of_reserved_mem.c 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300
  1. /*
  2. * Device tree based initialization code for reserved memory.
  3. *
  4. * Copyright (c) 2013, The Linux Foundation. All Rights Reserved.
  5. * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
  6. * http://www.samsung.com
  7. * Author: Marek Szyprowski <m.szyprowski@samsung.com>
  8. * Author: Josh Cartwright <joshc@codeaurora.org>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of the
  13. * License or (at your optional) any later version of the license.
  14. */
  15. #include <linux/err.h>
  16. #include <linux/of.h>
  17. #include <linux/of_fdt.h>
  18. #include <linux/of_platform.h>
  19. #include <linux/mm.h>
  20. #include <linux/sizes.h>
  21. #include <linux/of_reserved_mem.h>
  22. #include <mt-plat/mtk_memcfg.h>
  23. #define MAX_RESERVED_REGIONS 16
  24. static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
  25. static int reserved_mem_count;
  26. #if defined(CONFIG_HAVE_MEMBLOCK)
  27. #include <linux/memblock.h>
  28. int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
  29. phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
  30. phys_addr_t *res_base)
  31. {
  32. /*
  33. * We use __memblock_alloc_base() because memblock_alloc_base()
  34. * panic()s on allocation failure.
  35. */
  36. phys_addr_t base = __memblock_alloc_base(size, align, end);
  37. if (!base)
  38. return -ENOMEM;
  39. /*
  40. * Check if the allocated region fits in to start..end window
  41. */
  42. if (base < start) {
  43. memblock_free(base, size);
  44. return -ENOMEM;
  45. }
  46. *res_base = base;
  47. if (nomap)
  48. return memblock_remove(base, size);
  49. return 0;
  50. }
  51. #else
  52. int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
  53. phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
  54. phys_addr_t *res_base)
  55. {
  56. pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
  57. size, nomap ? " (nomap)" : "");
  58. return -ENOSYS;
  59. }
  60. #endif
  61. /**
  62. * res_mem_save_node() - save fdt node for second pass initialization
  63. */
  64. void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
  65. phys_addr_t base, phys_addr_t size)
  66. {
  67. struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
  68. if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
  69. pr_err("Reserved memory: not enough space all defined regions.\n");
  70. return;
  71. }
  72. rmem->fdt_node = node;
  73. rmem->name = uname;
  74. rmem->base = base;
  75. rmem->size = size;
  76. reserved_mem_count++;
  77. return;
  78. }
  79. /**
  80. * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
  81. * and 'alloc-ranges' properties
  82. */
  83. static int __init __reserved_mem_alloc_size(unsigned long node,
  84. const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
  85. {
  86. int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
  87. phys_addr_t start = 0, end = 0;
  88. phys_addr_t base = 0, align = 0, size;
  89. int len;
  90. const __be32 *prop;
  91. int nomap;
  92. int ret;
  93. prop = of_get_flat_dt_prop(node, "size", &len);
  94. if (!prop)
  95. return -EINVAL;
  96. if (len != dt_root_size_cells * sizeof(__be32)) {
  97. pr_err("Reserved memory: invalid size property in '%s' node.\n",
  98. uname);
  99. return -EINVAL;
  100. }
  101. size = dt_mem_next_cell(dt_root_size_cells, &prop);
  102. nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
  103. prop = of_get_flat_dt_prop(node, "alignment", &len);
  104. if (prop) {
  105. if (len != dt_root_addr_cells * sizeof(__be32)) {
  106. pr_err("Reserved memory: invalid alignment property in '%s' node.\n",
  107. uname);
  108. return -EINVAL;
  109. }
  110. align = dt_mem_next_cell(dt_root_addr_cells, &prop);
  111. }
  112. prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
  113. if (prop) {
  114. if (len % t_len != 0) {
  115. pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n",
  116. uname);
  117. return -EINVAL;
  118. }
  119. base = 0;
  120. while (len > 0) {
  121. start = dt_mem_next_cell(dt_root_addr_cells, &prop);
  122. end = start + dt_mem_next_cell(dt_root_size_cells,
  123. &prop);
  124. ret = early_init_dt_alloc_reserved_memory_arch(size,
  125. align, start, end, nomap, &base);
  126. if (ret == 0) {
  127. pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
  128. uname, &base,
  129. (unsigned long)size / SZ_1M);
  130. break;
  131. }
  132. len -= t_len;
  133. }
  134. } else {
  135. ret = early_init_dt_alloc_reserved_memory_arch(size, align,
  136. 0, 0, nomap, &base);
  137. if (ret == 0)
  138. pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
  139. uname, &base, (unsigned long)size / SZ_1M);
  140. }
  141. if (base == 0) {
  142. pr_info("Reserved memory: failed to allocate memory for node '%s'\n",
  143. uname);
  144. return -ENOMEM;
  145. }
  146. *res_base = base;
  147. *res_size = size;
  148. if (nomap)
  149. MTK_MEMCFG_LOG_AND_PRINTK(
  150. "[PHY layout]%s : 0x%08llx - 0x%08llx (0x%llx)\n",
  151. uname,
  152. (unsigned long long)base,
  153. (unsigned long long)base + size - 1,
  154. (unsigned long long)size);
  155. return 0;
  156. }
  157. static const struct of_device_id __rmem_of_table_sentinel
  158. __used __section(__reservedmem_of_table_end);
  159. /**
  160. * res_mem_init_node() - call region specific reserved memory init code
  161. */
  162. static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
  163. {
  164. extern const struct of_device_id __reservedmem_of_table[];
  165. const struct of_device_id *i;
  166. for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
  167. reservedmem_of_init_fn initfn = i->data;
  168. const char *compat = i->compatible;
  169. if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
  170. continue;
  171. if (initfn(rmem) == 0) {
  172. pr_info("Reserved memory: initialized node %s, compatible id %s\n",
  173. rmem->name, compat);
  174. return 0;
  175. }
  176. }
  177. return -ENOENT;
  178. }
  179. /**
  180. * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
  181. */
  182. void __init fdt_init_reserved_mem(void)
  183. {
  184. int i;
  185. for (i = 0; i < reserved_mem_count; i++) {
  186. struct reserved_mem *rmem = &reserved_mem[i];
  187. unsigned long node = rmem->fdt_node;
  188. int len;
  189. const __be32 *prop;
  190. int err = 0;
  191. prop = of_get_flat_dt_prop(node, "phandle", &len);
  192. if (!prop)
  193. prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
  194. if (prop)
  195. rmem->phandle = of_read_number(prop, len/4);
  196. if (rmem->size == 0)
  197. err = __reserved_mem_alloc_size(node, rmem->name,
  198. &rmem->base, &rmem->size);
  199. if (err == 0)
  200. __reserved_mem_init_node(rmem);
  201. }
  202. }
  203. static inline struct reserved_mem *__find_rmem(struct device_node *node)
  204. {
  205. unsigned int i;
  206. if (!node->phandle)
  207. return NULL;
  208. for (i = 0; i < reserved_mem_count; i++)
  209. if (reserved_mem[i].phandle == node->phandle)
  210. return &reserved_mem[i];
  211. return NULL;
  212. }
  213. /**
  214. * of_reserved_mem_device_init() - assign reserved memory region to given device
  215. *
  216. * This function assign memory region pointed by "memory-region" device tree
  217. * property to the given device.
  218. */
  219. int of_reserved_mem_device_init(struct device *dev)
  220. {
  221. struct reserved_mem *rmem;
  222. struct device_node *np;
  223. int ret;
  224. np = of_parse_phandle(dev->of_node, "memory-region", 0);
  225. if (!np)
  226. return -ENODEV;
  227. rmem = __find_rmem(np);
  228. of_node_put(np);
  229. if (!rmem || !rmem->ops || !rmem->ops->device_init)
  230. return -EINVAL;
  231. ret = rmem->ops->device_init(rmem, dev);
  232. if (ret == 0)
  233. dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
  234. return ret;
  235. }
  236. /**
  237. * of_reserved_mem_device_release() - release reserved memory device structures
  238. *
  239. * This function releases structures allocated for memory region handling for
  240. * the given device.
  241. */
  242. void of_reserved_mem_device_release(struct device *dev)
  243. {
  244. struct reserved_mem *rmem;
  245. struct device_node *np;
  246. np = of_parse_phandle(dev->of_node, "memory-region", 0);
  247. if (!np)
  248. return;
  249. rmem = __find_rmem(np);
  250. of_node_put(np);
  251. if (!rmem || !rmem->ops || !rmem->ops->device_release)
  252. return;
  253. rmem->ops->device_release(rmem, dev);
  254. }