t4_hw.c 128 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164
  1. /*
  2. * This file is part of the Chelsio T4 Ethernet driver for Linux.
  3. *
  4. * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
  5. *
  6. * This software is available to you under a choice of one of two
  7. * licenses. You may choose to be licensed under the terms of the GNU
  8. * General Public License (GPL) Version 2, available from the file
  9. * COPYING in the main directory of this source tree, or the
  10. * OpenIB.org BSD license below:
  11. *
  12. * Redistribution and use in source and binary forms, with or
  13. * without modification, are permitted provided that the following
  14. * conditions are met:
  15. *
  16. * - Redistributions of source code must retain the above
  17. * copyright notice, this list of conditions and the following
  18. * disclaimer.
  19. *
  20. * - Redistributions in binary form must reproduce the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer in the documentation and/or other materials
  23. * provided with the distribution.
  24. *
  25. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32. * SOFTWARE.
  33. */
  34. #include <linux/delay.h>
  35. #include "cxgb4.h"
  36. #include "t4_regs.h"
  37. #include "t4fw_api.h"
  38. /**
  39. * t4_wait_op_done_val - wait until an operation is completed
  40. * @adapter: the adapter performing the operation
  41. * @reg: the register to check for completion
  42. * @mask: a single-bit field within @reg that indicates completion
  43. * @polarity: the value of the field when the operation is completed
  44. * @attempts: number of check iterations
  45. * @delay: delay in usecs between iterations
  46. * @valp: where to store the value of the register at completion time
  47. *
  48. * Wait until an operation is completed by checking a bit in a register
  49. * up to @attempts times. If @valp is not NULL the value of the register
  50. * at the time it indicated completion is stored there. Returns 0 if the
  51. * operation completes and -EAGAIN otherwise.
  52. */
  53. static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  54. int polarity, int attempts, int delay, u32 *valp)
  55. {
  56. while (1) {
  57. u32 val = t4_read_reg(adapter, reg);
  58. if (!!(val & mask) == polarity) {
  59. if (valp)
  60. *valp = val;
  61. return 0;
  62. }
  63. if (--attempts == 0)
  64. return -EAGAIN;
  65. if (delay)
  66. udelay(delay);
  67. }
  68. }
  69. static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
  70. int polarity, int attempts, int delay)
  71. {
  72. return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
  73. delay, NULL);
  74. }
  75. /**
  76. * t4_set_reg_field - set a register field to a value
  77. * @adapter: the adapter to program
  78. * @addr: the register address
  79. * @mask: specifies the portion of the register to modify
  80. * @val: the new value for the register field
  81. *
  82. * Sets a register field specified by the supplied mask to the
  83. * given value.
  84. */
  85. void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  86. u32 val)
  87. {
  88. u32 v = t4_read_reg(adapter, addr) & ~mask;
  89. t4_write_reg(adapter, addr, v | val);
  90. (void) t4_read_reg(adapter, addr); /* flush */
  91. }
  92. /**
  93. * t4_read_indirect - read indirectly addressed registers
  94. * @adap: the adapter
  95. * @addr_reg: register holding the indirect address
  96. * @data_reg: register holding the value of the indirect register
  97. * @vals: where the read register values are stored
  98. * @nregs: how many indirect registers to read
  99. * @start_idx: index of first indirect register to read
  100. *
  101. * Reads registers that are accessed indirectly through an address/data
  102. * register pair.
  103. */
  104. void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
  105. unsigned int data_reg, u32 *vals,
  106. unsigned int nregs, unsigned int start_idx)
  107. {
  108. while (nregs--) {
  109. t4_write_reg(adap, addr_reg, start_idx);
  110. *vals++ = t4_read_reg(adap, data_reg);
  111. start_idx++;
  112. }
  113. }
  114. /**
  115. * t4_write_indirect - write indirectly addressed registers
  116. * @adap: the adapter
  117. * @addr_reg: register holding the indirect addresses
  118. * @data_reg: register holding the value for the indirect registers
  119. * @vals: values to write
  120. * @nregs: how many indirect registers to write
  121. * @start_idx: address of first indirect register to write
  122. *
  123. * Writes a sequential block of registers that are accessed indirectly
  124. * through an address/data register pair.
  125. */
  126. void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
  127. unsigned int data_reg, const u32 *vals,
  128. unsigned int nregs, unsigned int start_idx)
  129. {
  130. while (nregs--) {
  131. t4_write_reg(adap, addr_reg, start_idx++);
  132. t4_write_reg(adap, data_reg, *vals++);
  133. }
  134. }
  135. /*
  136. * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
  137. * mechanism. This guarantees that we get the real value even if we're
  138. * operating within a Virtual Machine and the Hypervisor is trapping our
  139. * Configuration Space accesses.
  140. */
  141. void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
  142. {
  143. u32 req = ENABLE | FUNCTION(adap->fn) | reg;
  144. if (is_t4(adap->params.chip))
  145. req |= F_LOCALCFG;
  146. t4_write_reg(adap, PCIE_CFG_SPACE_REQ, req);
  147. *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA);
  148. /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
  149. * Configuration Space read. (None of the other fields matter when
  150. * ENABLE is 0 so a simple register write is easier than a
  151. * read-modify-write via t4_set_reg_field().)
  152. */
  153. t4_write_reg(adap, PCIE_CFG_SPACE_REQ, 0);
  154. }
  155. /*
  156. * t4_report_fw_error - report firmware error
  157. * @adap: the adapter
  158. *
  159. * The adapter firmware can indicate error conditions to the host.
  160. * If the firmware has indicated an error, print out the reason for
  161. * the firmware error.
  162. */
  163. static void t4_report_fw_error(struct adapter *adap)
  164. {
  165. static const char *const reason[] = {
  166. "Crash", /* PCIE_FW_EVAL_CRASH */
  167. "During Device Preparation", /* PCIE_FW_EVAL_PREP */
  168. "During Device Configuration", /* PCIE_FW_EVAL_CONF */
  169. "During Device Initialization", /* PCIE_FW_EVAL_INIT */
  170. "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
  171. "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
  172. "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
  173. "Reserved", /* reserved */
  174. };
  175. u32 pcie_fw;
  176. pcie_fw = t4_read_reg(adap, MA_PCIE_FW);
  177. if (pcie_fw & FW_PCIE_FW_ERR)
  178. dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
  179. reason[FW_PCIE_FW_EVAL_GET(pcie_fw)]);
  180. }
  181. /*
  182. * Get the reply to a mailbox command and store it in @rpl in big-endian order.
  183. */
  184. static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
  185. u32 mbox_addr)
  186. {
  187. for ( ; nflit; nflit--, mbox_addr += 8)
  188. *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
  189. }
  190. /*
  191. * Handle a FW assertion reported in a mailbox.
  192. */
  193. static void fw_asrt(struct adapter *adap, u32 mbox_addr)
  194. {
  195. struct fw_debug_cmd asrt;
  196. get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
  197. dev_alert(adap->pdev_dev,
  198. "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
  199. asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
  200. ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
  201. }
  202. static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
  203. {
  204. dev_err(adap->pdev_dev,
  205. "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
  206. (unsigned long long)t4_read_reg64(adap, data_reg),
  207. (unsigned long long)t4_read_reg64(adap, data_reg + 8),
  208. (unsigned long long)t4_read_reg64(adap, data_reg + 16),
  209. (unsigned long long)t4_read_reg64(adap, data_reg + 24),
  210. (unsigned long long)t4_read_reg64(adap, data_reg + 32),
  211. (unsigned long long)t4_read_reg64(adap, data_reg + 40),
  212. (unsigned long long)t4_read_reg64(adap, data_reg + 48),
  213. (unsigned long long)t4_read_reg64(adap, data_reg + 56));
  214. }
  215. /**
  216. * t4_wr_mbox_meat - send a command to FW through the given mailbox
  217. * @adap: the adapter
  218. * @mbox: index of the mailbox to use
  219. * @cmd: the command to write
  220. * @size: command length in bytes
  221. * @rpl: where to optionally store the reply
  222. * @sleep_ok: if true we may sleep while awaiting command completion
  223. *
  224. * Sends the given command to FW through the selected mailbox and waits
  225. * for the FW to execute the command. If @rpl is not %NULL it is used to
  226. * store the FW's reply to the command. The command and its optional
  227. * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
  228. * to respond. @sleep_ok determines whether we may sleep while awaiting
  229. * the response. If sleeping is allowed we use progressive backoff
  230. * otherwise we spin.
  231. *
  232. * The return value is 0 on success or a negative errno on failure. A
  233. * failure can happen either because we are not able to execute the
  234. * command or FW executes it but signals an error. In the latter case
  235. * the return value is the error code indicated by FW (negated).
  236. */
  237. int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
  238. void *rpl, bool sleep_ok)
  239. {
  240. static const int delay[] = {
  241. 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
  242. };
  243. u32 v;
  244. u64 res;
  245. int i, ms, delay_idx;
  246. const __be64 *p = cmd;
  247. u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
  248. u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
  249. if ((size & 15) || size > MBOX_LEN)
  250. return -EINVAL;
  251. /*
  252. * If the device is off-line, as in EEH, commands will time out.
  253. * Fail them early so we don't waste time waiting.
  254. */
  255. if (adap->pdev->error_state != pci_channel_io_normal)
  256. return -EIO;
  257. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  258. for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
  259. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  260. if (v != MBOX_OWNER_DRV)
  261. return v ? -EBUSY : -ETIMEDOUT;
  262. for (i = 0; i < size; i += 8)
  263. t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
  264. t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
  265. t4_read_reg(adap, ctl_reg); /* flush write */
  266. delay_idx = 0;
  267. ms = delay[0];
  268. for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
  269. if (sleep_ok) {
  270. ms = delay[delay_idx]; /* last element may repeat */
  271. if (delay_idx < ARRAY_SIZE(delay) - 1)
  272. delay_idx++;
  273. msleep(ms);
  274. } else
  275. mdelay(ms);
  276. v = t4_read_reg(adap, ctl_reg);
  277. if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
  278. if (!(v & MBMSGVALID)) {
  279. t4_write_reg(adap, ctl_reg, 0);
  280. continue;
  281. }
  282. res = t4_read_reg64(adap, data_reg);
  283. if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) {
  284. fw_asrt(adap, data_reg);
  285. res = FW_CMD_RETVAL(EIO);
  286. } else if (rpl)
  287. get_mbox_rpl(adap, rpl, size / 8, data_reg);
  288. if (FW_CMD_RETVAL_GET((int)res))
  289. dump_mbox(adap, mbox, data_reg);
  290. t4_write_reg(adap, ctl_reg, 0);
  291. return -FW_CMD_RETVAL_GET((int)res);
  292. }
  293. }
  294. dump_mbox(adap, mbox, data_reg);
  295. dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
  296. *(const u8 *)cmd, mbox);
  297. t4_report_fw_error(adap);
  298. return -ETIMEDOUT;
  299. }
  300. /**
  301. * t4_mc_read - read from MC through backdoor accesses
  302. * @adap: the adapter
  303. * @addr: address of first byte requested
  304. * @idx: which MC to access
  305. * @data: 64 bytes of data containing the requested address
  306. * @ecc: where to store the corresponding 64-bit ECC word
  307. *
  308. * Read 64 bytes of data from MC starting at a 64-byte-aligned address
  309. * that covers the requested address @addr. If @parity is not %NULL it
  310. * is assigned the 64-bit ECC word for the read data.
  311. */
  312. int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  313. {
  314. int i;
  315. u32 mc_bist_cmd, mc_bist_cmd_addr, mc_bist_cmd_len;
  316. u32 mc_bist_status_rdata, mc_bist_data_pattern;
  317. if (is_t4(adap->params.chip)) {
  318. mc_bist_cmd = MC_BIST_CMD;
  319. mc_bist_cmd_addr = MC_BIST_CMD_ADDR;
  320. mc_bist_cmd_len = MC_BIST_CMD_LEN;
  321. mc_bist_status_rdata = MC_BIST_STATUS_RDATA;
  322. mc_bist_data_pattern = MC_BIST_DATA_PATTERN;
  323. } else {
  324. mc_bist_cmd = MC_REG(MC_P_BIST_CMD, idx);
  325. mc_bist_cmd_addr = MC_REG(MC_P_BIST_CMD_ADDR, idx);
  326. mc_bist_cmd_len = MC_REG(MC_P_BIST_CMD_LEN, idx);
  327. mc_bist_status_rdata = MC_REG(MC_P_BIST_STATUS_RDATA, idx);
  328. mc_bist_data_pattern = MC_REG(MC_P_BIST_DATA_PATTERN, idx);
  329. }
  330. if (t4_read_reg(adap, mc_bist_cmd) & START_BIST)
  331. return -EBUSY;
  332. t4_write_reg(adap, mc_bist_cmd_addr, addr & ~0x3fU);
  333. t4_write_reg(adap, mc_bist_cmd_len, 64);
  334. t4_write_reg(adap, mc_bist_data_pattern, 0xc);
  335. t4_write_reg(adap, mc_bist_cmd, BIST_OPCODE(1) | START_BIST |
  336. BIST_CMD_GAP(1));
  337. i = t4_wait_op_done(adap, mc_bist_cmd, START_BIST, 0, 10, 1);
  338. if (i)
  339. return i;
  340. #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata, i)
  341. for (i = 15; i >= 0; i--)
  342. *data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
  343. if (ecc)
  344. *ecc = t4_read_reg64(adap, MC_DATA(16));
  345. #undef MC_DATA
  346. return 0;
  347. }
  348. /**
  349. * t4_edc_read - read from EDC through backdoor accesses
  350. * @adap: the adapter
  351. * @idx: which EDC to access
  352. * @addr: address of first byte requested
  353. * @data: 64 bytes of data containing the requested address
  354. * @ecc: where to store the corresponding 64-bit ECC word
  355. *
  356. * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
  357. * that covers the requested address @addr. If @parity is not %NULL it
  358. * is assigned the 64-bit ECC word for the read data.
  359. */
  360. int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  361. {
  362. int i;
  363. u32 edc_bist_cmd, edc_bist_cmd_addr, edc_bist_cmd_len;
  364. u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata;
  365. if (is_t4(adap->params.chip)) {
  366. edc_bist_cmd = EDC_REG(EDC_BIST_CMD, idx);
  367. edc_bist_cmd_addr = EDC_REG(EDC_BIST_CMD_ADDR, idx);
  368. edc_bist_cmd_len = EDC_REG(EDC_BIST_CMD_LEN, idx);
  369. edc_bist_cmd_data_pattern = EDC_REG(EDC_BIST_DATA_PATTERN,
  370. idx);
  371. edc_bist_status_rdata = EDC_REG(EDC_BIST_STATUS_RDATA,
  372. idx);
  373. } else {
  374. edc_bist_cmd = EDC_REG_T5(EDC_H_BIST_CMD, idx);
  375. edc_bist_cmd_addr = EDC_REG_T5(EDC_H_BIST_CMD_ADDR, idx);
  376. edc_bist_cmd_len = EDC_REG_T5(EDC_H_BIST_CMD_LEN, idx);
  377. edc_bist_cmd_data_pattern =
  378. EDC_REG_T5(EDC_H_BIST_DATA_PATTERN, idx);
  379. edc_bist_status_rdata =
  380. EDC_REG_T5(EDC_H_BIST_STATUS_RDATA, idx);
  381. }
  382. if (t4_read_reg(adap, edc_bist_cmd) & START_BIST)
  383. return -EBUSY;
  384. t4_write_reg(adap, edc_bist_cmd_addr, addr & ~0x3fU);
  385. t4_write_reg(adap, edc_bist_cmd_len, 64);
  386. t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
  387. t4_write_reg(adap, edc_bist_cmd,
  388. BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
  389. i = t4_wait_op_done(adap, edc_bist_cmd, START_BIST, 0, 10, 1);
  390. if (i)
  391. return i;
  392. #define EDC_DATA(i) (EDC_BIST_STATUS_REG(edc_bist_status_rdata, i))
  393. for (i = 15; i >= 0; i--)
  394. *data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
  395. if (ecc)
  396. *ecc = t4_read_reg64(adap, EDC_DATA(16));
  397. #undef EDC_DATA
  398. return 0;
  399. }
  400. /**
  401. * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
  402. * @adap: the adapter
  403. * @win: PCI-E Memory Window to use
  404. * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
  405. * @addr: address within indicated memory type
  406. * @len: amount of memory to transfer
  407. * @buf: host memory buffer
  408. * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
  409. *
  410. * Reads/writes an [almost] arbitrary memory region in the firmware: the
  411. * firmware memory address and host buffer must be aligned on 32-bit
  412. * boudaries; the length may be arbitrary. The memory is transferred as
  413. * a raw byte sequence from/to the firmware's memory. If this memory
  414. * contains data structures which contain multi-byte integers, it's the
  415. * caller's responsibility to perform appropriate byte order conversions.
  416. */
  417. int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
  418. u32 len, __be32 *buf, int dir)
  419. {
  420. u32 pos, offset, resid, memoffset;
  421. u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
  422. /* Argument sanity checks ...
  423. */
  424. if (addr & 0x3)
  425. return -EINVAL;
  426. /* It's convenient to be able to handle lengths which aren't a
  427. * multiple of 32-bits because we often end up transferring files to
  428. * the firmware. So we'll handle that by normalizing the length here
  429. * and then handling any residual transfer at the end.
  430. */
  431. resid = len & 0x3;
  432. len -= resid;
  433. /* Offset into the region of memory which is being accessed
  434. * MEM_EDC0 = 0
  435. * MEM_EDC1 = 1
  436. * MEM_MC = 2 -- T4
  437. * MEM_MC0 = 2 -- For T5
  438. * MEM_MC1 = 3 -- For T5
  439. */
  440. edc_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM0_BAR));
  441. if (mtype != MEM_MC1)
  442. memoffset = (mtype * (edc_size * 1024 * 1024));
  443. else {
  444. mc_size = EXT_MEM_SIZE_GET(t4_read_reg(adap,
  445. MA_EXT_MEMORY_BAR));
  446. memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
  447. }
  448. /* Determine the PCIE_MEM_ACCESS_OFFSET */
  449. addr = addr + memoffset;
  450. /* Each PCI-E Memory Window is programmed with a window size -- or
  451. * "aperture" -- which controls the granularity of its mapping onto
  452. * adapter memory. We need to grab that aperture in order to know
  453. * how to use the specified window. The window is also programmed
  454. * with the base address of the Memory Window in BAR0's address
  455. * space. For T4 this is an absolute PCI-E Bus Address. For T5
  456. * the address is relative to BAR0.
  457. */
  458. mem_reg = t4_read_reg(adap,
  459. PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN,
  460. win));
  461. mem_aperture = 1 << (GET_WINDOW(mem_reg) + 10);
  462. mem_base = GET_PCIEOFST(mem_reg) << 10;
  463. if (is_t4(adap->params.chip))
  464. mem_base -= adap->t4_bar0;
  465. win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->fn);
  466. /* Calculate our initial PCI-E Memory Window Position and Offset into
  467. * that Window.
  468. */
  469. pos = addr & ~(mem_aperture-1);
  470. offset = addr - pos;
  471. /* Set up initial PCI-E Memory Window to cover the start of our
  472. * transfer. (Read it back to ensure that changes propagate before we
  473. * attempt to use the new value.)
  474. */
  475. t4_write_reg(adap,
  476. PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win),
  477. pos | win_pf);
  478. t4_read_reg(adap,
  479. PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win));
  480. /* Transfer data to/from the adapter as long as there's an integral
  481. * number of 32-bit transfers to complete.
  482. */
  483. while (len > 0) {
  484. if (dir == T4_MEMORY_READ)
  485. *buf++ = (__force __be32) t4_read_reg(adap,
  486. mem_base + offset);
  487. else
  488. t4_write_reg(adap, mem_base + offset,
  489. (__force u32) *buf++);
  490. offset += sizeof(__be32);
  491. len -= sizeof(__be32);
  492. /* If we've reached the end of our current window aperture,
  493. * move the PCI-E Memory Window on to the next. Note that
  494. * doing this here after "len" may be 0 allows us to set up
  495. * the PCI-E Memory Window for a possible final residual
  496. * transfer below ...
  497. */
  498. if (offset == mem_aperture) {
  499. pos += mem_aperture;
  500. offset = 0;
  501. t4_write_reg(adap,
  502. PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET,
  503. win), pos | win_pf);
  504. t4_read_reg(adap,
  505. PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET,
  506. win));
  507. }
  508. }
  509. /* If the original transfer had a length which wasn't a multiple of
  510. * 32-bits, now's where we need to finish off the transfer of the
  511. * residual amount. The PCI-E Memory Window has already been moved
  512. * above (if necessary) to cover this final transfer.
  513. */
  514. if (resid) {
  515. union {
  516. __be32 word;
  517. char byte[4];
  518. } last;
  519. unsigned char *bp;
  520. int i;
  521. if (dir == T4_MEMORY_READ) {
  522. last.word = (__force __be32) t4_read_reg(adap,
  523. mem_base + offset);
  524. for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
  525. bp[i] = last.byte[i];
  526. } else {
  527. last.word = *buf;
  528. for (i = resid; i < 4; i++)
  529. last.byte[i] = 0;
  530. t4_write_reg(adap, mem_base + offset,
  531. (__force u32) last.word);
  532. }
  533. }
  534. return 0;
  535. }
  536. #define EEPROM_STAT_ADDR 0x7bfc
  537. #define VPD_BASE 0x400
  538. #define VPD_BASE_OLD 0
  539. #define VPD_LEN 1024
  540. #define CHELSIO_VPD_UNIQUE_ID 0x82
  541. /**
  542. * t4_seeprom_wp - enable/disable EEPROM write protection
  543. * @adapter: the adapter
  544. * @enable: whether to enable or disable write protection
  545. *
  546. * Enables or disables write protection on the serial EEPROM.
  547. */
  548. int t4_seeprom_wp(struct adapter *adapter, bool enable)
  549. {
  550. unsigned int v = enable ? 0xc : 0;
  551. int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
  552. return ret < 0 ? ret : 0;
  553. }
  554. /**
  555. * get_vpd_params - read VPD parameters from VPD EEPROM
  556. * @adapter: adapter to read
  557. * @p: where to store the parameters
  558. *
  559. * Reads card parameters stored in VPD EEPROM.
  560. */
  561. int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  562. {
  563. u32 cclk_param, cclk_val;
  564. int i, ret, addr;
  565. int ec, sn, pn;
  566. u8 *vpd, csum;
  567. unsigned int vpdr_len, kw_offset, id_len;
  568. vpd = vmalloc(VPD_LEN);
  569. if (!vpd)
  570. return -ENOMEM;
  571. ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
  572. if (ret < 0)
  573. goto out;
  574. /* The VPD shall have a unique identifier specified by the PCI SIG.
  575. * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
  576. * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
  577. * is expected to automatically put this entry at the
  578. * beginning of the VPD.
  579. */
  580. addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
  581. ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
  582. if (ret < 0)
  583. goto out;
  584. if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
  585. dev_err(adapter->pdev_dev, "missing VPD ID string\n");
  586. ret = -EINVAL;
  587. goto out;
  588. }
  589. id_len = pci_vpd_lrdt_size(vpd);
  590. if (id_len > ID_LEN)
  591. id_len = ID_LEN;
  592. i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  593. if (i < 0) {
  594. dev_err(adapter->pdev_dev, "missing VPD-R section\n");
  595. ret = -EINVAL;
  596. goto out;
  597. }
  598. vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
  599. kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
  600. if (vpdr_len + kw_offset > VPD_LEN) {
  601. dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
  602. ret = -EINVAL;
  603. goto out;
  604. }
  605. #define FIND_VPD_KW(var, name) do { \
  606. var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
  607. if (var < 0) { \
  608. dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
  609. ret = -EINVAL; \
  610. goto out; \
  611. } \
  612. var += PCI_VPD_INFO_FLD_HDR_SIZE; \
  613. } while (0)
  614. FIND_VPD_KW(i, "RV");
  615. for (csum = 0; i >= 0; i--)
  616. csum += vpd[i];
  617. if (csum) {
  618. dev_err(adapter->pdev_dev,
  619. "corrupted VPD EEPROM, actual csum %u\n", csum);
  620. ret = -EINVAL;
  621. goto out;
  622. }
  623. FIND_VPD_KW(ec, "EC");
  624. FIND_VPD_KW(sn, "SN");
  625. FIND_VPD_KW(pn, "PN");
  626. #undef FIND_VPD_KW
  627. memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
  628. strim(p->id);
  629. memcpy(p->ec, vpd + ec, EC_LEN);
  630. strim(p->ec);
  631. i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
  632. memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
  633. strim(p->sn);
  634. i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
  635. memcpy(p->pn, vpd + pn, min(i, PN_LEN));
  636. strim(p->pn);
  637. /*
  638. * Ask firmware for the Core Clock since it knows how to translate the
  639. * Reference Clock ('V2') VPD field into a Core Clock value ...
  640. */
  641. cclk_param = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
  642. FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
  643. ret = t4_query_params(adapter, adapter->mbox, 0, 0,
  644. 1, &cclk_param, &cclk_val);
  645. out:
  646. vfree(vpd);
  647. if (ret)
  648. return ret;
  649. p->cclk = cclk_val;
  650. return 0;
  651. }
  652. /* serial flash and firmware constants */
  653. enum {
  654. SF_ATTEMPTS = 10, /* max retries for SF operations */
  655. /* flash command opcodes */
  656. SF_PROG_PAGE = 2, /* program page */
  657. SF_WR_DISABLE = 4, /* disable writes */
  658. SF_RD_STATUS = 5, /* read status register */
  659. SF_WR_ENABLE = 6, /* enable writes */
  660. SF_RD_DATA_FAST = 0xb, /* read flash */
  661. SF_RD_ID = 0x9f, /* read ID */
  662. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  663. FW_MAX_SIZE = 16 * SF_SEC_SIZE,
  664. };
  665. /**
  666. * sf1_read - read data from the serial flash
  667. * @adapter: the adapter
  668. * @byte_cnt: number of bytes to read
  669. * @cont: whether another operation will be chained
  670. * @lock: whether to lock SF for PL access only
  671. * @valp: where to store the read data
  672. *
  673. * Reads up to 4 bytes of data from the serial flash. The location of
  674. * the read needs to be specified prior to calling this by issuing the
  675. * appropriate commands to the serial flash.
  676. */
  677. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  678. int lock, u32 *valp)
  679. {
  680. int ret;
  681. if (!byte_cnt || byte_cnt > 4)
  682. return -EINVAL;
  683. if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
  684. return -EBUSY;
  685. cont = cont ? SF_CONT : 0;
  686. lock = lock ? SF_LOCK : 0;
  687. t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
  688. ret = t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
  689. if (!ret)
  690. *valp = t4_read_reg(adapter, SF_DATA);
  691. return ret;
  692. }
  693. /**
  694. * sf1_write - write data to the serial flash
  695. * @adapter: the adapter
  696. * @byte_cnt: number of bytes to write
  697. * @cont: whether another operation will be chained
  698. * @lock: whether to lock SF for PL access only
  699. * @val: value to write
  700. *
  701. * Writes up to 4 bytes of data to the serial flash. The location of
  702. * the write needs to be specified prior to calling this by issuing the
  703. * appropriate commands to the serial flash.
  704. */
  705. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  706. int lock, u32 val)
  707. {
  708. if (!byte_cnt || byte_cnt > 4)
  709. return -EINVAL;
  710. if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
  711. return -EBUSY;
  712. cont = cont ? SF_CONT : 0;
  713. lock = lock ? SF_LOCK : 0;
  714. t4_write_reg(adapter, SF_DATA, val);
  715. t4_write_reg(adapter, SF_OP, lock |
  716. cont | BYTECNT(byte_cnt - 1) | OP_WR);
  717. return t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
  718. }
  719. /**
  720. * flash_wait_op - wait for a flash operation to complete
  721. * @adapter: the adapter
  722. * @attempts: max number of polls of the status register
  723. * @delay: delay between polls in ms
  724. *
  725. * Wait for a flash operation to complete by polling the status register.
  726. */
  727. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  728. {
  729. int ret;
  730. u32 status;
  731. while (1) {
  732. if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
  733. (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
  734. return ret;
  735. if (!(status & 1))
  736. return 0;
  737. if (--attempts == 0)
  738. return -EAGAIN;
  739. if (delay)
  740. msleep(delay);
  741. }
  742. }
  743. /**
  744. * t4_read_flash - read words from serial flash
  745. * @adapter: the adapter
  746. * @addr: the start address for the read
  747. * @nwords: how many 32-bit words to read
  748. * @data: where to store the read data
  749. * @byte_oriented: whether to store data as bytes or as words
  750. *
  751. * Read the specified number of 32-bit words from the serial flash.
  752. * If @byte_oriented is set the read data is stored as a byte array
  753. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  754. * natural endianess.
  755. */
  756. static int t4_read_flash(struct adapter *adapter, unsigned int addr,
  757. unsigned int nwords, u32 *data, int byte_oriented)
  758. {
  759. int ret;
  760. if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
  761. return -EINVAL;
  762. addr = swab32(addr) | SF_RD_DATA_FAST;
  763. if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
  764. (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
  765. return ret;
  766. for ( ; nwords; nwords--, data++) {
  767. ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
  768. if (nwords == 1)
  769. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  770. if (ret)
  771. return ret;
  772. if (byte_oriented)
  773. *data = (__force __u32) (htonl(*data));
  774. }
  775. return 0;
  776. }
  777. /**
  778. * t4_write_flash - write up to a page of data to the serial flash
  779. * @adapter: the adapter
  780. * @addr: the start address to write
  781. * @n: length of data to write in bytes
  782. * @data: the data to write
  783. *
  784. * Writes up to a page of data (256 bytes) to the serial flash starting
  785. * at the given address. All the data must be written to the same page.
  786. */
  787. static int t4_write_flash(struct adapter *adapter, unsigned int addr,
  788. unsigned int n, const u8 *data)
  789. {
  790. int ret;
  791. u32 buf[64];
  792. unsigned int i, c, left, val, offset = addr & 0xff;
  793. if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
  794. return -EINVAL;
  795. val = swab32(addr) | SF_PROG_PAGE;
  796. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  797. (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
  798. goto unlock;
  799. for (left = n; left; left -= c) {
  800. c = min(left, 4U);
  801. for (val = 0, i = 0; i < c; ++i)
  802. val = (val << 8) + *data++;
  803. ret = sf1_write(adapter, c, c != left, 1, val);
  804. if (ret)
  805. goto unlock;
  806. }
  807. ret = flash_wait_op(adapter, 8, 1);
  808. if (ret)
  809. goto unlock;
  810. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  811. /* Read the page to verify the write succeeded */
  812. ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  813. if (ret)
  814. return ret;
  815. if (memcmp(data - n, (u8 *)buf + offset, n)) {
  816. dev_err(adapter->pdev_dev,
  817. "failed to correctly write the flash page at %#x\n",
  818. addr);
  819. return -EIO;
  820. }
  821. return 0;
  822. unlock:
  823. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  824. return ret;
  825. }
  826. /**
  827. * t4_get_fw_version - read the firmware version
  828. * @adapter: the adapter
  829. * @vers: where to place the version
  830. *
  831. * Reads the FW version from flash.
  832. */
  833. int t4_get_fw_version(struct adapter *adapter, u32 *vers)
  834. {
  835. return t4_read_flash(adapter, FLASH_FW_START +
  836. offsetof(struct fw_hdr, fw_ver), 1,
  837. vers, 0);
  838. }
  839. /**
  840. * t4_get_tp_version - read the TP microcode version
  841. * @adapter: the adapter
  842. * @vers: where to place the version
  843. *
  844. * Reads the TP microcode version from flash.
  845. */
  846. int t4_get_tp_version(struct adapter *adapter, u32 *vers)
  847. {
  848. return t4_read_flash(adapter, FLASH_FW_START +
  849. offsetof(struct fw_hdr, tp_microcode_ver),
  850. 1, vers, 0);
  851. }
  852. /* Is the given firmware API compatible with the one the driver was compiled
  853. * with?
  854. */
  855. static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
  856. {
  857. /* short circuit if it's the exact same firmware version */
  858. if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
  859. return 1;
  860. #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
  861. if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
  862. SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
  863. return 1;
  864. #undef SAME_INTF
  865. return 0;
  866. }
  867. /* The firmware in the filesystem is usable, but should it be installed?
  868. * This routine explains itself in detail if it indicates the filesystem
  869. * firmware should be installed.
  870. */
  871. static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
  872. int k, int c)
  873. {
  874. const char *reason;
  875. if (!card_fw_usable) {
  876. reason = "incompatible or unusable";
  877. goto install;
  878. }
  879. if (k > c) {
  880. reason = "older than the version supported with this driver";
  881. goto install;
  882. }
  883. return 0;
  884. install:
  885. dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
  886. "installing firmware %u.%u.%u.%u on card.\n",
  887. FW_HDR_FW_VER_MAJOR_GET(c), FW_HDR_FW_VER_MINOR_GET(c),
  888. FW_HDR_FW_VER_MICRO_GET(c), FW_HDR_FW_VER_BUILD_GET(c), reason,
  889. FW_HDR_FW_VER_MAJOR_GET(k), FW_HDR_FW_VER_MINOR_GET(k),
  890. FW_HDR_FW_VER_MICRO_GET(k), FW_HDR_FW_VER_BUILD_GET(k));
  891. return 1;
  892. }
  893. int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
  894. const u8 *fw_data, unsigned int fw_size,
  895. struct fw_hdr *card_fw, enum dev_state state,
  896. int *reset)
  897. {
  898. int ret, card_fw_usable, fs_fw_usable;
  899. const struct fw_hdr *fs_fw;
  900. const struct fw_hdr *drv_fw;
  901. drv_fw = &fw_info->fw_hdr;
  902. /* Read the header of the firmware on the card */
  903. ret = -t4_read_flash(adap, FLASH_FW_START,
  904. sizeof(*card_fw) / sizeof(uint32_t),
  905. (uint32_t *)card_fw, 1);
  906. if (ret == 0) {
  907. card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
  908. } else {
  909. dev_err(adap->pdev_dev,
  910. "Unable to read card's firmware header: %d\n", ret);
  911. card_fw_usable = 0;
  912. }
  913. if (fw_data != NULL) {
  914. fs_fw = (const void *)fw_data;
  915. fs_fw_usable = fw_compatible(drv_fw, fs_fw);
  916. } else {
  917. fs_fw = NULL;
  918. fs_fw_usable = 0;
  919. }
  920. if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
  921. (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
  922. /* Common case: the firmware on the card is an exact match and
  923. * the filesystem one is an exact match too, or the filesystem
  924. * one is absent/incompatible.
  925. */
  926. } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
  927. should_install_fs_fw(adap, card_fw_usable,
  928. be32_to_cpu(fs_fw->fw_ver),
  929. be32_to_cpu(card_fw->fw_ver))) {
  930. ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
  931. fw_size, 0);
  932. if (ret != 0) {
  933. dev_err(adap->pdev_dev,
  934. "failed to install firmware: %d\n", ret);
  935. goto bye;
  936. }
  937. /* Installed successfully, update the cached header too. */
  938. memcpy(card_fw, fs_fw, sizeof(*card_fw));
  939. card_fw_usable = 1;
  940. *reset = 0; /* already reset as part of load_fw */
  941. }
  942. if (!card_fw_usable) {
  943. uint32_t d, c, k;
  944. d = be32_to_cpu(drv_fw->fw_ver);
  945. c = be32_to_cpu(card_fw->fw_ver);
  946. k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
  947. dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
  948. "chip state %d, "
  949. "driver compiled with %d.%d.%d.%d, "
  950. "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
  951. state,
  952. FW_HDR_FW_VER_MAJOR_GET(d), FW_HDR_FW_VER_MINOR_GET(d),
  953. FW_HDR_FW_VER_MICRO_GET(d), FW_HDR_FW_VER_BUILD_GET(d),
  954. FW_HDR_FW_VER_MAJOR_GET(c), FW_HDR_FW_VER_MINOR_GET(c),
  955. FW_HDR_FW_VER_MICRO_GET(c), FW_HDR_FW_VER_BUILD_GET(c),
  956. FW_HDR_FW_VER_MAJOR_GET(k), FW_HDR_FW_VER_MINOR_GET(k),
  957. FW_HDR_FW_VER_MICRO_GET(k), FW_HDR_FW_VER_BUILD_GET(k));
  958. ret = EINVAL;
  959. goto bye;
  960. }
  961. /* We're using whatever's on the card and it's known to be good. */
  962. adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
  963. adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
  964. bye:
  965. return ret;
  966. }
  967. /**
  968. * t4_flash_erase_sectors - erase a range of flash sectors
  969. * @adapter: the adapter
  970. * @start: the first sector to erase
  971. * @end: the last sector to erase
  972. *
  973. * Erases the sectors in the given inclusive range.
  974. */
  975. static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
  976. {
  977. int ret = 0;
  978. if (end >= adapter->params.sf_nsec)
  979. return -EINVAL;
  980. while (start <= end) {
  981. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  982. (ret = sf1_write(adapter, 4, 0, 1,
  983. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  984. (ret = flash_wait_op(adapter, 14, 500)) != 0) {
  985. dev_err(adapter->pdev_dev,
  986. "erase of flash sector %d failed, error %d\n",
  987. start, ret);
  988. break;
  989. }
  990. start++;
  991. }
  992. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  993. return ret;
  994. }
  995. /**
  996. * t4_flash_cfg_addr - return the address of the flash configuration file
  997. * @adapter: the adapter
  998. *
  999. * Return the address within the flash where the Firmware Configuration
  1000. * File is stored.
  1001. */
  1002. unsigned int t4_flash_cfg_addr(struct adapter *adapter)
  1003. {
  1004. if (adapter->params.sf_size == 0x100000)
  1005. return FLASH_FPGA_CFG_START;
  1006. else
  1007. return FLASH_CFG_START;
  1008. }
  1009. /**
  1010. * t4_load_fw - download firmware
  1011. * @adap: the adapter
  1012. * @fw_data: the firmware image to write
  1013. * @size: image size
  1014. *
  1015. * Write the supplied firmware image to the card's serial flash.
  1016. */
  1017. int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
  1018. {
  1019. u32 csum;
  1020. int ret, addr;
  1021. unsigned int i;
  1022. u8 first_page[SF_PAGE_SIZE];
  1023. const __be32 *p = (const __be32 *)fw_data;
  1024. const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
  1025. unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
  1026. unsigned int fw_img_start = adap->params.sf_fw_start;
  1027. unsigned int fw_start_sec = fw_img_start / sf_sec_size;
  1028. if (!size) {
  1029. dev_err(adap->pdev_dev, "FW image has no data\n");
  1030. return -EINVAL;
  1031. }
  1032. if (size & 511) {
  1033. dev_err(adap->pdev_dev,
  1034. "FW image size not multiple of 512 bytes\n");
  1035. return -EINVAL;
  1036. }
  1037. if (ntohs(hdr->len512) * 512 != size) {
  1038. dev_err(adap->pdev_dev,
  1039. "FW image size differs from size in FW header\n");
  1040. return -EINVAL;
  1041. }
  1042. if (size > FW_MAX_SIZE) {
  1043. dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
  1044. FW_MAX_SIZE);
  1045. return -EFBIG;
  1046. }
  1047. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  1048. csum += ntohl(p[i]);
  1049. if (csum != 0xffffffff) {
  1050. dev_err(adap->pdev_dev,
  1051. "corrupted firmware image, checksum %#x\n", csum);
  1052. return -EINVAL;
  1053. }
  1054. i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
  1055. ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
  1056. if (ret)
  1057. goto out;
  1058. /*
  1059. * We write the correct version at the end so the driver can see a bad
  1060. * version if the FW write fails. Start by writing a copy of the
  1061. * first page with a bad version.
  1062. */
  1063. memcpy(first_page, fw_data, SF_PAGE_SIZE);
  1064. ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
  1065. ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
  1066. if (ret)
  1067. goto out;
  1068. addr = fw_img_start;
  1069. for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
  1070. addr += SF_PAGE_SIZE;
  1071. fw_data += SF_PAGE_SIZE;
  1072. ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
  1073. if (ret)
  1074. goto out;
  1075. }
  1076. ret = t4_write_flash(adap,
  1077. fw_img_start + offsetof(struct fw_hdr, fw_ver),
  1078. sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
  1079. out:
  1080. if (ret)
  1081. dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
  1082. ret);
  1083. return ret;
  1084. }
  1085. #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
  1086. FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
  1087. FW_PORT_CAP_ANEG)
  1088. /**
  1089. * t4_link_start - apply link configuration to MAC/PHY
  1090. * @phy: the PHY to setup
  1091. * @mac: the MAC to setup
  1092. * @lc: the requested link configuration
  1093. *
  1094. * Set up a port's MAC and PHY according to a desired link configuration.
  1095. * - If the PHY can auto-negotiate first decide what to advertise, then
  1096. * enable/disable auto-negotiation as desired, and reset.
  1097. * - If the PHY does not auto-negotiate just reset it.
  1098. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  1099. * otherwise do it later based on the outcome of auto-negotiation.
  1100. */
  1101. int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
  1102. struct link_config *lc)
  1103. {
  1104. struct fw_port_cmd c;
  1105. unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO);
  1106. lc->link_ok = 0;
  1107. if (lc->requested_fc & PAUSE_RX)
  1108. fc |= FW_PORT_CAP_FC_RX;
  1109. if (lc->requested_fc & PAUSE_TX)
  1110. fc |= FW_PORT_CAP_FC_TX;
  1111. memset(&c, 0, sizeof(c));
  1112. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  1113. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  1114. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  1115. FW_LEN16(c));
  1116. if (!(lc->supported & FW_PORT_CAP_ANEG)) {
  1117. c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
  1118. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1119. } else if (lc->autoneg == AUTONEG_DISABLE) {
  1120. c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
  1121. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1122. } else
  1123. c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
  1124. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1125. }
  1126. /**
  1127. * t4_restart_aneg - restart autonegotiation
  1128. * @adap: the adapter
  1129. * @mbox: mbox to use for the FW command
  1130. * @port: the port id
  1131. *
  1132. * Restarts autonegotiation for the selected port.
  1133. */
  1134. int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
  1135. {
  1136. struct fw_port_cmd c;
  1137. memset(&c, 0, sizeof(c));
  1138. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  1139. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  1140. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  1141. FW_LEN16(c));
  1142. c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
  1143. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1144. }
  1145. typedef void (*int_handler_t)(struct adapter *adap);
  1146. struct intr_info {
  1147. unsigned int mask; /* bits to check in interrupt status */
  1148. const char *msg; /* message to print or NULL */
  1149. short stat_idx; /* stat counter to increment or -1 */
  1150. unsigned short fatal; /* whether the condition reported is fatal */
  1151. int_handler_t int_handler; /* platform-specific int handler */
  1152. };
  1153. /**
  1154. * t4_handle_intr_status - table driven interrupt handler
  1155. * @adapter: the adapter that generated the interrupt
  1156. * @reg: the interrupt status register to process
  1157. * @acts: table of interrupt actions
  1158. *
  1159. * A table driven interrupt handler that applies a set of masks to an
  1160. * interrupt status word and performs the corresponding actions if the
  1161. * interrupts described by the mask have occurred. The actions include
  1162. * optionally emitting a warning or alert message. The table is terminated
  1163. * by an entry specifying mask 0. Returns the number of fatal interrupt
  1164. * conditions.
  1165. */
  1166. static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1167. const struct intr_info *acts)
  1168. {
  1169. int fatal = 0;
  1170. unsigned int mask = 0;
  1171. unsigned int status = t4_read_reg(adapter, reg);
  1172. for ( ; acts->mask; ++acts) {
  1173. if (!(status & acts->mask))
  1174. continue;
  1175. if (acts->fatal) {
  1176. fatal++;
  1177. dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  1178. status & acts->mask);
  1179. } else if (acts->msg && printk_ratelimit())
  1180. dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  1181. status & acts->mask);
  1182. if (acts->int_handler)
  1183. acts->int_handler(adapter);
  1184. mask |= acts->mask;
  1185. }
  1186. status &= mask;
  1187. if (status) /* clear processed interrupts */
  1188. t4_write_reg(adapter, reg, status);
  1189. return fatal;
  1190. }
  1191. /*
  1192. * Interrupt handler for the PCIE module.
  1193. */
  1194. static void pcie_intr_handler(struct adapter *adapter)
  1195. {
  1196. static const struct intr_info sysbus_intr_info[] = {
  1197. { RNPP, "RXNP array parity error", -1, 1 },
  1198. { RPCP, "RXPC array parity error", -1, 1 },
  1199. { RCIP, "RXCIF array parity error", -1, 1 },
  1200. { RCCP, "Rx completions control array parity error", -1, 1 },
  1201. { RFTP, "RXFT array parity error", -1, 1 },
  1202. { 0 }
  1203. };
  1204. static const struct intr_info pcie_port_intr_info[] = {
  1205. { TPCP, "TXPC array parity error", -1, 1 },
  1206. { TNPP, "TXNP array parity error", -1, 1 },
  1207. { TFTP, "TXFT array parity error", -1, 1 },
  1208. { TCAP, "TXCA array parity error", -1, 1 },
  1209. { TCIP, "TXCIF array parity error", -1, 1 },
  1210. { RCAP, "RXCA array parity error", -1, 1 },
  1211. { OTDD, "outbound request TLP discarded", -1, 1 },
  1212. { RDPE, "Rx data parity error", -1, 1 },
  1213. { TDUE, "Tx uncorrectable data error", -1, 1 },
  1214. { 0 }
  1215. };
  1216. static const struct intr_info pcie_intr_info[] = {
  1217. { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
  1218. { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
  1219. { MSIDATAPERR, "MSI data parity error", -1, 1 },
  1220. { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
  1221. { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
  1222. { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
  1223. { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
  1224. { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
  1225. { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
  1226. { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
  1227. { CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
  1228. { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
  1229. { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
  1230. { DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
  1231. { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
  1232. { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
  1233. { HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
  1234. { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
  1235. { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
  1236. { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
  1237. { FIDPERR, "PCI FID parity error", -1, 1 },
  1238. { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
  1239. { MATAGPERR, "PCI MA tag parity error", -1, 1 },
  1240. { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
  1241. { RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
  1242. { RXWRPERR, "PCI Rx write parity error", -1, 1 },
  1243. { RPLPERR, "PCI replay buffer parity error", -1, 1 },
  1244. { PCIESINT, "PCI core secondary fault", -1, 1 },
  1245. { PCIEPINT, "PCI core primary fault", -1, 1 },
  1246. { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
  1247. { 0 }
  1248. };
  1249. static struct intr_info t5_pcie_intr_info[] = {
  1250. { MSTGRPPERR, "Master Response Read Queue parity error",
  1251. -1, 1 },
  1252. { MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
  1253. { MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
  1254. { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
  1255. { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
  1256. { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
  1257. { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
  1258. { PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
  1259. -1, 1 },
  1260. { PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
  1261. -1, 1 },
  1262. { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
  1263. { MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
  1264. { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
  1265. { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
  1266. { DREQWRPERR, "PCI DMA channel write request parity error",
  1267. -1, 1 },
  1268. { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
  1269. { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
  1270. { HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
  1271. { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
  1272. { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
  1273. { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
  1274. { FIDPERR, "PCI FID parity error", -1, 1 },
  1275. { VFIDPERR, "PCI INTx clear parity error", -1, 1 },
  1276. { MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
  1277. { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
  1278. { IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
  1279. -1, 1 },
  1280. { IPRXDATAGRPPERR, "PCI IP Rx data group parity error", -1, 1 },
  1281. { RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
  1282. { IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
  1283. { TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
  1284. { READRSPERR, "Outbound read error", -1, 0 },
  1285. { 0 }
  1286. };
  1287. int fat;
  1288. if (is_t4(adapter->params.chip))
  1289. fat = t4_handle_intr_status(adapter,
  1290. PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
  1291. sysbus_intr_info) +
  1292. t4_handle_intr_status(adapter,
  1293. PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
  1294. pcie_port_intr_info) +
  1295. t4_handle_intr_status(adapter, PCIE_INT_CAUSE,
  1296. pcie_intr_info);
  1297. else
  1298. fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE,
  1299. t5_pcie_intr_info);
  1300. if (fat)
  1301. t4_fatal_err(adapter);
  1302. }
  1303. /*
  1304. * TP interrupt handler.
  1305. */
  1306. static void tp_intr_handler(struct adapter *adapter)
  1307. {
  1308. static const struct intr_info tp_intr_info[] = {
  1309. { 0x3fffffff, "TP parity error", -1, 1 },
  1310. { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
  1311. { 0 }
  1312. };
  1313. if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
  1314. t4_fatal_err(adapter);
  1315. }
  1316. /*
  1317. * SGE interrupt handler.
  1318. */
  1319. static void sge_intr_handler(struct adapter *adapter)
  1320. {
  1321. u64 v;
  1322. static const struct intr_info sge_intr_info[] = {
  1323. { ERR_CPL_EXCEED_IQE_SIZE,
  1324. "SGE received CPL exceeding IQE size", -1, 1 },
  1325. { ERR_INVALID_CIDX_INC,
  1326. "SGE GTS CIDX increment too large", -1, 0 },
  1327. { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
  1328. { DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
  1329. { DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
  1330. { ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
  1331. { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
  1332. "SGE IQID > 1023 received CPL for FL", -1, 0 },
  1333. { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
  1334. 0 },
  1335. { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
  1336. 0 },
  1337. { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
  1338. 0 },
  1339. { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
  1340. 0 },
  1341. { ERR_ING_CTXT_PRIO,
  1342. "SGE too many priority ingress contexts", -1, 0 },
  1343. { ERR_EGR_CTXT_PRIO,
  1344. "SGE too many priority egress contexts", -1, 0 },
  1345. { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
  1346. { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
  1347. { 0 }
  1348. };
  1349. v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
  1350. ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
  1351. if (v) {
  1352. dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
  1353. (unsigned long long)v);
  1354. t4_write_reg(adapter, SGE_INT_CAUSE1, v);
  1355. t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
  1356. }
  1357. if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
  1358. v != 0)
  1359. t4_fatal_err(adapter);
  1360. }
  1361. /*
  1362. * CIM interrupt handler.
  1363. */
  1364. static void cim_intr_handler(struct adapter *adapter)
  1365. {
  1366. static const struct intr_info cim_intr_info[] = {
  1367. { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
  1368. { OBQPARERR, "CIM OBQ parity error", -1, 1 },
  1369. { IBQPARERR, "CIM IBQ parity error", -1, 1 },
  1370. { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
  1371. { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
  1372. { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
  1373. { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
  1374. { 0 }
  1375. };
  1376. static const struct intr_info cim_upintr_info[] = {
  1377. { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
  1378. { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
  1379. { ILLWRINT, "CIM illegal write", -1, 1 },
  1380. { ILLRDINT, "CIM illegal read", -1, 1 },
  1381. { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
  1382. { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
  1383. { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
  1384. { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
  1385. { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
  1386. { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
  1387. { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
  1388. { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
  1389. { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
  1390. { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
  1391. { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
  1392. { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
  1393. { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
  1394. { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
  1395. { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
  1396. { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
  1397. { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
  1398. { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
  1399. { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
  1400. { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
  1401. { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
  1402. { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
  1403. { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
  1404. { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
  1405. { 0 }
  1406. };
  1407. int fat;
  1408. if (t4_read_reg(adapter, MA_PCIE_FW) & FW_PCIE_FW_ERR)
  1409. t4_report_fw_error(adapter);
  1410. fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
  1411. cim_intr_info) +
  1412. t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
  1413. cim_upintr_info);
  1414. if (fat)
  1415. t4_fatal_err(adapter);
  1416. }
  1417. /*
  1418. * ULP RX interrupt handler.
  1419. */
  1420. static void ulprx_intr_handler(struct adapter *adapter)
  1421. {
  1422. static const struct intr_info ulprx_intr_info[] = {
  1423. { 0x1800000, "ULPRX context error", -1, 1 },
  1424. { 0x7fffff, "ULPRX parity error", -1, 1 },
  1425. { 0 }
  1426. };
  1427. if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
  1428. t4_fatal_err(adapter);
  1429. }
  1430. /*
  1431. * ULP TX interrupt handler.
  1432. */
  1433. static void ulptx_intr_handler(struct adapter *adapter)
  1434. {
  1435. static const struct intr_info ulptx_intr_info[] = {
  1436. { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
  1437. 0 },
  1438. { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
  1439. 0 },
  1440. { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
  1441. 0 },
  1442. { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
  1443. 0 },
  1444. { 0xfffffff, "ULPTX parity error", -1, 1 },
  1445. { 0 }
  1446. };
  1447. if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
  1448. t4_fatal_err(adapter);
  1449. }
  1450. /*
  1451. * PM TX interrupt handler.
  1452. */
  1453. static void pmtx_intr_handler(struct adapter *adapter)
  1454. {
  1455. static const struct intr_info pmtx_intr_info[] = {
  1456. { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
  1457. { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
  1458. { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
  1459. { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
  1460. { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
  1461. { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
  1462. { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
  1463. { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
  1464. { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
  1465. { 0 }
  1466. };
  1467. if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
  1468. t4_fatal_err(adapter);
  1469. }
  1470. /*
  1471. * PM RX interrupt handler.
  1472. */
  1473. static void pmrx_intr_handler(struct adapter *adapter)
  1474. {
  1475. static const struct intr_info pmrx_intr_info[] = {
  1476. { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
  1477. { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
  1478. { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
  1479. { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
  1480. { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
  1481. { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
  1482. { 0 }
  1483. };
  1484. if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
  1485. t4_fatal_err(adapter);
  1486. }
  1487. /*
  1488. * CPL switch interrupt handler.
  1489. */
  1490. static void cplsw_intr_handler(struct adapter *adapter)
  1491. {
  1492. static const struct intr_info cplsw_intr_info[] = {
  1493. { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
  1494. { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
  1495. { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
  1496. { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
  1497. { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
  1498. { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
  1499. { 0 }
  1500. };
  1501. if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
  1502. t4_fatal_err(adapter);
  1503. }
  1504. /*
  1505. * LE interrupt handler.
  1506. */
  1507. static void le_intr_handler(struct adapter *adap)
  1508. {
  1509. static const struct intr_info le_intr_info[] = {
  1510. { LIPMISS, "LE LIP miss", -1, 0 },
  1511. { LIP0, "LE 0 LIP error", -1, 0 },
  1512. { PARITYERR, "LE parity error", -1, 1 },
  1513. { UNKNOWNCMD, "LE unknown command", -1, 1 },
  1514. { REQQPARERR, "LE request queue parity error", -1, 1 },
  1515. { 0 }
  1516. };
  1517. if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
  1518. t4_fatal_err(adap);
  1519. }
  1520. /*
  1521. * MPS interrupt handler.
  1522. */
  1523. static void mps_intr_handler(struct adapter *adapter)
  1524. {
  1525. static const struct intr_info mps_rx_intr_info[] = {
  1526. { 0xffffff, "MPS Rx parity error", -1, 1 },
  1527. { 0 }
  1528. };
  1529. static const struct intr_info mps_tx_intr_info[] = {
  1530. { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
  1531. { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
  1532. { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
  1533. { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
  1534. { BUBBLE, "MPS Tx underflow", -1, 1 },
  1535. { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
  1536. { FRMERR, "MPS Tx framing error", -1, 1 },
  1537. { 0 }
  1538. };
  1539. static const struct intr_info mps_trc_intr_info[] = {
  1540. { FILTMEM, "MPS TRC filter parity error", -1, 1 },
  1541. { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
  1542. { MISCPERR, "MPS TRC misc parity error", -1, 1 },
  1543. { 0 }
  1544. };
  1545. static const struct intr_info mps_stat_sram_intr_info[] = {
  1546. { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
  1547. { 0 }
  1548. };
  1549. static const struct intr_info mps_stat_tx_intr_info[] = {
  1550. { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
  1551. { 0 }
  1552. };
  1553. static const struct intr_info mps_stat_rx_intr_info[] = {
  1554. { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
  1555. { 0 }
  1556. };
  1557. static const struct intr_info mps_cls_intr_info[] = {
  1558. { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
  1559. { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
  1560. { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
  1561. { 0 }
  1562. };
  1563. int fat;
  1564. fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
  1565. mps_rx_intr_info) +
  1566. t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
  1567. mps_tx_intr_info) +
  1568. t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
  1569. mps_trc_intr_info) +
  1570. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
  1571. mps_stat_sram_intr_info) +
  1572. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
  1573. mps_stat_tx_intr_info) +
  1574. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
  1575. mps_stat_rx_intr_info) +
  1576. t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
  1577. mps_cls_intr_info);
  1578. t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
  1579. RXINT | TXINT | STATINT);
  1580. t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
  1581. if (fat)
  1582. t4_fatal_err(adapter);
  1583. }
  1584. #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
  1585. /*
  1586. * EDC/MC interrupt handler.
  1587. */
  1588. static void mem_intr_handler(struct adapter *adapter, int idx)
  1589. {
  1590. static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
  1591. unsigned int addr, cnt_addr, v;
  1592. if (idx <= MEM_EDC1) {
  1593. addr = EDC_REG(EDC_INT_CAUSE, idx);
  1594. cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
  1595. } else if (idx == MEM_MC) {
  1596. if (is_t4(adapter->params.chip)) {
  1597. addr = MC_INT_CAUSE;
  1598. cnt_addr = MC_ECC_STATUS;
  1599. } else {
  1600. addr = MC_P_INT_CAUSE;
  1601. cnt_addr = MC_P_ECC_STATUS;
  1602. }
  1603. } else {
  1604. addr = MC_REG(MC_P_INT_CAUSE, 1);
  1605. cnt_addr = MC_REG(MC_P_ECC_STATUS, 1);
  1606. }
  1607. v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
  1608. if (v & PERR_INT_CAUSE)
  1609. dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
  1610. name[idx]);
  1611. if (v & ECC_CE_INT_CAUSE) {
  1612. u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
  1613. t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
  1614. if (printk_ratelimit())
  1615. dev_warn(adapter->pdev_dev,
  1616. "%u %s correctable ECC data error%s\n",
  1617. cnt, name[idx], cnt > 1 ? "s" : "");
  1618. }
  1619. if (v & ECC_UE_INT_CAUSE)
  1620. dev_alert(adapter->pdev_dev,
  1621. "%s uncorrectable ECC data error\n", name[idx]);
  1622. t4_write_reg(adapter, addr, v);
  1623. if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
  1624. t4_fatal_err(adapter);
  1625. }
  1626. /*
  1627. * MA interrupt handler.
  1628. */
  1629. static void ma_intr_handler(struct adapter *adap)
  1630. {
  1631. u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
  1632. if (status & MEM_PERR_INT_CAUSE) {
  1633. dev_alert(adap->pdev_dev,
  1634. "MA parity error, parity status %#x\n",
  1635. t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
  1636. if (is_t5(adap->params.chip))
  1637. dev_alert(adap->pdev_dev,
  1638. "MA parity error, parity status %#x\n",
  1639. t4_read_reg(adap,
  1640. MA_PARITY_ERROR_STATUS2));
  1641. }
  1642. if (status & MEM_WRAP_INT_CAUSE) {
  1643. v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
  1644. dev_alert(adap->pdev_dev, "MA address wrap-around error by "
  1645. "client %u to address %#x\n",
  1646. MEM_WRAP_CLIENT_NUM_GET(v),
  1647. MEM_WRAP_ADDRESS_GET(v) << 4);
  1648. }
  1649. t4_write_reg(adap, MA_INT_CAUSE, status);
  1650. t4_fatal_err(adap);
  1651. }
  1652. /*
  1653. * SMB interrupt handler.
  1654. */
  1655. static void smb_intr_handler(struct adapter *adap)
  1656. {
  1657. static const struct intr_info smb_intr_info[] = {
  1658. { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
  1659. { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
  1660. { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
  1661. { 0 }
  1662. };
  1663. if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
  1664. t4_fatal_err(adap);
  1665. }
  1666. /*
  1667. * NC-SI interrupt handler.
  1668. */
  1669. static void ncsi_intr_handler(struct adapter *adap)
  1670. {
  1671. static const struct intr_info ncsi_intr_info[] = {
  1672. { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
  1673. { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
  1674. { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
  1675. { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
  1676. { 0 }
  1677. };
  1678. if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
  1679. t4_fatal_err(adap);
  1680. }
  1681. /*
  1682. * XGMAC interrupt handler.
  1683. */
  1684. static void xgmac_intr_handler(struct adapter *adap, int port)
  1685. {
  1686. u32 v, int_cause_reg;
  1687. if (is_t4(adap->params.chip))
  1688. int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE);
  1689. else
  1690. int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE);
  1691. v = t4_read_reg(adap, int_cause_reg);
  1692. v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
  1693. if (!v)
  1694. return;
  1695. if (v & TXFIFO_PRTY_ERR)
  1696. dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
  1697. port);
  1698. if (v & RXFIFO_PRTY_ERR)
  1699. dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
  1700. port);
  1701. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
  1702. t4_fatal_err(adap);
  1703. }
  1704. /*
  1705. * PL interrupt handler.
  1706. */
  1707. static void pl_intr_handler(struct adapter *adap)
  1708. {
  1709. static const struct intr_info pl_intr_info[] = {
  1710. { FATALPERR, "T4 fatal parity error", -1, 1 },
  1711. { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
  1712. { 0 }
  1713. };
  1714. if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
  1715. t4_fatal_err(adap);
  1716. }
  1717. #define PF_INTR_MASK (PFSW)
  1718. #define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
  1719. EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
  1720. CPL_SWITCH | SGE | ULP_TX)
  1721. /**
  1722. * t4_slow_intr_handler - control path interrupt handler
  1723. * @adapter: the adapter
  1724. *
  1725. * T4 interrupt handler for non-data global interrupt events, e.g., errors.
  1726. * The designation 'slow' is because it involves register reads, while
  1727. * data interrupts typically don't involve any MMIOs.
  1728. */
  1729. int t4_slow_intr_handler(struct adapter *adapter)
  1730. {
  1731. u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
  1732. if (!(cause & GLBL_INTR_MASK))
  1733. return 0;
  1734. if (cause & CIM)
  1735. cim_intr_handler(adapter);
  1736. if (cause & MPS)
  1737. mps_intr_handler(adapter);
  1738. if (cause & NCSI)
  1739. ncsi_intr_handler(adapter);
  1740. if (cause & PL)
  1741. pl_intr_handler(adapter);
  1742. if (cause & SMB)
  1743. smb_intr_handler(adapter);
  1744. if (cause & XGMAC0)
  1745. xgmac_intr_handler(adapter, 0);
  1746. if (cause & XGMAC1)
  1747. xgmac_intr_handler(adapter, 1);
  1748. if (cause & XGMAC_KR0)
  1749. xgmac_intr_handler(adapter, 2);
  1750. if (cause & XGMAC_KR1)
  1751. xgmac_intr_handler(adapter, 3);
  1752. if (cause & PCIE)
  1753. pcie_intr_handler(adapter);
  1754. if (cause & MC)
  1755. mem_intr_handler(adapter, MEM_MC);
  1756. if (!is_t4(adapter->params.chip) && (cause & MC1))
  1757. mem_intr_handler(adapter, MEM_MC1);
  1758. if (cause & EDC0)
  1759. mem_intr_handler(adapter, MEM_EDC0);
  1760. if (cause & EDC1)
  1761. mem_intr_handler(adapter, MEM_EDC1);
  1762. if (cause & LE)
  1763. le_intr_handler(adapter);
  1764. if (cause & TP)
  1765. tp_intr_handler(adapter);
  1766. if (cause & MA)
  1767. ma_intr_handler(adapter);
  1768. if (cause & PM_TX)
  1769. pmtx_intr_handler(adapter);
  1770. if (cause & PM_RX)
  1771. pmrx_intr_handler(adapter);
  1772. if (cause & ULP_RX)
  1773. ulprx_intr_handler(adapter);
  1774. if (cause & CPL_SWITCH)
  1775. cplsw_intr_handler(adapter);
  1776. if (cause & SGE)
  1777. sge_intr_handler(adapter);
  1778. if (cause & ULP_TX)
  1779. ulptx_intr_handler(adapter);
  1780. /* Clear the interrupts just processed for which we are the master. */
  1781. t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
  1782. (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
  1783. return 1;
  1784. }
  1785. /**
  1786. * t4_intr_enable - enable interrupts
  1787. * @adapter: the adapter whose interrupts should be enabled
  1788. *
  1789. * Enable PF-specific interrupts for the calling function and the top-level
  1790. * interrupt concentrator for global interrupts. Interrupts are already
  1791. * enabled at each module, here we just enable the roots of the interrupt
  1792. * hierarchies.
  1793. *
  1794. * Note: this function should be called only when the driver manages
  1795. * non PF-specific interrupts from the various HW modules. Only one PCI
  1796. * function at a time should be doing this.
  1797. */
  1798. void t4_intr_enable(struct adapter *adapter)
  1799. {
  1800. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1801. t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
  1802. ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
  1803. ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
  1804. ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
  1805. ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
  1806. ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
  1807. ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
  1808. DBFIFO_HP_INT | DBFIFO_LP_INT |
  1809. EGRESS_SIZE_ERR);
  1810. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
  1811. t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
  1812. }
  1813. /**
  1814. * t4_intr_disable - disable interrupts
  1815. * @adapter: the adapter whose interrupts should be disabled
  1816. *
  1817. * Disable interrupts. We only disable the top-level interrupt
  1818. * concentrators. The caller must be a PCI function managing global
  1819. * interrupts.
  1820. */
  1821. void t4_intr_disable(struct adapter *adapter)
  1822. {
  1823. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1824. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
  1825. t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
  1826. }
  1827. /**
  1828. * hash_mac_addr - return the hash value of a MAC address
  1829. * @addr: the 48-bit Ethernet MAC address
  1830. *
  1831. * Hashes a MAC address according to the hash function used by HW inexact
  1832. * (hash) address matching.
  1833. */
  1834. static int hash_mac_addr(const u8 *addr)
  1835. {
  1836. u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
  1837. u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
  1838. a ^= b;
  1839. a ^= (a >> 12);
  1840. a ^= (a >> 6);
  1841. return a & 0x3f;
  1842. }
  1843. /**
  1844. * t4_config_rss_range - configure a portion of the RSS mapping table
  1845. * @adapter: the adapter
  1846. * @mbox: mbox to use for the FW command
  1847. * @viid: virtual interface whose RSS subtable is to be written
  1848. * @start: start entry in the table to write
  1849. * @n: how many table entries to write
  1850. * @rspq: values for the response queue lookup table
  1851. * @nrspq: number of values in @rspq
  1852. *
  1853. * Programs the selected part of the VI's RSS mapping table with the
  1854. * provided values. If @nrspq < @n the supplied values are used repeatedly
  1855. * until the full table range is populated.
  1856. *
  1857. * The caller must ensure the values in @rspq are in the range allowed for
  1858. * @viid.
  1859. */
  1860. int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
  1861. int start, int n, const u16 *rspq, unsigned int nrspq)
  1862. {
  1863. int ret;
  1864. const u16 *rsp = rspq;
  1865. const u16 *rsp_end = rspq + nrspq;
  1866. struct fw_rss_ind_tbl_cmd cmd;
  1867. memset(&cmd, 0, sizeof(cmd));
  1868. cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
  1869. FW_CMD_REQUEST | FW_CMD_WRITE |
  1870. FW_RSS_IND_TBL_CMD_VIID(viid));
  1871. cmd.retval_len16 = htonl(FW_LEN16(cmd));
  1872. /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
  1873. while (n > 0) {
  1874. int nq = min(n, 32);
  1875. __be32 *qp = &cmd.iq0_to_iq2;
  1876. cmd.niqid = htons(nq);
  1877. cmd.startidx = htons(start);
  1878. start += nq;
  1879. n -= nq;
  1880. while (nq > 0) {
  1881. unsigned int v;
  1882. v = FW_RSS_IND_TBL_CMD_IQ0(*rsp);
  1883. if (++rsp >= rsp_end)
  1884. rsp = rspq;
  1885. v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp);
  1886. if (++rsp >= rsp_end)
  1887. rsp = rspq;
  1888. v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp);
  1889. if (++rsp >= rsp_end)
  1890. rsp = rspq;
  1891. *qp++ = htonl(v);
  1892. nq -= 3;
  1893. }
  1894. ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
  1895. if (ret)
  1896. return ret;
  1897. }
  1898. return 0;
  1899. }
  1900. /**
  1901. * t4_config_glbl_rss - configure the global RSS mode
  1902. * @adapter: the adapter
  1903. * @mbox: mbox to use for the FW command
  1904. * @mode: global RSS mode
  1905. * @flags: mode-specific flags
  1906. *
  1907. * Sets the global RSS mode.
  1908. */
  1909. int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
  1910. unsigned int flags)
  1911. {
  1912. struct fw_rss_glb_config_cmd c;
  1913. memset(&c, 0, sizeof(c));
  1914. c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
  1915. FW_CMD_REQUEST | FW_CMD_WRITE);
  1916. c.retval_len16 = htonl(FW_LEN16(c));
  1917. if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
  1918. c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1919. } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
  1920. c.u.basicvirtual.mode_pkd =
  1921. htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1922. c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
  1923. } else
  1924. return -EINVAL;
  1925. return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
  1926. }
  1927. /**
  1928. * t4_tp_get_tcp_stats - read TP's TCP MIB counters
  1929. * @adap: the adapter
  1930. * @v4: holds the TCP/IP counter values
  1931. * @v6: holds the TCP/IPv6 counter values
  1932. *
  1933. * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
  1934. * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
  1935. */
  1936. void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
  1937. struct tp_tcp_stats *v6)
  1938. {
  1939. u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
  1940. #define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
  1941. #define STAT(x) val[STAT_IDX(x)]
  1942. #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
  1943. if (v4) {
  1944. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1945. ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
  1946. v4->tcpOutRsts = STAT(OUT_RST);
  1947. v4->tcpInSegs = STAT64(IN_SEG);
  1948. v4->tcpOutSegs = STAT64(OUT_SEG);
  1949. v4->tcpRetransSegs = STAT64(RXT_SEG);
  1950. }
  1951. if (v6) {
  1952. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1953. ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
  1954. v6->tcpOutRsts = STAT(OUT_RST);
  1955. v6->tcpInSegs = STAT64(IN_SEG);
  1956. v6->tcpOutSegs = STAT64(OUT_SEG);
  1957. v6->tcpRetransSegs = STAT64(RXT_SEG);
  1958. }
  1959. #undef STAT64
  1960. #undef STAT
  1961. #undef STAT_IDX
  1962. }
  1963. /**
  1964. * t4_read_mtu_tbl - returns the values in the HW path MTU table
  1965. * @adap: the adapter
  1966. * @mtus: where to store the MTU values
  1967. * @mtu_log: where to store the MTU base-2 log (may be %NULL)
  1968. *
  1969. * Reads the HW path MTU table.
  1970. */
  1971. void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
  1972. {
  1973. u32 v;
  1974. int i;
  1975. for (i = 0; i < NMTUS; ++i) {
  1976. t4_write_reg(adap, TP_MTU_TABLE,
  1977. MTUINDEX(0xff) | MTUVALUE(i));
  1978. v = t4_read_reg(adap, TP_MTU_TABLE);
  1979. mtus[i] = MTUVALUE_GET(v);
  1980. if (mtu_log)
  1981. mtu_log[i] = MTUWIDTH_GET(v);
  1982. }
  1983. }
  1984. /**
  1985. * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
  1986. * @adap: the adapter
  1987. * @addr: the indirect TP register address
  1988. * @mask: specifies the field within the register to modify
  1989. * @val: new value for the field
  1990. *
  1991. * Sets a field of an indirect TP register to the given value.
  1992. */
  1993. void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
  1994. unsigned int mask, unsigned int val)
  1995. {
  1996. t4_write_reg(adap, TP_PIO_ADDR, addr);
  1997. val |= t4_read_reg(adap, TP_PIO_DATA) & ~mask;
  1998. t4_write_reg(adap, TP_PIO_DATA, val);
  1999. }
  2000. /**
  2001. * init_cong_ctrl - initialize congestion control parameters
  2002. * @a: the alpha values for congestion control
  2003. * @b: the beta values for congestion control
  2004. *
  2005. * Initialize the congestion control parameters.
  2006. */
  2007. static void init_cong_ctrl(unsigned short *a, unsigned short *b)
  2008. {
  2009. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  2010. a[9] = 2;
  2011. a[10] = 3;
  2012. a[11] = 4;
  2013. a[12] = 5;
  2014. a[13] = 6;
  2015. a[14] = 7;
  2016. a[15] = 8;
  2017. a[16] = 9;
  2018. a[17] = 10;
  2019. a[18] = 14;
  2020. a[19] = 17;
  2021. a[20] = 21;
  2022. a[21] = 25;
  2023. a[22] = 30;
  2024. a[23] = 35;
  2025. a[24] = 45;
  2026. a[25] = 60;
  2027. a[26] = 80;
  2028. a[27] = 100;
  2029. a[28] = 200;
  2030. a[29] = 300;
  2031. a[30] = 400;
  2032. a[31] = 500;
  2033. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  2034. b[9] = b[10] = 1;
  2035. b[11] = b[12] = 2;
  2036. b[13] = b[14] = b[15] = b[16] = 3;
  2037. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  2038. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  2039. b[28] = b[29] = 6;
  2040. b[30] = b[31] = 7;
  2041. }
  2042. /* The minimum additive increment value for the congestion control table */
  2043. #define CC_MIN_INCR 2U
  2044. /**
  2045. * t4_load_mtus - write the MTU and congestion control HW tables
  2046. * @adap: the adapter
  2047. * @mtus: the values for the MTU table
  2048. * @alpha: the values for the congestion control alpha parameter
  2049. * @beta: the values for the congestion control beta parameter
  2050. *
  2051. * Write the HW MTU table with the supplied MTUs and the high-speed
  2052. * congestion control table with the supplied alpha, beta, and MTUs.
  2053. * We write the two tables together because the additive increments
  2054. * depend on the MTUs.
  2055. */
  2056. void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
  2057. const unsigned short *alpha, const unsigned short *beta)
  2058. {
  2059. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  2060. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  2061. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  2062. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  2063. };
  2064. unsigned int i, w;
  2065. for (i = 0; i < NMTUS; ++i) {
  2066. unsigned int mtu = mtus[i];
  2067. unsigned int log2 = fls(mtu);
  2068. if (!(mtu & ((1 << log2) >> 2))) /* round */
  2069. log2--;
  2070. t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
  2071. MTUWIDTH(log2) | MTUVALUE(mtu));
  2072. for (w = 0; w < NCCTRL_WIN; ++w) {
  2073. unsigned int inc;
  2074. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  2075. CC_MIN_INCR);
  2076. t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
  2077. (w << 16) | (beta[w] << 13) | inc);
  2078. }
  2079. }
  2080. }
  2081. /**
  2082. * get_mps_bg_map - return the buffer groups associated with a port
  2083. * @adap: the adapter
  2084. * @idx: the port index
  2085. *
  2086. * Returns a bitmap indicating which MPS buffer groups are associated
  2087. * with the given port. Bit i is set if buffer group i is used by the
  2088. * port.
  2089. */
  2090. static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
  2091. {
  2092. u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
  2093. if (n == 0)
  2094. return idx == 0 ? 0xf : 0;
  2095. if (n == 1)
  2096. return idx < 2 ? (3 << (2 * idx)) : 0;
  2097. return 1 << idx;
  2098. }
  2099. /**
  2100. * t4_get_port_type_description - return Port Type string description
  2101. * @port_type: firmware Port Type enumeration
  2102. */
  2103. const char *t4_get_port_type_description(enum fw_port_type port_type)
  2104. {
  2105. static const char *const port_type_description[] = {
  2106. "R XFI",
  2107. "R XAUI",
  2108. "T SGMII",
  2109. "T XFI",
  2110. "T XAUI",
  2111. "KX4",
  2112. "CX4",
  2113. "KX",
  2114. "KR",
  2115. "R SFP+",
  2116. "KR/KX",
  2117. "KR/KX/KX4",
  2118. "R QSFP_10G",
  2119. "",
  2120. "R QSFP",
  2121. "R BP40_BA",
  2122. };
  2123. if (port_type < ARRAY_SIZE(port_type_description))
  2124. return port_type_description[port_type];
  2125. return "UNKNOWN";
  2126. }
  2127. /**
  2128. * t4_get_port_stats - collect port statistics
  2129. * @adap: the adapter
  2130. * @idx: the port index
  2131. * @p: the stats structure to fill
  2132. *
  2133. * Collect statistics related to the given port from HW.
  2134. */
  2135. void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
  2136. {
  2137. u32 bgmap = get_mps_bg_map(adap, idx);
  2138. #define GET_STAT(name) \
  2139. t4_read_reg64(adap, \
  2140. (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
  2141. T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
  2142. #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
  2143. p->tx_octets = GET_STAT(TX_PORT_BYTES);
  2144. p->tx_frames = GET_STAT(TX_PORT_FRAMES);
  2145. p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
  2146. p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
  2147. p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
  2148. p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
  2149. p->tx_frames_64 = GET_STAT(TX_PORT_64B);
  2150. p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
  2151. p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
  2152. p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
  2153. p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
  2154. p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
  2155. p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
  2156. p->tx_drop = GET_STAT(TX_PORT_DROP);
  2157. p->tx_pause = GET_STAT(TX_PORT_PAUSE);
  2158. p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
  2159. p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
  2160. p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
  2161. p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
  2162. p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
  2163. p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
  2164. p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
  2165. p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
  2166. p->rx_octets = GET_STAT(RX_PORT_BYTES);
  2167. p->rx_frames = GET_STAT(RX_PORT_FRAMES);
  2168. p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
  2169. p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
  2170. p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
  2171. p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
  2172. p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
  2173. p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
  2174. p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
  2175. p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
  2176. p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
  2177. p->rx_frames_64 = GET_STAT(RX_PORT_64B);
  2178. p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
  2179. p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
  2180. p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
  2181. p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
  2182. p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
  2183. p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
  2184. p->rx_pause = GET_STAT(RX_PORT_PAUSE);
  2185. p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
  2186. p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
  2187. p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
  2188. p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
  2189. p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
  2190. p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
  2191. p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
  2192. p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
  2193. p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
  2194. p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
  2195. p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
  2196. p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
  2197. p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
  2198. p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
  2199. p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
  2200. p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
  2201. #undef GET_STAT
  2202. #undef GET_STAT_COM
  2203. }
  2204. /**
  2205. * t4_wol_magic_enable - enable/disable magic packet WoL
  2206. * @adap: the adapter
  2207. * @port: the physical port index
  2208. * @addr: MAC address expected in magic packets, %NULL to disable
  2209. *
  2210. * Enables/disables magic packet wake-on-LAN for the selected port.
  2211. */
  2212. void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
  2213. const u8 *addr)
  2214. {
  2215. u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
  2216. if (is_t4(adap->params.chip)) {
  2217. mag_id_reg_l = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO);
  2218. mag_id_reg_h = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI);
  2219. port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2);
  2220. } else {
  2221. mag_id_reg_l = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_LO);
  2222. mag_id_reg_h = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_HI);
  2223. port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2);
  2224. }
  2225. if (addr) {
  2226. t4_write_reg(adap, mag_id_reg_l,
  2227. (addr[2] << 24) | (addr[3] << 16) |
  2228. (addr[4] << 8) | addr[5]);
  2229. t4_write_reg(adap, mag_id_reg_h,
  2230. (addr[0] << 8) | addr[1]);
  2231. }
  2232. t4_set_reg_field(adap, port_cfg_reg, MAGICEN,
  2233. addr ? MAGICEN : 0);
  2234. }
  2235. /**
  2236. * t4_wol_pat_enable - enable/disable pattern-based WoL
  2237. * @adap: the adapter
  2238. * @port: the physical port index
  2239. * @map: bitmap of which HW pattern filters to set
  2240. * @mask0: byte mask for bytes 0-63 of a packet
  2241. * @mask1: byte mask for bytes 64-127 of a packet
  2242. * @crc: Ethernet CRC for selected bytes
  2243. * @enable: enable/disable switch
  2244. *
  2245. * Sets the pattern filters indicated in @map to mask out the bytes
  2246. * specified in @mask0/@mask1 in received packets and compare the CRC of
  2247. * the resulting packet against @crc. If @enable is %true pattern-based
  2248. * WoL is enabled, otherwise disabled.
  2249. */
  2250. int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
  2251. u64 mask0, u64 mask1, unsigned int crc, bool enable)
  2252. {
  2253. int i;
  2254. u32 port_cfg_reg;
  2255. if (is_t4(adap->params.chip))
  2256. port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2);
  2257. else
  2258. port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2);
  2259. if (!enable) {
  2260. t4_set_reg_field(adap, port_cfg_reg, PATEN, 0);
  2261. return 0;
  2262. }
  2263. if (map > 0xff)
  2264. return -EINVAL;
  2265. #define EPIO_REG(name) \
  2266. (is_t4(adap->params.chip) ? PORT_REG(port, XGMAC_PORT_EPIO_##name) : \
  2267. T5_PORT_REG(port, MAC_PORT_EPIO_##name))
  2268. t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
  2269. t4_write_reg(adap, EPIO_REG(DATA2), mask1);
  2270. t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
  2271. for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
  2272. if (!(map & 1))
  2273. continue;
  2274. /* write byte masks */
  2275. t4_write_reg(adap, EPIO_REG(DATA0), mask0);
  2276. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
  2277. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2278. if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
  2279. return -ETIMEDOUT;
  2280. /* write CRC */
  2281. t4_write_reg(adap, EPIO_REG(DATA0), crc);
  2282. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
  2283. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2284. if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
  2285. return -ETIMEDOUT;
  2286. }
  2287. #undef EPIO_REG
  2288. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
  2289. return 0;
  2290. }
  2291. /* t4_mk_filtdelwr - create a delete filter WR
  2292. * @ftid: the filter ID
  2293. * @wr: the filter work request to populate
  2294. * @qid: ingress queue to receive the delete notification
  2295. *
  2296. * Creates a filter work request to delete the supplied filter. If @qid is
  2297. * negative the delete notification is suppressed.
  2298. */
  2299. void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
  2300. {
  2301. memset(wr, 0, sizeof(*wr));
  2302. wr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
  2303. wr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*wr) / 16));
  2304. wr->tid_to_iq = htonl(V_FW_FILTER_WR_TID(ftid) |
  2305. V_FW_FILTER_WR_NOREPLY(qid < 0));
  2306. wr->del_filter_to_l2tix = htonl(F_FW_FILTER_WR_DEL_FILTER);
  2307. if (qid >= 0)
  2308. wr->rx_chan_rx_rpl_iq = htons(V_FW_FILTER_WR_RX_RPL_IQ(qid));
  2309. }
  2310. #define INIT_CMD(var, cmd, rd_wr) do { \
  2311. (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
  2312. FW_CMD_REQUEST | FW_CMD_##rd_wr); \
  2313. (var).retval_len16 = htonl(FW_LEN16(var)); \
  2314. } while (0)
  2315. int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
  2316. u32 addr, u32 val)
  2317. {
  2318. struct fw_ldst_cmd c;
  2319. memset(&c, 0, sizeof(c));
  2320. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2321. FW_CMD_WRITE |
  2322. FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE));
  2323. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2324. c.u.addrval.addr = htonl(addr);
  2325. c.u.addrval.val = htonl(val);
  2326. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2327. }
  2328. /**
  2329. * t4_mdio_rd - read a PHY register through MDIO
  2330. * @adap: the adapter
  2331. * @mbox: mailbox to use for the FW command
  2332. * @phy_addr: the PHY address
  2333. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2334. * @reg: the register to read
  2335. * @valp: where to store the value
  2336. *
  2337. * Issues a FW command through the given mailbox to read a PHY register.
  2338. */
  2339. int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2340. unsigned int mmd, unsigned int reg, u16 *valp)
  2341. {
  2342. int ret;
  2343. struct fw_ldst_cmd c;
  2344. memset(&c, 0, sizeof(c));
  2345. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2346. FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2347. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2348. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2349. FW_LDST_CMD_MMD(mmd));
  2350. c.u.mdio.raddr = htons(reg);
  2351. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2352. if (ret == 0)
  2353. *valp = ntohs(c.u.mdio.rval);
  2354. return ret;
  2355. }
  2356. /**
  2357. * t4_mdio_wr - write a PHY register through MDIO
  2358. * @adap: the adapter
  2359. * @mbox: mailbox to use for the FW command
  2360. * @phy_addr: the PHY address
  2361. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2362. * @reg: the register to write
  2363. * @valp: value to write
  2364. *
  2365. * Issues a FW command through the given mailbox to write a PHY register.
  2366. */
  2367. int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2368. unsigned int mmd, unsigned int reg, u16 val)
  2369. {
  2370. struct fw_ldst_cmd c;
  2371. memset(&c, 0, sizeof(c));
  2372. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2373. FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2374. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2375. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2376. FW_LDST_CMD_MMD(mmd));
  2377. c.u.mdio.raddr = htons(reg);
  2378. c.u.mdio.rval = htons(val);
  2379. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2380. }
  2381. /**
  2382. * t4_sge_decode_idma_state - decode the idma state
  2383. * @adap: the adapter
  2384. * @state: the state idma is stuck in
  2385. */
  2386. void t4_sge_decode_idma_state(struct adapter *adapter, int state)
  2387. {
  2388. static const char * const t4_decode[] = {
  2389. "IDMA_IDLE",
  2390. "IDMA_PUSH_MORE_CPL_FIFO",
  2391. "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
  2392. "Not used",
  2393. "IDMA_PHYSADDR_SEND_PCIEHDR",
  2394. "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
  2395. "IDMA_PHYSADDR_SEND_PAYLOAD",
  2396. "IDMA_SEND_FIFO_TO_IMSG",
  2397. "IDMA_FL_REQ_DATA_FL_PREP",
  2398. "IDMA_FL_REQ_DATA_FL",
  2399. "IDMA_FL_DROP",
  2400. "IDMA_FL_H_REQ_HEADER_FL",
  2401. "IDMA_FL_H_SEND_PCIEHDR",
  2402. "IDMA_FL_H_PUSH_CPL_FIFO",
  2403. "IDMA_FL_H_SEND_CPL",
  2404. "IDMA_FL_H_SEND_IP_HDR_FIRST",
  2405. "IDMA_FL_H_SEND_IP_HDR",
  2406. "IDMA_FL_H_REQ_NEXT_HEADER_FL",
  2407. "IDMA_FL_H_SEND_NEXT_PCIEHDR",
  2408. "IDMA_FL_H_SEND_IP_HDR_PADDING",
  2409. "IDMA_FL_D_SEND_PCIEHDR",
  2410. "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
  2411. "IDMA_FL_D_REQ_NEXT_DATA_FL",
  2412. "IDMA_FL_SEND_PCIEHDR",
  2413. "IDMA_FL_PUSH_CPL_FIFO",
  2414. "IDMA_FL_SEND_CPL",
  2415. "IDMA_FL_SEND_PAYLOAD_FIRST",
  2416. "IDMA_FL_SEND_PAYLOAD",
  2417. "IDMA_FL_REQ_NEXT_DATA_FL",
  2418. "IDMA_FL_SEND_NEXT_PCIEHDR",
  2419. "IDMA_FL_SEND_PADDING",
  2420. "IDMA_FL_SEND_COMPLETION_TO_IMSG",
  2421. "IDMA_FL_SEND_FIFO_TO_IMSG",
  2422. "IDMA_FL_REQ_DATAFL_DONE",
  2423. "IDMA_FL_REQ_HEADERFL_DONE",
  2424. };
  2425. static const char * const t5_decode[] = {
  2426. "IDMA_IDLE",
  2427. "IDMA_ALMOST_IDLE",
  2428. "IDMA_PUSH_MORE_CPL_FIFO",
  2429. "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
  2430. "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
  2431. "IDMA_PHYSADDR_SEND_PCIEHDR",
  2432. "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
  2433. "IDMA_PHYSADDR_SEND_PAYLOAD",
  2434. "IDMA_SEND_FIFO_TO_IMSG",
  2435. "IDMA_FL_REQ_DATA_FL",
  2436. "IDMA_FL_DROP",
  2437. "IDMA_FL_DROP_SEND_INC",
  2438. "IDMA_FL_H_REQ_HEADER_FL",
  2439. "IDMA_FL_H_SEND_PCIEHDR",
  2440. "IDMA_FL_H_PUSH_CPL_FIFO",
  2441. "IDMA_FL_H_SEND_CPL",
  2442. "IDMA_FL_H_SEND_IP_HDR_FIRST",
  2443. "IDMA_FL_H_SEND_IP_HDR",
  2444. "IDMA_FL_H_REQ_NEXT_HEADER_FL",
  2445. "IDMA_FL_H_SEND_NEXT_PCIEHDR",
  2446. "IDMA_FL_H_SEND_IP_HDR_PADDING",
  2447. "IDMA_FL_D_SEND_PCIEHDR",
  2448. "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
  2449. "IDMA_FL_D_REQ_NEXT_DATA_FL",
  2450. "IDMA_FL_SEND_PCIEHDR",
  2451. "IDMA_FL_PUSH_CPL_FIFO",
  2452. "IDMA_FL_SEND_CPL",
  2453. "IDMA_FL_SEND_PAYLOAD_FIRST",
  2454. "IDMA_FL_SEND_PAYLOAD",
  2455. "IDMA_FL_REQ_NEXT_DATA_FL",
  2456. "IDMA_FL_SEND_NEXT_PCIEHDR",
  2457. "IDMA_FL_SEND_PADDING",
  2458. "IDMA_FL_SEND_COMPLETION_TO_IMSG",
  2459. };
  2460. static const u32 sge_regs[] = {
  2461. SGE_DEBUG_DATA_LOW_INDEX_2,
  2462. SGE_DEBUG_DATA_LOW_INDEX_3,
  2463. SGE_DEBUG_DATA_HIGH_INDEX_10,
  2464. };
  2465. const char **sge_idma_decode;
  2466. int sge_idma_decode_nstates;
  2467. int i;
  2468. if (is_t4(adapter->params.chip)) {
  2469. sge_idma_decode = (const char **)t4_decode;
  2470. sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
  2471. } else {
  2472. sge_idma_decode = (const char **)t5_decode;
  2473. sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
  2474. }
  2475. if (state < sge_idma_decode_nstates)
  2476. CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
  2477. else
  2478. CH_WARN(adapter, "idma state %d unknown\n", state);
  2479. for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
  2480. CH_WARN(adapter, "SGE register %#x value %#x\n",
  2481. sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
  2482. }
  2483. /**
  2484. * t4_fw_hello - establish communication with FW
  2485. * @adap: the adapter
  2486. * @mbox: mailbox to use for the FW command
  2487. * @evt_mbox: mailbox to receive async FW events
  2488. * @master: specifies the caller's willingness to be the device master
  2489. * @state: returns the current device state (if non-NULL)
  2490. *
  2491. * Issues a command to establish communication with FW. Returns either
  2492. * an error (negative integer) or the mailbox of the Master PF.
  2493. */
  2494. int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
  2495. enum dev_master master, enum dev_state *state)
  2496. {
  2497. int ret;
  2498. struct fw_hello_cmd c;
  2499. u32 v;
  2500. unsigned int master_mbox;
  2501. int retries = FW_CMD_HELLO_RETRIES;
  2502. retry:
  2503. memset(&c, 0, sizeof(c));
  2504. INIT_CMD(c, HELLO, WRITE);
  2505. c.err_to_clearinit = htonl(
  2506. FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
  2507. FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
  2508. FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
  2509. FW_HELLO_CMD_MBMASTER_MASK) |
  2510. FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
  2511. FW_HELLO_CMD_STAGE(fw_hello_cmd_stage_os) |
  2512. FW_HELLO_CMD_CLEARINIT);
  2513. /*
  2514. * Issue the HELLO command to the firmware. If it's not successful
  2515. * but indicates that we got a "busy" or "timeout" condition, retry
  2516. * the HELLO until we exhaust our retry limit. If we do exceed our
  2517. * retry limit, check to see if the firmware left us any error
  2518. * information and report that if so.
  2519. */
  2520. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2521. if (ret < 0) {
  2522. if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
  2523. goto retry;
  2524. if (t4_read_reg(adap, MA_PCIE_FW) & FW_PCIE_FW_ERR)
  2525. t4_report_fw_error(adap);
  2526. return ret;
  2527. }
  2528. v = ntohl(c.err_to_clearinit);
  2529. master_mbox = FW_HELLO_CMD_MBMASTER_GET(v);
  2530. if (state) {
  2531. if (v & FW_HELLO_CMD_ERR)
  2532. *state = DEV_STATE_ERR;
  2533. else if (v & FW_HELLO_CMD_INIT)
  2534. *state = DEV_STATE_INIT;
  2535. else
  2536. *state = DEV_STATE_UNINIT;
  2537. }
  2538. /*
  2539. * If we're not the Master PF then we need to wait around for the
  2540. * Master PF Driver to finish setting up the adapter.
  2541. *
  2542. * Note that we also do this wait if we're a non-Master-capable PF and
  2543. * there is no current Master PF; a Master PF may show up momentarily
  2544. * and we wouldn't want to fail pointlessly. (This can happen when an
  2545. * OS loads lots of different drivers rapidly at the same time). In
  2546. * this case, the Master PF returned by the firmware will be
  2547. * FW_PCIE_FW_MASTER_MASK so the test below will work ...
  2548. */
  2549. if ((v & (FW_HELLO_CMD_ERR|FW_HELLO_CMD_INIT)) == 0 &&
  2550. master_mbox != mbox) {
  2551. int waiting = FW_CMD_HELLO_TIMEOUT;
  2552. /*
  2553. * Wait for the firmware to either indicate an error or
  2554. * initialized state. If we see either of these we bail out
  2555. * and report the issue to the caller. If we exhaust the
  2556. * "hello timeout" and we haven't exhausted our retries, try
  2557. * again. Otherwise bail with a timeout error.
  2558. */
  2559. for (;;) {
  2560. u32 pcie_fw;
  2561. msleep(50);
  2562. waiting -= 50;
  2563. /*
  2564. * If neither Error nor Initialialized are indicated
  2565. * by the firmware keep waiting till we exaust our
  2566. * timeout ... and then retry if we haven't exhausted
  2567. * our retries ...
  2568. */
  2569. pcie_fw = t4_read_reg(adap, MA_PCIE_FW);
  2570. if (!(pcie_fw & (FW_PCIE_FW_ERR|FW_PCIE_FW_INIT))) {
  2571. if (waiting <= 0) {
  2572. if (retries-- > 0)
  2573. goto retry;
  2574. return -ETIMEDOUT;
  2575. }
  2576. continue;
  2577. }
  2578. /*
  2579. * We either have an Error or Initialized condition
  2580. * report errors preferentially.
  2581. */
  2582. if (state) {
  2583. if (pcie_fw & FW_PCIE_FW_ERR)
  2584. *state = DEV_STATE_ERR;
  2585. else if (pcie_fw & FW_PCIE_FW_INIT)
  2586. *state = DEV_STATE_INIT;
  2587. }
  2588. /*
  2589. * If we arrived before a Master PF was selected and
  2590. * there's not a valid Master PF, grab its identity
  2591. * for our caller.
  2592. */
  2593. if (master_mbox == FW_PCIE_FW_MASTER_MASK &&
  2594. (pcie_fw & FW_PCIE_FW_MASTER_VLD))
  2595. master_mbox = FW_PCIE_FW_MASTER_GET(pcie_fw);
  2596. break;
  2597. }
  2598. }
  2599. return master_mbox;
  2600. }
  2601. /**
  2602. * t4_fw_bye - end communication with FW
  2603. * @adap: the adapter
  2604. * @mbox: mailbox to use for the FW command
  2605. *
  2606. * Issues a command to terminate communication with FW.
  2607. */
  2608. int t4_fw_bye(struct adapter *adap, unsigned int mbox)
  2609. {
  2610. struct fw_bye_cmd c;
  2611. memset(&c, 0, sizeof(c));
  2612. INIT_CMD(c, BYE, WRITE);
  2613. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2614. }
  2615. /**
  2616. * t4_init_cmd - ask FW to initialize the device
  2617. * @adap: the adapter
  2618. * @mbox: mailbox to use for the FW command
  2619. *
  2620. * Issues a command to FW to partially initialize the device. This
  2621. * performs initialization that generally doesn't depend on user input.
  2622. */
  2623. int t4_early_init(struct adapter *adap, unsigned int mbox)
  2624. {
  2625. struct fw_initialize_cmd c;
  2626. memset(&c, 0, sizeof(c));
  2627. INIT_CMD(c, INITIALIZE, WRITE);
  2628. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2629. }
  2630. /**
  2631. * t4_fw_reset - issue a reset to FW
  2632. * @adap: the adapter
  2633. * @mbox: mailbox to use for the FW command
  2634. * @reset: specifies the type of reset to perform
  2635. *
  2636. * Issues a reset command of the specified type to FW.
  2637. */
  2638. int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
  2639. {
  2640. struct fw_reset_cmd c;
  2641. memset(&c, 0, sizeof(c));
  2642. INIT_CMD(c, RESET, WRITE);
  2643. c.val = htonl(reset);
  2644. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2645. }
  2646. /**
  2647. * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
  2648. * @adap: the adapter
  2649. * @mbox: mailbox to use for the FW RESET command (if desired)
  2650. * @force: force uP into RESET even if FW RESET command fails
  2651. *
  2652. * Issues a RESET command to firmware (if desired) with a HALT indication
  2653. * and then puts the microprocessor into RESET state. The RESET command
  2654. * will only be issued if a legitimate mailbox is provided (mbox <=
  2655. * FW_PCIE_FW_MASTER_MASK).
  2656. *
  2657. * This is generally used in order for the host to safely manipulate the
  2658. * adapter without fear of conflicting with whatever the firmware might
  2659. * be doing. The only way out of this state is to RESTART the firmware
  2660. * ...
  2661. */
  2662. static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
  2663. {
  2664. int ret = 0;
  2665. /*
  2666. * If a legitimate mailbox is provided, issue a RESET command
  2667. * with a HALT indication.
  2668. */
  2669. if (mbox <= FW_PCIE_FW_MASTER_MASK) {
  2670. struct fw_reset_cmd c;
  2671. memset(&c, 0, sizeof(c));
  2672. INIT_CMD(c, RESET, WRITE);
  2673. c.val = htonl(PIORST | PIORSTMODE);
  2674. c.halt_pkd = htonl(FW_RESET_CMD_HALT(1U));
  2675. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2676. }
  2677. /*
  2678. * Normally we won't complete the operation if the firmware RESET
  2679. * command fails but if our caller insists we'll go ahead and put the
  2680. * uP into RESET. This can be useful if the firmware is hung or even
  2681. * missing ... We'll have to take the risk of putting the uP into
  2682. * RESET without the cooperation of firmware in that case.
  2683. *
  2684. * We also force the firmware's HALT flag to be on in case we bypassed
  2685. * the firmware RESET command above or we're dealing with old firmware
  2686. * which doesn't have the HALT capability. This will serve as a flag
  2687. * for the incoming firmware to know that it's coming out of a HALT
  2688. * rather than a RESET ... if it's new enough to understand that ...
  2689. */
  2690. if (ret == 0 || force) {
  2691. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, UPCRST);
  2692. t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT,
  2693. FW_PCIE_FW_HALT);
  2694. }
  2695. /*
  2696. * And we always return the result of the firmware RESET command
  2697. * even when we force the uP into RESET ...
  2698. */
  2699. return ret;
  2700. }
  2701. /**
  2702. * t4_fw_restart - restart the firmware by taking the uP out of RESET
  2703. * @adap: the adapter
  2704. * @reset: if we want to do a RESET to restart things
  2705. *
  2706. * Restart firmware previously halted by t4_fw_halt(). On successful
  2707. * return the previous PF Master remains as the new PF Master and there
  2708. * is no need to issue a new HELLO command, etc.
  2709. *
  2710. * We do this in two ways:
  2711. *
  2712. * 1. If we're dealing with newer firmware we'll simply want to take
  2713. * the chip's microprocessor out of RESET. This will cause the
  2714. * firmware to start up from its start vector. And then we'll loop
  2715. * until the firmware indicates it's started again (PCIE_FW.HALT
  2716. * reset to 0) or we timeout.
  2717. *
  2718. * 2. If we're dealing with older firmware then we'll need to RESET
  2719. * the chip since older firmware won't recognize the PCIE_FW.HALT
  2720. * flag and automatically RESET itself on startup.
  2721. */
  2722. static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
  2723. {
  2724. if (reset) {
  2725. /*
  2726. * Since we're directing the RESET instead of the firmware
  2727. * doing it automatically, we need to clear the PCIE_FW.HALT
  2728. * bit.
  2729. */
  2730. t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT, 0);
  2731. /*
  2732. * If we've been given a valid mailbox, first try to get the
  2733. * firmware to do the RESET. If that works, great and we can
  2734. * return success. Otherwise, if we haven't been given a
  2735. * valid mailbox or the RESET command failed, fall back to
  2736. * hitting the chip with a hammer.
  2737. */
  2738. if (mbox <= FW_PCIE_FW_MASTER_MASK) {
  2739. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
  2740. msleep(100);
  2741. if (t4_fw_reset(adap, mbox,
  2742. PIORST | PIORSTMODE) == 0)
  2743. return 0;
  2744. }
  2745. t4_write_reg(adap, PL_RST, PIORST | PIORSTMODE);
  2746. msleep(2000);
  2747. } else {
  2748. int ms;
  2749. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
  2750. for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
  2751. if (!(t4_read_reg(adap, PCIE_FW) & FW_PCIE_FW_HALT))
  2752. return 0;
  2753. msleep(100);
  2754. ms += 100;
  2755. }
  2756. return -ETIMEDOUT;
  2757. }
  2758. return 0;
  2759. }
  2760. /**
  2761. * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
  2762. * @adap: the adapter
  2763. * @mbox: mailbox to use for the FW RESET command (if desired)
  2764. * @fw_data: the firmware image to write
  2765. * @size: image size
  2766. * @force: force upgrade even if firmware doesn't cooperate
  2767. *
  2768. * Perform all of the steps necessary for upgrading an adapter's
  2769. * firmware image. Normally this requires the cooperation of the
  2770. * existing firmware in order to halt all existing activities
  2771. * but if an invalid mailbox token is passed in we skip that step
  2772. * (though we'll still put the adapter microprocessor into RESET in
  2773. * that case).
  2774. *
  2775. * On successful return the new firmware will have been loaded and
  2776. * the adapter will have been fully RESET losing all previous setup
  2777. * state. On unsuccessful return the adapter may be completely hosed ...
  2778. * positive errno indicates that the adapter is ~probably~ intact, a
  2779. * negative errno indicates that things are looking bad ...
  2780. */
  2781. int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
  2782. const u8 *fw_data, unsigned int size, int force)
  2783. {
  2784. const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
  2785. int reset, ret;
  2786. ret = t4_fw_halt(adap, mbox, force);
  2787. if (ret < 0 && !force)
  2788. return ret;
  2789. ret = t4_load_fw(adap, fw_data, size);
  2790. if (ret < 0)
  2791. return ret;
  2792. /*
  2793. * Older versions of the firmware don't understand the new
  2794. * PCIE_FW.HALT flag and so won't know to perform a RESET when they
  2795. * restart. So for newly loaded older firmware we'll have to do the
  2796. * RESET for it so it starts up on a clean slate. We can tell if
  2797. * the newly loaded firmware will handle this right by checking
  2798. * its header flags to see if it advertises the capability.
  2799. */
  2800. reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
  2801. return t4_fw_restart(adap, mbox, reset);
  2802. }
  2803. /**
  2804. * t4_fixup_host_params - fix up host-dependent parameters
  2805. * @adap: the adapter
  2806. * @page_size: the host's Base Page Size
  2807. * @cache_line_size: the host's Cache Line Size
  2808. *
  2809. * Various registers in T4 contain values which are dependent on the
  2810. * host's Base Page and Cache Line Sizes. This function will fix all of
  2811. * those registers with the appropriate values as passed in ...
  2812. */
  2813. int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
  2814. unsigned int cache_line_size)
  2815. {
  2816. unsigned int page_shift = fls(page_size) - 1;
  2817. unsigned int sge_hps = page_shift - 10;
  2818. unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
  2819. unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
  2820. unsigned int fl_align_log = fls(fl_align) - 1;
  2821. t4_write_reg(adap, SGE_HOST_PAGE_SIZE,
  2822. HOSTPAGESIZEPF0(sge_hps) |
  2823. HOSTPAGESIZEPF1(sge_hps) |
  2824. HOSTPAGESIZEPF2(sge_hps) |
  2825. HOSTPAGESIZEPF3(sge_hps) |
  2826. HOSTPAGESIZEPF4(sge_hps) |
  2827. HOSTPAGESIZEPF5(sge_hps) |
  2828. HOSTPAGESIZEPF6(sge_hps) |
  2829. HOSTPAGESIZEPF7(sge_hps));
  2830. if (is_t4(adap->params.chip)) {
  2831. t4_set_reg_field(adap, SGE_CONTROL,
  2832. INGPADBOUNDARY_MASK |
  2833. EGRSTATUSPAGESIZE_MASK,
  2834. INGPADBOUNDARY(fl_align_log - 5) |
  2835. EGRSTATUSPAGESIZE(stat_len != 64));
  2836. } else {
  2837. /* T5 introduced the separation of the Free List Padding and
  2838. * Packing Boundaries. Thus, we can select a smaller Padding
  2839. * Boundary to avoid uselessly chewing up PCIe Link and Memory
  2840. * Bandwidth, and use a Packing Boundary which is large enough
  2841. * to avoid false sharing between CPUs, etc.
  2842. *
  2843. * For the PCI Link, the smaller the Padding Boundary the
  2844. * better. For the Memory Controller, a smaller Padding
  2845. * Boundary is better until we cross under the Memory Line
  2846. * Size (the minimum unit of transfer to/from Memory). If we
  2847. * have a Padding Boundary which is smaller than the Memory
  2848. * Line Size, that'll involve a Read-Modify-Write cycle on the
  2849. * Memory Controller which is never good. For T5 the smallest
  2850. * Padding Boundary which we can select is 32 bytes which is
  2851. * larger than any known Memory Controller Line Size so we'll
  2852. * use that.
  2853. *
  2854. * T5 has a different interpretation of the "0" value for the
  2855. * Packing Boundary. This corresponds to 16 bytes instead of
  2856. * the expected 32 bytes. We never have a Packing Boundary
  2857. * less than 32 bytes so we can't use that special value but
  2858. * on the other hand, if we wanted 32 bytes, the best we can
  2859. * really do is 64 bytes.
  2860. */
  2861. if (fl_align <= 32) {
  2862. fl_align = 64;
  2863. fl_align_log = 6;
  2864. }
  2865. t4_set_reg_field(adap, SGE_CONTROL,
  2866. INGPADBOUNDARY_MASK |
  2867. EGRSTATUSPAGESIZE_MASK,
  2868. INGPADBOUNDARY(INGPCIEBOUNDARY_32B_X) |
  2869. EGRSTATUSPAGESIZE(stat_len != 64));
  2870. t4_set_reg_field(adap, SGE_CONTROL2_A,
  2871. INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
  2872. INGPACKBOUNDARY_V(fl_align_log -
  2873. INGPACKBOUNDARY_SHIFT_X));
  2874. }
  2875. /*
  2876. * Adjust various SGE Free List Host Buffer Sizes.
  2877. *
  2878. * This is something of a crock since we're using fixed indices into
  2879. * the array which are also known by the sge.c code and the T4
  2880. * Firmware Configuration File. We need to come up with a much better
  2881. * approach to managing this array. For now, the first four entries
  2882. * are:
  2883. *
  2884. * 0: Host Page Size
  2885. * 1: 64KB
  2886. * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
  2887. * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
  2888. *
  2889. * For the single-MTU buffers in unpacked mode we need to include
  2890. * space for the SGE Control Packet Shift, 14 byte Ethernet header,
  2891. * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
  2892. * Padding boundry. All of these are accommodated in the Factory
  2893. * Default Firmware Configuration File but we need to adjust it for
  2894. * this host's cache line size.
  2895. */
  2896. t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, page_size);
  2897. t4_write_reg(adap, SGE_FL_BUFFER_SIZE2,
  2898. (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2) + fl_align-1)
  2899. & ~(fl_align-1));
  2900. t4_write_reg(adap, SGE_FL_BUFFER_SIZE3,
  2901. (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3) + fl_align-1)
  2902. & ~(fl_align-1));
  2903. t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(page_shift - 12));
  2904. return 0;
  2905. }
  2906. /**
  2907. * t4_fw_initialize - ask FW to initialize the device
  2908. * @adap: the adapter
  2909. * @mbox: mailbox to use for the FW command
  2910. *
  2911. * Issues a command to FW to partially initialize the device. This
  2912. * performs initialization that generally doesn't depend on user input.
  2913. */
  2914. int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
  2915. {
  2916. struct fw_initialize_cmd c;
  2917. memset(&c, 0, sizeof(c));
  2918. INIT_CMD(c, INITIALIZE, WRITE);
  2919. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2920. }
  2921. /**
  2922. * t4_query_params - query FW or device parameters
  2923. * @adap: the adapter
  2924. * @mbox: mailbox to use for the FW command
  2925. * @pf: the PF
  2926. * @vf: the VF
  2927. * @nparams: the number of parameters
  2928. * @params: the parameter names
  2929. * @val: the parameter values
  2930. *
  2931. * Reads the value of FW or device parameters. Up to 7 parameters can be
  2932. * queried at once.
  2933. */
  2934. int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2935. unsigned int vf, unsigned int nparams, const u32 *params,
  2936. u32 *val)
  2937. {
  2938. int i, ret;
  2939. struct fw_params_cmd c;
  2940. __be32 *p = &c.param[0].mnem;
  2941. if (nparams > 7)
  2942. return -EINVAL;
  2943. memset(&c, 0, sizeof(c));
  2944. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2945. FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) |
  2946. FW_PARAMS_CMD_VFN(vf));
  2947. c.retval_len16 = htonl(FW_LEN16(c));
  2948. for (i = 0; i < nparams; i++, p += 2)
  2949. *p = htonl(*params++);
  2950. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2951. if (ret == 0)
  2952. for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
  2953. *val++ = ntohl(*p);
  2954. return ret;
  2955. }
  2956. /**
  2957. * t4_set_params_nosleep - sets FW or device parameters
  2958. * @adap: the adapter
  2959. * @mbox: mailbox to use for the FW command
  2960. * @pf: the PF
  2961. * @vf: the VF
  2962. * @nparams: the number of parameters
  2963. * @params: the parameter names
  2964. * @val: the parameter values
  2965. *
  2966. * Does not ever sleep
  2967. * Sets the value of FW or device parameters. Up to 7 parameters can be
  2968. * specified at once.
  2969. */
  2970. int t4_set_params_nosleep(struct adapter *adap, unsigned int mbox,
  2971. unsigned int pf, unsigned int vf,
  2972. unsigned int nparams, const u32 *params,
  2973. const u32 *val)
  2974. {
  2975. struct fw_params_cmd c;
  2976. __be32 *p = &c.param[0].mnem;
  2977. if (nparams > 7)
  2978. return -EINVAL;
  2979. memset(&c, 0, sizeof(c));
  2980. c.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
  2981. FW_CMD_REQUEST | FW_CMD_WRITE |
  2982. FW_PARAMS_CMD_PFN(pf) |
  2983. FW_PARAMS_CMD_VFN(vf));
  2984. c.retval_len16 = cpu_to_be32(FW_LEN16(c));
  2985. while (nparams--) {
  2986. *p++ = cpu_to_be32(*params++);
  2987. *p++ = cpu_to_be32(*val++);
  2988. }
  2989. return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
  2990. }
  2991. /**
  2992. * t4_set_params - sets FW or device parameters
  2993. * @adap: the adapter
  2994. * @mbox: mailbox to use for the FW command
  2995. * @pf: the PF
  2996. * @vf: the VF
  2997. * @nparams: the number of parameters
  2998. * @params: the parameter names
  2999. * @val: the parameter values
  3000. *
  3001. * Sets the value of FW or device parameters. Up to 7 parameters can be
  3002. * specified at once.
  3003. */
  3004. int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3005. unsigned int vf, unsigned int nparams, const u32 *params,
  3006. const u32 *val)
  3007. {
  3008. struct fw_params_cmd c;
  3009. __be32 *p = &c.param[0].mnem;
  3010. if (nparams > 7)
  3011. return -EINVAL;
  3012. memset(&c, 0, sizeof(c));
  3013. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  3014. FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) |
  3015. FW_PARAMS_CMD_VFN(vf));
  3016. c.retval_len16 = htonl(FW_LEN16(c));
  3017. while (nparams--) {
  3018. *p++ = htonl(*params++);
  3019. *p++ = htonl(*val++);
  3020. }
  3021. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3022. }
  3023. /**
  3024. * t4_cfg_pfvf - configure PF/VF resource limits
  3025. * @adap: the adapter
  3026. * @mbox: mailbox to use for the FW command
  3027. * @pf: the PF being configured
  3028. * @vf: the VF being configured
  3029. * @txq: the max number of egress queues
  3030. * @txq_eth_ctrl: the max number of egress Ethernet or control queues
  3031. * @rxqi: the max number of interrupt-capable ingress queues
  3032. * @rxq: the max number of interruptless ingress queues
  3033. * @tc: the PCI traffic class
  3034. * @vi: the max number of virtual interfaces
  3035. * @cmask: the channel access rights mask for the PF/VF
  3036. * @pmask: the port access rights mask for the PF/VF
  3037. * @nexact: the maximum number of exact MPS filters
  3038. * @rcaps: read capabilities
  3039. * @wxcaps: write/execute capabilities
  3040. *
  3041. * Configures resource limits and capabilities for a physical or virtual
  3042. * function.
  3043. */
  3044. int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3045. unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
  3046. unsigned int rxqi, unsigned int rxq, unsigned int tc,
  3047. unsigned int vi, unsigned int cmask, unsigned int pmask,
  3048. unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
  3049. {
  3050. struct fw_pfvf_cmd c;
  3051. memset(&c, 0, sizeof(c));
  3052. c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST |
  3053. FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) |
  3054. FW_PFVF_CMD_VFN(vf));
  3055. c.retval_len16 = htonl(FW_LEN16(c));
  3056. c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) |
  3057. FW_PFVF_CMD_NIQ(rxq));
  3058. c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) |
  3059. FW_PFVF_CMD_PMASK(pmask) |
  3060. FW_PFVF_CMD_NEQ(txq));
  3061. c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) |
  3062. FW_PFVF_CMD_NEXACTF(nexact));
  3063. c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) |
  3064. FW_PFVF_CMD_WX_CAPS(wxcaps) |
  3065. FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
  3066. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3067. }
  3068. /**
  3069. * t4_alloc_vi - allocate a virtual interface
  3070. * @adap: the adapter
  3071. * @mbox: mailbox to use for the FW command
  3072. * @port: physical port associated with the VI
  3073. * @pf: the PF owning the VI
  3074. * @vf: the VF owning the VI
  3075. * @nmac: number of MAC addresses needed (1 to 5)
  3076. * @mac: the MAC addresses of the VI
  3077. * @rss_size: size of RSS table slice associated with this VI
  3078. *
  3079. * Allocates a virtual interface for the given physical port. If @mac is
  3080. * not %NULL it contains the MAC addresses of the VI as assigned by FW.
  3081. * @mac should be large enough to hold @nmac Ethernet addresses, they are
  3082. * stored consecutively so the space needed is @nmac * 6 bytes.
  3083. * Returns a negative error number or the non-negative VI id.
  3084. */
  3085. int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
  3086. unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
  3087. unsigned int *rss_size)
  3088. {
  3089. int ret;
  3090. struct fw_vi_cmd c;
  3091. memset(&c, 0, sizeof(c));
  3092. c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
  3093. FW_CMD_WRITE | FW_CMD_EXEC |
  3094. FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf));
  3095. c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c));
  3096. c.portid_pkd = FW_VI_CMD_PORTID(port);
  3097. c.nmac = nmac - 1;
  3098. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  3099. if (ret)
  3100. return ret;
  3101. if (mac) {
  3102. memcpy(mac, c.mac, sizeof(c.mac));
  3103. switch (nmac) {
  3104. case 5:
  3105. memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
  3106. case 4:
  3107. memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
  3108. case 3:
  3109. memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
  3110. case 2:
  3111. memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
  3112. }
  3113. }
  3114. if (rss_size)
  3115. *rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd));
  3116. return FW_VI_CMD_VIID_GET(ntohs(c.type_viid));
  3117. }
  3118. /**
  3119. * t4_set_rxmode - set Rx properties of a virtual interface
  3120. * @adap: the adapter
  3121. * @mbox: mailbox to use for the FW command
  3122. * @viid: the VI id
  3123. * @mtu: the new MTU or -1
  3124. * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
  3125. * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
  3126. * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
  3127. * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
  3128. * @sleep_ok: if true we may sleep while awaiting command completion
  3129. *
  3130. * Sets Rx properties of a virtual interface.
  3131. */
  3132. int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3133. int mtu, int promisc, int all_multi, int bcast, int vlanex,
  3134. bool sleep_ok)
  3135. {
  3136. struct fw_vi_rxmode_cmd c;
  3137. /* convert to FW values */
  3138. if (mtu < 0)
  3139. mtu = FW_RXMODE_MTU_NO_CHG;
  3140. if (promisc < 0)
  3141. promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
  3142. if (all_multi < 0)
  3143. all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
  3144. if (bcast < 0)
  3145. bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
  3146. if (vlanex < 0)
  3147. vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
  3148. memset(&c, 0, sizeof(c));
  3149. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST |
  3150. FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid));
  3151. c.retval_len16 = htonl(FW_LEN16(c));
  3152. c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) |
  3153. FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
  3154. FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
  3155. FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
  3156. FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
  3157. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  3158. }
  3159. /**
  3160. * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
  3161. * @adap: the adapter
  3162. * @mbox: mailbox to use for the FW command
  3163. * @viid: the VI id
  3164. * @free: if true any existing filters for this VI id are first removed
  3165. * @naddr: the number of MAC addresses to allocate filters for (up to 7)
  3166. * @addr: the MAC address(es)
  3167. * @idx: where to store the index of each allocated filter
  3168. * @hash: pointer to hash address filter bitmap
  3169. * @sleep_ok: call is allowed to sleep
  3170. *
  3171. * Allocates an exact-match filter for each of the supplied addresses and
  3172. * sets it to the corresponding address. If @idx is not %NULL it should
  3173. * have at least @naddr entries, each of which will be set to the index of
  3174. * the filter allocated for the corresponding MAC address. If a filter
  3175. * could not be allocated for an address its index is set to 0xffff.
  3176. * If @hash is not %NULL addresses that fail to allocate an exact filter
  3177. * are hashed and update the hash filter bitmap pointed at by @hash.
  3178. *
  3179. * Returns a negative error number or the number of filters allocated.
  3180. */
  3181. int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
  3182. unsigned int viid, bool free, unsigned int naddr,
  3183. const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
  3184. {
  3185. int i, ret;
  3186. struct fw_vi_mac_cmd c;
  3187. struct fw_vi_mac_exact *p;
  3188. unsigned int max_naddr = is_t4(adap->params.chip) ?
  3189. NUM_MPS_CLS_SRAM_L_INSTANCES :
  3190. NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
  3191. if (naddr > 7)
  3192. return -EINVAL;
  3193. memset(&c, 0, sizeof(c));
  3194. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  3195. FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) |
  3196. FW_VI_MAC_CMD_VIID(viid));
  3197. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) |
  3198. FW_CMD_LEN16((naddr + 2) / 2));
  3199. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  3200. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  3201. FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
  3202. memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
  3203. }
  3204. ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
  3205. if (ret)
  3206. return ret;
  3207. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  3208. u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  3209. if (idx)
  3210. idx[i] = index >= max_naddr ? 0xffff : index;
  3211. if (index < max_naddr)
  3212. ret++;
  3213. else if (hash)
  3214. *hash |= (1ULL << hash_mac_addr(addr[i]));
  3215. }
  3216. return ret;
  3217. }
  3218. /**
  3219. * t4_change_mac - modifies the exact-match filter for a MAC address
  3220. * @adap: the adapter
  3221. * @mbox: mailbox to use for the FW command
  3222. * @viid: the VI id
  3223. * @idx: index of existing filter for old value of MAC address, or -1
  3224. * @addr: the new MAC address value
  3225. * @persist: whether a new MAC allocation should be persistent
  3226. * @add_smt: if true also add the address to the HW SMT
  3227. *
  3228. * Modifies an exact-match filter and sets it to the new MAC address.
  3229. * Note that in general it is not possible to modify the value of a given
  3230. * filter so the generic way to modify an address filter is to free the one
  3231. * being used by the old address value and allocate a new filter for the
  3232. * new address value. @idx can be -1 if the address is a new addition.
  3233. *
  3234. * Returns a negative error number or the index of the filter with the new
  3235. * MAC value.
  3236. */
  3237. int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3238. int idx, const u8 *addr, bool persist, bool add_smt)
  3239. {
  3240. int ret, mode;
  3241. struct fw_vi_mac_cmd c;
  3242. struct fw_vi_mac_exact *p = c.u.exact;
  3243. unsigned int max_mac_addr = is_t4(adap->params.chip) ?
  3244. NUM_MPS_CLS_SRAM_L_INSTANCES :
  3245. NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
  3246. if (idx < 0) /* new allocation */
  3247. idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
  3248. mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
  3249. memset(&c, 0, sizeof(c));
  3250. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  3251. FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid));
  3252. c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1));
  3253. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  3254. FW_VI_MAC_CMD_SMAC_RESULT(mode) |
  3255. FW_VI_MAC_CMD_IDX(idx));
  3256. memcpy(p->macaddr, addr, sizeof(p->macaddr));
  3257. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  3258. if (ret == 0) {
  3259. ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  3260. if (ret >= max_mac_addr)
  3261. ret = -ENOMEM;
  3262. }
  3263. return ret;
  3264. }
  3265. /**
  3266. * t4_set_addr_hash - program the MAC inexact-match hash filter
  3267. * @adap: the adapter
  3268. * @mbox: mailbox to use for the FW command
  3269. * @viid: the VI id
  3270. * @ucast: whether the hash filter should also match unicast addresses
  3271. * @vec: the value to be written to the hash filter
  3272. * @sleep_ok: call is allowed to sleep
  3273. *
  3274. * Sets the 64-bit inexact-match hash filter for a virtual interface.
  3275. */
  3276. int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3277. bool ucast, u64 vec, bool sleep_ok)
  3278. {
  3279. struct fw_vi_mac_cmd c;
  3280. memset(&c, 0, sizeof(c));
  3281. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  3282. FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid));
  3283. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN |
  3284. FW_VI_MAC_CMD_HASHUNIEN(ucast) |
  3285. FW_CMD_LEN16(1));
  3286. c.u.hash.hashvec = cpu_to_be64(vec);
  3287. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  3288. }
  3289. /**
  3290. * t4_enable_vi_params - enable/disable a virtual interface
  3291. * @adap: the adapter
  3292. * @mbox: mailbox to use for the FW command
  3293. * @viid: the VI id
  3294. * @rx_en: 1=enable Rx, 0=disable Rx
  3295. * @tx_en: 1=enable Tx, 0=disable Tx
  3296. * @dcb_en: 1=enable delivery of Data Center Bridging messages.
  3297. *
  3298. * Enables/disables a virtual interface. Note that setting DCB Enable
  3299. * only makes sense when enabling a Virtual Interface ...
  3300. */
  3301. int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
  3302. unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
  3303. {
  3304. struct fw_vi_enable_cmd c;
  3305. memset(&c, 0, sizeof(c));
  3306. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  3307. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  3308. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) |
  3309. FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c) |
  3310. FW_VI_ENABLE_CMD_DCB_INFO(dcb_en));
  3311. return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
  3312. }
  3313. /**
  3314. * t4_enable_vi - enable/disable a virtual interface
  3315. * @adap: the adapter
  3316. * @mbox: mailbox to use for the FW command
  3317. * @viid: the VI id
  3318. * @rx_en: 1=enable Rx, 0=disable Rx
  3319. * @tx_en: 1=enable Tx, 0=disable Tx
  3320. *
  3321. * Enables/disables a virtual interface.
  3322. */
  3323. int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3324. bool rx_en, bool tx_en)
  3325. {
  3326. return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
  3327. }
  3328. /**
  3329. * t4_identify_port - identify a VI's port by blinking its LED
  3330. * @adap: the adapter
  3331. * @mbox: mailbox to use for the FW command
  3332. * @viid: the VI id
  3333. * @nblinks: how many times to blink LED at 2.5 Hz
  3334. *
  3335. * Identifies a VI's port by blinking its LED.
  3336. */
  3337. int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3338. unsigned int nblinks)
  3339. {
  3340. struct fw_vi_enable_cmd c;
  3341. memset(&c, 0, sizeof(c));
  3342. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  3343. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  3344. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
  3345. c.blinkdur = htons(nblinks);
  3346. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3347. }
  3348. /**
  3349. * t4_iq_free - free an ingress queue and its FLs
  3350. * @adap: the adapter
  3351. * @mbox: mailbox to use for the FW command
  3352. * @pf: the PF owning the queues
  3353. * @vf: the VF owning the queues
  3354. * @iqtype: the ingress queue type
  3355. * @iqid: ingress queue id
  3356. * @fl0id: FL0 queue id or 0xffff if no attached FL0
  3357. * @fl1id: FL1 queue id or 0xffff if no attached FL1
  3358. *
  3359. * Frees an ingress queue and its associated FLs, if any.
  3360. */
  3361. int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3362. unsigned int vf, unsigned int iqtype, unsigned int iqid,
  3363. unsigned int fl0id, unsigned int fl1id)
  3364. {
  3365. struct fw_iq_cmd c;
  3366. memset(&c, 0, sizeof(c));
  3367. c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
  3368. FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
  3369. FW_IQ_CMD_VFN(vf));
  3370. c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c));
  3371. c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype));
  3372. c.iqid = htons(iqid);
  3373. c.fl0id = htons(fl0id);
  3374. c.fl1id = htons(fl1id);
  3375. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3376. }
  3377. /**
  3378. * t4_eth_eq_free - free an Ethernet egress queue
  3379. * @adap: the adapter
  3380. * @mbox: mailbox to use for the FW command
  3381. * @pf: the PF owning the queue
  3382. * @vf: the VF owning the queue
  3383. * @eqid: egress queue id
  3384. *
  3385. * Frees an Ethernet egress queue.
  3386. */
  3387. int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3388. unsigned int vf, unsigned int eqid)
  3389. {
  3390. struct fw_eq_eth_cmd c;
  3391. memset(&c, 0, sizeof(c));
  3392. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
  3393. FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) |
  3394. FW_EQ_ETH_CMD_VFN(vf));
  3395. c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
  3396. c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid));
  3397. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3398. }
  3399. /**
  3400. * t4_ctrl_eq_free - free a control egress queue
  3401. * @adap: the adapter
  3402. * @mbox: mailbox to use for the FW command
  3403. * @pf: the PF owning the queue
  3404. * @vf: the VF owning the queue
  3405. * @eqid: egress queue id
  3406. *
  3407. * Frees a control egress queue.
  3408. */
  3409. int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3410. unsigned int vf, unsigned int eqid)
  3411. {
  3412. struct fw_eq_ctrl_cmd c;
  3413. memset(&c, 0, sizeof(c));
  3414. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
  3415. FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) |
  3416. FW_EQ_CTRL_CMD_VFN(vf));
  3417. c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
  3418. c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid));
  3419. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3420. }
  3421. /**
  3422. * t4_ofld_eq_free - free an offload egress queue
  3423. * @adap: the adapter
  3424. * @mbox: mailbox to use for the FW command
  3425. * @pf: the PF owning the queue
  3426. * @vf: the VF owning the queue
  3427. * @eqid: egress queue id
  3428. *
  3429. * Frees a control egress queue.
  3430. */
  3431. int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3432. unsigned int vf, unsigned int eqid)
  3433. {
  3434. struct fw_eq_ofld_cmd c;
  3435. memset(&c, 0, sizeof(c));
  3436. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
  3437. FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) |
  3438. FW_EQ_OFLD_CMD_VFN(vf));
  3439. c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
  3440. c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid));
  3441. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3442. }
  3443. /**
  3444. * t4_handle_fw_rpl - process a FW reply message
  3445. * @adap: the adapter
  3446. * @rpl: start of the FW message
  3447. *
  3448. * Processes a FW message, such as link state change messages.
  3449. */
  3450. int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
  3451. {
  3452. u8 opcode = *(const u8 *)rpl;
  3453. if (opcode == FW_PORT_CMD) { /* link/module state change message */
  3454. int speed = 0, fc = 0;
  3455. const struct fw_port_cmd *p = (void *)rpl;
  3456. int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid));
  3457. int port = adap->chan_map[chan];
  3458. struct port_info *pi = adap2pinfo(adap, port);
  3459. struct link_config *lc = &pi->link_cfg;
  3460. u32 stat = ntohl(p->u.info.lstatus_to_modtype);
  3461. int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0;
  3462. u32 mod = FW_PORT_CMD_MODTYPE_GET(stat);
  3463. if (stat & FW_PORT_CMD_RXPAUSE)
  3464. fc |= PAUSE_RX;
  3465. if (stat & FW_PORT_CMD_TXPAUSE)
  3466. fc |= PAUSE_TX;
  3467. if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
  3468. speed = 100;
  3469. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
  3470. speed = 1000;
  3471. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
  3472. speed = 10000;
  3473. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
  3474. speed = 40000;
  3475. if (link_ok != lc->link_ok || speed != lc->speed ||
  3476. fc != lc->fc) { /* something changed */
  3477. lc->link_ok = link_ok;
  3478. lc->speed = speed;
  3479. lc->fc = fc;
  3480. lc->supported = be16_to_cpu(p->u.info.pcap);
  3481. t4_os_link_changed(adap, port, link_ok);
  3482. }
  3483. if (mod != pi->mod_type) {
  3484. pi->mod_type = mod;
  3485. t4_os_portmod_changed(adap, port);
  3486. }
  3487. }
  3488. return 0;
  3489. }
  3490. static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
  3491. {
  3492. u16 val;
  3493. if (pci_is_pcie(adapter->pdev)) {
  3494. pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
  3495. p->speed = val & PCI_EXP_LNKSTA_CLS;
  3496. p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
  3497. }
  3498. }
  3499. /**
  3500. * init_link_config - initialize a link's SW state
  3501. * @lc: structure holding the link state
  3502. * @caps: link capabilities
  3503. *
  3504. * Initializes the SW state maintained for each link, including the link's
  3505. * capabilities and default speed/flow-control/autonegotiation settings.
  3506. */
  3507. static void init_link_config(struct link_config *lc, unsigned int caps)
  3508. {
  3509. lc->supported = caps;
  3510. lc->requested_speed = 0;
  3511. lc->speed = 0;
  3512. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  3513. if (lc->supported & FW_PORT_CAP_ANEG) {
  3514. lc->advertising = lc->supported & ADVERT_MASK;
  3515. lc->autoneg = AUTONEG_ENABLE;
  3516. lc->requested_fc |= PAUSE_AUTONEG;
  3517. } else {
  3518. lc->advertising = 0;
  3519. lc->autoneg = AUTONEG_DISABLE;
  3520. }
  3521. }
  3522. #define CIM_PF_NOACCESS 0xeeeeeeee
  3523. int t4_wait_dev_ready(void __iomem *regs)
  3524. {
  3525. u32 whoami;
  3526. whoami = readl(regs + PL_WHOAMI);
  3527. if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
  3528. return 0;
  3529. msleep(500);
  3530. whoami = readl(regs + PL_WHOAMI);
  3531. return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
  3532. }
  3533. struct flash_desc {
  3534. u32 vendor_and_model_id;
  3535. u32 size_mb;
  3536. };
  3537. static int get_flash_params(struct adapter *adap)
  3538. {
  3539. /* Table for non-Numonix supported flash parts. Numonix parts are left
  3540. * to the preexisting code. All flash parts have 64KB sectors.
  3541. */
  3542. static struct flash_desc supported_flash[] = {
  3543. { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
  3544. };
  3545. int ret;
  3546. u32 info;
  3547. ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
  3548. if (!ret)
  3549. ret = sf1_read(adap, 3, 0, 1, &info);
  3550. t4_write_reg(adap, SF_OP, 0); /* unlock SF */
  3551. if (ret)
  3552. return ret;
  3553. for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
  3554. if (supported_flash[ret].vendor_and_model_id == info) {
  3555. adap->params.sf_size = supported_flash[ret].size_mb;
  3556. adap->params.sf_nsec =
  3557. adap->params.sf_size / SF_SEC_SIZE;
  3558. return 0;
  3559. }
  3560. if ((info & 0xff) != 0x20) /* not a Numonix flash */
  3561. return -EINVAL;
  3562. info >>= 16; /* log2 of size */
  3563. if (info >= 0x14 && info < 0x18)
  3564. adap->params.sf_nsec = 1 << (info - 16);
  3565. else if (info == 0x18)
  3566. adap->params.sf_nsec = 64;
  3567. else
  3568. return -EINVAL;
  3569. adap->params.sf_size = 1 << info;
  3570. adap->params.sf_fw_start =
  3571. t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
  3572. if (adap->params.sf_size < FLASH_MIN_SIZE)
  3573. dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
  3574. adap->params.sf_size, FLASH_MIN_SIZE);
  3575. return 0;
  3576. }
  3577. /**
  3578. * t4_prep_adapter - prepare SW and HW for operation
  3579. * @adapter: the adapter
  3580. * @reset: if true perform a HW reset
  3581. *
  3582. * Initialize adapter SW state for the various HW modules, set initial
  3583. * values for some adapter tunables, take PHYs out of reset, and
  3584. * initialize the MDIO interface.
  3585. */
  3586. int t4_prep_adapter(struct adapter *adapter)
  3587. {
  3588. int ret, ver;
  3589. uint16_t device_id;
  3590. u32 pl_rev;
  3591. get_pci_mode(adapter, &adapter->params.pci);
  3592. pl_rev = G_REV(t4_read_reg(adapter, PL_REV));
  3593. ret = get_flash_params(adapter);
  3594. if (ret < 0) {
  3595. dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
  3596. return ret;
  3597. }
  3598. /* Retrieve adapter's device ID
  3599. */
  3600. pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
  3601. ver = device_id >> 12;
  3602. adapter->params.chip = 0;
  3603. switch (ver) {
  3604. case CHELSIO_T4:
  3605. adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
  3606. break;
  3607. case CHELSIO_T5:
  3608. adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
  3609. break;
  3610. default:
  3611. dev_err(adapter->pdev_dev, "Device %d is not supported\n",
  3612. device_id);
  3613. return -EINVAL;
  3614. }
  3615. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3616. /*
  3617. * Default port for debugging in case we can't reach FW.
  3618. */
  3619. adapter->params.nports = 1;
  3620. adapter->params.portvec = 1;
  3621. adapter->params.vpd.cclk = 50000;
  3622. return 0;
  3623. }
  3624. /**
  3625. * t4_init_tp_params - initialize adap->params.tp
  3626. * @adap: the adapter
  3627. *
  3628. * Initialize various fields of the adapter's TP Parameters structure.
  3629. */
  3630. int t4_init_tp_params(struct adapter *adap)
  3631. {
  3632. int chan;
  3633. u32 v;
  3634. v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
  3635. adap->params.tp.tre = TIMERRESOLUTION_GET(v);
  3636. adap->params.tp.dack_re = DELAYEDACKRESOLUTION_GET(v);
  3637. /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
  3638. for (chan = 0; chan < NCHAN; chan++)
  3639. adap->params.tp.tx_modq[chan] = chan;
  3640. /* Cache the adapter's Compressed Filter Mode and global Incress
  3641. * Configuration.
  3642. */
  3643. t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
  3644. &adap->params.tp.vlan_pri_map, 1,
  3645. TP_VLAN_PRI_MAP);
  3646. t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
  3647. &adap->params.tp.ingress_config, 1,
  3648. TP_INGRESS_CONFIG);
  3649. /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
  3650. * shift positions of several elements of the Compressed Filter Tuple
  3651. * for this adapter which we need frequently ...
  3652. */
  3653. adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
  3654. adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
  3655. adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
  3656. adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
  3657. F_PROTOCOL);
  3658. /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
  3659. * represents the presense of an Outer VLAN instead of a VNIC ID.
  3660. */
  3661. if ((adap->params.tp.ingress_config & F_VNIC) == 0)
  3662. adap->params.tp.vnic_shift = -1;
  3663. return 0;
  3664. }
  3665. /**
  3666. * t4_filter_field_shift - calculate filter field shift
  3667. * @adap: the adapter
  3668. * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
  3669. *
  3670. * Return the shift position of a filter field within the Compressed
  3671. * Filter Tuple. The filter field is specified via its selection bit
  3672. * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
  3673. */
  3674. int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
  3675. {
  3676. unsigned int filter_mode = adap->params.tp.vlan_pri_map;
  3677. unsigned int sel;
  3678. int field_shift;
  3679. if ((filter_mode & filter_sel) == 0)
  3680. return -1;
  3681. for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
  3682. switch (filter_mode & sel) {
  3683. case F_FCOE:
  3684. field_shift += W_FT_FCOE;
  3685. break;
  3686. case F_PORT:
  3687. field_shift += W_FT_PORT;
  3688. break;
  3689. case F_VNIC_ID:
  3690. field_shift += W_FT_VNIC_ID;
  3691. break;
  3692. case F_VLAN:
  3693. field_shift += W_FT_VLAN;
  3694. break;
  3695. case F_TOS:
  3696. field_shift += W_FT_TOS;
  3697. break;
  3698. case F_PROTOCOL:
  3699. field_shift += W_FT_PROTOCOL;
  3700. break;
  3701. case F_ETHERTYPE:
  3702. field_shift += W_FT_ETHERTYPE;
  3703. break;
  3704. case F_MACMATCH:
  3705. field_shift += W_FT_MACMATCH;
  3706. break;
  3707. case F_MPSHITTYPE:
  3708. field_shift += W_FT_MPSHITTYPE;
  3709. break;
  3710. case F_FRAGMENTATION:
  3711. field_shift += W_FT_FRAGMENTATION;
  3712. break;
  3713. }
  3714. }
  3715. return field_shift;
  3716. }
  3717. int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
  3718. {
  3719. u8 addr[6];
  3720. int ret, i, j = 0;
  3721. struct fw_port_cmd c;
  3722. struct fw_rss_vi_config_cmd rvc;
  3723. memset(&c, 0, sizeof(c));
  3724. memset(&rvc, 0, sizeof(rvc));
  3725. for_each_port(adap, i) {
  3726. unsigned int rss_size;
  3727. struct port_info *p = adap2pinfo(adap, i);
  3728. while ((adap->params.portvec & (1 << j)) == 0)
  3729. j++;
  3730. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) |
  3731. FW_CMD_REQUEST | FW_CMD_READ |
  3732. FW_PORT_CMD_PORTID(j));
  3733. c.action_to_len16 = htonl(
  3734. FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
  3735. FW_LEN16(c));
  3736. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  3737. if (ret)
  3738. return ret;
  3739. ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
  3740. if (ret < 0)
  3741. return ret;
  3742. p->viid = ret;
  3743. p->tx_chan = j;
  3744. p->lport = j;
  3745. p->rss_size = rss_size;
  3746. memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
  3747. adap->port[i]->dev_port = j;
  3748. ret = ntohl(c.u.info.lstatus_to_modtype);
  3749. p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ?
  3750. FW_PORT_CMD_MDIOADDR_GET(ret) : -1;
  3751. p->port_type = FW_PORT_CMD_PTYPE_GET(ret);
  3752. p->mod_type = FW_PORT_MOD_TYPE_NA;
  3753. rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
  3754. FW_CMD_REQUEST | FW_CMD_READ |
  3755. FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
  3756. rvc.retval_len16 = htonl(FW_LEN16(rvc));
  3757. ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
  3758. if (ret)
  3759. return ret;
  3760. p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
  3761. init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
  3762. j++;
  3763. }
  3764. return 0;
  3765. }