mac80211_hwsim.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733
  1. /*
  2. * mac80211_hwsim - software simulator of 802.11 radio(s) for mac80211
  3. * Copyright (c) 2008, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2011, Javier Lopez <jlopex@gmail.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. /*
  11. * TODO:
  12. * - Add TSF sync and fix IBSS beacon transmission by adding
  13. * competition for "air time" at TBTT
  14. * - RX filtering based on filter configuration (data->rx_filter)
  15. */
  16. #include <linux/list.h>
  17. #include <linux/slab.h>
  18. #include <linux/spinlock.h>
  19. #include <net/dst.h>
  20. #include <net/xfrm.h>
  21. #include <net/mac80211.h>
  22. #include <net/ieee80211_radiotap.h>
  23. #include <linux/if_arp.h>
  24. #include <linux/rtnetlink.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/module.h>
  29. #include <linux/ktime.h>
  30. #include <net/genetlink.h>
  31. #include "mac80211_hwsim.h"
  32. #define WARN_QUEUE 100
  33. #define MAX_QUEUE 200
  34. MODULE_AUTHOR("Jouni Malinen");
  35. MODULE_DESCRIPTION("Software simulator of 802.11 radio(s) for mac80211");
  36. MODULE_LICENSE("GPL");
  37. static u32 wmediumd_portid;
  38. static int radios = 2;
  39. module_param(radios, int, 0444);
  40. MODULE_PARM_DESC(radios, "Number of simulated radios");
  41. static int channels = 1;
  42. module_param(channels, int, 0444);
  43. MODULE_PARM_DESC(channels, "Number of concurrent channels");
  44. static bool paged_rx = false;
  45. module_param(paged_rx, bool, 0644);
  46. MODULE_PARM_DESC(paged_rx, "Use paged SKBs for RX instead of linear ones");
  47. static bool rctbl = false;
  48. module_param(rctbl, bool, 0444);
  49. MODULE_PARM_DESC(rctbl, "Handle rate control table");
  50. static bool support_p2p_device = true;
  51. module_param(support_p2p_device, bool, 0444);
  52. MODULE_PARM_DESC(support_p2p_device, "Support P2P-Device interface type");
  53. /**
  54. * enum hwsim_regtest - the type of regulatory tests we offer
  55. *
  56. * These are the different values you can use for the regtest
  57. * module parameter. This is useful to help test world roaming
  58. * and the driver regulatory_hint() call and combinations of these.
  59. * If you want to do specific alpha2 regulatory domain tests simply
  60. * use the userspace regulatory request as that will be respected as
  61. * well without the need of this module parameter. This is designed
  62. * only for testing the driver regulatory request, world roaming
  63. * and all possible combinations.
  64. *
  65. * @HWSIM_REGTEST_DISABLED: No regulatory tests are performed,
  66. * this is the default value.
  67. * @HWSIM_REGTEST_DRIVER_REG_FOLLOW: Used for testing the driver regulatory
  68. * hint, only one driver regulatory hint will be sent as such the
  69. * secondary radios are expected to follow.
  70. * @HWSIM_REGTEST_DRIVER_REG_ALL: Used for testing the driver regulatory
  71. * request with all radios reporting the same regulatory domain.
  72. * @HWSIM_REGTEST_DIFF_COUNTRY: Used for testing the drivers calling
  73. * different regulatory domains requests. Expected behaviour is for
  74. * an intersection to occur but each device will still use their
  75. * respective regulatory requested domains. Subsequent radios will
  76. * use the resulting intersection.
  77. * @HWSIM_REGTEST_WORLD_ROAM: Used for testing the world roaming. We accomplish
  78. * this by using a custom beacon-capable regulatory domain for the first
  79. * radio. All other device world roam.
  80. * @HWSIM_REGTEST_CUSTOM_WORLD: Used for testing the custom world regulatory
  81. * domain requests. All radios will adhere to this custom world regulatory
  82. * domain.
  83. * @HWSIM_REGTEST_CUSTOM_WORLD_2: Used for testing 2 custom world regulatory
  84. * domain requests. The first radio will adhere to the first custom world
  85. * regulatory domain, the second one to the second custom world regulatory
  86. * domain. All other devices will world roam.
  87. * @HWSIM_REGTEST_STRICT_FOLLOW_: Used for testing strict regulatory domain
  88. * settings, only the first radio will send a regulatory domain request
  89. * and use strict settings. The rest of the radios are expected to follow.
  90. * @HWSIM_REGTEST_STRICT_ALL: Used for testing strict regulatory domain
  91. * settings. All radios will adhere to this.
  92. * @HWSIM_REGTEST_STRICT_AND_DRIVER_REG: Used for testing strict regulatory
  93. * domain settings, combined with secondary driver regulatory domain
  94. * settings. The first radio will get a strict regulatory domain setting
  95. * using the first driver regulatory request and the second radio will use
  96. * non-strict settings using the second driver regulatory request. All
  97. * other devices should follow the intersection created between the
  98. * first two.
  99. * @HWSIM_REGTEST_ALL: Used for testing every possible mix. You will need
  100. * at least 6 radios for a complete test. We will test in this order:
  101. * 1 - driver custom world regulatory domain
  102. * 2 - second custom world regulatory domain
  103. * 3 - first driver regulatory domain request
  104. * 4 - second driver regulatory domain request
  105. * 5 - strict regulatory domain settings using the third driver regulatory
  106. * domain request
  107. * 6 and on - should follow the intersection of the 3rd, 4rth and 5th radio
  108. * regulatory requests.
  109. */
  110. enum hwsim_regtest {
  111. HWSIM_REGTEST_DISABLED = 0,
  112. HWSIM_REGTEST_DRIVER_REG_FOLLOW = 1,
  113. HWSIM_REGTEST_DRIVER_REG_ALL = 2,
  114. HWSIM_REGTEST_DIFF_COUNTRY = 3,
  115. HWSIM_REGTEST_WORLD_ROAM = 4,
  116. HWSIM_REGTEST_CUSTOM_WORLD = 5,
  117. HWSIM_REGTEST_CUSTOM_WORLD_2 = 6,
  118. HWSIM_REGTEST_STRICT_FOLLOW = 7,
  119. HWSIM_REGTEST_STRICT_ALL = 8,
  120. HWSIM_REGTEST_STRICT_AND_DRIVER_REG = 9,
  121. HWSIM_REGTEST_ALL = 10,
  122. };
  123. /* Set to one of the HWSIM_REGTEST_* values above */
  124. static int regtest = HWSIM_REGTEST_DISABLED;
  125. module_param(regtest, int, 0444);
  126. MODULE_PARM_DESC(regtest, "The type of regulatory test we want to run");
  127. static const char *hwsim_alpha2s[] = {
  128. "FI",
  129. "AL",
  130. "US",
  131. "DE",
  132. "JP",
  133. "AL",
  134. };
  135. static const struct ieee80211_regdomain hwsim_world_regdom_custom_01 = {
  136. .n_reg_rules = 4,
  137. .alpha2 = "99",
  138. .reg_rules = {
  139. REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
  140. REG_RULE(2484-10, 2484+10, 40, 0, 20, 0),
  141. REG_RULE(5150-10, 5240+10, 40, 0, 30, 0),
  142. REG_RULE(5745-10, 5825+10, 40, 0, 30, 0),
  143. }
  144. };
  145. static const struct ieee80211_regdomain hwsim_world_regdom_custom_02 = {
  146. .n_reg_rules = 2,
  147. .alpha2 = "99",
  148. .reg_rules = {
  149. REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
  150. REG_RULE(5725-10, 5850+10, 40, 0, 30,
  151. NL80211_RRF_NO_IR),
  152. }
  153. };
  154. static const struct ieee80211_regdomain *hwsim_world_regdom_custom[] = {
  155. &hwsim_world_regdom_custom_01,
  156. &hwsim_world_regdom_custom_02,
  157. };
  158. struct hwsim_vif_priv {
  159. u32 magic;
  160. u8 bssid[ETH_ALEN];
  161. bool assoc;
  162. bool bcn_en;
  163. u16 aid;
  164. };
  165. #define HWSIM_VIF_MAGIC 0x69537748
  166. static inline void hwsim_check_magic(struct ieee80211_vif *vif)
  167. {
  168. struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
  169. WARN(vp->magic != HWSIM_VIF_MAGIC,
  170. "Invalid VIF (%p) magic %#x, %pM, %d/%d\n",
  171. vif, vp->magic, vif->addr, vif->type, vif->p2p);
  172. }
  173. static inline void hwsim_set_magic(struct ieee80211_vif *vif)
  174. {
  175. struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
  176. vp->magic = HWSIM_VIF_MAGIC;
  177. }
  178. static inline void hwsim_clear_magic(struct ieee80211_vif *vif)
  179. {
  180. struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
  181. vp->magic = 0;
  182. }
  183. struct hwsim_sta_priv {
  184. u32 magic;
  185. };
  186. #define HWSIM_STA_MAGIC 0x6d537749
  187. static inline void hwsim_check_sta_magic(struct ieee80211_sta *sta)
  188. {
  189. struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
  190. WARN_ON(sp->magic != HWSIM_STA_MAGIC);
  191. }
  192. static inline void hwsim_set_sta_magic(struct ieee80211_sta *sta)
  193. {
  194. struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
  195. sp->magic = HWSIM_STA_MAGIC;
  196. }
  197. static inline void hwsim_clear_sta_magic(struct ieee80211_sta *sta)
  198. {
  199. struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
  200. sp->magic = 0;
  201. }
  202. struct hwsim_chanctx_priv {
  203. u32 magic;
  204. };
  205. #define HWSIM_CHANCTX_MAGIC 0x6d53774a
  206. static inline void hwsim_check_chanctx_magic(struct ieee80211_chanctx_conf *c)
  207. {
  208. struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
  209. WARN_ON(cp->magic != HWSIM_CHANCTX_MAGIC);
  210. }
  211. static inline void hwsim_set_chanctx_magic(struct ieee80211_chanctx_conf *c)
  212. {
  213. struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
  214. cp->magic = HWSIM_CHANCTX_MAGIC;
  215. }
  216. static inline void hwsim_clear_chanctx_magic(struct ieee80211_chanctx_conf *c)
  217. {
  218. struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
  219. cp->magic = 0;
  220. }
  221. static struct class *hwsim_class;
  222. static struct net_device *hwsim_mon; /* global monitor netdev */
  223. #define CHAN2G(_freq) { \
  224. .band = IEEE80211_BAND_2GHZ, \
  225. .center_freq = (_freq), \
  226. .hw_value = (_freq), \
  227. .max_power = 20, \
  228. }
  229. #define CHAN5G(_freq) { \
  230. .band = IEEE80211_BAND_5GHZ, \
  231. .center_freq = (_freq), \
  232. .hw_value = (_freq), \
  233. .max_power = 20, \
  234. }
  235. static const struct ieee80211_channel hwsim_channels_2ghz[] = {
  236. CHAN2G(2412), /* Channel 1 */
  237. CHAN2G(2417), /* Channel 2 */
  238. CHAN2G(2422), /* Channel 3 */
  239. CHAN2G(2427), /* Channel 4 */
  240. CHAN2G(2432), /* Channel 5 */
  241. CHAN2G(2437), /* Channel 6 */
  242. CHAN2G(2442), /* Channel 7 */
  243. CHAN2G(2447), /* Channel 8 */
  244. CHAN2G(2452), /* Channel 9 */
  245. CHAN2G(2457), /* Channel 10 */
  246. CHAN2G(2462), /* Channel 11 */
  247. CHAN2G(2467), /* Channel 12 */
  248. CHAN2G(2472), /* Channel 13 */
  249. CHAN2G(2484), /* Channel 14 */
  250. };
  251. static const struct ieee80211_channel hwsim_channels_5ghz[] = {
  252. CHAN5G(5180), /* Channel 36 */
  253. CHAN5G(5200), /* Channel 40 */
  254. CHAN5G(5220), /* Channel 44 */
  255. CHAN5G(5240), /* Channel 48 */
  256. CHAN5G(5260), /* Channel 52 */
  257. CHAN5G(5280), /* Channel 56 */
  258. CHAN5G(5300), /* Channel 60 */
  259. CHAN5G(5320), /* Channel 64 */
  260. CHAN5G(5500), /* Channel 100 */
  261. CHAN5G(5520), /* Channel 104 */
  262. CHAN5G(5540), /* Channel 108 */
  263. CHAN5G(5560), /* Channel 112 */
  264. CHAN5G(5580), /* Channel 116 */
  265. CHAN5G(5600), /* Channel 120 */
  266. CHAN5G(5620), /* Channel 124 */
  267. CHAN5G(5640), /* Channel 128 */
  268. CHAN5G(5660), /* Channel 132 */
  269. CHAN5G(5680), /* Channel 136 */
  270. CHAN5G(5700), /* Channel 140 */
  271. CHAN5G(5745), /* Channel 149 */
  272. CHAN5G(5765), /* Channel 153 */
  273. CHAN5G(5785), /* Channel 157 */
  274. CHAN5G(5805), /* Channel 161 */
  275. CHAN5G(5825), /* Channel 165 */
  276. };
  277. static const struct ieee80211_rate hwsim_rates[] = {
  278. { .bitrate = 10 },
  279. { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  280. { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  281. { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  282. { .bitrate = 60 },
  283. { .bitrate = 90 },
  284. { .bitrate = 120 },
  285. { .bitrate = 180 },
  286. { .bitrate = 240 },
  287. { .bitrate = 360 },
  288. { .bitrate = 480 },
  289. { .bitrate = 540 }
  290. };
  291. static const struct ieee80211_iface_limit hwsim_if_limits[] = {
  292. { .max = 1, .types = BIT(NL80211_IFTYPE_ADHOC) },
  293. { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) |
  294. BIT(NL80211_IFTYPE_P2P_CLIENT) |
  295. #ifdef CONFIG_MAC80211_MESH
  296. BIT(NL80211_IFTYPE_MESH_POINT) |
  297. #endif
  298. BIT(NL80211_IFTYPE_AP) |
  299. BIT(NL80211_IFTYPE_P2P_GO) },
  300. /* must be last, see hwsim_if_comb */
  301. { .max = 1, .types = BIT(NL80211_IFTYPE_P2P_DEVICE) }
  302. };
  303. static const struct ieee80211_iface_limit hwsim_if_dfs_limits[] = {
  304. { .max = 8, .types = BIT(NL80211_IFTYPE_AP) },
  305. };
  306. static const struct ieee80211_iface_combination hwsim_if_comb[] = {
  307. {
  308. .limits = hwsim_if_limits,
  309. /* remove the last entry which is P2P_DEVICE */
  310. .n_limits = ARRAY_SIZE(hwsim_if_limits) - 1,
  311. .max_interfaces = 2048,
  312. .num_different_channels = 1,
  313. },
  314. {
  315. .limits = hwsim_if_dfs_limits,
  316. .n_limits = ARRAY_SIZE(hwsim_if_dfs_limits),
  317. .max_interfaces = 8,
  318. .num_different_channels = 1,
  319. .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
  320. BIT(NL80211_CHAN_WIDTH_20) |
  321. BIT(NL80211_CHAN_WIDTH_40) |
  322. BIT(NL80211_CHAN_WIDTH_80) |
  323. BIT(NL80211_CHAN_WIDTH_160),
  324. }
  325. };
  326. static const struct ieee80211_iface_combination hwsim_if_comb_p2p_dev[] = {
  327. {
  328. .limits = hwsim_if_limits,
  329. .n_limits = ARRAY_SIZE(hwsim_if_limits),
  330. .max_interfaces = 2048,
  331. .num_different_channels = 1,
  332. },
  333. {
  334. .limits = hwsim_if_dfs_limits,
  335. .n_limits = ARRAY_SIZE(hwsim_if_dfs_limits),
  336. .max_interfaces = 8,
  337. .num_different_channels = 1,
  338. .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
  339. BIT(NL80211_CHAN_WIDTH_20) |
  340. BIT(NL80211_CHAN_WIDTH_40) |
  341. BIT(NL80211_CHAN_WIDTH_80) |
  342. BIT(NL80211_CHAN_WIDTH_160),
  343. }
  344. };
  345. static spinlock_t hwsim_radio_lock;
  346. static struct list_head hwsim_radios;
  347. static int hwsim_radio_idx;
  348. static struct platform_driver mac80211_hwsim_driver = {
  349. .driver = {
  350. .name = "mac80211_hwsim",
  351. .owner = THIS_MODULE,
  352. },
  353. };
  354. struct mac80211_hwsim_data {
  355. struct list_head list;
  356. struct ieee80211_hw *hw;
  357. struct device *dev;
  358. struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS];
  359. struct ieee80211_channel channels_2ghz[ARRAY_SIZE(hwsim_channels_2ghz)];
  360. struct ieee80211_channel channels_5ghz[ARRAY_SIZE(hwsim_channels_5ghz)];
  361. struct ieee80211_rate rates[ARRAY_SIZE(hwsim_rates)];
  362. struct ieee80211_iface_combination if_combination;
  363. struct mac_address addresses[2];
  364. int channels, idx;
  365. bool use_chanctx;
  366. struct ieee80211_channel *tmp_chan;
  367. struct delayed_work roc_done;
  368. struct delayed_work hw_scan;
  369. struct cfg80211_scan_request *hw_scan_request;
  370. struct ieee80211_vif *hw_scan_vif;
  371. int scan_chan_idx;
  372. struct ieee80211_channel *channel;
  373. u64 beacon_int /* beacon interval in us */;
  374. unsigned int rx_filter;
  375. bool started, idle, scanning;
  376. struct mutex mutex;
  377. struct tasklet_hrtimer beacon_timer;
  378. enum ps_mode {
  379. PS_DISABLED, PS_ENABLED, PS_AUTO_POLL, PS_MANUAL_POLL
  380. } ps;
  381. bool ps_poll_pending;
  382. struct dentry *debugfs;
  383. struct sk_buff_head pending; /* packets pending */
  384. /*
  385. * Only radios in the same group can communicate together (the
  386. * channel has to match too). Each bit represents a group. A
  387. * radio can be in more then one group.
  388. */
  389. u64 group;
  390. int power_level;
  391. /* difference between this hw's clock and the real clock, in usecs */
  392. s64 tsf_offset;
  393. s64 bcn_delta;
  394. /* absolute beacon transmission time. Used to cover up "tx" delay. */
  395. u64 abs_bcn_ts;
  396. };
  397. struct hwsim_radiotap_hdr {
  398. struct ieee80211_radiotap_header hdr;
  399. __le64 rt_tsft;
  400. u8 rt_flags;
  401. u8 rt_rate;
  402. __le16 rt_channel;
  403. __le16 rt_chbitmask;
  404. } __packed;
  405. struct hwsim_radiotap_ack_hdr {
  406. struct ieee80211_radiotap_header hdr;
  407. u8 rt_flags;
  408. u8 pad;
  409. __le16 rt_channel;
  410. __le16 rt_chbitmask;
  411. } __packed;
  412. /* MAC80211_HWSIM netlinf family */
  413. static struct genl_family hwsim_genl_family = {
  414. .id = GENL_ID_GENERATE,
  415. .hdrsize = 0,
  416. .name = "MAC80211_HWSIM",
  417. .version = 1,
  418. .maxattr = HWSIM_ATTR_MAX,
  419. };
  420. /* MAC80211_HWSIM netlink policy */
  421. static const struct nla_policy hwsim_genl_policy[HWSIM_ATTR_MAX + 1] = {
  422. [HWSIM_ATTR_ADDR_RECEIVER] = { .type = NLA_UNSPEC, .len = ETH_ALEN },
  423. [HWSIM_ATTR_ADDR_TRANSMITTER] = { .type = NLA_UNSPEC, .len = ETH_ALEN },
  424. [HWSIM_ATTR_FRAME] = { .type = NLA_BINARY,
  425. .len = IEEE80211_MAX_DATA_LEN },
  426. [HWSIM_ATTR_FLAGS] = { .type = NLA_U32 },
  427. [HWSIM_ATTR_RX_RATE] = { .type = NLA_U32 },
  428. [HWSIM_ATTR_SIGNAL] = { .type = NLA_U32 },
  429. [HWSIM_ATTR_TX_INFO] = { .type = NLA_UNSPEC,
  430. .len = IEEE80211_TX_MAX_RATES *
  431. sizeof(struct hwsim_tx_rate)},
  432. [HWSIM_ATTR_COOKIE] = { .type = NLA_U64 },
  433. [HWSIM_ATTR_CHANNELS] = { .type = NLA_U32 },
  434. [HWSIM_ATTR_RADIO_ID] = { .type = NLA_U32 },
  435. [HWSIM_ATTR_REG_HINT_ALPHA2] = { .type = NLA_STRING, .len = 2 },
  436. [HWSIM_ATTR_REG_CUSTOM_REG] = { .type = NLA_U32 },
  437. [HWSIM_ATTR_REG_STRICT_REG] = { .type = NLA_FLAG },
  438. [HWSIM_ATTR_SUPPORT_P2P_DEVICE] = { .type = NLA_FLAG },
  439. };
  440. static void mac80211_hwsim_tx_frame(struct ieee80211_hw *hw,
  441. struct sk_buff *skb,
  442. struct ieee80211_channel *chan);
  443. /* sysfs attributes */
  444. static void hwsim_send_ps_poll(void *dat, u8 *mac, struct ieee80211_vif *vif)
  445. {
  446. struct mac80211_hwsim_data *data = dat;
  447. struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
  448. struct sk_buff *skb;
  449. struct ieee80211_pspoll *pspoll;
  450. if (!vp->assoc)
  451. return;
  452. wiphy_debug(data->hw->wiphy,
  453. "%s: send PS-Poll to %pM for aid %d\n",
  454. __func__, vp->bssid, vp->aid);
  455. skb = dev_alloc_skb(sizeof(*pspoll));
  456. if (!skb)
  457. return;
  458. pspoll = (void *) skb_put(skb, sizeof(*pspoll));
  459. pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
  460. IEEE80211_STYPE_PSPOLL |
  461. IEEE80211_FCTL_PM);
  462. pspoll->aid = cpu_to_le16(0xc000 | vp->aid);
  463. memcpy(pspoll->bssid, vp->bssid, ETH_ALEN);
  464. memcpy(pspoll->ta, mac, ETH_ALEN);
  465. rcu_read_lock();
  466. mac80211_hwsim_tx_frame(data->hw, skb,
  467. rcu_dereference(vif->chanctx_conf)->def.chan);
  468. rcu_read_unlock();
  469. }
  470. static void hwsim_send_nullfunc(struct mac80211_hwsim_data *data, u8 *mac,
  471. struct ieee80211_vif *vif, int ps)
  472. {
  473. struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
  474. struct sk_buff *skb;
  475. struct ieee80211_hdr *hdr;
  476. if (!vp->assoc)
  477. return;
  478. wiphy_debug(data->hw->wiphy,
  479. "%s: send data::nullfunc to %pM ps=%d\n",
  480. __func__, vp->bssid, ps);
  481. skb = dev_alloc_skb(sizeof(*hdr));
  482. if (!skb)
  483. return;
  484. hdr = (void *) skb_put(skb, sizeof(*hdr) - ETH_ALEN);
  485. hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
  486. IEEE80211_STYPE_NULLFUNC |
  487. (ps ? IEEE80211_FCTL_PM : 0));
  488. hdr->duration_id = cpu_to_le16(0);
  489. memcpy(hdr->addr1, vp->bssid, ETH_ALEN);
  490. memcpy(hdr->addr2, mac, ETH_ALEN);
  491. memcpy(hdr->addr3, vp->bssid, ETH_ALEN);
  492. rcu_read_lock();
  493. mac80211_hwsim_tx_frame(data->hw, skb,
  494. rcu_dereference(vif->chanctx_conf)->def.chan);
  495. rcu_read_unlock();
  496. }
  497. static void hwsim_send_nullfunc_ps(void *dat, u8 *mac,
  498. struct ieee80211_vif *vif)
  499. {
  500. struct mac80211_hwsim_data *data = dat;
  501. hwsim_send_nullfunc(data, mac, vif, 1);
  502. }
  503. static void hwsim_send_nullfunc_no_ps(void *dat, u8 *mac,
  504. struct ieee80211_vif *vif)
  505. {
  506. struct mac80211_hwsim_data *data = dat;
  507. hwsim_send_nullfunc(data, mac, vif, 0);
  508. }
  509. static int hwsim_fops_ps_read(void *dat, u64 *val)
  510. {
  511. struct mac80211_hwsim_data *data = dat;
  512. *val = data->ps;
  513. return 0;
  514. }
  515. static int hwsim_fops_ps_write(void *dat, u64 val)
  516. {
  517. struct mac80211_hwsim_data *data = dat;
  518. enum ps_mode old_ps;
  519. if (val != PS_DISABLED && val != PS_ENABLED && val != PS_AUTO_POLL &&
  520. val != PS_MANUAL_POLL)
  521. return -EINVAL;
  522. old_ps = data->ps;
  523. data->ps = val;
  524. if (val == PS_MANUAL_POLL) {
  525. ieee80211_iterate_active_interfaces(data->hw,
  526. IEEE80211_IFACE_ITER_NORMAL,
  527. hwsim_send_ps_poll, data);
  528. data->ps_poll_pending = true;
  529. } else if (old_ps == PS_DISABLED && val != PS_DISABLED) {
  530. ieee80211_iterate_active_interfaces(data->hw,
  531. IEEE80211_IFACE_ITER_NORMAL,
  532. hwsim_send_nullfunc_ps,
  533. data);
  534. } else if (old_ps != PS_DISABLED && val == PS_DISABLED) {
  535. ieee80211_iterate_active_interfaces(data->hw,
  536. IEEE80211_IFACE_ITER_NORMAL,
  537. hwsim_send_nullfunc_no_ps,
  538. data);
  539. }
  540. return 0;
  541. }
  542. DEFINE_SIMPLE_ATTRIBUTE(hwsim_fops_ps, hwsim_fops_ps_read, hwsim_fops_ps_write,
  543. "%llu\n");
  544. static int hwsim_write_simulate_radar(void *dat, u64 val)
  545. {
  546. struct mac80211_hwsim_data *data = dat;
  547. ieee80211_radar_detected(data->hw);
  548. return 0;
  549. }
  550. DEFINE_SIMPLE_ATTRIBUTE(hwsim_simulate_radar, NULL,
  551. hwsim_write_simulate_radar, "%llu\n");
  552. static int hwsim_fops_group_read(void *dat, u64 *val)
  553. {
  554. struct mac80211_hwsim_data *data = dat;
  555. *val = data->group;
  556. return 0;
  557. }
  558. static int hwsim_fops_group_write(void *dat, u64 val)
  559. {
  560. struct mac80211_hwsim_data *data = dat;
  561. data->group = val;
  562. return 0;
  563. }
  564. DEFINE_SIMPLE_ATTRIBUTE(hwsim_fops_group,
  565. hwsim_fops_group_read, hwsim_fops_group_write,
  566. "%llx\n");
  567. static netdev_tx_t hwsim_mon_xmit(struct sk_buff *skb,
  568. struct net_device *dev)
  569. {
  570. /* TODO: allow packet injection */
  571. dev_kfree_skb(skb);
  572. return NETDEV_TX_OK;
  573. }
  574. static inline u64 mac80211_hwsim_get_tsf_raw(void)
  575. {
  576. return ktime_to_us(ktime_get_real());
  577. }
  578. static __le64 __mac80211_hwsim_get_tsf(struct mac80211_hwsim_data *data)
  579. {
  580. u64 now = mac80211_hwsim_get_tsf_raw();
  581. return cpu_to_le64(now + data->tsf_offset);
  582. }
  583. static u64 mac80211_hwsim_get_tsf(struct ieee80211_hw *hw,
  584. struct ieee80211_vif *vif)
  585. {
  586. struct mac80211_hwsim_data *data = hw->priv;
  587. return le64_to_cpu(__mac80211_hwsim_get_tsf(data));
  588. }
  589. static void mac80211_hwsim_set_tsf(struct ieee80211_hw *hw,
  590. struct ieee80211_vif *vif, u64 tsf)
  591. {
  592. struct mac80211_hwsim_data *data = hw->priv;
  593. u64 now = mac80211_hwsim_get_tsf(hw, vif);
  594. u32 bcn_int = data->beacon_int;
  595. u64 delta = abs64(tsf - now);
  596. /* adjust after beaconing with new timestamp at old TBTT */
  597. if (tsf > now) {
  598. data->tsf_offset += delta;
  599. data->bcn_delta = do_div(delta, bcn_int);
  600. } else {
  601. data->tsf_offset -= delta;
  602. data->bcn_delta = -do_div(delta, bcn_int);
  603. }
  604. }
  605. static void mac80211_hwsim_monitor_rx(struct ieee80211_hw *hw,
  606. struct sk_buff *tx_skb,
  607. struct ieee80211_channel *chan)
  608. {
  609. struct mac80211_hwsim_data *data = hw->priv;
  610. struct sk_buff *skb;
  611. struct hwsim_radiotap_hdr *hdr;
  612. u16 flags;
  613. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_skb);
  614. struct ieee80211_rate *txrate = ieee80211_get_tx_rate(hw, info);
  615. if (!netif_running(hwsim_mon))
  616. return;
  617. skb = skb_copy_expand(tx_skb, sizeof(*hdr), 0, GFP_ATOMIC);
  618. if (skb == NULL)
  619. return;
  620. hdr = (struct hwsim_radiotap_hdr *) skb_push(skb, sizeof(*hdr));
  621. hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION;
  622. hdr->hdr.it_pad = 0;
  623. hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
  624. hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
  625. (1 << IEEE80211_RADIOTAP_RATE) |
  626. (1 << IEEE80211_RADIOTAP_TSFT) |
  627. (1 << IEEE80211_RADIOTAP_CHANNEL));
  628. hdr->rt_tsft = __mac80211_hwsim_get_tsf(data);
  629. hdr->rt_flags = 0;
  630. hdr->rt_rate = txrate->bitrate / 5;
  631. hdr->rt_channel = cpu_to_le16(chan->center_freq);
  632. flags = IEEE80211_CHAN_2GHZ;
  633. if (txrate->flags & IEEE80211_RATE_ERP_G)
  634. flags |= IEEE80211_CHAN_OFDM;
  635. else
  636. flags |= IEEE80211_CHAN_CCK;
  637. hdr->rt_chbitmask = cpu_to_le16(flags);
  638. skb->dev = hwsim_mon;
  639. skb_set_mac_header(skb, 0);
  640. skb->ip_summed = CHECKSUM_UNNECESSARY;
  641. skb->pkt_type = PACKET_OTHERHOST;
  642. skb->protocol = htons(ETH_P_802_2);
  643. memset(skb->cb, 0, sizeof(skb->cb));
  644. netif_rx(skb);
  645. }
  646. static void mac80211_hwsim_monitor_ack(struct ieee80211_channel *chan,
  647. const u8 *addr)
  648. {
  649. struct sk_buff *skb;
  650. struct hwsim_radiotap_ack_hdr *hdr;
  651. u16 flags;
  652. struct ieee80211_hdr *hdr11;
  653. if (!netif_running(hwsim_mon))
  654. return;
  655. skb = dev_alloc_skb(100);
  656. if (skb == NULL)
  657. return;
  658. hdr = (struct hwsim_radiotap_ack_hdr *) skb_put(skb, sizeof(*hdr));
  659. hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION;
  660. hdr->hdr.it_pad = 0;
  661. hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
  662. hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
  663. (1 << IEEE80211_RADIOTAP_CHANNEL));
  664. hdr->rt_flags = 0;
  665. hdr->pad = 0;
  666. hdr->rt_channel = cpu_to_le16(chan->center_freq);
  667. flags = IEEE80211_CHAN_2GHZ;
  668. hdr->rt_chbitmask = cpu_to_le16(flags);
  669. hdr11 = (struct ieee80211_hdr *) skb_put(skb, 10);
  670. hdr11->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
  671. IEEE80211_STYPE_ACK);
  672. hdr11->duration_id = cpu_to_le16(0);
  673. memcpy(hdr11->addr1, addr, ETH_ALEN);
  674. skb->dev = hwsim_mon;
  675. skb_set_mac_header(skb, 0);
  676. skb->ip_summed = CHECKSUM_UNNECESSARY;
  677. skb->pkt_type = PACKET_OTHERHOST;
  678. skb->protocol = htons(ETH_P_802_2);
  679. memset(skb->cb, 0, sizeof(skb->cb));
  680. netif_rx(skb);
  681. }
  682. struct mac80211_hwsim_addr_match_data {
  683. u8 addr[ETH_ALEN];
  684. bool ret;
  685. };
  686. static void mac80211_hwsim_addr_iter(void *data, u8 *mac,
  687. struct ieee80211_vif *vif)
  688. {
  689. struct mac80211_hwsim_addr_match_data *md = data;
  690. if (memcmp(mac, md->addr, ETH_ALEN) == 0)
  691. md->ret = true;
  692. }
  693. static bool mac80211_hwsim_addr_match(struct mac80211_hwsim_data *data,
  694. const u8 *addr)
  695. {
  696. struct mac80211_hwsim_addr_match_data md = {
  697. .ret = false,
  698. };
  699. memcpy(md.addr, addr, ETH_ALEN);
  700. ieee80211_iterate_active_interfaces_atomic(data->hw,
  701. IEEE80211_IFACE_ITER_NORMAL,
  702. mac80211_hwsim_addr_iter,
  703. &md);
  704. return md.ret;
  705. }
  706. static bool hwsim_ps_rx_ok(struct mac80211_hwsim_data *data,
  707. struct sk_buff *skb)
  708. {
  709. switch (data->ps) {
  710. case PS_DISABLED:
  711. return true;
  712. case PS_ENABLED:
  713. return false;
  714. case PS_AUTO_POLL:
  715. /* TODO: accept (some) Beacons by default and other frames only
  716. * if pending PS-Poll has been sent */
  717. return true;
  718. case PS_MANUAL_POLL:
  719. /* Allow unicast frames to own address if there is a pending
  720. * PS-Poll */
  721. if (data->ps_poll_pending &&
  722. mac80211_hwsim_addr_match(data, skb->data + 4)) {
  723. data->ps_poll_pending = false;
  724. return true;
  725. }
  726. return false;
  727. }
  728. return true;
  729. }
  730. static void mac80211_hwsim_tx_frame_nl(struct ieee80211_hw *hw,
  731. struct sk_buff *my_skb,
  732. int dst_portid)
  733. {
  734. struct sk_buff *skb;
  735. struct mac80211_hwsim_data *data = hw->priv;
  736. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) my_skb->data;
  737. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(my_skb);
  738. void *msg_head;
  739. unsigned int hwsim_flags = 0;
  740. int i;
  741. struct hwsim_tx_rate tx_attempts[IEEE80211_TX_MAX_RATES];
  742. if (data->ps != PS_DISABLED)
  743. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
  744. /* If the queue contains MAX_QUEUE skb's drop some */
  745. if (skb_queue_len(&data->pending) >= MAX_QUEUE) {
  746. /* Droping until WARN_QUEUE level */
  747. while (skb_queue_len(&data->pending) >= WARN_QUEUE)
  748. skb_dequeue(&data->pending);
  749. }
  750. skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_ATOMIC);
  751. if (skb == NULL)
  752. goto nla_put_failure;
  753. msg_head = genlmsg_put(skb, 0, 0, &hwsim_genl_family, 0,
  754. HWSIM_CMD_FRAME);
  755. if (msg_head == NULL) {
  756. printk(KERN_DEBUG "mac80211_hwsim: problem with msg_head\n");
  757. goto nla_put_failure;
  758. }
  759. if (nla_put(skb, HWSIM_ATTR_ADDR_TRANSMITTER,
  760. ETH_ALEN, data->addresses[1].addr))
  761. goto nla_put_failure;
  762. /* We get the skb->data */
  763. if (nla_put(skb, HWSIM_ATTR_FRAME, my_skb->len, my_skb->data))
  764. goto nla_put_failure;
  765. /* We get the flags for this transmission, and we translate them to
  766. wmediumd flags */
  767. if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
  768. hwsim_flags |= HWSIM_TX_CTL_REQ_TX_STATUS;
  769. if (info->flags & IEEE80211_TX_CTL_NO_ACK)
  770. hwsim_flags |= HWSIM_TX_CTL_NO_ACK;
  771. if (nla_put_u32(skb, HWSIM_ATTR_FLAGS, hwsim_flags))
  772. goto nla_put_failure;
  773. /* We get the tx control (rate and retries) info*/
  774. for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
  775. tx_attempts[i].idx = info->status.rates[i].idx;
  776. tx_attempts[i].count = info->status.rates[i].count;
  777. }
  778. if (nla_put(skb, HWSIM_ATTR_TX_INFO,
  779. sizeof(struct hwsim_tx_rate)*IEEE80211_TX_MAX_RATES,
  780. tx_attempts))
  781. goto nla_put_failure;
  782. /* We create a cookie to identify this skb */
  783. if (nla_put_u64(skb, HWSIM_ATTR_COOKIE, (unsigned long) my_skb))
  784. goto nla_put_failure;
  785. genlmsg_end(skb, msg_head);
  786. genlmsg_unicast(&init_net, skb, dst_portid);
  787. /* Enqueue the packet */
  788. skb_queue_tail(&data->pending, my_skb);
  789. return;
  790. nla_put_failure:
  791. printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
  792. }
  793. static bool hwsim_chans_compat(struct ieee80211_channel *c1,
  794. struct ieee80211_channel *c2)
  795. {
  796. if (!c1 || !c2)
  797. return false;
  798. return c1->center_freq == c2->center_freq;
  799. }
  800. struct tx_iter_data {
  801. struct ieee80211_channel *channel;
  802. bool receive;
  803. };
  804. static void mac80211_hwsim_tx_iter(void *_data, u8 *addr,
  805. struct ieee80211_vif *vif)
  806. {
  807. struct tx_iter_data *data = _data;
  808. if (!vif->chanctx_conf)
  809. return;
  810. if (!hwsim_chans_compat(data->channel,
  811. rcu_dereference(vif->chanctx_conf)->def.chan))
  812. return;
  813. data->receive = true;
  814. }
  815. static bool mac80211_hwsim_tx_frame_no_nl(struct ieee80211_hw *hw,
  816. struct sk_buff *skb,
  817. struct ieee80211_channel *chan)
  818. {
  819. struct mac80211_hwsim_data *data = hw->priv, *data2;
  820. bool ack = false;
  821. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  822. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  823. struct ieee80211_rx_status rx_status;
  824. u64 now;
  825. memset(&rx_status, 0, sizeof(rx_status));
  826. rx_status.flag |= RX_FLAG_MACTIME_START;
  827. rx_status.freq = chan->center_freq;
  828. rx_status.band = chan->band;
  829. if (info->control.rates[0].flags & IEEE80211_TX_RC_VHT_MCS) {
  830. rx_status.rate_idx =
  831. ieee80211_rate_get_vht_mcs(&info->control.rates[0]);
  832. rx_status.vht_nss =
  833. ieee80211_rate_get_vht_nss(&info->control.rates[0]);
  834. rx_status.flag |= RX_FLAG_VHT;
  835. } else {
  836. rx_status.rate_idx = info->control.rates[0].idx;
  837. if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
  838. rx_status.flag |= RX_FLAG_HT;
  839. }
  840. if (info->control.rates[0].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  841. rx_status.flag |= RX_FLAG_40MHZ;
  842. if (info->control.rates[0].flags & IEEE80211_TX_RC_SHORT_GI)
  843. rx_status.flag |= RX_FLAG_SHORT_GI;
  844. /* TODO: simulate real signal strength (and optional packet loss) */
  845. rx_status.signal = data->power_level - 50;
  846. if (data->ps != PS_DISABLED)
  847. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
  848. /* release the skb's source info */
  849. skb_orphan(skb);
  850. skb_dst_drop(skb);
  851. skb->mark = 0;
  852. secpath_reset(skb);
  853. nf_reset(skb);
  854. /*
  855. * Get absolute mactime here so all HWs RX at the "same time", and
  856. * absolute TX time for beacon mactime so the timestamp matches.
  857. * Giving beacons a different mactime than non-beacons looks messy, but
  858. * it helps the Toffset be exact and a ~10us mactime discrepancy
  859. * probably doesn't really matter.
  860. */
  861. if (ieee80211_is_beacon(hdr->frame_control) ||
  862. ieee80211_is_probe_resp(hdr->frame_control))
  863. now = data->abs_bcn_ts;
  864. else
  865. now = mac80211_hwsim_get_tsf_raw();
  866. /* Copy skb to all enabled radios that are on the current frequency */
  867. spin_lock(&hwsim_radio_lock);
  868. list_for_each_entry(data2, &hwsim_radios, list) {
  869. struct sk_buff *nskb;
  870. struct tx_iter_data tx_iter_data = {
  871. .receive = false,
  872. .channel = chan,
  873. };
  874. if (data == data2)
  875. continue;
  876. if (!data2->started || (data2->idle && !data2->tmp_chan) ||
  877. !hwsim_ps_rx_ok(data2, skb))
  878. continue;
  879. if (!(data->group & data2->group))
  880. continue;
  881. if (!hwsim_chans_compat(chan, data2->tmp_chan) &&
  882. !hwsim_chans_compat(chan, data2->channel)) {
  883. ieee80211_iterate_active_interfaces_atomic(
  884. data2->hw, IEEE80211_IFACE_ITER_NORMAL,
  885. mac80211_hwsim_tx_iter, &tx_iter_data);
  886. if (!tx_iter_data.receive)
  887. continue;
  888. }
  889. /*
  890. * reserve some space for our vendor and the normal
  891. * radiotap header, since we're copying anyway
  892. */
  893. if (skb->len < PAGE_SIZE && paged_rx) {
  894. struct page *page = alloc_page(GFP_ATOMIC);
  895. if (!page)
  896. continue;
  897. nskb = dev_alloc_skb(128);
  898. if (!nskb) {
  899. __free_page(page);
  900. continue;
  901. }
  902. memcpy(page_address(page), skb->data, skb->len);
  903. skb_add_rx_frag(nskb, 0, page, 0, skb->len, skb->len);
  904. } else {
  905. nskb = skb_copy(skb, GFP_ATOMIC);
  906. if (!nskb)
  907. continue;
  908. }
  909. if (mac80211_hwsim_addr_match(data2, hdr->addr1))
  910. ack = true;
  911. rx_status.mactime = now + data2->tsf_offset;
  912. memcpy(IEEE80211_SKB_RXCB(nskb), &rx_status, sizeof(rx_status));
  913. ieee80211_rx_irqsafe(data2->hw, nskb);
  914. }
  915. spin_unlock(&hwsim_radio_lock);
  916. return ack;
  917. }
  918. static void mac80211_hwsim_tx(struct ieee80211_hw *hw,
  919. struct ieee80211_tx_control *control,
  920. struct sk_buff *skb)
  921. {
  922. struct mac80211_hwsim_data *data = hw->priv;
  923. struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb);
  924. struct ieee80211_chanctx_conf *chanctx_conf;
  925. struct ieee80211_channel *channel;
  926. bool ack;
  927. u32 _portid;
  928. if (WARN_ON(skb->len < 10)) {
  929. /* Should not happen; just a sanity check for addr1 use */
  930. ieee80211_free_txskb(hw, skb);
  931. return;
  932. }
  933. if (!data->use_chanctx) {
  934. channel = data->channel;
  935. } else if (txi->hw_queue == 4) {
  936. channel = data->tmp_chan;
  937. } else {
  938. chanctx_conf = rcu_dereference(txi->control.vif->chanctx_conf);
  939. if (chanctx_conf)
  940. channel = chanctx_conf->def.chan;
  941. else
  942. channel = NULL;
  943. }
  944. if (WARN(!channel, "TX w/o channel - queue = %d\n", txi->hw_queue)) {
  945. ieee80211_free_txskb(hw, skb);
  946. return;
  947. }
  948. if (data->idle && !data->tmp_chan) {
  949. wiphy_debug(hw->wiphy, "Trying to TX when idle - reject\n");
  950. ieee80211_free_txskb(hw, skb);
  951. return;
  952. }
  953. if (txi->control.vif)
  954. hwsim_check_magic(txi->control.vif);
  955. if (control->sta)
  956. hwsim_check_sta_magic(control->sta);
  957. if (hw->flags & IEEE80211_HW_SUPPORTS_RC_TABLE)
  958. ieee80211_get_tx_rates(txi->control.vif, control->sta, skb,
  959. txi->control.rates,
  960. ARRAY_SIZE(txi->control.rates));
  961. txi->rate_driver_data[0] = channel;
  962. mac80211_hwsim_monitor_rx(hw, skb, channel);
  963. /* wmediumd mode check */
  964. _portid = ACCESS_ONCE(wmediumd_portid);
  965. if (_portid)
  966. return mac80211_hwsim_tx_frame_nl(hw, skb, _portid);
  967. /* NO wmediumd detected, perfect medium simulation */
  968. ack = mac80211_hwsim_tx_frame_no_nl(hw, skb, channel);
  969. if (ack && skb->len >= 16) {
  970. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  971. mac80211_hwsim_monitor_ack(channel, hdr->addr2);
  972. }
  973. ieee80211_tx_info_clear_status(txi);
  974. /* frame was transmitted at most favorable rate at first attempt */
  975. txi->control.rates[0].count = 1;
  976. txi->control.rates[1].idx = -1;
  977. if (!(txi->flags & IEEE80211_TX_CTL_NO_ACK) && ack)
  978. txi->flags |= IEEE80211_TX_STAT_ACK;
  979. ieee80211_tx_status_irqsafe(hw, skb);
  980. }
  981. static int mac80211_hwsim_start(struct ieee80211_hw *hw)
  982. {
  983. struct mac80211_hwsim_data *data = hw->priv;
  984. wiphy_debug(hw->wiphy, "%s\n", __func__);
  985. data->started = true;
  986. return 0;
  987. }
  988. static void mac80211_hwsim_stop(struct ieee80211_hw *hw)
  989. {
  990. struct mac80211_hwsim_data *data = hw->priv;
  991. data->started = false;
  992. tasklet_hrtimer_cancel(&data->beacon_timer);
  993. wiphy_debug(hw->wiphy, "%s\n", __func__);
  994. }
  995. static int mac80211_hwsim_add_interface(struct ieee80211_hw *hw,
  996. struct ieee80211_vif *vif)
  997. {
  998. wiphy_debug(hw->wiphy, "%s (type=%d mac_addr=%pM)\n",
  999. __func__, ieee80211_vif_type_p2p(vif),
  1000. vif->addr);
  1001. hwsim_set_magic(vif);
  1002. vif->cab_queue = 0;
  1003. vif->hw_queue[IEEE80211_AC_VO] = 0;
  1004. vif->hw_queue[IEEE80211_AC_VI] = 1;
  1005. vif->hw_queue[IEEE80211_AC_BE] = 2;
  1006. vif->hw_queue[IEEE80211_AC_BK] = 3;
  1007. return 0;
  1008. }
  1009. static int mac80211_hwsim_change_interface(struct ieee80211_hw *hw,
  1010. struct ieee80211_vif *vif,
  1011. enum nl80211_iftype newtype,
  1012. bool newp2p)
  1013. {
  1014. newtype = ieee80211_iftype_p2p(newtype, newp2p);
  1015. wiphy_debug(hw->wiphy,
  1016. "%s (old type=%d, new type=%d, mac_addr=%pM)\n",
  1017. __func__, ieee80211_vif_type_p2p(vif),
  1018. newtype, vif->addr);
  1019. hwsim_check_magic(vif);
  1020. /*
  1021. * interface may change from non-AP to AP in
  1022. * which case this needs to be set up again
  1023. */
  1024. vif->cab_queue = 0;
  1025. return 0;
  1026. }
  1027. static void mac80211_hwsim_remove_interface(
  1028. struct ieee80211_hw *hw, struct ieee80211_vif *vif)
  1029. {
  1030. wiphy_debug(hw->wiphy, "%s (type=%d mac_addr=%pM)\n",
  1031. __func__, ieee80211_vif_type_p2p(vif),
  1032. vif->addr);
  1033. hwsim_check_magic(vif);
  1034. hwsim_clear_magic(vif);
  1035. }
  1036. static void mac80211_hwsim_tx_frame(struct ieee80211_hw *hw,
  1037. struct sk_buff *skb,
  1038. struct ieee80211_channel *chan)
  1039. {
  1040. u32 _pid = ACCESS_ONCE(wmediumd_portid);
  1041. if (hw->flags & IEEE80211_HW_SUPPORTS_RC_TABLE) {
  1042. struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb);
  1043. ieee80211_get_tx_rates(txi->control.vif, NULL, skb,
  1044. txi->control.rates,
  1045. ARRAY_SIZE(txi->control.rates));
  1046. }
  1047. mac80211_hwsim_monitor_rx(hw, skb, chan);
  1048. if (_pid)
  1049. return mac80211_hwsim_tx_frame_nl(hw, skb, _pid);
  1050. mac80211_hwsim_tx_frame_no_nl(hw, skb, chan);
  1051. dev_kfree_skb(skb);
  1052. }
  1053. static void mac80211_hwsim_beacon_tx(void *arg, u8 *mac,
  1054. struct ieee80211_vif *vif)
  1055. {
  1056. struct mac80211_hwsim_data *data = arg;
  1057. struct ieee80211_hw *hw = data->hw;
  1058. struct ieee80211_tx_info *info;
  1059. struct ieee80211_rate *txrate;
  1060. struct ieee80211_mgmt *mgmt;
  1061. struct sk_buff *skb;
  1062. hwsim_check_magic(vif);
  1063. if (vif->type != NL80211_IFTYPE_AP &&
  1064. vif->type != NL80211_IFTYPE_MESH_POINT &&
  1065. vif->type != NL80211_IFTYPE_ADHOC)
  1066. return;
  1067. skb = ieee80211_beacon_get(hw, vif);
  1068. if (skb == NULL)
  1069. return;
  1070. info = IEEE80211_SKB_CB(skb);
  1071. if (hw->flags & IEEE80211_HW_SUPPORTS_RC_TABLE)
  1072. ieee80211_get_tx_rates(vif, NULL, skb,
  1073. info->control.rates,
  1074. ARRAY_SIZE(info->control.rates));
  1075. txrate = ieee80211_get_tx_rate(hw, info);
  1076. mgmt = (struct ieee80211_mgmt *) skb->data;
  1077. /* fake header transmission time */
  1078. data->abs_bcn_ts = mac80211_hwsim_get_tsf_raw();
  1079. mgmt->u.beacon.timestamp = cpu_to_le64(data->abs_bcn_ts +
  1080. data->tsf_offset +
  1081. 24 * 8 * 10 / txrate->bitrate);
  1082. mac80211_hwsim_tx_frame(hw, skb,
  1083. rcu_dereference(vif->chanctx_conf)->def.chan);
  1084. if (vif->csa_active && ieee80211_csa_is_complete(vif))
  1085. ieee80211_csa_finish(vif);
  1086. }
  1087. static enum hrtimer_restart
  1088. mac80211_hwsim_beacon(struct hrtimer *timer)
  1089. {
  1090. struct mac80211_hwsim_data *data =
  1091. container_of(timer, struct mac80211_hwsim_data,
  1092. beacon_timer.timer);
  1093. struct ieee80211_hw *hw = data->hw;
  1094. u64 bcn_int = data->beacon_int;
  1095. ktime_t next_bcn;
  1096. if (!data->started)
  1097. goto out;
  1098. ieee80211_iterate_active_interfaces_atomic(
  1099. hw, IEEE80211_IFACE_ITER_NORMAL,
  1100. mac80211_hwsim_beacon_tx, data);
  1101. /* beacon at new TBTT + beacon interval */
  1102. if (data->bcn_delta) {
  1103. bcn_int -= data->bcn_delta;
  1104. data->bcn_delta = 0;
  1105. }
  1106. next_bcn = ktime_add(hrtimer_get_expires(timer),
  1107. ns_to_ktime(bcn_int * 1000));
  1108. tasklet_hrtimer_start(&data->beacon_timer, next_bcn, HRTIMER_MODE_ABS);
  1109. out:
  1110. return HRTIMER_NORESTART;
  1111. }
  1112. static const char * const hwsim_chanwidths[] = {
  1113. [NL80211_CHAN_WIDTH_20_NOHT] = "noht",
  1114. [NL80211_CHAN_WIDTH_20] = "ht20",
  1115. [NL80211_CHAN_WIDTH_40] = "ht40",
  1116. [NL80211_CHAN_WIDTH_80] = "vht80",
  1117. [NL80211_CHAN_WIDTH_80P80] = "vht80p80",
  1118. [NL80211_CHAN_WIDTH_160] = "vht160",
  1119. };
  1120. static int mac80211_hwsim_config(struct ieee80211_hw *hw, u32 changed)
  1121. {
  1122. struct mac80211_hwsim_data *data = hw->priv;
  1123. struct ieee80211_conf *conf = &hw->conf;
  1124. static const char *smps_modes[IEEE80211_SMPS_NUM_MODES] = {
  1125. [IEEE80211_SMPS_AUTOMATIC] = "auto",
  1126. [IEEE80211_SMPS_OFF] = "off",
  1127. [IEEE80211_SMPS_STATIC] = "static",
  1128. [IEEE80211_SMPS_DYNAMIC] = "dynamic",
  1129. };
  1130. if (conf->chandef.chan)
  1131. wiphy_debug(hw->wiphy,
  1132. "%s (freq=%d(%d - %d)/%s idle=%d ps=%d smps=%s)\n",
  1133. __func__,
  1134. conf->chandef.chan->center_freq,
  1135. conf->chandef.center_freq1,
  1136. conf->chandef.center_freq2,
  1137. hwsim_chanwidths[conf->chandef.width],
  1138. !!(conf->flags & IEEE80211_CONF_IDLE),
  1139. !!(conf->flags & IEEE80211_CONF_PS),
  1140. smps_modes[conf->smps_mode]);
  1141. else
  1142. wiphy_debug(hw->wiphy,
  1143. "%s (freq=0 idle=%d ps=%d smps=%s)\n",
  1144. __func__,
  1145. !!(conf->flags & IEEE80211_CONF_IDLE),
  1146. !!(conf->flags & IEEE80211_CONF_PS),
  1147. smps_modes[conf->smps_mode]);
  1148. data->idle = !!(conf->flags & IEEE80211_CONF_IDLE);
  1149. data->channel = conf->chandef.chan;
  1150. WARN_ON(data->channel && data->use_chanctx);
  1151. data->power_level = conf->power_level;
  1152. if (!data->started || !data->beacon_int)
  1153. tasklet_hrtimer_cancel(&data->beacon_timer);
  1154. else if (!hrtimer_is_queued(&data->beacon_timer.timer)) {
  1155. u64 tsf = mac80211_hwsim_get_tsf(hw, NULL);
  1156. u32 bcn_int = data->beacon_int;
  1157. u64 until_tbtt = bcn_int - do_div(tsf, bcn_int);
  1158. tasklet_hrtimer_start(&data->beacon_timer,
  1159. ns_to_ktime(until_tbtt * 1000),
  1160. HRTIMER_MODE_REL);
  1161. }
  1162. return 0;
  1163. }
  1164. static void mac80211_hwsim_configure_filter(struct ieee80211_hw *hw,
  1165. unsigned int changed_flags,
  1166. unsigned int *total_flags,u64 multicast)
  1167. {
  1168. struct mac80211_hwsim_data *data = hw->priv;
  1169. wiphy_debug(hw->wiphy, "%s\n", __func__);
  1170. data->rx_filter = 0;
  1171. if (*total_flags & FIF_PROMISC_IN_BSS)
  1172. data->rx_filter |= FIF_PROMISC_IN_BSS;
  1173. if (*total_flags & FIF_ALLMULTI)
  1174. data->rx_filter |= FIF_ALLMULTI;
  1175. *total_flags = data->rx_filter;
  1176. }
  1177. static void mac80211_hwsim_bcn_en_iter(void *data, u8 *mac,
  1178. struct ieee80211_vif *vif)
  1179. {
  1180. unsigned int *count = data;
  1181. struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
  1182. if (vp->bcn_en)
  1183. (*count)++;
  1184. }
  1185. static void mac80211_hwsim_bss_info_changed(struct ieee80211_hw *hw,
  1186. struct ieee80211_vif *vif,
  1187. struct ieee80211_bss_conf *info,
  1188. u32 changed)
  1189. {
  1190. struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
  1191. struct mac80211_hwsim_data *data = hw->priv;
  1192. hwsim_check_magic(vif);
  1193. wiphy_debug(hw->wiphy, "%s(changed=0x%x vif->addr=%pM)\n",
  1194. __func__, changed, vif->addr);
  1195. if (changed & BSS_CHANGED_BSSID) {
  1196. wiphy_debug(hw->wiphy, "%s: BSSID changed: %pM\n",
  1197. __func__, info->bssid);
  1198. memcpy(vp->bssid, info->bssid, ETH_ALEN);
  1199. }
  1200. if (changed & BSS_CHANGED_ASSOC) {
  1201. wiphy_debug(hw->wiphy, " ASSOC: assoc=%d aid=%d\n",
  1202. info->assoc, info->aid);
  1203. vp->assoc = info->assoc;
  1204. vp->aid = info->aid;
  1205. }
  1206. if (changed & BSS_CHANGED_BEACON_INT) {
  1207. wiphy_debug(hw->wiphy, " BCNINT: %d\n", info->beacon_int);
  1208. data->beacon_int = info->beacon_int * 1024;
  1209. }
  1210. if (changed & BSS_CHANGED_BEACON_ENABLED) {
  1211. wiphy_debug(hw->wiphy, " BCN EN: %d\n", info->enable_beacon);
  1212. vp->bcn_en = info->enable_beacon;
  1213. if (data->started &&
  1214. !hrtimer_is_queued(&data->beacon_timer.timer) &&
  1215. info->enable_beacon) {
  1216. u64 tsf, until_tbtt;
  1217. u32 bcn_int;
  1218. if (WARN_ON(!data->beacon_int))
  1219. data->beacon_int = 1000 * 1024;
  1220. tsf = mac80211_hwsim_get_tsf(hw, vif);
  1221. bcn_int = data->beacon_int;
  1222. until_tbtt = bcn_int - do_div(tsf, bcn_int);
  1223. tasklet_hrtimer_start(&data->beacon_timer,
  1224. ns_to_ktime(until_tbtt * 1000),
  1225. HRTIMER_MODE_REL);
  1226. } else if (!info->enable_beacon) {
  1227. unsigned int count = 0;
  1228. ieee80211_iterate_active_interfaces_atomic(
  1229. data->hw, IEEE80211_IFACE_ITER_NORMAL,
  1230. mac80211_hwsim_bcn_en_iter, &count);
  1231. wiphy_debug(hw->wiphy, " beaconing vifs remaining: %u",
  1232. count);
  1233. if (count == 0)
  1234. tasklet_hrtimer_cancel(&data->beacon_timer);
  1235. }
  1236. }
  1237. if (changed & BSS_CHANGED_ERP_CTS_PROT) {
  1238. wiphy_debug(hw->wiphy, " ERP_CTS_PROT: %d\n",
  1239. info->use_cts_prot);
  1240. }
  1241. if (changed & BSS_CHANGED_ERP_PREAMBLE) {
  1242. wiphy_debug(hw->wiphy, " ERP_PREAMBLE: %d\n",
  1243. info->use_short_preamble);
  1244. }
  1245. if (changed & BSS_CHANGED_ERP_SLOT) {
  1246. wiphy_debug(hw->wiphy, " ERP_SLOT: %d\n", info->use_short_slot);
  1247. }
  1248. if (changed & BSS_CHANGED_HT) {
  1249. wiphy_debug(hw->wiphy, " HT: op_mode=0x%x\n",
  1250. info->ht_operation_mode);
  1251. }
  1252. if (changed & BSS_CHANGED_BASIC_RATES) {
  1253. wiphy_debug(hw->wiphy, " BASIC_RATES: 0x%llx\n",
  1254. (unsigned long long) info->basic_rates);
  1255. }
  1256. if (changed & BSS_CHANGED_TXPOWER)
  1257. wiphy_debug(hw->wiphy, " TX Power: %d dBm\n", info->txpower);
  1258. }
  1259. static int mac80211_hwsim_sta_add(struct ieee80211_hw *hw,
  1260. struct ieee80211_vif *vif,
  1261. struct ieee80211_sta *sta)
  1262. {
  1263. hwsim_check_magic(vif);
  1264. hwsim_set_sta_magic(sta);
  1265. return 0;
  1266. }
  1267. static int mac80211_hwsim_sta_remove(struct ieee80211_hw *hw,
  1268. struct ieee80211_vif *vif,
  1269. struct ieee80211_sta *sta)
  1270. {
  1271. hwsim_check_magic(vif);
  1272. hwsim_clear_sta_magic(sta);
  1273. return 0;
  1274. }
  1275. static void mac80211_hwsim_sta_notify(struct ieee80211_hw *hw,
  1276. struct ieee80211_vif *vif,
  1277. enum sta_notify_cmd cmd,
  1278. struct ieee80211_sta *sta)
  1279. {
  1280. hwsim_check_magic(vif);
  1281. switch (cmd) {
  1282. case STA_NOTIFY_SLEEP:
  1283. case STA_NOTIFY_AWAKE:
  1284. /* TODO: make good use of these flags */
  1285. break;
  1286. default:
  1287. WARN(1, "Invalid sta notify: %d\n", cmd);
  1288. break;
  1289. }
  1290. }
  1291. static int mac80211_hwsim_set_tim(struct ieee80211_hw *hw,
  1292. struct ieee80211_sta *sta,
  1293. bool set)
  1294. {
  1295. hwsim_check_sta_magic(sta);
  1296. return 0;
  1297. }
  1298. static int mac80211_hwsim_conf_tx(
  1299. struct ieee80211_hw *hw,
  1300. struct ieee80211_vif *vif, u16 queue,
  1301. const struct ieee80211_tx_queue_params *params)
  1302. {
  1303. wiphy_debug(hw->wiphy,
  1304. "%s (queue=%d txop=%d cw_min=%d cw_max=%d aifs=%d)\n",
  1305. __func__, queue,
  1306. params->txop, params->cw_min,
  1307. params->cw_max, params->aifs);
  1308. return 0;
  1309. }
  1310. static int mac80211_hwsim_get_survey(
  1311. struct ieee80211_hw *hw, int idx,
  1312. struct survey_info *survey)
  1313. {
  1314. struct ieee80211_conf *conf = &hw->conf;
  1315. wiphy_debug(hw->wiphy, "%s (idx=%d)\n", __func__, idx);
  1316. if (idx != 0)
  1317. return -ENOENT;
  1318. /* Current channel */
  1319. survey->channel = conf->chandef.chan;
  1320. /*
  1321. * Magically conjured noise level --- this is only ok for simulated hardware.
  1322. *
  1323. * A real driver which cannot determine the real channel noise MUST NOT
  1324. * report any noise, especially not a magically conjured one :-)
  1325. */
  1326. survey->filled = SURVEY_INFO_NOISE_DBM;
  1327. survey->noise = -92;
  1328. return 0;
  1329. }
  1330. #ifdef CONFIG_NL80211_TESTMODE
  1331. /*
  1332. * This section contains example code for using netlink
  1333. * attributes with the testmode command in nl80211.
  1334. */
  1335. /* These enums need to be kept in sync with userspace */
  1336. enum hwsim_testmode_attr {
  1337. __HWSIM_TM_ATTR_INVALID = 0,
  1338. HWSIM_TM_ATTR_CMD = 1,
  1339. HWSIM_TM_ATTR_PS = 2,
  1340. /* keep last */
  1341. __HWSIM_TM_ATTR_AFTER_LAST,
  1342. HWSIM_TM_ATTR_MAX = __HWSIM_TM_ATTR_AFTER_LAST - 1
  1343. };
  1344. enum hwsim_testmode_cmd {
  1345. HWSIM_TM_CMD_SET_PS = 0,
  1346. HWSIM_TM_CMD_GET_PS = 1,
  1347. HWSIM_TM_CMD_STOP_QUEUES = 2,
  1348. HWSIM_TM_CMD_WAKE_QUEUES = 3,
  1349. };
  1350. static const struct nla_policy hwsim_testmode_policy[HWSIM_TM_ATTR_MAX + 1] = {
  1351. [HWSIM_TM_ATTR_CMD] = { .type = NLA_U32 },
  1352. [HWSIM_TM_ATTR_PS] = { .type = NLA_U32 },
  1353. };
  1354. static int mac80211_hwsim_testmode_cmd(struct ieee80211_hw *hw,
  1355. struct ieee80211_vif *vif,
  1356. void *data, int len)
  1357. {
  1358. struct mac80211_hwsim_data *hwsim = hw->priv;
  1359. struct nlattr *tb[HWSIM_TM_ATTR_MAX + 1];
  1360. struct sk_buff *skb;
  1361. int err, ps;
  1362. err = nla_parse(tb, HWSIM_TM_ATTR_MAX, data, len,
  1363. hwsim_testmode_policy);
  1364. if (err)
  1365. return err;
  1366. if (!tb[HWSIM_TM_ATTR_CMD])
  1367. return -EINVAL;
  1368. switch (nla_get_u32(tb[HWSIM_TM_ATTR_CMD])) {
  1369. case HWSIM_TM_CMD_SET_PS:
  1370. if (!tb[HWSIM_TM_ATTR_PS])
  1371. return -EINVAL;
  1372. ps = nla_get_u32(tb[HWSIM_TM_ATTR_PS]);
  1373. return hwsim_fops_ps_write(hwsim, ps);
  1374. case HWSIM_TM_CMD_GET_PS:
  1375. skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy,
  1376. nla_total_size(sizeof(u32)));
  1377. if (!skb)
  1378. return -ENOMEM;
  1379. if (nla_put_u32(skb, HWSIM_TM_ATTR_PS, hwsim->ps))
  1380. goto nla_put_failure;
  1381. return cfg80211_testmode_reply(skb);
  1382. case HWSIM_TM_CMD_STOP_QUEUES:
  1383. ieee80211_stop_queues(hw);
  1384. return 0;
  1385. case HWSIM_TM_CMD_WAKE_QUEUES:
  1386. ieee80211_wake_queues(hw);
  1387. return 0;
  1388. default:
  1389. return -EOPNOTSUPP;
  1390. }
  1391. nla_put_failure:
  1392. kfree_skb(skb);
  1393. return -ENOBUFS;
  1394. }
  1395. #endif
  1396. static int mac80211_hwsim_ampdu_action(struct ieee80211_hw *hw,
  1397. struct ieee80211_vif *vif,
  1398. enum ieee80211_ampdu_mlme_action action,
  1399. struct ieee80211_sta *sta, u16 tid, u16 *ssn,
  1400. u8 buf_size)
  1401. {
  1402. switch (action) {
  1403. case IEEE80211_AMPDU_TX_START:
  1404. ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
  1405. break;
  1406. case IEEE80211_AMPDU_TX_STOP_CONT:
  1407. case IEEE80211_AMPDU_TX_STOP_FLUSH:
  1408. case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
  1409. ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
  1410. break;
  1411. case IEEE80211_AMPDU_TX_OPERATIONAL:
  1412. break;
  1413. case IEEE80211_AMPDU_RX_START:
  1414. case IEEE80211_AMPDU_RX_STOP:
  1415. break;
  1416. default:
  1417. return -EOPNOTSUPP;
  1418. }
  1419. return 0;
  1420. }
  1421. static void mac80211_hwsim_flush(struct ieee80211_hw *hw,
  1422. struct ieee80211_vif *vif,
  1423. u32 queues, bool drop)
  1424. {
  1425. /* Not implemented, queues only on kernel side */
  1426. }
  1427. static void hw_scan_work(struct work_struct *work)
  1428. {
  1429. struct mac80211_hwsim_data *hwsim =
  1430. container_of(work, struct mac80211_hwsim_data, hw_scan.work);
  1431. struct cfg80211_scan_request *req = hwsim->hw_scan_request;
  1432. int dwell, i;
  1433. mutex_lock(&hwsim->mutex);
  1434. if (hwsim->scan_chan_idx >= req->n_channels) {
  1435. wiphy_debug(hwsim->hw->wiphy, "hw scan complete\n");
  1436. ieee80211_scan_completed(hwsim->hw, false);
  1437. hwsim->hw_scan_request = NULL;
  1438. hwsim->hw_scan_vif = NULL;
  1439. hwsim->tmp_chan = NULL;
  1440. mutex_unlock(&hwsim->mutex);
  1441. return;
  1442. }
  1443. wiphy_debug(hwsim->hw->wiphy, "hw scan %d MHz\n",
  1444. req->channels[hwsim->scan_chan_idx]->center_freq);
  1445. hwsim->tmp_chan = req->channels[hwsim->scan_chan_idx];
  1446. if (hwsim->tmp_chan->flags & IEEE80211_CHAN_NO_IR ||
  1447. !req->n_ssids) {
  1448. dwell = 120;
  1449. } else {
  1450. dwell = 30;
  1451. /* send probes */
  1452. for (i = 0; i < req->n_ssids; i++) {
  1453. struct sk_buff *probe;
  1454. probe = ieee80211_probereq_get(hwsim->hw,
  1455. hwsim->hw_scan_vif,
  1456. req->ssids[i].ssid,
  1457. req->ssids[i].ssid_len,
  1458. req->ie_len);
  1459. if (!probe)
  1460. continue;
  1461. if (req->ie_len)
  1462. memcpy(skb_put(probe, req->ie_len), req->ie,
  1463. req->ie_len);
  1464. local_bh_disable();
  1465. mac80211_hwsim_tx_frame(hwsim->hw, probe,
  1466. hwsim->tmp_chan);
  1467. local_bh_enable();
  1468. }
  1469. }
  1470. ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan,
  1471. msecs_to_jiffies(dwell));
  1472. hwsim->scan_chan_idx++;
  1473. mutex_unlock(&hwsim->mutex);
  1474. }
  1475. static int mac80211_hwsim_hw_scan(struct ieee80211_hw *hw,
  1476. struct ieee80211_vif *vif,
  1477. struct ieee80211_scan_request *hw_req)
  1478. {
  1479. struct mac80211_hwsim_data *hwsim = hw->priv;
  1480. struct cfg80211_scan_request *req = &hw_req->req;
  1481. mutex_lock(&hwsim->mutex);
  1482. if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) {
  1483. mutex_unlock(&hwsim->mutex);
  1484. return -EBUSY;
  1485. }
  1486. hwsim->hw_scan_request = req;
  1487. hwsim->hw_scan_vif = vif;
  1488. hwsim->scan_chan_idx = 0;
  1489. mutex_unlock(&hwsim->mutex);
  1490. wiphy_debug(hw->wiphy, "hwsim hw_scan request\n");
  1491. ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan, 0);
  1492. return 0;
  1493. }
  1494. static void mac80211_hwsim_cancel_hw_scan(struct ieee80211_hw *hw,
  1495. struct ieee80211_vif *vif)
  1496. {
  1497. struct mac80211_hwsim_data *hwsim = hw->priv;
  1498. wiphy_debug(hw->wiphy, "hwsim cancel_hw_scan\n");
  1499. cancel_delayed_work_sync(&hwsim->hw_scan);
  1500. mutex_lock(&hwsim->mutex);
  1501. ieee80211_scan_completed(hwsim->hw, true);
  1502. hwsim->tmp_chan = NULL;
  1503. hwsim->hw_scan_request = NULL;
  1504. hwsim->hw_scan_vif = NULL;
  1505. mutex_unlock(&hwsim->mutex);
  1506. }
  1507. static void mac80211_hwsim_sw_scan(struct ieee80211_hw *hw)
  1508. {
  1509. struct mac80211_hwsim_data *hwsim = hw->priv;
  1510. mutex_lock(&hwsim->mutex);
  1511. if (hwsim->scanning) {
  1512. printk(KERN_DEBUG "two hwsim sw_scans detected!\n");
  1513. goto out;
  1514. }
  1515. printk(KERN_DEBUG "hwsim sw_scan request, prepping stuff\n");
  1516. hwsim->scanning = true;
  1517. out:
  1518. mutex_unlock(&hwsim->mutex);
  1519. }
  1520. static void mac80211_hwsim_sw_scan_complete(struct ieee80211_hw *hw)
  1521. {
  1522. struct mac80211_hwsim_data *hwsim = hw->priv;
  1523. mutex_lock(&hwsim->mutex);
  1524. printk(KERN_DEBUG "hwsim sw_scan_complete\n");
  1525. hwsim->scanning = false;
  1526. mutex_unlock(&hwsim->mutex);
  1527. }
  1528. static void hw_roc_done(struct work_struct *work)
  1529. {
  1530. struct mac80211_hwsim_data *hwsim =
  1531. container_of(work, struct mac80211_hwsim_data, roc_done.work);
  1532. mutex_lock(&hwsim->mutex);
  1533. ieee80211_remain_on_channel_expired(hwsim->hw);
  1534. hwsim->tmp_chan = NULL;
  1535. mutex_unlock(&hwsim->mutex);
  1536. wiphy_debug(hwsim->hw->wiphy, "hwsim ROC expired\n");
  1537. }
  1538. static int mac80211_hwsim_roc(struct ieee80211_hw *hw,
  1539. struct ieee80211_vif *vif,
  1540. struct ieee80211_channel *chan,
  1541. int duration,
  1542. enum ieee80211_roc_type type)
  1543. {
  1544. struct mac80211_hwsim_data *hwsim = hw->priv;
  1545. mutex_lock(&hwsim->mutex);
  1546. if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) {
  1547. mutex_unlock(&hwsim->mutex);
  1548. return -EBUSY;
  1549. }
  1550. hwsim->tmp_chan = chan;
  1551. mutex_unlock(&hwsim->mutex);
  1552. wiphy_debug(hw->wiphy, "hwsim ROC (%d MHz, %d ms)\n",
  1553. chan->center_freq, duration);
  1554. ieee80211_ready_on_channel(hw);
  1555. ieee80211_queue_delayed_work(hw, &hwsim->roc_done,
  1556. msecs_to_jiffies(duration));
  1557. return 0;
  1558. }
  1559. static int mac80211_hwsim_croc(struct ieee80211_hw *hw)
  1560. {
  1561. struct mac80211_hwsim_data *hwsim = hw->priv;
  1562. cancel_delayed_work_sync(&hwsim->roc_done);
  1563. mutex_lock(&hwsim->mutex);
  1564. hwsim->tmp_chan = NULL;
  1565. mutex_unlock(&hwsim->mutex);
  1566. wiphy_debug(hw->wiphy, "hwsim ROC canceled\n");
  1567. return 0;
  1568. }
  1569. static int mac80211_hwsim_add_chanctx(struct ieee80211_hw *hw,
  1570. struct ieee80211_chanctx_conf *ctx)
  1571. {
  1572. hwsim_set_chanctx_magic(ctx);
  1573. wiphy_debug(hw->wiphy,
  1574. "add channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
  1575. ctx->def.chan->center_freq, ctx->def.width,
  1576. ctx->def.center_freq1, ctx->def.center_freq2);
  1577. return 0;
  1578. }
  1579. static void mac80211_hwsim_remove_chanctx(struct ieee80211_hw *hw,
  1580. struct ieee80211_chanctx_conf *ctx)
  1581. {
  1582. wiphy_debug(hw->wiphy,
  1583. "remove channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
  1584. ctx->def.chan->center_freq, ctx->def.width,
  1585. ctx->def.center_freq1, ctx->def.center_freq2);
  1586. hwsim_check_chanctx_magic(ctx);
  1587. hwsim_clear_chanctx_magic(ctx);
  1588. }
  1589. static void mac80211_hwsim_change_chanctx(struct ieee80211_hw *hw,
  1590. struct ieee80211_chanctx_conf *ctx,
  1591. u32 changed)
  1592. {
  1593. hwsim_check_chanctx_magic(ctx);
  1594. wiphy_debug(hw->wiphy,
  1595. "change channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
  1596. ctx->def.chan->center_freq, ctx->def.width,
  1597. ctx->def.center_freq1, ctx->def.center_freq2);
  1598. }
  1599. static int mac80211_hwsim_assign_vif_chanctx(struct ieee80211_hw *hw,
  1600. struct ieee80211_vif *vif,
  1601. struct ieee80211_chanctx_conf *ctx)
  1602. {
  1603. hwsim_check_magic(vif);
  1604. hwsim_check_chanctx_magic(ctx);
  1605. return 0;
  1606. }
  1607. static void mac80211_hwsim_unassign_vif_chanctx(struct ieee80211_hw *hw,
  1608. struct ieee80211_vif *vif,
  1609. struct ieee80211_chanctx_conf *ctx)
  1610. {
  1611. hwsim_check_magic(vif);
  1612. hwsim_check_chanctx_magic(ctx);
  1613. }
  1614. static const struct ieee80211_ops mac80211_hwsim_ops = {
  1615. .tx = mac80211_hwsim_tx,
  1616. .start = mac80211_hwsim_start,
  1617. .stop = mac80211_hwsim_stop,
  1618. .add_interface = mac80211_hwsim_add_interface,
  1619. .change_interface = mac80211_hwsim_change_interface,
  1620. .remove_interface = mac80211_hwsim_remove_interface,
  1621. .config = mac80211_hwsim_config,
  1622. .configure_filter = mac80211_hwsim_configure_filter,
  1623. .bss_info_changed = mac80211_hwsim_bss_info_changed,
  1624. .sta_add = mac80211_hwsim_sta_add,
  1625. .sta_remove = mac80211_hwsim_sta_remove,
  1626. .sta_notify = mac80211_hwsim_sta_notify,
  1627. .set_tim = mac80211_hwsim_set_tim,
  1628. .conf_tx = mac80211_hwsim_conf_tx,
  1629. .get_survey = mac80211_hwsim_get_survey,
  1630. CFG80211_TESTMODE_CMD(mac80211_hwsim_testmode_cmd)
  1631. .ampdu_action = mac80211_hwsim_ampdu_action,
  1632. .sw_scan_start = mac80211_hwsim_sw_scan,
  1633. .sw_scan_complete = mac80211_hwsim_sw_scan_complete,
  1634. .flush = mac80211_hwsim_flush,
  1635. .get_tsf = mac80211_hwsim_get_tsf,
  1636. .set_tsf = mac80211_hwsim_set_tsf,
  1637. };
  1638. static struct ieee80211_ops mac80211_hwsim_mchan_ops;
  1639. static int mac80211_hwsim_create_radio(int channels, const char *reg_alpha2,
  1640. const struct ieee80211_regdomain *regd,
  1641. bool reg_strict, bool p2p_device,
  1642. bool use_chanctx)
  1643. {
  1644. int err;
  1645. u8 addr[ETH_ALEN];
  1646. struct mac80211_hwsim_data *data;
  1647. struct ieee80211_hw *hw;
  1648. enum ieee80211_band band;
  1649. const struct ieee80211_ops *ops = &mac80211_hwsim_ops;
  1650. int idx;
  1651. if (WARN_ON(channels > 1 && !use_chanctx))
  1652. return -EINVAL;
  1653. spin_lock_bh(&hwsim_radio_lock);
  1654. idx = hwsim_radio_idx++;
  1655. spin_unlock_bh(&hwsim_radio_lock);
  1656. if (use_chanctx)
  1657. ops = &mac80211_hwsim_mchan_ops;
  1658. hw = ieee80211_alloc_hw(sizeof(*data), ops);
  1659. if (!hw) {
  1660. printk(KERN_DEBUG "mac80211_hwsim: ieee80211_alloc_hw failed\n");
  1661. err = -ENOMEM;
  1662. goto failed;
  1663. }
  1664. data = hw->priv;
  1665. data->hw = hw;
  1666. data->dev = device_create(hwsim_class, NULL, 0, hw, "hwsim%d", idx);
  1667. if (IS_ERR(data->dev)) {
  1668. printk(KERN_DEBUG
  1669. "mac80211_hwsim: device_create failed (%ld)\n",
  1670. PTR_ERR(data->dev));
  1671. err = -ENOMEM;
  1672. goto failed_drvdata;
  1673. }
  1674. data->dev->driver = &mac80211_hwsim_driver.driver;
  1675. err = device_bind_driver(data->dev);
  1676. if (err != 0) {
  1677. printk(KERN_DEBUG "mac80211_hwsim: device_bind_driver failed (%d)\n",
  1678. err);
  1679. goto failed_bind;
  1680. }
  1681. skb_queue_head_init(&data->pending);
  1682. SET_IEEE80211_DEV(hw, data->dev);
  1683. memset(addr, 0, ETH_ALEN);
  1684. addr[0] = 0x02;
  1685. addr[3] = idx >> 8;
  1686. addr[4] = idx;
  1687. memcpy(data->addresses[0].addr, addr, ETH_ALEN);
  1688. memcpy(data->addresses[1].addr, addr, ETH_ALEN);
  1689. data->addresses[1].addr[0] |= 0x40;
  1690. hw->wiphy->n_addresses = 2;
  1691. hw->wiphy->addresses = data->addresses;
  1692. data->channels = channels;
  1693. data->use_chanctx = use_chanctx;
  1694. data->idx = idx;
  1695. if (data->use_chanctx) {
  1696. hw->wiphy->max_scan_ssids = 255;
  1697. hw->wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN;
  1698. hw->wiphy->max_remain_on_channel_duration = 1000;
  1699. /* For channels > 1 DFS is not allowed */
  1700. hw->wiphy->n_iface_combinations = 1;
  1701. hw->wiphy->iface_combinations = &data->if_combination;
  1702. if (p2p_device)
  1703. data->if_combination = hwsim_if_comb_p2p_dev[0];
  1704. else
  1705. data->if_combination = hwsim_if_comb[0];
  1706. data->if_combination.num_different_channels = data->channels;
  1707. } else if (p2p_device) {
  1708. hw->wiphy->iface_combinations = hwsim_if_comb_p2p_dev;
  1709. hw->wiphy->n_iface_combinations =
  1710. ARRAY_SIZE(hwsim_if_comb_p2p_dev);
  1711. } else {
  1712. hw->wiphy->iface_combinations = hwsim_if_comb;
  1713. hw->wiphy->n_iface_combinations = ARRAY_SIZE(hwsim_if_comb);
  1714. }
  1715. INIT_DELAYED_WORK(&data->roc_done, hw_roc_done);
  1716. INIT_DELAYED_WORK(&data->hw_scan, hw_scan_work);
  1717. hw->queues = 5;
  1718. hw->offchannel_tx_hw_queue = 4;
  1719. hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
  1720. BIT(NL80211_IFTYPE_AP) |
  1721. BIT(NL80211_IFTYPE_P2P_CLIENT) |
  1722. BIT(NL80211_IFTYPE_P2P_GO) |
  1723. BIT(NL80211_IFTYPE_ADHOC) |
  1724. BIT(NL80211_IFTYPE_MESH_POINT);
  1725. if (p2p_device)
  1726. hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_P2P_DEVICE);
  1727. hw->flags = IEEE80211_HW_MFP_CAPABLE |
  1728. IEEE80211_HW_SIGNAL_DBM |
  1729. IEEE80211_HW_AMPDU_AGGREGATION |
  1730. IEEE80211_HW_WANT_MONITOR_VIF |
  1731. IEEE80211_HW_QUEUE_CONTROL |
  1732. IEEE80211_HW_SUPPORTS_HT_CCK_RATES |
  1733. IEEE80211_HW_CHANCTX_STA_CSA;
  1734. if (rctbl)
  1735. hw->flags |= IEEE80211_HW_SUPPORTS_RC_TABLE;
  1736. hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
  1737. WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL |
  1738. WIPHY_FLAG_AP_UAPSD |
  1739. WIPHY_FLAG_HAS_CHANNEL_SWITCH;
  1740. hw->wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR |
  1741. NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE |
  1742. NL80211_FEATURE_STATIC_SMPS |
  1743. NL80211_FEATURE_DYNAMIC_SMPS;
  1744. /* ask mac80211 to reserve space for magic */
  1745. hw->vif_data_size = sizeof(struct hwsim_vif_priv);
  1746. hw->sta_data_size = sizeof(struct hwsim_sta_priv);
  1747. hw->chanctx_data_size = sizeof(struct hwsim_chanctx_priv);
  1748. memcpy(data->channels_2ghz, hwsim_channels_2ghz,
  1749. sizeof(hwsim_channels_2ghz));
  1750. memcpy(data->channels_5ghz, hwsim_channels_5ghz,
  1751. sizeof(hwsim_channels_5ghz));
  1752. memcpy(data->rates, hwsim_rates, sizeof(hwsim_rates));
  1753. for (band = IEEE80211_BAND_2GHZ; band < IEEE80211_NUM_BANDS; band++) {
  1754. struct ieee80211_supported_band *sband = &data->bands[band];
  1755. switch (band) {
  1756. case IEEE80211_BAND_2GHZ:
  1757. sband->channels = data->channels_2ghz;
  1758. sband->n_channels = ARRAY_SIZE(hwsim_channels_2ghz);
  1759. sband->bitrates = data->rates;
  1760. sband->n_bitrates = ARRAY_SIZE(hwsim_rates);
  1761. break;
  1762. case IEEE80211_BAND_5GHZ:
  1763. sband->channels = data->channels_5ghz;
  1764. sband->n_channels = ARRAY_SIZE(hwsim_channels_5ghz);
  1765. sband->bitrates = data->rates + 4;
  1766. sband->n_bitrates = ARRAY_SIZE(hwsim_rates) - 4;
  1767. break;
  1768. default:
  1769. continue;
  1770. }
  1771. sband->ht_cap.ht_supported = true;
  1772. sband->ht_cap.cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  1773. IEEE80211_HT_CAP_GRN_FLD |
  1774. IEEE80211_HT_CAP_SGI_40 |
  1775. IEEE80211_HT_CAP_DSSSCCK40;
  1776. sband->ht_cap.ampdu_factor = 0x3;
  1777. sband->ht_cap.ampdu_density = 0x6;
  1778. memset(&sband->ht_cap.mcs, 0,
  1779. sizeof(sband->ht_cap.mcs));
  1780. sband->ht_cap.mcs.rx_mask[0] = 0xff;
  1781. sband->ht_cap.mcs.rx_mask[1] = 0xff;
  1782. sband->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
  1783. hw->wiphy->bands[band] = sband;
  1784. sband->vht_cap.vht_supported = true;
  1785. sband->vht_cap.cap =
  1786. IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
  1787. IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ |
  1788. IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
  1789. IEEE80211_VHT_CAP_RXLDPC |
  1790. IEEE80211_VHT_CAP_SHORT_GI_80 |
  1791. IEEE80211_VHT_CAP_SHORT_GI_160 |
  1792. IEEE80211_VHT_CAP_TXSTBC |
  1793. IEEE80211_VHT_CAP_RXSTBC_1 |
  1794. IEEE80211_VHT_CAP_RXSTBC_2 |
  1795. IEEE80211_VHT_CAP_RXSTBC_3 |
  1796. IEEE80211_VHT_CAP_RXSTBC_4 |
  1797. IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK;
  1798. sband->vht_cap.vht_mcs.rx_mcs_map =
  1799. cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_8 << 0 |
  1800. IEEE80211_VHT_MCS_SUPPORT_0_8 << 2 |
  1801. IEEE80211_VHT_MCS_SUPPORT_0_9 << 4 |
  1802. IEEE80211_VHT_MCS_SUPPORT_0_8 << 6 |
  1803. IEEE80211_VHT_MCS_SUPPORT_0_8 << 8 |
  1804. IEEE80211_VHT_MCS_SUPPORT_0_9 << 10 |
  1805. IEEE80211_VHT_MCS_SUPPORT_0_9 << 12 |
  1806. IEEE80211_VHT_MCS_SUPPORT_0_8 << 14);
  1807. sband->vht_cap.vht_mcs.tx_mcs_map =
  1808. sband->vht_cap.vht_mcs.rx_mcs_map;
  1809. }
  1810. /* By default all radios belong to the first group */
  1811. data->group = 1;
  1812. mutex_init(&data->mutex);
  1813. /* Enable frame retransmissions for lossy channels */
  1814. hw->max_rates = 4;
  1815. hw->max_rate_tries = 11;
  1816. if (reg_strict)
  1817. hw->wiphy->regulatory_flags |= REGULATORY_STRICT_REG;
  1818. if (regd) {
  1819. hw->wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
  1820. wiphy_apply_custom_regulatory(hw->wiphy, regd);
  1821. /* give the regulatory workqueue a chance to run */
  1822. schedule_timeout_interruptible(1);
  1823. }
  1824. err = ieee80211_register_hw(hw);
  1825. if (err < 0) {
  1826. printk(KERN_DEBUG "mac80211_hwsim: ieee80211_register_hw failed (%d)\n",
  1827. err);
  1828. goto failed_hw;
  1829. }
  1830. wiphy_debug(hw->wiphy, "hwaddr %pM registered\n", hw->wiphy->perm_addr);
  1831. if (reg_alpha2)
  1832. regulatory_hint(hw->wiphy, reg_alpha2);
  1833. data->debugfs = debugfs_create_dir("hwsim", hw->wiphy->debugfsdir);
  1834. debugfs_create_file("ps", 0666, data->debugfs, data, &hwsim_fops_ps);
  1835. debugfs_create_file("group", 0666, data->debugfs, data,
  1836. &hwsim_fops_group);
  1837. if (!data->use_chanctx)
  1838. debugfs_create_file("dfs_simulate_radar", 0222,
  1839. data->debugfs,
  1840. data, &hwsim_simulate_radar);
  1841. tasklet_hrtimer_init(&data->beacon_timer,
  1842. mac80211_hwsim_beacon,
  1843. CLOCK_MONOTONIC_RAW, HRTIMER_MODE_ABS);
  1844. spin_lock_bh(&hwsim_radio_lock);
  1845. list_add_tail(&data->list, &hwsim_radios);
  1846. spin_unlock_bh(&hwsim_radio_lock);
  1847. return idx;
  1848. failed_hw:
  1849. device_release_driver(data->dev);
  1850. failed_bind:
  1851. device_unregister(data->dev);
  1852. failed_drvdata:
  1853. ieee80211_free_hw(hw);
  1854. failed:
  1855. return err;
  1856. }
  1857. static void mac80211_hwsim_destroy_radio(struct mac80211_hwsim_data *data)
  1858. {
  1859. debugfs_remove_recursive(data->debugfs);
  1860. ieee80211_unregister_hw(data->hw);
  1861. device_release_driver(data->dev);
  1862. device_unregister(data->dev);
  1863. ieee80211_free_hw(data->hw);
  1864. }
  1865. static void mac80211_hwsim_free(void)
  1866. {
  1867. struct mac80211_hwsim_data *data;
  1868. spin_lock_bh(&hwsim_radio_lock);
  1869. while ((data = list_first_entry_or_null(&hwsim_radios,
  1870. struct mac80211_hwsim_data,
  1871. list))) {
  1872. list_del(&data->list);
  1873. spin_unlock_bh(&hwsim_radio_lock);
  1874. mac80211_hwsim_destroy_radio(data);
  1875. spin_lock_bh(&hwsim_radio_lock);
  1876. }
  1877. spin_unlock_bh(&hwsim_radio_lock);
  1878. class_destroy(hwsim_class);
  1879. }
  1880. static const struct net_device_ops hwsim_netdev_ops = {
  1881. .ndo_start_xmit = hwsim_mon_xmit,
  1882. .ndo_change_mtu = eth_change_mtu,
  1883. .ndo_set_mac_address = eth_mac_addr,
  1884. .ndo_validate_addr = eth_validate_addr,
  1885. };
  1886. static void hwsim_mon_setup(struct net_device *dev)
  1887. {
  1888. dev->netdev_ops = &hwsim_netdev_ops;
  1889. dev->destructor = free_netdev;
  1890. ether_setup(dev);
  1891. dev->tx_queue_len = 0;
  1892. dev->type = ARPHRD_IEEE80211_RADIOTAP;
  1893. memset(dev->dev_addr, 0, ETH_ALEN);
  1894. dev->dev_addr[0] = 0x12;
  1895. }
  1896. static struct mac80211_hwsim_data *get_hwsim_data_ref_from_addr(const u8 *addr)
  1897. {
  1898. struct mac80211_hwsim_data *data;
  1899. bool _found = false;
  1900. spin_lock_bh(&hwsim_radio_lock);
  1901. list_for_each_entry(data, &hwsim_radios, list) {
  1902. if (memcmp(data->addresses[1].addr, addr, ETH_ALEN) == 0) {
  1903. _found = true;
  1904. break;
  1905. }
  1906. }
  1907. spin_unlock_bh(&hwsim_radio_lock);
  1908. if (!_found)
  1909. return NULL;
  1910. return data;
  1911. }
  1912. static int hwsim_tx_info_frame_received_nl(struct sk_buff *skb_2,
  1913. struct genl_info *info)
  1914. {
  1915. struct ieee80211_hdr *hdr;
  1916. struct mac80211_hwsim_data *data2;
  1917. struct ieee80211_tx_info *txi;
  1918. struct hwsim_tx_rate *tx_attempts;
  1919. unsigned long ret_skb_ptr;
  1920. struct sk_buff *skb, *tmp;
  1921. const u8 *src;
  1922. unsigned int hwsim_flags;
  1923. int i;
  1924. bool found = false;
  1925. if (info->snd_portid != wmediumd_portid)
  1926. return -EINVAL;
  1927. if (!info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER] ||
  1928. !info->attrs[HWSIM_ATTR_FLAGS] ||
  1929. !info->attrs[HWSIM_ATTR_COOKIE] ||
  1930. !info->attrs[HWSIM_ATTR_TX_INFO])
  1931. goto out;
  1932. src = (void *)nla_data(info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER]);
  1933. hwsim_flags = nla_get_u32(info->attrs[HWSIM_ATTR_FLAGS]);
  1934. ret_skb_ptr = nla_get_u64(info->attrs[HWSIM_ATTR_COOKIE]);
  1935. data2 = get_hwsim_data_ref_from_addr(src);
  1936. if (!data2)
  1937. goto out;
  1938. /* look for the skb matching the cookie passed back from user */
  1939. skb_queue_walk_safe(&data2->pending, skb, tmp) {
  1940. if ((unsigned long)skb == ret_skb_ptr) {
  1941. skb_unlink(skb, &data2->pending);
  1942. found = true;
  1943. break;
  1944. }
  1945. }
  1946. /* not found */
  1947. if (!found)
  1948. goto out;
  1949. /* Tx info received because the frame was broadcasted on user space,
  1950. so we get all the necessary info: tx attempts and skb control buff */
  1951. tx_attempts = (struct hwsim_tx_rate *)nla_data(
  1952. info->attrs[HWSIM_ATTR_TX_INFO]);
  1953. /* now send back TX status */
  1954. txi = IEEE80211_SKB_CB(skb);
  1955. ieee80211_tx_info_clear_status(txi);
  1956. for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
  1957. txi->status.rates[i].idx = tx_attempts[i].idx;
  1958. txi->status.rates[i].count = tx_attempts[i].count;
  1959. /*txi->status.rates[i].flags = 0;*/
  1960. }
  1961. txi->status.ack_signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]);
  1962. if (!(hwsim_flags & HWSIM_TX_CTL_NO_ACK) &&
  1963. (hwsim_flags & HWSIM_TX_STAT_ACK)) {
  1964. if (skb->len >= 16) {
  1965. hdr = (struct ieee80211_hdr *) skb->data;
  1966. mac80211_hwsim_monitor_ack(data2->channel,
  1967. hdr->addr2);
  1968. }
  1969. txi->flags |= IEEE80211_TX_STAT_ACK;
  1970. }
  1971. ieee80211_tx_status_irqsafe(data2->hw, skb);
  1972. return 0;
  1973. out:
  1974. return -EINVAL;
  1975. }
  1976. static int hwsim_cloned_frame_received_nl(struct sk_buff *skb_2,
  1977. struct genl_info *info)
  1978. {
  1979. struct mac80211_hwsim_data *data2;
  1980. struct ieee80211_rx_status rx_status;
  1981. const u8 *dst;
  1982. int frame_data_len;
  1983. void *frame_data;
  1984. struct sk_buff *skb = NULL;
  1985. if (info->snd_portid != wmediumd_portid)
  1986. return -EINVAL;
  1987. if (!info->attrs[HWSIM_ATTR_ADDR_RECEIVER] ||
  1988. !info->attrs[HWSIM_ATTR_FRAME] ||
  1989. !info->attrs[HWSIM_ATTR_RX_RATE] ||
  1990. !info->attrs[HWSIM_ATTR_SIGNAL])
  1991. goto out;
  1992. dst = (void *)nla_data(info->attrs[HWSIM_ATTR_ADDR_RECEIVER]);
  1993. frame_data_len = nla_len(info->attrs[HWSIM_ATTR_FRAME]);
  1994. frame_data = (void *)nla_data(info->attrs[HWSIM_ATTR_FRAME]);
  1995. /* Allocate new skb here */
  1996. skb = alloc_skb(frame_data_len, GFP_KERNEL);
  1997. if (skb == NULL)
  1998. goto err;
  1999. if (frame_data_len > IEEE80211_MAX_DATA_LEN)
  2000. goto err;
  2001. /* Copy the data */
  2002. memcpy(skb_put(skb, frame_data_len), frame_data, frame_data_len);
  2003. data2 = get_hwsim_data_ref_from_addr(dst);
  2004. if (!data2)
  2005. goto out;
  2006. /* check if radio is configured properly */
  2007. if (data2->idle || !data2->started)
  2008. goto out;
  2009. /* A frame is received from user space */
  2010. memset(&rx_status, 0, sizeof(rx_status));
  2011. rx_status.freq = data2->channel->center_freq;
  2012. rx_status.band = data2->channel->band;
  2013. rx_status.rate_idx = nla_get_u32(info->attrs[HWSIM_ATTR_RX_RATE]);
  2014. rx_status.signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]);
  2015. memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status));
  2016. ieee80211_rx_irqsafe(data2->hw, skb);
  2017. return 0;
  2018. err:
  2019. printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
  2020. goto out;
  2021. out:
  2022. dev_kfree_skb(skb);
  2023. return -EINVAL;
  2024. }
  2025. static int hwsim_register_received_nl(struct sk_buff *skb_2,
  2026. struct genl_info *info)
  2027. {
  2028. struct mac80211_hwsim_data *data;
  2029. int chans = 1;
  2030. spin_lock_bh(&hwsim_radio_lock);
  2031. list_for_each_entry(data, &hwsim_radios, list)
  2032. chans = max(chans, data->channels);
  2033. spin_unlock_bh(&hwsim_radio_lock);
  2034. /* In the future we should revise the userspace API and allow it
  2035. * to set a flag that it does support multi-channel, then we can
  2036. * let this pass conditionally on the flag.
  2037. * For current userspace, prohibit it since it won't work right.
  2038. */
  2039. if (chans > 1)
  2040. return -EOPNOTSUPP;
  2041. if (wmediumd_portid)
  2042. return -EBUSY;
  2043. wmediumd_portid = info->snd_portid;
  2044. printk(KERN_DEBUG "mac80211_hwsim: received a REGISTER, "
  2045. "switching to wmediumd mode with pid %d\n", info->snd_portid);
  2046. return 0;
  2047. }
  2048. static int hwsim_create_radio_nl(struct sk_buff *msg, struct genl_info *info)
  2049. {
  2050. unsigned int chans = channels;
  2051. const char *alpha2 = NULL;
  2052. const struct ieee80211_regdomain *regd = NULL;
  2053. bool reg_strict = info->attrs[HWSIM_ATTR_REG_STRICT_REG];
  2054. bool p2p_device = info->attrs[HWSIM_ATTR_SUPPORT_P2P_DEVICE];
  2055. bool use_chanctx;
  2056. if (info->attrs[HWSIM_ATTR_CHANNELS])
  2057. chans = nla_get_u32(info->attrs[HWSIM_ATTR_CHANNELS]);
  2058. if (info->attrs[HWSIM_ATTR_USE_CHANCTX])
  2059. use_chanctx = true;
  2060. else
  2061. use_chanctx = (chans > 1);
  2062. if (info->attrs[HWSIM_ATTR_REG_HINT_ALPHA2])
  2063. alpha2 = nla_data(info->attrs[HWSIM_ATTR_REG_HINT_ALPHA2]);
  2064. if (info->attrs[HWSIM_ATTR_REG_CUSTOM_REG]) {
  2065. u32 idx = nla_get_u32(info->attrs[HWSIM_ATTR_REG_CUSTOM_REG]);
  2066. if (idx >= ARRAY_SIZE(hwsim_world_regdom_custom))
  2067. return -EINVAL;
  2068. regd = hwsim_world_regdom_custom[idx];
  2069. }
  2070. return mac80211_hwsim_create_radio(chans, alpha2, regd, reg_strict,
  2071. p2p_device, use_chanctx);
  2072. }
  2073. static int hwsim_destroy_radio_nl(struct sk_buff *msg, struct genl_info *info)
  2074. {
  2075. struct mac80211_hwsim_data *data;
  2076. int idx;
  2077. if (!info->attrs[HWSIM_ATTR_RADIO_ID])
  2078. return -EINVAL;
  2079. idx = nla_get_u32(info->attrs[HWSIM_ATTR_RADIO_ID]);
  2080. spin_lock_bh(&hwsim_radio_lock);
  2081. list_for_each_entry(data, &hwsim_radios, list) {
  2082. if (data->idx != idx)
  2083. continue;
  2084. list_del(&data->list);
  2085. spin_unlock_bh(&hwsim_radio_lock);
  2086. mac80211_hwsim_destroy_radio(data);
  2087. return 0;
  2088. }
  2089. spin_unlock_bh(&hwsim_radio_lock);
  2090. return -ENODEV;
  2091. }
  2092. /* Generic Netlink operations array */
  2093. static const struct genl_ops hwsim_ops[] = {
  2094. {
  2095. .cmd = HWSIM_CMD_REGISTER,
  2096. .policy = hwsim_genl_policy,
  2097. .doit = hwsim_register_received_nl,
  2098. .flags = GENL_ADMIN_PERM,
  2099. },
  2100. {
  2101. .cmd = HWSIM_CMD_FRAME,
  2102. .policy = hwsim_genl_policy,
  2103. .doit = hwsim_cloned_frame_received_nl,
  2104. },
  2105. {
  2106. .cmd = HWSIM_CMD_TX_INFO_FRAME,
  2107. .policy = hwsim_genl_policy,
  2108. .doit = hwsim_tx_info_frame_received_nl,
  2109. },
  2110. {
  2111. .cmd = HWSIM_CMD_CREATE_RADIO,
  2112. .policy = hwsim_genl_policy,
  2113. .doit = hwsim_create_radio_nl,
  2114. .flags = GENL_ADMIN_PERM,
  2115. },
  2116. {
  2117. .cmd = HWSIM_CMD_DESTROY_RADIO,
  2118. .policy = hwsim_genl_policy,
  2119. .doit = hwsim_destroy_radio_nl,
  2120. .flags = GENL_ADMIN_PERM,
  2121. },
  2122. };
  2123. static int mac80211_hwsim_netlink_notify(struct notifier_block *nb,
  2124. unsigned long state,
  2125. void *_notify)
  2126. {
  2127. struct netlink_notify *notify = _notify;
  2128. if (state != NETLINK_URELEASE)
  2129. return NOTIFY_DONE;
  2130. if (notify->portid == wmediumd_portid) {
  2131. printk(KERN_INFO "mac80211_hwsim: wmediumd released netlink"
  2132. " socket, switching to perfect channel medium\n");
  2133. wmediumd_portid = 0;
  2134. }
  2135. return NOTIFY_DONE;
  2136. }
  2137. static struct notifier_block hwsim_netlink_notifier = {
  2138. .notifier_call = mac80211_hwsim_netlink_notify,
  2139. };
  2140. static int hwsim_init_netlink(void)
  2141. {
  2142. int rc;
  2143. printk(KERN_INFO "mac80211_hwsim: initializing netlink\n");
  2144. rc = genl_register_family_with_ops(&hwsim_genl_family, hwsim_ops);
  2145. if (rc)
  2146. goto failure;
  2147. rc = netlink_register_notifier(&hwsim_netlink_notifier);
  2148. if (rc)
  2149. goto failure;
  2150. return 0;
  2151. failure:
  2152. printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
  2153. return -EINVAL;
  2154. }
  2155. static void hwsim_exit_netlink(void)
  2156. {
  2157. /* unregister the notifier */
  2158. netlink_unregister_notifier(&hwsim_netlink_notifier);
  2159. /* unregister the family */
  2160. genl_unregister_family(&hwsim_genl_family);
  2161. }
  2162. static int __init init_mac80211_hwsim(void)
  2163. {
  2164. int i, err;
  2165. if (radios < 0 || radios > 100)
  2166. return -EINVAL;
  2167. if (channels < 1)
  2168. return -EINVAL;
  2169. mac80211_hwsim_mchan_ops = mac80211_hwsim_ops;
  2170. mac80211_hwsim_mchan_ops.hw_scan = mac80211_hwsim_hw_scan;
  2171. mac80211_hwsim_mchan_ops.cancel_hw_scan = mac80211_hwsim_cancel_hw_scan;
  2172. mac80211_hwsim_mchan_ops.sw_scan_start = NULL;
  2173. mac80211_hwsim_mchan_ops.sw_scan_complete = NULL;
  2174. mac80211_hwsim_mchan_ops.remain_on_channel = mac80211_hwsim_roc;
  2175. mac80211_hwsim_mchan_ops.cancel_remain_on_channel = mac80211_hwsim_croc;
  2176. mac80211_hwsim_mchan_ops.add_chanctx = mac80211_hwsim_add_chanctx;
  2177. mac80211_hwsim_mchan_ops.remove_chanctx = mac80211_hwsim_remove_chanctx;
  2178. mac80211_hwsim_mchan_ops.change_chanctx = mac80211_hwsim_change_chanctx;
  2179. mac80211_hwsim_mchan_ops.assign_vif_chanctx =
  2180. mac80211_hwsim_assign_vif_chanctx;
  2181. mac80211_hwsim_mchan_ops.unassign_vif_chanctx =
  2182. mac80211_hwsim_unassign_vif_chanctx;
  2183. spin_lock_init(&hwsim_radio_lock);
  2184. INIT_LIST_HEAD(&hwsim_radios);
  2185. err = platform_driver_register(&mac80211_hwsim_driver);
  2186. if (err)
  2187. return err;
  2188. hwsim_class = class_create(THIS_MODULE, "mac80211_hwsim");
  2189. if (IS_ERR(hwsim_class)) {
  2190. err = PTR_ERR(hwsim_class);
  2191. goto out_unregister_driver;
  2192. }
  2193. for (i = 0; i < radios; i++) {
  2194. const char *reg_alpha2 = NULL;
  2195. const struct ieee80211_regdomain *regd = NULL;
  2196. bool reg_strict = false;
  2197. switch (regtest) {
  2198. case HWSIM_REGTEST_DIFF_COUNTRY:
  2199. if (i < ARRAY_SIZE(hwsim_alpha2s))
  2200. reg_alpha2 = hwsim_alpha2s[i];
  2201. break;
  2202. case HWSIM_REGTEST_DRIVER_REG_FOLLOW:
  2203. if (!i)
  2204. reg_alpha2 = hwsim_alpha2s[0];
  2205. break;
  2206. case HWSIM_REGTEST_STRICT_ALL:
  2207. reg_strict = true;
  2208. case HWSIM_REGTEST_DRIVER_REG_ALL:
  2209. reg_alpha2 = hwsim_alpha2s[0];
  2210. break;
  2211. case HWSIM_REGTEST_WORLD_ROAM:
  2212. if (i == 0)
  2213. regd = &hwsim_world_regdom_custom_01;
  2214. break;
  2215. case HWSIM_REGTEST_CUSTOM_WORLD:
  2216. regd = &hwsim_world_regdom_custom_01;
  2217. break;
  2218. case HWSIM_REGTEST_CUSTOM_WORLD_2:
  2219. if (i == 0)
  2220. regd = &hwsim_world_regdom_custom_01;
  2221. else if (i == 1)
  2222. regd = &hwsim_world_regdom_custom_02;
  2223. break;
  2224. case HWSIM_REGTEST_STRICT_FOLLOW:
  2225. if (i == 0) {
  2226. reg_strict = true;
  2227. reg_alpha2 = hwsim_alpha2s[0];
  2228. }
  2229. break;
  2230. case HWSIM_REGTEST_STRICT_AND_DRIVER_REG:
  2231. if (i == 0) {
  2232. reg_strict = true;
  2233. reg_alpha2 = hwsim_alpha2s[0];
  2234. } else if (i == 1) {
  2235. reg_alpha2 = hwsim_alpha2s[1];
  2236. }
  2237. break;
  2238. case HWSIM_REGTEST_ALL:
  2239. switch (i) {
  2240. case 0:
  2241. regd = &hwsim_world_regdom_custom_01;
  2242. break;
  2243. case 1:
  2244. regd = &hwsim_world_regdom_custom_02;
  2245. break;
  2246. case 2:
  2247. reg_alpha2 = hwsim_alpha2s[0];
  2248. break;
  2249. case 3:
  2250. reg_alpha2 = hwsim_alpha2s[1];
  2251. break;
  2252. case 4:
  2253. reg_strict = true;
  2254. reg_alpha2 = hwsim_alpha2s[2];
  2255. break;
  2256. }
  2257. break;
  2258. default:
  2259. break;
  2260. }
  2261. err = mac80211_hwsim_create_radio(channels, reg_alpha2,
  2262. regd, reg_strict,
  2263. support_p2p_device,
  2264. channels > 1);
  2265. if (err < 0)
  2266. goto out_free_radios;
  2267. }
  2268. hwsim_mon = alloc_netdev(0, "hwsim%d", NET_NAME_UNKNOWN,
  2269. hwsim_mon_setup);
  2270. if (hwsim_mon == NULL) {
  2271. err = -ENOMEM;
  2272. goto out_free_radios;
  2273. }
  2274. rtnl_lock();
  2275. err = dev_alloc_name(hwsim_mon, hwsim_mon->name);
  2276. if (err < 0) {
  2277. rtnl_unlock();
  2278. goto out_free_radios;
  2279. }
  2280. err = register_netdevice(hwsim_mon);
  2281. if (err < 0) {
  2282. rtnl_unlock();
  2283. goto out_free_mon;
  2284. }
  2285. rtnl_unlock();
  2286. err = hwsim_init_netlink();
  2287. if (err < 0)
  2288. goto out_free_mon;
  2289. return 0;
  2290. out_free_mon:
  2291. free_netdev(hwsim_mon);
  2292. out_free_radios:
  2293. mac80211_hwsim_free();
  2294. out_unregister_driver:
  2295. platform_driver_unregister(&mac80211_hwsim_driver);
  2296. return err;
  2297. }
  2298. module_init(init_mac80211_hwsim);
  2299. static void __exit exit_mac80211_hwsim(void)
  2300. {
  2301. printk(KERN_DEBUG "mac80211_hwsim: unregister radios\n");
  2302. hwsim_exit_netlink();
  2303. mac80211_hwsim_free();
  2304. unregister_netdev(hwsim_mon);
  2305. platform_driver_unregister(&mac80211_hwsim_driver);
  2306. }
  2307. module_exit(exit_mac80211_hwsim);