dev.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955
  1. /*
  2. * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
  3. * Copyright (C) 2006 Andrey Volkov, Varma Electronics
  4. * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the version 2 of the GNU General Public License
  8. * as published by the Free Software Foundation
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #include <linux/module.h>
  19. #include <linux/kernel.h>
  20. #include <linux/slab.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/can.h>
  24. #include <linux/can/dev.h>
  25. #include <linux/can/skb.h>
  26. #include <linux/can/netlink.h>
  27. #include <linux/can/led.h>
  28. #include <net/rtnetlink.h>
  29. #define MOD_DESC "CAN device driver interface"
  30. MODULE_DESCRIPTION(MOD_DESC);
  31. MODULE_LICENSE("GPL v2");
  32. MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
  33. /* CAN DLC to real data length conversion helpers */
  34. static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
  35. 8, 12, 16, 20, 24, 32, 48, 64};
  36. /* get data length from can_dlc with sanitized can_dlc */
  37. u8 can_dlc2len(u8 can_dlc)
  38. {
  39. return dlc2len[can_dlc & 0x0F];
  40. }
  41. EXPORT_SYMBOL_GPL(can_dlc2len);
  42. static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */
  43. 9, 9, 9, 9, /* 9 - 12 */
  44. 10, 10, 10, 10, /* 13 - 16 */
  45. 11, 11, 11, 11, /* 17 - 20 */
  46. 12, 12, 12, 12, /* 21 - 24 */
  47. 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */
  48. 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */
  49. 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */
  50. 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */
  51. 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */
  52. /* map the sanitized data length to an appropriate data length code */
  53. u8 can_len2dlc(u8 len)
  54. {
  55. if (unlikely(len > 64))
  56. return 0xF;
  57. return len2dlc[len];
  58. }
  59. EXPORT_SYMBOL_GPL(can_len2dlc);
  60. #ifdef CONFIG_CAN_CALC_BITTIMING
  61. #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
  62. /*
  63. * Bit-timing calculation derived from:
  64. *
  65. * Code based on LinCAN sources and H8S2638 project
  66. * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
  67. * Copyright 2005 Stanislav Marek
  68. * email: pisa@cmp.felk.cvut.cz
  69. *
  70. * Calculates proper bit-timing parameters for a specified bit-rate
  71. * and sample-point, which can then be used to set the bit-timing
  72. * registers of the CAN controller. You can find more information
  73. * in the header file linux/can/netlink.h.
  74. */
  75. static int can_update_spt(const struct can_bittiming_const *btc,
  76. int sampl_pt, int tseg, int *tseg1, int *tseg2)
  77. {
  78. *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
  79. if (*tseg2 < btc->tseg2_min)
  80. *tseg2 = btc->tseg2_min;
  81. if (*tseg2 > btc->tseg2_max)
  82. *tseg2 = btc->tseg2_max;
  83. *tseg1 = tseg - *tseg2;
  84. if (*tseg1 > btc->tseg1_max) {
  85. *tseg1 = btc->tseg1_max;
  86. *tseg2 = tseg - *tseg1;
  87. }
  88. return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
  89. }
  90. static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
  91. const struct can_bittiming_const *btc)
  92. {
  93. struct can_priv *priv = netdev_priv(dev);
  94. long best_error = 1000000000, error = 0;
  95. int best_tseg = 0, best_brp = 0, brp = 0;
  96. int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
  97. int spt_error = 1000, spt = 0, sampl_pt;
  98. long rate;
  99. u64 v64;
  100. /* Use CiA recommended sample points */
  101. if (bt->sample_point) {
  102. sampl_pt = bt->sample_point;
  103. } else {
  104. if (bt->bitrate > 800000)
  105. sampl_pt = 750;
  106. else if (bt->bitrate > 500000)
  107. sampl_pt = 800;
  108. else
  109. sampl_pt = 875;
  110. }
  111. /* tseg even = round down, odd = round up */
  112. for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
  113. tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
  114. tsegall = 1 + tseg / 2;
  115. /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
  116. brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
  117. /* chose brp step which is possible in system */
  118. brp = (brp / btc->brp_inc) * btc->brp_inc;
  119. if ((brp < btc->brp_min) || (brp > btc->brp_max))
  120. continue;
  121. rate = priv->clock.freq / (brp * tsegall);
  122. error = bt->bitrate - rate;
  123. /* tseg brp biterror */
  124. if (error < 0)
  125. error = -error;
  126. if (error > best_error)
  127. continue;
  128. best_error = error;
  129. if (error == 0) {
  130. spt = can_update_spt(btc, sampl_pt, tseg / 2,
  131. &tseg1, &tseg2);
  132. error = sampl_pt - spt;
  133. if (error < 0)
  134. error = -error;
  135. if (error > spt_error)
  136. continue;
  137. spt_error = error;
  138. }
  139. best_tseg = tseg / 2;
  140. best_brp = brp;
  141. if (error == 0)
  142. break;
  143. }
  144. if (best_error) {
  145. /* Error in one-tenth of a percent */
  146. error = (best_error * 1000) / bt->bitrate;
  147. if (error > CAN_CALC_MAX_ERROR) {
  148. netdev_err(dev,
  149. "bitrate error %ld.%ld%% too high\n",
  150. error / 10, error % 10);
  151. return -EDOM;
  152. } else {
  153. netdev_warn(dev, "bitrate error %ld.%ld%%\n",
  154. error / 10, error % 10);
  155. }
  156. }
  157. /* real sample point */
  158. bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
  159. &tseg1, &tseg2);
  160. v64 = (u64)best_brp * 1000000000UL;
  161. do_div(v64, priv->clock.freq);
  162. bt->tq = (u32)v64;
  163. bt->prop_seg = tseg1 / 2;
  164. bt->phase_seg1 = tseg1 - bt->prop_seg;
  165. bt->phase_seg2 = tseg2;
  166. /* check for sjw user settings */
  167. if (!bt->sjw || !btc->sjw_max)
  168. bt->sjw = 1;
  169. else {
  170. /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
  171. if (bt->sjw > btc->sjw_max)
  172. bt->sjw = btc->sjw_max;
  173. /* bt->sjw must not be higher than tseg2 */
  174. if (tseg2 < bt->sjw)
  175. bt->sjw = tseg2;
  176. }
  177. bt->brp = best_brp;
  178. /* real bit-rate */
  179. bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
  180. return 0;
  181. }
  182. #else /* !CONFIG_CAN_CALC_BITTIMING */
  183. static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
  184. const struct can_bittiming_const *btc)
  185. {
  186. netdev_err(dev, "bit-timing calculation not available\n");
  187. return -EINVAL;
  188. }
  189. #endif /* CONFIG_CAN_CALC_BITTIMING */
  190. /*
  191. * Checks the validity of the specified bit-timing parameters prop_seg,
  192. * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
  193. * prescaler value brp. You can find more information in the header
  194. * file linux/can/netlink.h.
  195. */
  196. static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
  197. const struct can_bittiming_const *btc)
  198. {
  199. struct can_priv *priv = netdev_priv(dev);
  200. int tseg1, alltseg;
  201. u64 brp64;
  202. tseg1 = bt->prop_seg + bt->phase_seg1;
  203. if (!bt->sjw)
  204. bt->sjw = 1;
  205. if (bt->sjw > btc->sjw_max ||
  206. tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
  207. bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
  208. return -ERANGE;
  209. brp64 = (u64)priv->clock.freq * (u64)bt->tq;
  210. if (btc->brp_inc > 1)
  211. do_div(brp64, btc->brp_inc);
  212. brp64 += 500000000UL - 1;
  213. do_div(brp64, 1000000000UL); /* the practicable BRP */
  214. if (btc->brp_inc > 1)
  215. brp64 *= btc->brp_inc;
  216. bt->brp = (u32)brp64;
  217. if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
  218. return -EINVAL;
  219. alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
  220. bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
  221. bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
  222. return 0;
  223. }
  224. static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
  225. const struct can_bittiming_const *btc)
  226. {
  227. int err;
  228. /* Check if the CAN device has bit-timing parameters */
  229. if (!btc)
  230. return -EOPNOTSUPP;
  231. /*
  232. * Depending on the given can_bittiming parameter structure the CAN
  233. * timing parameters are calculated based on the provided bitrate OR
  234. * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
  235. * provided directly which are then checked and fixed up.
  236. */
  237. if (!bt->tq && bt->bitrate)
  238. err = can_calc_bittiming(dev, bt, btc);
  239. else if (bt->tq && !bt->bitrate)
  240. err = can_fixup_bittiming(dev, bt, btc);
  241. else
  242. err = -EINVAL;
  243. return err;
  244. }
  245. /*
  246. * Local echo of CAN messages
  247. *
  248. * CAN network devices *should* support a local echo functionality
  249. * (see Documentation/networking/can.txt). To test the handling of CAN
  250. * interfaces that do not support the local echo both driver types are
  251. * implemented. In the case that the driver does not support the echo
  252. * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
  253. * to perform the echo as a fallback solution.
  254. */
  255. static void can_flush_echo_skb(struct net_device *dev)
  256. {
  257. struct can_priv *priv = netdev_priv(dev);
  258. struct net_device_stats *stats = &dev->stats;
  259. int i;
  260. for (i = 0; i < priv->echo_skb_max; i++) {
  261. if (priv->echo_skb[i]) {
  262. kfree_skb(priv->echo_skb[i]);
  263. priv->echo_skb[i] = NULL;
  264. stats->tx_dropped++;
  265. stats->tx_aborted_errors++;
  266. }
  267. }
  268. }
  269. /*
  270. * Put the skb on the stack to be looped backed locally lateron
  271. *
  272. * The function is typically called in the start_xmit function
  273. * of the device driver. The driver must protect access to
  274. * priv->echo_skb, if necessary.
  275. */
  276. void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
  277. unsigned int idx)
  278. {
  279. struct can_priv *priv = netdev_priv(dev);
  280. BUG_ON(idx >= priv->echo_skb_max);
  281. /* check flag whether this packet has to be looped back */
  282. if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
  283. (skb->protocol != htons(ETH_P_CAN) &&
  284. skb->protocol != htons(ETH_P_CANFD))) {
  285. kfree_skb(skb);
  286. return;
  287. }
  288. if (!priv->echo_skb[idx]) {
  289. skb = can_create_echo_skb(skb);
  290. if (!skb)
  291. return;
  292. /* make settings for echo to reduce code in irq context */
  293. skb->pkt_type = PACKET_BROADCAST;
  294. skb->ip_summed = CHECKSUM_UNNECESSARY;
  295. skb->dev = dev;
  296. /* save this skb for tx interrupt echo handling */
  297. priv->echo_skb[idx] = skb;
  298. } else {
  299. /* locking problem with netif_stop_queue() ?? */
  300. netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
  301. kfree_skb(skb);
  302. }
  303. }
  304. EXPORT_SYMBOL_GPL(can_put_echo_skb);
  305. /*
  306. * Get the skb from the stack and loop it back locally
  307. *
  308. * The function is typically called when the TX done interrupt
  309. * is handled in the device driver. The driver must protect
  310. * access to priv->echo_skb, if necessary.
  311. */
  312. unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
  313. {
  314. struct can_priv *priv = netdev_priv(dev);
  315. BUG_ON(idx >= priv->echo_skb_max);
  316. if (priv->echo_skb[idx]) {
  317. struct sk_buff *skb = priv->echo_skb[idx];
  318. struct can_frame *cf = (struct can_frame *)skb->data;
  319. u8 dlc = cf->can_dlc;
  320. if (!(skb->tstamp.tv64))
  321. __net_timestamp(skb);
  322. netif_rx(priv->echo_skb[idx]);
  323. priv->echo_skb[idx] = NULL;
  324. return dlc;
  325. }
  326. return 0;
  327. }
  328. EXPORT_SYMBOL_GPL(can_get_echo_skb);
  329. /*
  330. * Remove the skb from the stack and free it.
  331. *
  332. * The function is typically called when TX failed.
  333. */
  334. void can_free_echo_skb(struct net_device *dev, unsigned int idx)
  335. {
  336. struct can_priv *priv = netdev_priv(dev);
  337. BUG_ON(idx >= priv->echo_skb_max);
  338. if (priv->echo_skb[idx]) {
  339. dev_kfree_skb_any(priv->echo_skb[idx]);
  340. priv->echo_skb[idx] = NULL;
  341. }
  342. }
  343. EXPORT_SYMBOL_GPL(can_free_echo_skb);
  344. /*
  345. * CAN device restart for bus-off recovery
  346. */
  347. static void can_restart(unsigned long data)
  348. {
  349. struct net_device *dev = (struct net_device *)data;
  350. struct can_priv *priv = netdev_priv(dev);
  351. struct net_device_stats *stats = &dev->stats;
  352. struct sk_buff *skb;
  353. struct can_frame *cf;
  354. int err;
  355. BUG_ON(netif_carrier_ok(dev));
  356. /*
  357. * No synchronization needed because the device is bus-off and
  358. * no messages can come in or go out.
  359. */
  360. can_flush_echo_skb(dev);
  361. /* send restart message upstream */
  362. skb = alloc_can_err_skb(dev, &cf);
  363. if (skb == NULL) {
  364. err = -ENOMEM;
  365. goto restart;
  366. }
  367. cf->can_id |= CAN_ERR_RESTARTED;
  368. netif_rx(skb);
  369. stats->rx_packets++;
  370. stats->rx_bytes += cf->can_dlc;
  371. restart:
  372. netdev_dbg(dev, "restarted\n");
  373. priv->can_stats.restarts++;
  374. /* Now restart the device */
  375. err = priv->do_set_mode(dev, CAN_MODE_START);
  376. netif_carrier_on(dev);
  377. if (err)
  378. netdev_err(dev, "Error %d during restart", err);
  379. }
  380. int can_restart_now(struct net_device *dev)
  381. {
  382. struct can_priv *priv = netdev_priv(dev);
  383. /*
  384. * A manual restart is only permitted if automatic restart is
  385. * disabled and the device is in the bus-off state
  386. */
  387. if (priv->restart_ms)
  388. return -EINVAL;
  389. if (priv->state != CAN_STATE_BUS_OFF)
  390. return -EBUSY;
  391. /* Runs as soon as possible in the timer context */
  392. mod_timer(&priv->restart_timer, jiffies);
  393. return 0;
  394. }
  395. /*
  396. * CAN bus-off
  397. *
  398. * This functions should be called when the device goes bus-off to
  399. * tell the netif layer that no more packets can be sent or received.
  400. * If enabled, a timer is started to trigger bus-off recovery.
  401. */
  402. void can_bus_off(struct net_device *dev)
  403. {
  404. struct can_priv *priv = netdev_priv(dev);
  405. netdev_dbg(dev, "bus-off\n");
  406. netif_carrier_off(dev);
  407. priv->can_stats.bus_off++;
  408. if (priv->restart_ms)
  409. mod_timer(&priv->restart_timer,
  410. jiffies + (priv->restart_ms * HZ) / 1000);
  411. }
  412. EXPORT_SYMBOL_GPL(can_bus_off);
  413. static void can_setup(struct net_device *dev)
  414. {
  415. dev->type = ARPHRD_CAN;
  416. dev->mtu = CAN_MTU;
  417. dev->hard_header_len = 0;
  418. dev->addr_len = 0;
  419. dev->tx_queue_len = 10;
  420. /* New-style flags. */
  421. dev->flags = IFF_NOARP;
  422. dev->features = NETIF_F_HW_CSUM;
  423. }
  424. struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
  425. {
  426. struct sk_buff *skb;
  427. skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
  428. sizeof(struct can_frame));
  429. if (unlikely(!skb))
  430. return NULL;
  431. __net_timestamp(skb);
  432. skb->protocol = htons(ETH_P_CAN);
  433. skb->pkt_type = PACKET_BROADCAST;
  434. skb->ip_summed = CHECKSUM_UNNECESSARY;
  435. skb_reset_mac_header(skb);
  436. skb_reset_network_header(skb);
  437. skb_reset_transport_header(skb);
  438. can_skb_reserve(skb);
  439. can_skb_prv(skb)->ifindex = dev->ifindex;
  440. *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
  441. memset(*cf, 0, sizeof(struct can_frame));
  442. return skb;
  443. }
  444. EXPORT_SYMBOL_GPL(alloc_can_skb);
  445. struct sk_buff *alloc_canfd_skb(struct net_device *dev,
  446. struct canfd_frame **cfd)
  447. {
  448. struct sk_buff *skb;
  449. skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
  450. sizeof(struct canfd_frame));
  451. if (unlikely(!skb))
  452. return NULL;
  453. __net_timestamp(skb);
  454. skb->protocol = htons(ETH_P_CANFD);
  455. skb->pkt_type = PACKET_BROADCAST;
  456. skb->ip_summed = CHECKSUM_UNNECESSARY;
  457. skb_reset_mac_header(skb);
  458. skb_reset_network_header(skb);
  459. skb_reset_transport_header(skb);
  460. can_skb_reserve(skb);
  461. can_skb_prv(skb)->ifindex = dev->ifindex;
  462. *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
  463. memset(*cfd, 0, sizeof(struct canfd_frame));
  464. return skb;
  465. }
  466. EXPORT_SYMBOL_GPL(alloc_canfd_skb);
  467. struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
  468. {
  469. struct sk_buff *skb;
  470. skb = alloc_can_skb(dev, cf);
  471. if (unlikely(!skb))
  472. return NULL;
  473. (*cf)->can_id = CAN_ERR_FLAG;
  474. (*cf)->can_dlc = CAN_ERR_DLC;
  475. return skb;
  476. }
  477. EXPORT_SYMBOL_GPL(alloc_can_err_skb);
  478. /*
  479. * Allocate and setup space for the CAN network device
  480. */
  481. struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
  482. {
  483. struct net_device *dev;
  484. struct can_priv *priv;
  485. int size;
  486. if (echo_skb_max)
  487. size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
  488. echo_skb_max * sizeof(struct sk_buff *);
  489. else
  490. size = sizeof_priv;
  491. dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
  492. if (!dev)
  493. return NULL;
  494. priv = netdev_priv(dev);
  495. if (echo_skb_max) {
  496. priv->echo_skb_max = echo_skb_max;
  497. priv->echo_skb = (void *)priv +
  498. ALIGN(sizeof_priv, sizeof(struct sk_buff *));
  499. }
  500. priv->state = CAN_STATE_STOPPED;
  501. init_timer(&priv->restart_timer);
  502. return dev;
  503. }
  504. EXPORT_SYMBOL_GPL(alloc_candev);
  505. /*
  506. * Free space of the CAN network device
  507. */
  508. void free_candev(struct net_device *dev)
  509. {
  510. free_netdev(dev);
  511. }
  512. EXPORT_SYMBOL_GPL(free_candev);
  513. /*
  514. * changing MTU and control mode for CAN/CANFD devices
  515. */
  516. int can_change_mtu(struct net_device *dev, int new_mtu)
  517. {
  518. struct can_priv *priv = netdev_priv(dev);
  519. /* Do not allow changing the MTU while running */
  520. if (dev->flags & IFF_UP)
  521. return -EBUSY;
  522. /* allow change of MTU according to the CANFD ability of the device */
  523. switch (new_mtu) {
  524. case CAN_MTU:
  525. priv->ctrlmode &= ~CAN_CTRLMODE_FD;
  526. break;
  527. case CANFD_MTU:
  528. if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD))
  529. return -EINVAL;
  530. priv->ctrlmode |= CAN_CTRLMODE_FD;
  531. break;
  532. default:
  533. return -EINVAL;
  534. }
  535. dev->mtu = new_mtu;
  536. return 0;
  537. }
  538. EXPORT_SYMBOL_GPL(can_change_mtu);
  539. /*
  540. * Common open function when the device gets opened.
  541. *
  542. * This function should be called in the open function of the device
  543. * driver.
  544. */
  545. int open_candev(struct net_device *dev)
  546. {
  547. struct can_priv *priv = netdev_priv(dev);
  548. if (!priv->bittiming.bitrate) {
  549. netdev_err(dev, "bit-timing not yet defined\n");
  550. return -EINVAL;
  551. }
  552. /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
  553. if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
  554. (!priv->data_bittiming.bitrate ||
  555. (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
  556. netdev_err(dev, "incorrect/missing data bit-timing\n");
  557. return -EINVAL;
  558. }
  559. /* Switch carrier on if device was stopped while in bus-off state */
  560. if (!netif_carrier_ok(dev))
  561. netif_carrier_on(dev);
  562. setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
  563. return 0;
  564. }
  565. EXPORT_SYMBOL_GPL(open_candev);
  566. /*
  567. * Common close function for cleanup before the device gets closed.
  568. *
  569. * This function should be called in the close function of the device
  570. * driver.
  571. */
  572. void close_candev(struct net_device *dev)
  573. {
  574. struct can_priv *priv = netdev_priv(dev);
  575. del_timer_sync(&priv->restart_timer);
  576. can_flush_echo_skb(dev);
  577. }
  578. EXPORT_SYMBOL_GPL(close_candev);
  579. /*
  580. * CAN netlink interface
  581. */
  582. static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
  583. [IFLA_CAN_STATE] = { .type = NLA_U32 },
  584. [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
  585. [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
  586. [IFLA_CAN_RESTART] = { .type = NLA_U32 },
  587. [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
  588. [IFLA_CAN_BITTIMING_CONST]
  589. = { .len = sizeof(struct can_bittiming_const) },
  590. [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
  591. [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
  592. [IFLA_CAN_DATA_BITTIMING]
  593. = { .len = sizeof(struct can_bittiming) },
  594. [IFLA_CAN_DATA_BITTIMING_CONST]
  595. = { .len = sizeof(struct can_bittiming_const) },
  596. };
  597. static int can_changelink(struct net_device *dev,
  598. struct nlattr *tb[], struct nlattr *data[])
  599. {
  600. struct can_priv *priv = netdev_priv(dev);
  601. int err;
  602. /* We need synchronization with dev->stop() */
  603. ASSERT_RTNL();
  604. if (data[IFLA_CAN_BITTIMING]) {
  605. struct can_bittiming bt;
  606. /* Do not allow changing bittiming while running */
  607. if (dev->flags & IFF_UP)
  608. return -EBUSY;
  609. memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
  610. err = can_get_bittiming(dev, &bt, priv->bittiming_const);
  611. if (err)
  612. return err;
  613. memcpy(&priv->bittiming, &bt, sizeof(bt));
  614. if (priv->do_set_bittiming) {
  615. /* Finally, set the bit-timing registers */
  616. err = priv->do_set_bittiming(dev);
  617. if (err)
  618. return err;
  619. }
  620. }
  621. if (data[IFLA_CAN_CTRLMODE]) {
  622. struct can_ctrlmode *cm;
  623. /* Do not allow changing controller mode while running */
  624. if (dev->flags & IFF_UP)
  625. return -EBUSY;
  626. cm = nla_data(data[IFLA_CAN_CTRLMODE]);
  627. /* check whether changed bits are allowed to be modified */
  628. if (cm->mask & ~priv->ctrlmode_supported)
  629. return -EOPNOTSUPP;
  630. /* clear bits to be modified and copy the flag values */
  631. priv->ctrlmode &= ~cm->mask;
  632. priv->ctrlmode |= (cm->flags & cm->mask);
  633. /* CAN_CTRLMODE_FD can only be set when driver supports FD */
  634. if (priv->ctrlmode & CAN_CTRLMODE_FD)
  635. dev->mtu = CANFD_MTU;
  636. else
  637. dev->mtu = CAN_MTU;
  638. }
  639. if (data[IFLA_CAN_RESTART_MS]) {
  640. /* Do not allow changing restart delay while running */
  641. if (dev->flags & IFF_UP)
  642. return -EBUSY;
  643. priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
  644. }
  645. if (data[IFLA_CAN_RESTART]) {
  646. /* Do not allow a restart while not running */
  647. if (!(dev->flags & IFF_UP))
  648. return -EINVAL;
  649. err = can_restart_now(dev);
  650. if (err)
  651. return err;
  652. }
  653. if (data[IFLA_CAN_DATA_BITTIMING]) {
  654. struct can_bittiming dbt;
  655. /* Do not allow changing bittiming while running */
  656. if (dev->flags & IFF_UP)
  657. return -EBUSY;
  658. memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
  659. sizeof(dbt));
  660. err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
  661. if (err)
  662. return err;
  663. memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
  664. if (priv->do_set_data_bittiming) {
  665. /* Finally, set the bit-timing registers */
  666. err = priv->do_set_data_bittiming(dev);
  667. if (err)
  668. return err;
  669. }
  670. }
  671. return 0;
  672. }
  673. static size_t can_get_size(const struct net_device *dev)
  674. {
  675. struct can_priv *priv = netdev_priv(dev);
  676. size_t size = 0;
  677. if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */
  678. size += nla_total_size(sizeof(struct can_bittiming));
  679. if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
  680. size += nla_total_size(sizeof(struct can_bittiming_const));
  681. size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */
  682. size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
  683. size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */
  684. size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
  685. if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */
  686. size += nla_total_size(sizeof(struct can_berr_counter));
  687. if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */
  688. size += nla_total_size(sizeof(struct can_bittiming));
  689. if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */
  690. size += nla_total_size(sizeof(struct can_bittiming_const));
  691. return size;
  692. }
  693. static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
  694. {
  695. struct can_priv *priv = netdev_priv(dev);
  696. struct can_ctrlmode cm = {.flags = priv->ctrlmode};
  697. struct can_berr_counter bec;
  698. enum can_state state = priv->state;
  699. if (priv->do_get_state)
  700. priv->do_get_state(dev, &state);
  701. if ((priv->bittiming.bitrate &&
  702. nla_put(skb, IFLA_CAN_BITTIMING,
  703. sizeof(priv->bittiming), &priv->bittiming)) ||
  704. (priv->bittiming_const &&
  705. nla_put(skb, IFLA_CAN_BITTIMING_CONST,
  706. sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
  707. nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
  708. nla_put_u32(skb, IFLA_CAN_STATE, state) ||
  709. nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
  710. nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
  711. (priv->do_get_berr_counter &&
  712. !priv->do_get_berr_counter(dev, &bec) &&
  713. nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
  714. (priv->data_bittiming.bitrate &&
  715. nla_put(skb, IFLA_CAN_DATA_BITTIMING,
  716. sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
  717. (priv->data_bittiming_const &&
  718. nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
  719. sizeof(*priv->data_bittiming_const),
  720. priv->data_bittiming_const)))
  721. return -EMSGSIZE;
  722. return 0;
  723. }
  724. static size_t can_get_xstats_size(const struct net_device *dev)
  725. {
  726. return sizeof(struct can_device_stats);
  727. }
  728. static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
  729. {
  730. struct can_priv *priv = netdev_priv(dev);
  731. if (nla_put(skb, IFLA_INFO_XSTATS,
  732. sizeof(priv->can_stats), &priv->can_stats))
  733. goto nla_put_failure;
  734. return 0;
  735. nla_put_failure:
  736. return -EMSGSIZE;
  737. }
  738. static int can_newlink(struct net *src_net, struct net_device *dev,
  739. struct nlattr *tb[], struct nlattr *data[])
  740. {
  741. return -EOPNOTSUPP;
  742. }
  743. static struct rtnl_link_ops can_link_ops __read_mostly = {
  744. .kind = "can",
  745. .maxtype = IFLA_CAN_MAX,
  746. .policy = can_policy,
  747. .setup = can_setup,
  748. .newlink = can_newlink,
  749. .changelink = can_changelink,
  750. .get_size = can_get_size,
  751. .fill_info = can_fill_info,
  752. .get_xstats_size = can_get_xstats_size,
  753. .fill_xstats = can_fill_xstats,
  754. };
  755. /*
  756. * Register the CAN network device
  757. */
  758. int register_candev(struct net_device *dev)
  759. {
  760. dev->rtnl_link_ops = &can_link_ops;
  761. return register_netdev(dev);
  762. }
  763. EXPORT_SYMBOL_GPL(register_candev);
  764. /*
  765. * Unregister the CAN network device
  766. */
  767. void unregister_candev(struct net_device *dev)
  768. {
  769. unregister_netdev(dev);
  770. }
  771. EXPORT_SYMBOL_GPL(unregister_candev);
  772. /*
  773. * Test if a network device is a candev based device
  774. * and return the can_priv* if so.
  775. */
  776. struct can_priv *safe_candev_priv(struct net_device *dev)
  777. {
  778. if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
  779. return NULL;
  780. return netdev_priv(dev);
  781. }
  782. EXPORT_SYMBOL_GPL(safe_candev_priv);
  783. static __init int can_dev_init(void)
  784. {
  785. int err;
  786. can_led_notifier_init();
  787. err = rtnl_link_register(&can_link_ops);
  788. if (!err)
  789. printk(KERN_INFO MOD_DESC "\n");
  790. return err;
  791. }
  792. module_init(can_dev_init);
  793. static __exit void can_dev_exit(void)
  794. {
  795. rtnl_link_unregister(&can_link_ops);
  796. can_led_notifier_exit();
  797. }
  798. module_exit(can_dev_exit);
  799. MODULE_ALIAS_RTNL_LINK("can");