en_rx.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191
  1. /*
  2. * Copyright (c) 2007 Mellanox Technologies. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <net/busy_poll.h>
  34. #include <linux/mlx4/cq.h>
  35. #include <linux/slab.h>
  36. #include <linux/mlx4/qp.h>
  37. #include <linux/skbuff.h>
  38. #include <linux/rculist.h>
  39. #include <linux/if_ether.h>
  40. #include <linux/if_vlan.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/irq.h>
  43. #include "mlx4_en.h"
  44. static int mlx4_alloc_pages(struct mlx4_en_priv *priv,
  45. struct mlx4_en_rx_alloc *page_alloc,
  46. const struct mlx4_en_frag_info *frag_info,
  47. gfp_t _gfp)
  48. {
  49. int order;
  50. struct page *page;
  51. dma_addr_t dma;
  52. for (order = MLX4_EN_ALLOC_PREFER_ORDER; ;) {
  53. gfp_t gfp = _gfp;
  54. if (order)
  55. gfp |= __GFP_COMP | __GFP_NOWARN;
  56. page = alloc_pages(gfp, order);
  57. if (likely(page))
  58. break;
  59. if (--order < 0 ||
  60. ((PAGE_SIZE << order) < frag_info->frag_size))
  61. return -ENOMEM;
  62. }
  63. dma = dma_map_page(priv->ddev, page, 0, PAGE_SIZE << order,
  64. PCI_DMA_FROMDEVICE);
  65. if (dma_mapping_error(priv->ddev, dma)) {
  66. put_page(page);
  67. return -ENOMEM;
  68. }
  69. page_alloc->page_size = PAGE_SIZE << order;
  70. page_alloc->page = page;
  71. page_alloc->dma = dma;
  72. page_alloc->page_offset = frag_info->frag_align;
  73. /* Not doing get_page() for each frag is a big win
  74. * on asymetric workloads. Note we can not use atomic_set().
  75. */
  76. atomic_add(page_alloc->page_size / frag_info->frag_stride - 1,
  77. &page->_count);
  78. return 0;
  79. }
  80. static int mlx4_en_alloc_frags(struct mlx4_en_priv *priv,
  81. struct mlx4_en_rx_desc *rx_desc,
  82. struct mlx4_en_rx_alloc *frags,
  83. struct mlx4_en_rx_alloc *ring_alloc,
  84. gfp_t gfp)
  85. {
  86. struct mlx4_en_rx_alloc page_alloc[MLX4_EN_MAX_RX_FRAGS];
  87. const struct mlx4_en_frag_info *frag_info;
  88. struct page *page;
  89. dma_addr_t dma;
  90. int i;
  91. for (i = 0; i < priv->num_frags; i++) {
  92. frag_info = &priv->frag_info[i];
  93. page_alloc[i] = ring_alloc[i];
  94. page_alloc[i].page_offset += frag_info->frag_stride;
  95. if (page_alloc[i].page_offset + frag_info->frag_stride <=
  96. ring_alloc[i].page_size)
  97. continue;
  98. if (mlx4_alloc_pages(priv, &page_alloc[i], frag_info, gfp))
  99. goto out;
  100. }
  101. for (i = 0; i < priv->num_frags; i++) {
  102. frags[i] = ring_alloc[i];
  103. dma = ring_alloc[i].dma + ring_alloc[i].page_offset;
  104. ring_alloc[i] = page_alloc[i];
  105. rx_desc->data[i].addr = cpu_to_be64(dma);
  106. }
  107. return 0;
  108. out:
  109. while (i--) {
  110. frag_info = &priv->frag_info[i];
  111. if (page_alloc[i].page != ring_alloc[i].page) {
  112. dma_unmap_page(priv->ddev, page_alloc[i].dma,
  113. page_alloc[i].page_size, PCI_DMA_FROMDEVICE);
  114. page = page_alloc[i].page;
  115. atomic_set(&page->_count, 1);
  116. put_page(page);
  117. }
  118. }
  119. return -ENOMEM;
  120. }
  121. static void mlx4_en_free_frag(struct mlx4_en_priv *priv,
  122. struct mlx4_en_rx_alloc *frags,
  123. int i)
  124. {
  125. const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
  126. u32 next_frag_end = frags[i].page_offset + 2 * frag_info->frag_stride;
  127. if (next_frag_end > frags[i].page_size)
  128. dma_unmap_page(priv->ddev, frags[i].dma, frags[i].page_size,
  129. PCI_DMA_FROMDEVICE);
  130. if (frags[i].page)
  131. put_page(frags[i].page);
  132. }
  133. static int mlx4_en_init_allocator(struct mlx4_en_priv *priv,
  134. struct mlx4_en_rx_ring *ring)
  135. {
  136. int i;
  137. struct mlx4_en_rx_alloc *page_alloc;
  138. for (i = 0; i < priv->num_frags; i++) {
  139. const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
  140. if (mlx4_alloc_pages(priv, &ring->page_alloc[i],
  141. frag_info, GFP_KERNEL))
  142. goto out;
  143. }
  144. return 0;
  145. out:
  146. while (i--) {
  147. struct page *page;
  148. page_alloc = &ring->page_alloc[i];
  149. dma_unmap_page(priv->ddev, page_alloc->dma,
  150. page_alloc->page_size, PCI_DMA_FROMDEVICE);
  151. page = page_alloc->page;
  152. atomic_set(&page->_count, 1);
  153. put_page(page);
  154. page_alloc->page = NULL;
  155. }
  156. return -ENOMEM;
  157. }
  158. static void mlx4_en_destroy_allocator(struct mlx4_en_priv *priv,
  159. struct mlx4_en_rx_ring *ring)
  160. {
  161. struct mlx4_en_rx_alloc *page_alloc;
  162. int i;
  163. for (i = 0; i < priv->num_frags; i++) {
  164. const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
  165. page_alloc = &ring->page_alloc[i];
  166. en_dbg(DRV, priv, "Freeing allocator:%d count:%d\n",
  167. i, page_count(page_alloc->page));
  168. dma_unmap_page(priv->ddev, page_alloc->dma,
  169. page_alloc->page_size, PCI_DMA_FROMDEVICE);
  170. while (page_alloc->page_offset + frag_info->frag_stride <
  171. page_alloc->page_size) {
  172. put_page(page_alloc->page);
  173. page_alloc->page_offset += frag_info->frag_stride;
  174. }
  175. page_alloc->page = NULL;
  176. }
  177. }
  178. static void mlx4_en_init_rx_desc(struct mlx4_en_priv *priv,
  179. struct mlx4_en_rx_ring *ring, int index)
  180. {
  181. struct mlx4_en_rx_desc *rx_desc = ring->buf + ring->stride * index;
  182. int possible_frags;
  183. int i;
  184. /* Set size and memtype fields */
  185. for (i = 0; i < priv->num_frags; i++) {
  186. rx_desc->data[i].byte_count =
  187. cpu_to_be32(priv->frag_info[i].frag_size);
  188. rx_desc->data[i].lkey = cpu_to_be32(priv->mdev->mr.key);
  189. }
  190. /* If the number of used fragments does not fill up the ring stride,
  191. * remaining (unused) fragments must be padded with null address/size
  192. * and a special memory key */
  193. possible_frags = (ring->stride - sizeof(struct mlx4_en_rx_desc)) / DS_SIZE;
  194. for (i = priv->num_frags; i < possible_frags; i++) {
  195. rx_desc->data[i].byte_count = 0;
  196. rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD);
  197. rx_desc->data[i].addr = 0;
  198. }
  199. }
  200. static int mlx4_en_prepare_rx_desc(struct mlx4_en_priv *priv,
  201. struct mlx4_en_rx_ring *ring, int index,
  202. gfp_t gfp)
  203. {
  204. struct mlx4_en_rx_desc *rx_desc = ring->buf + (index * ring->stride);
  205. struct mlx4_en_rx_alloc *frags = ring->rx_info +
  206. (index << priv->log_rx_info);
  207. return mlx4_en_alloc_frags(priv, rx_desc, frags, ring->page_alloc, gfp);
  208. }
  209. static inline bool mlx4_en_is_ring_empty(struct mlx4_en_rx_ring *ring)
  210. {
  211. BUG_ON((u32)(ring->prod - ring->cons) > ring->actual_size);
  212. return ring->prod == ring->cons;
  213. }
  214. static inline void mlx4_en_update_rx_prod_db(struct mlx4_en_rx_ring *ring)
  215. {
  216. *ring->wqres.db.db = cpu_to_be32(ring->prod & 0xffff);
  217. }
  218. static void mlx4_en_free_rx_desc(struct mlx4_en_priv *priv,
  219. struct mlx4_en_rx_ring *ring,
  220. int index)
  221. {
  222. struct mlx4_en_rx_alloc *frags;
  223. int nr;
  224. frags = ring->rx_info + (index << priv->log_rx_info);
  225. for (nr = 0; nr < priv->num_frags; nr++) {
  226. en_dbg(DRV, priv, "Freeing fragment:%d\n", nr);
  227. mlx4_en_free_frag(priv, frags, nr);
  228. }
  229. }
  230. static int mlx4_en_fill_rx_buffers(struct mlx4_en_priv *priv)
  231. {
  232. struct mlx4_en_rx_ring *ring;
  233. int ring_ind;
  234. int buf_ind;
  235. int new_size;
  236. for (buf_ind = 0; buf_ind < priv->prof->rx_ring_size; buf_ind++) {
  237. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
  238. ring = priv->rx_ring[ring_ind];
  239. if (mlx4_en_prepare_rx_desc(priv, ring,
  240. ring->actual_size,
  241. GFP_KERNEL)) {
  242. if (ring->actual_size < MLX4_EN_MIN_RX_SIZE) {
  243. en_err(priv, "Failed to allocate enough rx buffers\n");
  244. return -ENOMEM;
  245. } else {
  246. new_size = rounddown_pow_of_two(ring->actual_size);
  247. en_warn(priv, "Only %d buffers allocated reducing ring size to %d\n",
  248. ring->actual_size, new_size);
  249. goto reduce_rings;
  250. }
  251. }
  252. ring->actual_size++;
  253. ring->prod++;
  254. }
  255. }
  256. return 0;
  257. reduce_rings:
  258. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
  259. ring = priv->rx_ring[ring_ind];
  260. while (ring->actual_size > new_size) {
  261. ring->actual_size--;
  262. ring->prod--;
  263. mlx4_en_free_rx_desc(priv, ring, ring->actual_size);
  264. }
  265. }
  266. return 0;
  267. }
  268. static void mlx4_en_free_rx_buf(struct mlx4_en_priv *priv,
  269. struct mlx4_en_rx_ring *ring)
  270. {
  271. int index;
  272. en_dbg(DRV, priv, "Freeing Rx buf - cons:%d prod:%d\n",
  273. ring->cons, ring->prod);
  274. /* Unmap and free Rx buffers */
  275. while (!mlx4_en_is_ring_empty(ring)) {
  276. index = ring->cons & ring->size_mask;
  277. en_dbg(DRV, priv, "Processing descriptor:%d\n", index);
  278. mlx4_en_free_rx_desc(priv, ring, index);
  279. ++ring->cons;
  280. }
  281. }
  282. void mlx4_en_set_num_rx_rings(struct mlx4_en_dev *mdev)
  283. {
  284. int i;
  285. int num_of_eqs;
  286. int num_rx_rings;
  287. struct mlx4_dev *dev = mdev->dev;
  288. mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_ETH) {
  289. if (!dev->caps.comp_pool)
  290. num_of_eqs = max_t(int, MIN_RX_RINGS,
  291. min_t(int,
  292. dev->caps.num_comp_vectors,
  293. DEF_RX_RINGS));
  294. else
  295. num_of_eqs = min_t(int, MAX_MSIX_P_PORT,
  296. dev->caps.comp_pool/
  297. dev->caps.num_ports) - 1;
  298. num_rx_rings = mlx4_low_memory_profile() ? MIN_RX_RINGS :
  299. min_t(int, num_of_eqs,
  300. netif_get_num_default_rss_queues());
  301. mdev->profile.prof[i].rx_ring_num =
  302. rounddown_pow_of_two(num_rx_rings);
  303. }
  304. }
  305. int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv,
  306. struct mlx4_en_rx_ring **pring,
  307. u32 size, u16 stride, int node)
  308. {
  309. struct mlx4_en_dev *mdev = priv->mdev;
  310. struct mlx4_en_rx_ring *ring;
  311. int err = -ENOMEM;
  312. int tmp;
  313. ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node);
  314. if (!ring) {
  315. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  316. if (!ring) {
  317. en_err(priv, "Failed to allocate RX ring structure\n");
  318. return -ENOMEM;
  319. }
  320. }
  321. ring->prod = 0;
  322. ring->cons = 0;
  323. ring->size = size;
  324. ring->size_mask = size - 1;
  325. ring->stride = stride;
  326. ring->log_stride = ffs(ring->stride) - 1;
  327. ring->buf_size = ring->size * ring->stride + TXBB_SIZE;
  328. tmp = size * roundup_pow_of_two(MLX4_EN_MAX_RX_FRAGS *
  329. sizeof(struct mlx4_en_rx_alloc));
  330. ring->rx_info = vmalloc_node(tmp, node);
  331. if (!ring->rx_info) {
  332. ring->rx_info = vmalloc(tmp);
  333. if (!ring->rx_info) {
  334. err = -ENOMEM;
  335. goto err_ring;
  336. }
  337. }
  338. en_dbg(DRV, priv, "Allocated rx_info ring at addr:%p size:%d\n",
  339. ring->rx_info, tmp);
  340. /* Allocate HW buffers on provided NUMA node */
  341. set_dev_node(&mdev->dev->pdev->dev, node);
  342. err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres,
  343. ring->buf_size, 2 * PAGE_SIZE);
  344. set_dev_node(&mdev->dev->pdev->dev, mdev->dev->numa_node);
  345. if (err)
  346. goto err_info;
  347. err = mlx4_en_map_buffer(&ring->wqres.buf);
  348. if (err) {
  349. en_err(priv, "Failed to map RX buffer\n");
  350. goto err_hwq;
  351. }
  352. ring->buf = ring->wqres.buf.direct.buf;
  353. ring->hwtstamp_rx_filter = priv->hwtstamp_config.rx_filter;
  354. *pring = ring;
  355. return 0;
  356. err_hwq:
  357. mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
  358. err_info:
  359. vfree(ring->rx_info);
  360. ring->rx_info = NULL;
  361. err_ring:
  362. kfree(ring);
  363. *pring = NULL;
  364. return err;
  365. }
  366. int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv)
  367. {
  368. struct mlx4_en_rx_ring *ring;
  369. int i;
  370. int ring_ind;
  371. int err;
  372. int stride = roundup_pow_of_two(sizeof(struct mlx4_en_rx_desc) +
  373. DS_SIZE * priv->num_frags);
  374. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
  375. ring = priv->rx_ring[ring_ind];
  376. ring->prod = 0;
  377. ring->cons = 0;
  378. ring->actual_size = 0;
  379. ring->cqn = priv->rx_cq[ring_ind]->mcq.cqn;
  380. ring->stride = stride;
  381. if (ring->stride <= TXBB_SIZE)
  382. ring->buf += TXBB_SIZE;
  383. ring->log_stride = ffs(ring->stride) - 1;
  384. ring->buf_size = ring->size * ring->stride;
  385. memset(ring->buf, 0, ring->buf_size);
  386. mlx4_en_update_rx_prod_db(ring);
  387. /* Initialize all descriptors */
  388. for (i = 0; i < ring->size; i++)
  389. mlx4_en_init_rx_desc(priv, ring, i);
  390. /* Initialize page allocators */
  391. err = mlx4_en_init_allocator(priv, ring);
  392. if (err) {
  393. en_err(priv, "Failed initializing ring allocator\n");
  394. if (ring->stride <= TXBB_SIZE)
  395. ring->buf -= TXBB_SIZE;
  396. ring_ind--;
  397. goto err_allocator;
  398. }
  399. }
  400. err = mlx4_en_fill_rx_buffers(priv);
  401. if (err)
  402. goto err_buffers;
  403. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
  404. ring = priv->rx_ring[ring_ind];
  405. ring->size_mask = ring->actual_size - 1;
  406. mlx4_en_update_rx_prod_db(ring);
  407. }
  408. return 0;
  409. err_buffers:
  410. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++)
  411. mlx4_en_free_rx_buf(priv, priv->rx_ring[ring_ind]);
  412. ring_ind = priv->rx_ring_num - 1;
  413. err_allocator:
  414. while (ring_ind >= 0) {
  415. if (priv->rx_ring[ring_ind]->stride <= TXBB_SIZE)
  416. priv->rx_ring[ring_ind]->buf -= TXBB_SIZE;
  417. mlx4_en_destroy_allocator(priv, priv->rx_ring[ring_ind]);
  418. ring_ind--;
  419. }
  420. return err;
  421. }
  422. /* We recover from out of memory by scheduling our napi poll
  423. * function (mlx4_en_process_cq), which tries to allocate
  424. * all missing RX buffers (call to mlx4_en_refill_rx_buffers).
  425. */
  426. void mlx4_en_recover_from_oom(struct mlx4_en_priv *priv)
  427. {
  428. int ring;
  429. if (!priv->port_up)
  430. return;
  431. for (ring = 0; ring < priv->rx_ring_num; ring++) {
  432. if (mlx4_en_is_ring_empty(priv->rx_ring[ring]))
  433. napi_reschedule(&priv->rx_cq[ring]->napi);
  434. }
  435. }
  436. void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv,
  437. struct mlx4_en_rx_ring **pring,
  438. u32 size, u16 stride)
  439. {
  440. struct mlx4_en_dev *mdev = priv->mdev;
  441. struct mlx4_en_rx_ring *ring = *pring;
  442. mlx4_en_unmap_buffer(&ring->wqres.buf);
  443. mlx4_free_hwq_res(mdev->dev, &ring->wqres, size * stride + TXBB_SIZE);
  444. vfree(ring->rx_info);
  445. ring->rx_info = NULL;
  446. kfree(ring);
  447. *pring = NULL;
  448. #ifdef CONFIG_RFS_ACCEL
  449. mlx4_en_cleanup_filters(priv);
  450. #endif
  451. }
  452. void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv,
  453. struct mlx4_en_rx_ring *ring)
  454. {
  455. mlx4_en_free_rx_buf(priv, ring);
  456. if (ring->stride <= TXBB_SIZE)
  457. ring->buf -= TXBB_SIZE;
  458. mlx4_en_destroy_allocator(priv, ring);
  459. }
  460. static int mlx4_en_complete_rx_desc(struct mlx4_en_priv *priv,
  461. struct mlx4_en_rx_desc *rx_desc,
  462. struct mlx4_en_rx_alloc *frags,
  463. struct sk_buff *skb,
  464. int length)
  465. {
  466. struct skb_frag_struct *skb_frags_rx = skb_shinfo(skb)->frags;
  467. struct mlx4_en_frag_info *frag_info;
  468. int nr;
  469. dma_addr_t dma;
  470. /* Collect used fragments while replacing them in the HW descriptors */
  471. for (nr = 0; nr < priv->num_frags; nr++) {
  472. frag_info = &priv->frag_info[nr];
  473. if (length <= frag_info->frag_prefix_size)
  474. break;
  475. if (!frags[nr].page)
  476. goto fail;
  477. dma = be64_to_cpu(rx_desc->data[nr].addr);
  478. dma_sync_single_for_cpu(priv->ddev, dma, frag_info->frag_size,
  479. DMA_FROM_DEVICE);
  480. /* Save page reference in skb */
  481. __skb_frag_set_page(&skb_frags_rx[nr], frags[nr].page);
  482. skb_frag_size_set(&skb_frags_rx[nr], frag_info->frag_size);
  483. skb_frags_rx[nr].page_offset = frags[nr].page_offset;
  484. skb->truesize += frag_info->frag_stride;
  485. frags[nr].page = NULL;
  486. }
  487. /* Adjust size of last fragment to match actual length */
  488. if (nr > 0)
  489. skb_frag_size_set(&skb_frags_rx[nr - 1],
  490. length - priv->frag_info[nr - 1].frag_prefix_size);
  491. return nr;
  492. fail:
  493. while (nr > 0) {
  494. nr--;
  495. __skb_frag_unref(&skb_frags_rx[nr]);
  496. }
  497. return 0;
  498. }
  499. static struct sk_buff *mlx4_en_rx_skb(struct mlx4_en_priv *priv,
  500. struct mlx4_en_rx_desc *rx_desc,
  501. struct mlx4_en_rx_alloc *frags,
  502. unsigned int length)
  503. {
  504. struct sk_buff *skb;
  505. void *va;
  506. int used_frags;
  507. dma_addr_t dma;
  508. skb = netdev_alloc_skb(priv->dev, SMALL_PACKET_SIZE + NET_IP_ALIGN);
  509. if (!skb) {
  510. en_dbg(RX_ERR, priv, "Failed allocating skb\n");
  511. return NULL;
  512. }
  513. skb_reserve(skb, NET_IP_ALIGN);
  514. skb->len = length;
  515. /* Get pointer to first fragment so we could copy the headers into the
  516. * (linear part of the) skb */
  517. va = page_address(frags[0].page) + frags[0].page_offset;
  518. if (length <= SMALL_PACKET_SIZE) {
  519. /* We are copying all relevant data to the skb - temporarily
  520. * sync buffers for the copy */
  521. dma = be64_to_cpu(rx_desc->data[0].addr);
  522. dma_sync_single_for_cpu(priv->ddev, dma, length,
  523. DMA_FROM_DEVICE);
  524. skb_copy_to_linear_data(skb, va, length);
  525. skb->tail += length;
  526. } else {
  527. unsigned int pull_len;
  528. /* Move relevant fragments to skb */
  529. used_frags = mlx4_en_complete_rx_desc(priv, rx_desc, frags,
  530. skb, length);
  531. if (unlikely(!used_frags)) {
  532. kfree_skb(skb);
  533. return NULL;
  534. }
  535. skb_shinfo(skb)->nr_frags = used_frags;
  536. pull_len = eth_get_headlen(va, SMALL_PACKET_SIZE);
  537. /* Copy headers into the skb linear buffer */
  538. memcpy(skb->data, va, pull_len);
  539. skb->tail += pull_len;
  540. /* Skip headers in first fragment */
  541. skb_shinfo(skb)->frags[0].page_offset += pull_len;
  542. /* Adjust size of first fragment */
  543. skb_frag_size_sub(&skb_shinfo(skb)->frags[0], pull_len);
  544. skb->data_len = length - pull_len;
  545. }
  546. return skb;
  547. }
  548. static void validate_loopback(struct mlx4_en_priv *priv, struct sk_buff *skb)
  549. {
  550. int i;
  551. int offset = ETH_HLEN;
  552. for (i = 0; i < MLX4_LOOPBACK_TEST_PAYLOAD; i++, offset++) {
  553. if (*(skb->data + offset) != (unsigned char) (i & 0xff))
  554. goto out_loopback;
  555. }
  556. /* Loopback found */
  557. priv->loopback_ok = 1;
  558. out_loopback:
  559. dev_kfree_skb_any(skb);
  560. }
  561. static void mlx4_en_refill_rx_buffers(struct mlx4_en_priv *priv,
  562. struct mlx4_en_rx_ring *ring)
  563. {
  564. int index = ring->prod & ring->size_mask;
  565. while ((u32) (ring->prod - ring->cons) < ring->actual_size) {
  566. if (mlx4_en_prepare_rx_desc(priv, ring, index, GFP_ATOMIC))
  567. break;
  568. ring->prod++;
  569. index = ring->prod & ring->size_mask;
  570. }
  571. }
  572. int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget)
  573. {
  574. struct mlx4_en_priv *priv = netdev_priv(dev);
  575. struct mlx4_en_dev *mdev = priv->mdev;
  576. struct mlx4_cqe *cqe;
  577. struct mlx4_en_rx_ring *ring = priv->rx_ring[cq->ring];
  578. struct mlx4_en_rx_alloc *frags;
  579. struct mlx4_en_rx_desc *rx_desc;
  580. struct sk_buff *skb;
  581. int index;
  582. int nr;
  583. unsigned int length;
  584. int polled = 0;
  585. int ip_summed;
  586. int factor = priv->cqe_factor;
  587. u64 timestamp;
  588. bool l2_tunnel;
  589. if (!priv->port_up)
  590. return 0;
  591. if (budget <= 0)
  592. return polled;
  593. /* We assume a 1:1 mapping between CQEs and Rx descriptors, so Rx
  594. * descriptor offset can be deduced from the CQE index instead of
  595. * reading 'cqe->index' */
  596. index = cq->mcq.cons_index & ring->size_mask;
  597. cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor;
  598. /* Process all completed CQEs */
  599. while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
  600. cq->mcq.cons_index & cq->size)) {
  601. frags = ring->rx_info + (index << priv->log_rx_info);
  602. rx_desc = ring->buf + (index << ring->log_stride);
  603. /*
  604. * make sure we read the CQE after we read the ownership bit
  605. */
  606. rmb();
  607. /* Drop packet on bad receive or bad checksum */
  608. if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
  609. MLX4_CQE_OPCODE_ERROR)) {
  610. en_err(priv, "CQE completed in error - vendor syndrom:%d syndrom:%d\n",
  611. ((struct mlx4_err_cqe *)cqe)->vendor_err_syndrome,
  612. ((struct mlx4_err_cqe *)cqe)->syndrome);
  613. goto next;
  614. }
  615. if (unlikely(cqe->badfcs_enc & MLX4_CQE_BAD_FCS)) {
  616. en_dbg(RX_ERR, priv, "Accepted frame with bad FCS\n");
  617. goto next;
  618. }
  619. /* Check if we need to drop the packet if SRIOV is not enabled
  620. * and not performing the selftest or flb disabled
  621. */
  622. if (priv->flags & MLX4_EN_FLAG_RX_FILTER_NEEDED) {
  623. struct ethhdr *ethh;
  624. dma_addr_t dma;
  625. /* Get pointer to first fragment since we haven't
  626. * skb yet and cast it to ethhdr struct
  627. */
  628. dma = be64_to_cpu(rx_desc->data[0].addr);
  629. dma_sync_single_for_cpu(priv->ddev, dma, sizeof(*ethh),
  630. DMA_FROM_DEVICE);
  631. ethh = (struct ethhdr *)(page_address(frags[0].page) +
  632. frags[0].page_offset);
  633. if (is_multicast_ether_addr(ethh->h_dest)) {
  634. struct mlx4_mac_entry *entry;
  635. struct hlist_head *bucket;
  636. unsigned int mac_hash;
  637. /* Drop the packet, since HW loopback-ed it */
  638. mac_hash = ethh->h_source[MLX4_EN_MAC_HASH_IDX];
  639. bucket = &priv->mac_hash[mac_hash];
  640. rcu_read_lock();
  641. hlist_for_each_entry_rcu(entry, bucket, hlist) {
  642. if (ether_addr_equal_64bits(entry->mac,
  643. ethh->h_source)) {
  644. rcu_read_unlock();
  645. goto next;
  646. }
  647. }
  648. rcu_read_unlock();
  649. }
  650. }
  651. /*
  652. * Packet is OK - process it.
  653. */
  654. length = be32_to_cpu(cqe->byte_cnt);
  655. length -= ring->fcs_del;
  656. ring->bytes += length;
  657. ring->packets++;
  658. l2_tunnel = (dev->hw_enc_features & NETIF_F_RXCSUM) &&
  659. (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_L2_TUNNEL));
  660. if (likely(dev->features & NETIF_F_RXCSUM)) {
  661. if ((cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPOK)) &&
  662. (cqe->checksum == cpu_to_be16(0xffff))) {
  663. ring->csum_ok++;
  664. /* This packet is eligible for GRO if it is:
  665. * - DIX Ethernet (type interpretation)
  666. * - TCP/IP (v4)
  667. * - without IP options
  668. * - not an IP fragment
  669. * - no LLS polling in progress
  670. */
  671. if (!mlx4_en_cq_busy_polling(cq) &&
  672. (dev->features & NETIF_F_GRO)) {
  673. struct sk_buff *gro_skb = napi_get_frags(&cq->napi);
  674. if (!gro_skb)
  675. goto next;
  676. nr = mlx4_en_complete_rx_desc(priv,
  677. rx_desc, frags, gro_skb,
  678. length);
  679. if (!nr)
  680. goto next;
  681. skb_shinfo(gro_skb)->nr_frags = nr;
  682. gro_skb->len = length;
  683. gro_skb->data_len = length;
  684. gro_skb->ip_summed = CHECKSUM_UNNECESSARY;
  685. if (l2_tunnel)
  686. gro_skb->csum_level = 1;
  687. if ((cqe->vlan_my_qpn &
  688. cpu_to_be32(MLX4_CQE_VLAN_PRESENT_MASK)) &&
  689. (dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
  690. u16 vid = be16_to_cpu(cqe->sl_vid);
  691. __vlan_hwaccel_put_tag(gro_skb, htons(ETH_P_8021Q), vid);
  692. }
  693. if (dev->features & NETIF_F_RXHASH)
  694. skb_set_hash(gro_skb,
  695. be32_to_cpu(cqe->immed_rss_invalid),
  696. PKT_HASH_TYPE_L3);
  697. skb_record_rx_queue(gro_skb, cq->ring);
  698. skb_mark_napi_id(gro_skb, &cq->napi);
  699. if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) {
  700. timestamp = mlx4_en_get_cqe_ts(cqe);
  701. mlx4_en_fill_hwtstamps(mdev,
  702. skb_hwtstamps(gro_skb),
  703. timestamp);
  704. }
  705. napi_gro_frags(&cq->napi);
  706. goto next;
  707. }
  708. /* GRO not possible, complete processing here */
  709. ip_summed = CHECKSUM_UNNECESSARY;
  710. } else {
  711. ip_summed = CHECKSUM_NONE;
  712. ring->csum_none++;
  713. }
  714. } else {
  715. ip_summed = CHECKSUM_NONE;
  716. ring->csum_none++;
  717. }
  718. skb = mlx4_en_rx_skb(priv, rx_desc, frags, length);
  719. if (!skb) {
  720. priv->stats.rx_dropped++;
  721. goto next;
  722. }
  723. if (unlikely(priv->validate_loopback)) {
  724. validate_loopback(priv, skb);
  725. goto next;
  726. }
  727. skb->ip_summed = ip_summed;
  728. skb->protocol = eth_type_trans(skb, dev);
  729. skb_record_rx_queue(skb, cq->ring);
  730. if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY)
  731. skb->csum_level = 1;
  732. if (dev->features & NETIF_F_RXHASH)
  733. skb_set_hash(skb,
  734. be32_to_cpu(cqe->immed_rss_invalid),
  735. PKT_HASH_TYPE_L3);
  736. if ((be32_to_cpu(cqe->vlan_my_qpn) &
  737. MLX4_CQE_VLAN_PRESENT_MASK) &&
  738. (dev->features & NETIF_F_HW_VLAN_CTAG_RX))
  739. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(cqe->sl_vid));
  740. if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) {
  741. timestamp = mlx4_en_get_cqe_ts(cqe);
  742. mlx4_en_fill_hwtstamps(mdev, skb_hwtstamps(skb),
  743. timestamp);
  744. }
  745. skb_mark_napi_id(skb, &cq->napi);
  746. if (!mlx4_en_cq_busy_polling(cq))
  747. napi_gro_receive(&cq->napi, skb);
  748. else
  749. netif_receive_skb(skb);
  750. next:
  751. for (nr = 0; nr < priv->num_frags; nr++)
  752. mlx4_en_free_frag(priv, frags, nr);
  753. ++cq->mcq.cons_index;
  754. index = (cq->mcq.cons_index) & ring->size_mask;
  755. cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor;
  756. if (++polled == budget)
  757. goto out;
  758. }
  759. out:
  760. AVG_PERF_COUNTER(priv->pstats.rx_coal_avg, polled);
  761. mlx4_cq_set_ci(&cq->mcq);
  762. wmb(); /* ensure HW sees CQ consumer before we post new buffers */
  763. ring->cons = cq->mcq.cons_index;
  764. mlx4_en_refill_rx_buffers(priv, ring);
  765. mlx4_en_update_rx_prod_db(ring);
  766. return polled;
  767. }
  768. void mlx4_en_rx_irq(struct mlx4_cq *mcq)
  769. {
  770. struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
  771. struct mlx4_en_priv *priv = netdev_priv(cq->dev);
  772. if (priv->port_up)
  773. napi_schedule(&cq->napi);
  774. else
  775. mlx4_en_arm_cq(priv, cq);
  776. }
  777. /* Rx CQ polling - called by NAPI */
  778. int mlx4_en_poll_rx_cq(struct napi_struct *napi, int budget)
  779. {
  780. struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi);
  781. struct net_device *dev = cq->dev;
  782. struct mlx4_en_priv *priv = netdev_priv(dev);
  783. int done;
  784. if (!mlx4_en_cq_lock_napi(cq))
  785. return budget;
  786. done = mlx4_en_process_rx_cq(dev, cq, budget);
  787. mlx4_en_cq_unlock_napi(cq);
  788. /* If we used up all the quota - we're probably not done yet... */
  789. if (done == budget) {
  790. int cpu_curr;
  791. const struct cpumask *aff;
  792. INC_PERF_COUNTER(priv->pstats.napi_quota);
  793. cpu_curr = smp_processor_id();
  794. aff = irq_desc_get_irq_data(cq->irq_desc)->affinity;
  795. if (unlikely(!cpumask_test_cpu(cpu_curr, aff))) {
  796. /* Current cpu is not according to smp_irq_affinity -
  797. * probably affinity changed. need to stop this NAPI
  798. * poll, and restart it on the right CPU
  799. */
  800. napi_complete(napi);
  801. mlx4_en_arm_cq(priv, cq);
  802. return 0;
  803. }
  804. } else {
  805. /* Done for now */
  806. napi_complete(napi);
  807. mlx4_en_arm_cq(priv, cq);
  808. }
  809. return done;
  810. }
  811. static const int frag_sizes[] = {
  812. FRAG_SZ0,
  813. FRAG_SZ1,
  814. FRAG_SZ2,
  815. FRAG_SZ3
  816. };
  817. void mlx4_en_calc_rx_buf(struct net_device *dev)
  818. {
  819. struct mlx4_en_priv *priv = netdev_priv(dev);
  820. int eff_mtu = dev->mtu + ETH_HLEN + VLAN_HLEN;
  821. int buf_size = 0;
  822. int i = 0;
  823. while (buf_size < eff_mtu) {
  824. priv->frag_info[i].frag_size =
  825. (eff_mtu > buf_size + frag_sizes[i]) ?
  826. frag_sizes[i] : eff_mtu - buf_size;
  827. priv->frag_info[i].frag_prefix_size = buf_size;
  828. if (!i) {
  829. priv->frag_info[i].frag_align = NET_IP_ALIGN;
  830. priv->frag_info[i].frag_stride =
  831. ALIGN(frag_sizes[i] + NET_IP_ALIGN, SMP_CACHE_BYTES);
  832. } else {
  833. priv->frag_info[i].frag_align = 0;
  834. priv->frag_info[i].frag_stride =
  835. ALIGN(frag_sizes[i], SMP_CACHE_BYTES);
  836. }
  837. buf_size += priv->frag_info[i].frag_size;
  838. i++;
  839. }
  840. priv->num_frags = i;
  841. priv->rx_skb_size = eff_mtu;
  842. priv->log_rx_info = ROUNDUP_LOG2(i * sizeof(struct mlx4_en_rx_alloc));
  843. en_dbg(DRV, priv, "Rx buffer scatter-list (effective-mtu:%d num_frags:%d):\n",
  844. eff_mtu, priv->num_frags);
  845. for (i = 0; i < priv->num_frags; i++) {
  846. en_err(priv,
  847. " frag:%d - size:%d prefix:%d align:%d stride:%d\n",
  848. i,
  849. priv->frag_info[i].frag_size,
  850. priv->frag_info[i].frag_prefix_size,
  851. priv->frag_info[i].frag_align,
  852. priv->frag_info[i].frag_stride);
  853. }
  854. }
  855. /* RSS related functions */
  856. static int mlx4_en_config_rss_qp(struct mlx4_en_priv *priv, int qpn,
  857. struct mlx4_en_rx_ring *ring,
  858. enum mlx4_qp_state *state,
  859. struct mlx4_qp *qp)
  860. {
  861. struct mlx4_en_dev *mdev = priv->mdev;
  862. struct mlx4_qp_context *context;
  863. int err = 0;
  864. context = kmalloc(sizeof(*context), GFP_KERNEL);
  865. if (!context)
  866. return -ENOMEM;
  867. err = mlx4_qp_alloc(mdev->dev, qpn, qp, GFP_KERNEL);
  868. if (err) {
  869. en_err(priv, "Failed to allocate qp #%x\n", qpn);
  870. goto out;
  871. }
  872. qp->event = mlx4_en_sqp_event;
  873. memset(context, 0, sizeof *context);
  874. mlx4_en_fill_qp_context(priv, ring->actual_size, ring->stride, 0, 0,
  875. qpn, ring->cqn, -1, context);
  876. context->db_rec_addr = cpu_to_be64(ring->wqres.db.dma);
  877. /* Cancel FCS removal if FW allows */
  878. if (mdev->dev->caps.flags & MLX4_DEV_CAP_FLAG_FCS_KEEP) {
  879. context->param3 |= cpu_to_be32(1 << 29);
  880. ring->fcs_del = ETH_FCS_LEN;
  881. } else
  882. ring->fcs_del = 0;
  883. err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, context, qp, state);
  884. if (err) {
  885. mlx4_qp_remove(mdev->dev, qp);
  886. mlx4_qp_free(mdev->dev, qp);
  887. }
  888. mlx4_en_update_rx_prod_db(ring);
  889. out:
  890. kfree(context);
  891. return err;
  892. }
  893. int mlx4_en_create_drop_qp(struct mlx4_en_priv *priv)
  894. {
  895. int err;
  896. u32 qpn;
  897. err = mlx4_qp_reserve_range(priv->mdev->dev, 1, 1, &qpn);
  898. if (err) {
  899. en_err(priv, "Failed reserving drop qpn\n");
  900. return err;
  901. }
  902. err = mlx4_qp_alloc(priv->mdev->dev, qpn, &priv->drop_qp, GFP_KERNEL);
  903. if (err) {
  904. en_err(priv, "Failed allocating drop qp\n");
  905. mlx4_qp_release_range(priv->mdev->dev, qpn, 1);
  906. return err;
  907. }
  908. return 0;
  909. }
  910. void mlx4_en_destroy_drop_qp(struct mlx4_en_priv *priv)
  911. {
  912. u32 qpn;
  913. qpn = priv->drop_qp.qpn;
  914. mlx4_qp_remove(priv->mdev->dev, &priv->drop_qp);
  915. mlx4_qp_free(priv->mdev->dev, &priv->drop_qp);
  916. mlx4_qp_release_range(priv->mdev->dev, qpn, 1);
  917. }
  918. /* Allocate rx qp's and configure them according to rss map */
  919. int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv)
  920. {
  921. struct mlx4_en_dev *mdev = priv->mdev;
  922. struct mlx4_en_rss_map *rss_map = &priv->rss_map;
  923. struct mlx4_qp_context context;
  924. struct mlx4_rss_context *rss_context;
  925. int rss_rings;
  926. void *ptr;
  927. u8 rss_mask = (MLX4_RSS_IPV4 | MLX4_RSS_TCP_IPV4 | MLX4_RSS_IPV6 |
  928. MLX4_RSS_TCP_IPV6);
  929. int i, qpn;
  930. int err = 0;
  931. int good_qps = 0;
  932. static const u32 rsskey[10] = { 0xD181C62C, 0xF7F4DB5B, 0x1983A2FC,
  933. 0x943E1ADB, 0xD9389E6B, 0xD1039C2C, 0xA74499AD,
  934. 0x593D56D9, 0xF3253C06, 0x2ADC1FFC};
  935. en_dbg(DRV, priv, "Configuring rss steering\n");
  936. err = mlx4_qp_reserve_range(mdev->dev, priv->rx_ring_num,
  937. priv->rx_ring_num,
  938. &rss_map->base_qpn);
  939. if (err) {
  940. en_err(priv, "Failed reserving %d qps\n", priv->rx_ring_num);
  941. return err;
  942. }
  943. for (i = 0; i < priv->rx_ring_num; i++) {
  944. qpn = rss_map->base_qpn + i;
  945. err = mlx4_en_config_rss_qp(priv, qpn, priv->rx_ring[i],
  946. &rss_map->state[i],
  947. &rss_map->qps[i]);
  948. if (err)
  949. goto rss_err;
  950. ++good_qps;
  951. }
  952. /* Configure RSS indirection qp */
  953. err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, &rss_map->indir_qp, GFP_KERNEL);
  954. if (err) {
  955. en_err(priv, "Failed to allocate RSS indirection QP\n");
  956. goto rss_err;
  957. }
  958. rss_map->indir_qp.event = mlx4_en_sqp_event;
  959. mlx4_en_fill_qp_context(priv, 0, 0, 0, 1, priv->base_qpn,
  960. priv->rx_ring[0]->cqn, -1, &context);
  961. if (!priv->prof->rss_rings || priv->prof->rss_rings > priv->rx_ring_num)
  962. rss_rings = priv->rx_ring_num;
  963. else
  964. rss_rings = priv->prof->rss_rings;
  965. ptr = ((void *) &context) + offsetof(struct mlx4_qp_context, pri_path)
  966. + MLX4_RSS_OFFSET_IN_QPC_PRI_PATH;
  967. rss_context = ptr;
  968. rss_context->base_qpn = cpu_to_be32(ilog2(rss_rings) << 24 |
  969. (rss_map->base_qpn));
  970. rss_context->default_qpn = cpu_to_be32(rss_map->base_qpn);
  971. if (priv->mdev->profile.udp_rss) {
  972. rss_mask |= MLX4_RSS_UDP_IPV4 | MLX4_RSS_UDP_IPV6;
  973. rss_context->base_qpn_udp = rss_context->default_qpn;
  974. }
  975. if (mdev->dev->caps.tunnel_offload_mode == MLX4_TUNNEL_OFFLOAD_MODE_VXLAN) {
  976. en_info(priv, "Setting RSS context tunnel type to RSS on inner headers\n");
  977. rss_mask |= MLX4_RSS_BY_INNER_HEADERS;
  978. }
  979. rss_context->flags = rss_mask;
  980. rss_context->hash_fn = MLX4_RSS_HASH_TOP;
  981. for (i = 0; i < 10; i++)
  982. rss_context->rss_key[i] = cpu_to_be32(rsskey[i]);
  983. err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, &context,
  984. &rss_map->indir_qp, &rss_map->indir_state);
  985. if (err)
  986. goto indir_err;
  987. return 0;
  988. indir_err:
  989. mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
  990. MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp);
  991. mlx4_qp_remove(mdev->dev, &rss_map->indir_qp);
  992. mlx4_qp_free(mdev->dev, &rss_map->indir_qp);
  993. rss_err:
  994. for (i = 0; i < good_qps; i++) {
  995. mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
  996. MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
  997. mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
  998. mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
  999. }
  1000. mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
  1001. return err;
  1002. }
  1003. void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv)
  1004. {
  1005. struct mlx4_en_dev *mdev = priv->mdev;
  1006. struct mlx4_en_rss_map *rss_map = &priv->rss_map;
  1007. int i;
  1008. mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
  1009. MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp);
  1010. mlx4_qp_remove(mdev->dev, &rss_map->indir_qp);
  1011. mlx4_qp_free(mdev->dev, &rss_map->indir_qp);
  1012. for (i = 0; i < priv->rx_ring_num; i++) {
  1013. mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
  1014. MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
  1015. mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
  1016. mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
  1017. }
  1018. mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
  1019. }