, CAN_LED_EVENT_STOP);
  930. return 0;
  931. }
  932. struct net_device *alloc_c_can_dev(void)
  933. {
  934. struct net_device *dev;
  935. struct c_can_priv *priv;
  936. dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
  937. if (!dev)
  938. return NULL;
  939. priv = netdev_priv(dev);
  940. netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
  941. priv->dev = dev;
  942. priv->can.bittiming_const = &c_can_bittiming_const;
  943. priv->can.do_set_mode = c_can_set_mode;
  944. priv->can.do_get_berr_counter = c_can_get_berr_counter;
  945. priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
  946. CAN_CTRLMODE_LISTENONLY |
  947. CAN_CTRLMODE_BERR_REPORTING;
  948. return dev;
  949. }
  950. EXPORT_SYMBOL_GPL(alloc_c_can_dev);
  951. #ifdef CONFIG_PM
  952. int c_can_power_down(struct net_device *dev)
  953. {
  954. u32 val;
  955. unsigned long time_out;
  956. struct c_can_priv *priv = netdev_priv(dev);
  957. if (!(dev->flags & IFF_UP))
  958. return 0;
  959. WARN_ON(priv->type != BOSCH_D_CAN);
  960. /* set PDR value so the device goes to power down mode */
  961. val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
  962. val |= CONTROL_EX_PDR;
  963. priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
  964. /* Wait for the PDA bit to get set */
  965. time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
  966. while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
  967. time_after(time_out, jiffies))
  968. cpu_relax();
  969. if (time_after(jiffies, time_out))
  970. return -ETIMEDOUT;
  971. c_can_stop(dev);
  972. c_can_reset_ram(priv, false);
  973. c_can_pm_runtime_put_sync(priv);
  974. return 0;
  975. }
  976. EXPORT_SYMBOL_GPL(c_can_power_down);
  977. int c_can_power_up(struct net_device *dev)
  978. {
  979. u32 val;
  980. unsigned long time_out;
  981. struct c_can_priv *priv = netdev_priv(dev);
  982. int ret;
  983. if (!(dev->flags & IFF_UP))
  984. return 0;
  985. WARN_ON(priv->type != BOSCH_D_CAN);
  986. c_can_pm_runtime_get_sync(priv);
  987. c_can_reset_ram(priv, true);
  988. /* Clear PDR and INIT bits */
  989. val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
  990. val &= ~CONTROL_EX_PDR;
  991. priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
  992. val = priv->read_reg(priv, C_CAN_CTRL_REG);
  993. val &= ~CONTROL_INIT;
  994. priv->write_reg(priv, C_CAN_CTRL_REG, val);
  995. /* Wait for the PDA bit to get clear */
  996. time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
  997. while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
  998. time_after(time_out, jiffies))
  999. cpu_relax();
  1000. if (time_after(jiffies, time_out))
  1001. return -ETIMEDOUT;
  1002. ret = c_can_start(dev);
  1003. if (!ret)
  1004. c_can_irq_control(priv, true);
  1005. return ret;
  1006. }
  1007. EXPORT_SYMBOL_GPL(c_can_power_up);
  1008. #endif
  1009. void free_c_can_dev(struct net_device *dev)
  1010. {
  1011. struct c_can_priv *priv = netdev_priv(dev);
  1012. netif_napi_del(&priv->napi);
  1013. free_candev(dev);
  1014. }
  1015. EXPORT_SYMBOL_GPL(free_c_can_dev);
  1016. static const struct net_device_ops c_can_netdev_ops = {
  1017. .ndo_open = c_can_open,
  1018. .ndo_stop = c_can_close,
  1019. .ndo_start_xmit = c_can_start_xmit,
  1020. .ndo_change_mtu = can_change_mtu,
  1021. };
  1022. int register_c_can_dev(struct net_device *dev)
  1023. {
  1024. struct c_can_priv *priv = netdev_priv(dev);
  1025. int err;
  1026. c_can_pm_runtime_enable(priv);
  1027. dev->flags |= IFF_ECHO; /* we support local echo */
  1028. dev->netdev_ops = &c_can_netdev_ops;
  1029. err = register_candev(dev);
  1030. if (err)
  1031. c_can_pm_runtime_disable(priv);
  1032. else
  1033. devm_can_led_init(dev);
  1034. return err;
  1035. }
  1036. EXPORT_SYMBOL_GPL(register_c_can_dev);
  1037. void unregister_c_can_dev(struct net_device *dev)
  1038. {
  1039. struct c_can_priv *priv = netdev_priv(dev);
  1040. unregister_candev(dev);
  1041. c_can_pm_runtime_disable(priv);
  1042. }
  1043. EXPORT_SYMBOL_GPL(unregister_c_can_dev);
  1044. MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
  1045. MODULE_LICENSE("GPL v2");
  1046. MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");