sock.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  92. #include <linux/capability.h>
  93. #include <linux/errno.h>
  94. #include <linux/errqueue.h>
  95. #include <linux/types.h>
  96. #include <linux/socket.h>
  97. #include <linux/in.h>
  98. #include <linux/kernel.h>
  99. #include <linux/module.h>
  100. #include <linux/proc_fs.h>
  101. #include <linux/seq_file.h>
  102. #include <linux/sched.h>
  103. #include <linux/timer.h>
  104. #include <linux/string.h>
  105. #include <linux/sockios.h>
  106. #include <linux/net.h>
  107. #include <linux/mm.h>
  108. #include <linux/slab.h>
  109. #include <linux/interrupt.h>
  110. #include <linux/poll.h>
  111. #include <linux/tcp.h>
  112. #include <linux/init.h>
  113. #include <linux/highmem.h>
  114. #include <linux/user_namespace.h>
  115. #include <linux/static_key.h>
  116. #include <linux/memcontrol.h>
  117. #include <linux/prefetch.h>
  118. #include <asm/uaccess.h>
  119. #include <linux/netdevice.h>
  120. #include <net/protocol.h>
  121. #include <linux/skbuff.h>
  122. #include <net/net_namespace.h>
  123. #include <net/request_sock.h>
  124. #include <net/sock.h>
  125. #include <linux/net_tstamp.h>
  126. #include <net/xfrm.h>
  127. #include <linux/ipsec.h>
  128. #include <net/cls_cgroup.h>
  129. #include <net/netprio_cgroup.h>
  130. #include <linux/filter.h>
  131. #include <net/af_unix.h>
  132. #include <trace/events/sock.h>
  133. #ifdef CONFIG_INET
  134. #include <net/tcp.h>
  135. #endif
  136. #include <net/busy_poll.h>
  137. static DEFINE_MUTEX(proto_list_mutex);
  138. static LIST_HEAD(proto_list);
  139. /**
  140. * sk_ns_capable - General socket capability test
  141. * @sk: Socket to use a capability on or through
  142. * @user_ns: The user namespace of the capability to use
  143. * @cap: The capability to use
  144. *
  145. * Test to see if the opener of the socket had when the socket was
  146. * created and the current process has the capability @cap in the user
  147. * namespace @user_ns.
  148. */
  149. bool sk_ns_capable(const struct sock *sk,
  150. struct user_namespace *user_ns, int cap)
  151. {
  152. return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
  153. ns_capable(user_ns, cap);
  154. }
  155. EXPORT_SYMBOL(sk_ns_capable);
  156. /**
  157. * sk_capable - Socket global capability test
  158. * @sk: Socket to use a capability on or through
  159. * @cap: The global capability to use
  160. *
  161. * Test to see if the opener of the socket had when the socket was
  162. * created and the current process has the capability @cap in all user
  163. * namespaces.
  164. */
  165. bool sk_capable(const struct sock *sk, int cap)
  166. {
  167. return sk_ns_capable(sk, &init_user_ns, cap);
  168. }
  169. EXPORT_SYMBOL(sk_capable);
  170. /**
  171. * sk_net_capable - Network namespace socket capability test
  172. * @sk: Socket to use a capability on or through
  173. * @cap: The capability to use
  174. *
  175. * Test to see if the opener of the socket had when the socket was created
  176. * and the current process has the capability @cap over the network namespace
  177. * the socket is a member of.
  178. */
  179. bool sk_net_capable(const struct sock *sk, int cap)
  180. {
  181. return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
  182. }
  183. EXPORT_SYMBOL(sk_net_capable);
  184. #ifdef CONFIG_MEMCG_KMEM
  185. int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  186. {
  187. struct proto *proto;
  188. int ret = 0;
  189. mutex_lock(&proto_list_mutex);
  190. list_for_each_entry(proto, &proto_list, node) {
  191. if (proto->init_cgroup) {
  192. ret = proto->init_cgroup(memcg, ss);
  193. if (ret)
  194. goto out;
  195. }
  196. }
  197. mutex_unlock(&proto_list_mutex);
  198. return ret;
  199. out:
  200. list_for_each_entry_continue_reverse(proto, &proto_list, node)
  201. if (proto->destroy_cgroup)
  202. proto->destroy_cgroup(memcg);
  203. mutex_unlock(&proto_list_mutex);
  204. return ret;
  205. }
  206. void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  207. {
  208. struct proto *proto;
  209. mutex_lock(&proto_list_mutex);
  210. list_for_each_entry_reverse(proto, &proto_list, node)
  211. if (proto->destroy_cgroup)
  212. proto->destroy_cgroup(memcg);
  213. mutex_unlock(&proto_list_mutex);
  214. }
  215. #endif
  216. /*
  217. * Each address family might have different locking rules, so we have
  218. * one slock key per address family:
  219. */
  220. static struct lock_class_key af_family_keys[AF_MAX];
  221. static struct lock_class_key af_family_slock_keys[AF_MAX];
  222. #if defined(CONFIG_MEMCG_KMEM)
  223. struct static_key memcg_socket_limit_enabled;
  224. EXPORT_SYMBOL(memcg_socket_limit_enabled);
  225. #endif
  226. /*
  227. * Make lock validator output more readable. (we pre-construct these
  228. * strings build-time, so that runtime initialization of socket
  229. * locks is fast):
  230. */
  231. static const char *const af_family_key_strings[AF_MAX+1] = {
  232. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  233. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  234. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  235. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  236. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  237. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  238. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  239. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  240. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  241. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  242. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  243. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  244. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  245. "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
  246. };
  247. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  248. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  249. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  250. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  251. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  252. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  253. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  254. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  255. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  256. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  257. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  258. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  259. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  260. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  261. "slock-AF_NFC" , "slock-AF_VSOCK" , "slock-AF_MAX"
  262. };
  263. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  264. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  265. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  266. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  267. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  268. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  269. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  270. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  271. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  272. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  273. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  274. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  275. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  276. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  277. "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
  278. };
  279. /*
  280. * sk_callback_lock locking rules are per-address-family,
  281. * so split the lock classes by using a per-AF key:
  282. */
  283. static struct lock_class_key af_callback_keys[AF_MAX];
  284. /* Take into consideration the size of the struct sk_buff overhead in the
  285. * determination of these values, since that is non-constant across
  286. * platforms. This makes socket queueing behavior and performance
  287. * not depend upon such differences.
  288. */
  289. #define _SK_MEM_PACKETS 256
  290. #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
  291. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  292. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  293. /* Run time adjustable parameters. */
  294. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  295. EXPORT_SYMBOL(sysctl_wmem_max);
  296. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  297. EXPORT_SYMBOL(sysctl_rmem_max);
  298. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  299. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  300. /* Maximal space eaten by iovec or ancillary data plus some space */
  301. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  302. EXPORT_SYMBOL(sysctl_optmem_max);
  303. struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
  304. EXPORT_SYMBOL_GPL(memalloc_socks);
  305. /**
  306. * sk_set_memalloc - sets %SOCK_MEMALLOC
  307. * @sk: socket to set it on
  308. *
  309. * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
  310. * It's the responsibility of the admin to adjust min_free_kbytes
  311. * to meet the requirements
  312. */
  313. void sk_set_memalloc(struct sock *sk)
  314. {
  315. sock_set_flag(sk, SOCK_MEMALLOC);
  316. sk->sk_allocation |= __GFP_MEMALLOC;
  317. static_key_slow_inc(&memalloc_socks);
  318. }
  319. EXPORT_SYMBOL_GPL(sk_set_memalloc);
  320. void sk_clear_memalloc(struct sock *sk)
  321. {
  322. sock_reset_flag(sk, SOCK_MEMALLOC);
  323. sk->sk_allocation &= ~__GFP_MEMALLOC;
  324. static_key_slow_dec(&memalloc_socks);
  325. /*
  326. * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
  327. * progress of swapping. However, if SOCK_MEMALLOC is cleared while
  328. * it has rmem allocations there is a risk that the user of the
  329. * socket cannot make forward progress due to exceeding the rmem
  330. * limits. By rights, sk_clear_memalloc() should only be called
  331. * on sockets being torn down but warn and reset the accounting if
  332. * that assumption breaks.
  333. */
  334. if (WARN_ON(sk->sk_forward_alloc))
  335. sk_mem_reclaim(sk);
  336. }
  337. EXPORT_SYMBOL_GPL(sk_clear_memalloc);
  338. int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
  339. {
  340. int ret;
  341. unsigned long pflags = current->flags;
  342. /* these should have been dropped before queueing */
  343. BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
  344. current->flags |= PF_MEMALLOC;
  345. ret = sk->sk_backlog_rcv(sk, skb);
  346. tsk_restore_flags(current, pflags, PF_MEMALLOC);
  347. return ret;
  348. }
  349. EXPORT_SYMBOL(__sk_backlog_rcv);
  350. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  351. {
  352. struct timeval tv;
  353. if (optlen < sizeof(tv))
  354. return -EINVAL;
  355. if (copy_from_user(&tv, optval, sizeof(tv)))
  356. return -EFAULT;
  357. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  358. return -EDOM;
  359. if (tv.tv_sec < 0) {
  360. static int warned __read_mostly;
  361. *timeo_p = 0;
  362. if (warned < 10 && net_ratelimit()) {
  363. warned++;
  364. pr_debug("%s: `%s' (pid %d) tries to set negative timeout\n",
  365. __func__, current->comm, task_pid_nr(current));
  366. }
  367. return 0;
  368. }
  369. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  370. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  371. return 0;
  372. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  373. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  374. return 0;
  375. }
  376. static void sock_warn_obsolete_bsdism(const char *name)
  377. {
  378. static int warned;
  379. static char warncomm[TASK_COMM_LEN];
  380. if (strcmp(warncomm, current->comm) && warned < 5) {
  381. strcpy(warncomm, current->comm);
  382. pr_debug("process `%s' is using obsolete %s SO_BSDCOMPAT\n", warncomm, name);
  383. warned++;
  384. }
  385. }
  386. #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
  387. static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
  388. {
  389. if (sk->sk_flags & flags) {
  390. sk->sk_flags &= ~flags;
  391. if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
  392. net_disable_timestamp();
  393. }
  394. }
  395. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  396. {
  397. int err;
  398. unsigned long flags;
  399. struct sk_buff_head *list = &sk->sk_receive_queue;
  400. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
  401. atomic_inc(&sk->sk_drops);
  402. trace_sock_rcvqueue_full(sk, skb);
  403. return -ENOMEM;
  404. }
  405. err = sk_filter(sk, skb);
  406. if (err)
  407. return err;
  408. if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
  409. atomic_inc(&sk->sk_drops);
  410. return -ENOBUFS;
  411. }
  412. skb->dev = NULL;
  413. skb_set_owner_r(skb, sk);
  414. /* we escape from rcu protected region, make sure we dont leak
  415. * a norefcounted dst
  416. */
  417. skb_dst_force(skb);
  418. spin_lock_irqsave(&list->lock, flags);
  419. skb->dropcount = atomic_read(&sk->sk_drops);
  420. __skb_queue_tail(list, skb);
  421. spin_unlock_irqrestore(&list->lock, flags);
  422. if (!sock_flag(sk, SOCK_DEAD))
  423. sk->sk_data_ready(sk);
  424. return 0;
  425. }
  426. EXPORT_SYMBOL(sock_queue_rcv_skb);
  427. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  428. {
  429. int rc = NET_RX_SUCCESS;
  430. if (sk_filter(sk, skb))
  431. goto discard_and_relse;
  432. skb->dev = NULL;
  433. if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
  434. atomic_inc(&sk->sk_drops);
  435. goto discard_and_relse;
  436. }
  437. if (nested)
  438. bh_lock_sock_nested(sk);
  439. else
  440. bh_lock_sock(sk);
  441. if (!sock_owned_by_user(sk)) {
  442. /*
  443. * trylock + unlock semantics:
  444. */
  445. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  446. rc = sk_backlog_rcv(sk, skb);
  447. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  448. } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  449. bh_unlock_sock(sk);
  450. atomic_inc(&sk->sk_drops);
  451. goto discard_and_relse;
  452. }
  453. bh_unlock_sock(sk);
  454. out:
  455. sock_put(sk);
  456. return rc;
  457. discard_and_relse:
  458. kfree_skb(skb);
  459. goto out;
  460. }
  461. EXPORT_SYMBOL(sk_receive_skb);
  462. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  463. {
  464. struct dst_entry *dst = __sk_dst_get(sk);
  465. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  466. sk_tx_queue_clear(sk);
  467. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  468. dst_release(dst);
  469. return NULL;
  470. }
  471. return dst;
  472. }
  473. EXPORT_SYMBOL(__sk_dst_check);
  474. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  475. {
  476. struct dst_entry *dst = sk_dst_get(sk);
  477. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  478. sk_dst_reset(sk);
  479. dst_release(dst);
  480. return NULL;
  481. }
  482. return dst;
  483. }
  484. EXPORT_SYMBOL(sk_dst_check);
  485. static int sock_setbindtodevice(struct sock *sk, char __user *optval,
  486. int optlen)
  487. {
  488. int ret = -ENOPROTOOPT;
  489. #ifdef CONFIG_NETDEVICES
  490. struct net *net = sock_net(sk);
  491. char devname[IFNAMSIZ];
  492. int index;
  493. /* Sorry... */
  494. ret = -EPERM;
  495. if (!ns_capable(net->user_ns, CAP_NET_RAW))
  496. goto out;
  497. ret = -EINVAL;
  498. if (optlen < 0)
  499. goto out;
  500. /* Bind this socket to a particular device like "eth0",
  501. * as specified in the passed interface name. If the
  502. * name is "" or the option length is zero the socket
  503. * is not bound.
  504. */
  505. if (optlen > IFNAMSIZ - 1)
  506. optlen = IFNAMSIZ - 1;
  507. memset(devname, 0, sizeof(devname));
  508. ret = -EFAULT;
  509. if (copy_from_user(devname, optval, optlen))
  510. goto out;
  511. index = 0;
  512. if (devname[0] != '\0') {
  513. struct net_device *dev;
  514. rcu_read_lock();
  515. dev = dev_get_by_name_rcu(net, devname);
  516. if (dev)
  517. index = dev->ifindex;
  518. rcu_read_unlock();
  519. ret = -ENODEV;
  520. if (!dev)
  521. goto out;
  522. }
  523. lock_sock(sk);
  524. sk->sk_bound_dev_if = index;
  525. sk_dst_reset(sk);
  526. release_sock(sk);
  527. ret = 0;
  528. out:
  529. #endif
  530. return ret;
  531. }
  532. static int sock_getbindtodevice(struct sock *sk, char __user *optval,
  533. int __user *optlen, int len)
  534. {
  535. int ret = -ENOPROTOOPT;
  536. #ifdef CONFIG_NETDEVICES
  537. struct net *net = sock_net(sk);
  538. char devname[IFNAMSIZ];
  539. if (sk->sk_bound_dev_if == 0) {
  540. len = 0;
  541. goto zero;
  542. }
  543. ret = -EINVAL;
  544. if (len < IFNAMSIZ)
  545. goto out;
  546. ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
  547. if (ret)
  548. goto out;
  549. len = strlen(devname) + 1;
  550. ret = -EFAULT;
  551. if (copy_to_user(optval, devname, len))
  552. goto out;
  553. zero:
  554. ret = -EFAULT;
  555. if (put_user(len, optlen))
  556. goto out;
  557. ret = 0;
  558. out:
  559. #endif
  560. return ret;
  561. }
  562. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  563. {
  564. if (valbool)
  565. sock_set_flag(sk, bit);
  566. else
  567. sock_reset_flag(sk, bit);
  568. }
  569. bool sk_mc_loop(struct sock *sk)
  570. {
  571. if (dev_recursion_level())
  572. return false;
  573. if (!sk)
  574. return true;
  575. switch (sk->sk_family) {
  576. case AF_INET:
  577. return inet_sk(sk)->mc_loop;
  578. #if IS_ENABLED(CONFIG_IPV6)
  579. case AF_INET6:
  580. return inet6_sk(sk)->mc_loop;
  581. #endif
  582. }
  583. WARN_ON(1);
  584. return true;
  585. }
  586. EXPORT_SYMBOL(sk_mc_loop);
  587. /*
  588. * This is meant for all protocols to use and covers goings on
  589. * at the socket level. Everything here is generic.
  590. */
  591. int sock_setsockopt(struct socket *sock, int level, int optname,
  592. char __user *optval, unsigned int optlen)
  593. {
  594. struct sock *sk = sock->sk;
  595. int val;
  596. int valbool;
  597. struct linger ling;
  598. int ret = 0;
  599. /*
  600. * Options without arguments
  601. */
  602. if (optname == SO_BINDTODEVICE)
  603. return sock_setbindtodevice(sk, optval, optlen);
  604. if (optlen < sizeof(int))
  605. return -EINVAL;
  606. if (get_user(val, (int __user *)optval))
  607. return -EFAULT;
  608. valbool = val ? 1 : 0;
  609. lock_sock(sk);
  610. switch (optname) {
  611. case SO_DEBUG:
  612. if (val && !capable(CAP_NET_ADMIN))
  613. ret = -EACCES;
  614. else
  615. sock_valbool_flag(sk, SOCK_DBG, valbool);
  616. break;
  617. case SO_REUSEADDR:
  618. sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
  619. break;
  620. case SO_REUSEPORT:
  621. sk->sk_reuseport = valbool;
  622. break;
  623. case SO_TYPE:
  624. case SO_PROTOCOL:
  625. case SO_DOMAIN:
  626. case SO_ERROR:
  627. ret = -ENOPROTOOPT;
  628. break;
  629. case SO_DONTROUTE:
  630. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  631. break;
  632. case SO_BROADCAST:
  633. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  634. break;
  635. case SO_SNDBUF:
  636. /* Don't error on this BSD doesn't and if you think
  637. * about it this is right. Otherwise apps have to
  638. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  639. * are treated in BSD as hints
  640. */
  641. val = min_t(u32, val, sysctl_wmem_max);
  642. set_sndbuf:
  643. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  644. sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
  645. /* Wake up sending tasks if we upped the value. */
  646. sk->sk_write_space(sk);
  647. break;
  648. case SO_SNDBUFFORCE:
  649. if (!capable(CAP_NET_ADMIN)) {
  650. ret = -EPERM;
  651. break;
  652. }
  653. goto set_sndbuf;
  654. case SO_RCVBUF:
  655. /* Don't error on this BSD doesn't and if you think
  656. * about it this is right. Otherwise apps have to
  657. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  658. * are treated in BSD as hints
  659. */
  660. val = min_t(u32, val, sysctl_rmem_max);
  661. set_rcvbuf:
  662. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  663. /*
  664. * We double it on the way in to account for
  665. * "struct sk_buff" etc. overhead. Applications
  666. * assume that the SO_RCVBUF setting they make will
  667. * allow that much actual data to be received on that
  668. * socket.
  669. *
  670. * Applications are unaware that "struct sk_buff" and
  671. * other overheads allocate from the receive buffer
  672. * during socket buffer allocation.
  673. *
  674. * And after considering the possible alternatives,
  675. * returning the value we actually used in getsockopt
  676. * is the most desirable behavior.
  677. */
  678. sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
  679. break;
  680. case SO_RCVBUFFORCE:
  681. if (!capable(CAP_NET_ADMIN)) {
  682. ret = -EPERM;
  683. break;
  684. }
  685. goto set_rcvbuf;
  686. case SO_KEEPALIVE:
  687. #ifdef CONFIG_INET
  688. if (sk->sk_protocol == IPPROTO_TCP &&
  689. sk->sk_type == SOCK_STREAM)
  690. tcp_set_keepalive(sk, valbool);
  691. #endif
  692. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  693. break;
  694. case SO_OOBINLINE:
  695. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  696. break;
  697. case SO_NO_CHECK:
  698. sk->sk_no_check_tx = valbool;
  699. break;
  700. case SO_PRIORITY:
  701. if ((val >= 0 && val <= 6) ||
  702. ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  703. sk->sk_priority = val;
  704. else
  705. ret = -EPERM;
  706. break;
  707. case SO_LINGER:
  708. if (optlen < sizeof(ling)) {
  709. ret = -EINVAL; /* 1003.1g */
  710. break;
  711. }
  712. if (copy_from_user(&ling, optval, sizeof(ling))) {
  713. ret = -EFAULT;
  714. break;
  715. }
  716. if (!ling.l_onoff)
  717. sock_reset_flag(sk, SOCK_LINGER);
  718. else {
  719. #if (BITS_PER_LONG == 32)
  720. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  721. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  722. else
  723. #endif
  724. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  725. sock_set_flag(sk, SOCK_LINGER);
  726. }
  727. break;
  728. case SO_BSDCOMPAT:
  729. sock_warn_obsolete_bsdism("setsockopt");
  730. break;
  731. case SO_PASSCRED:
  732. if (valbool)
  733. set_bit(SOCK_PASSCRED, &sock->flags);
  734. else
  735. clear_bit(SOCK_PASSCRED, &sock->flags);
  736. break;
  737. case SO_TIMESTAMP:
  738. case SO_TIMESTAMPNS:
  739. if (valbool) {
  740. if (optname == SO_TIMESTAMP)
  741. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  742. else
  743. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  744. sock_set_flag(sk, SOCK_RCVTSTAMP);
  745. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  746. } else {
  747. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  748. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  749. }
  750. break;
  751. case SO_TIMESTAMPING:
  752. if (val & ~SOF_TIMESTAMPING_MASK) {
  753. ret = -EINVAL;
  754. break;
  755. }
  756. if (val & SOF_TIMESTAMPING_OPT_ID &&
  757. !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
  758. if (sk->sk_protocol == IPPROTO_TCP) {
  759. if (sk->sk_state != TCP_ESTABLISHED) {
  760. ret = -EINVAL;
  761. break;
  762. }
  763. sk->sk_tskey = tcp_sk(sk)->snd_una;
  764. } else {
  765. sk->sk_tskey = 0;
  766. }
  767. }
  768. sk->sk_tsflags = val;
  769. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  770. sock_enable_timestamp(sk,
  771. SOCK_TIMESTAMPING_RX_SOFTWARE);
  772. else
  773. sock_disable_timestamp(sk,
  774. (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
  775. break;
  776. case SO_RCVLOWAT:
  777. if (val < 0)
  778. val = INT_MAX;
  779. sk->sk_rcvlowat = val ? : 1;
  780. break;
  781. case SO_RCVTIMEO:
  782. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  783. break;
  784. case SO_SNDTIMEO:
  785. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  786. break;
  787. case SO_ATTACH_FILTER:
  788. ret = -EINVAL;
  789. if (optlen == sizeof(struct sock_fprog)) {
  790. struct sock_fprog fprog;
  791. ret = -EFAULT;
  792. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  793. break;
  794. ret = sk_attach_filter(&fprog, sk);
  795. }
  796. break;
  797. case SO_DETACH_FILTER:
  798. ret = sk_detach_filter(sk);
  799. break;
  800. case SO_LOCK_FILTER:
  801. if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
  802. ret = -EPERM;
  803. else
  804. sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
  805. break;
  806. case SO_PASSSEC:
  807. if (valbool)
  808. set_bit(SOCK_PASSSEC, &sock->flags);
  809. else
  810. clear_bit(SOCK_PASSSEC, &sock->flags);
  811. break;
  812. case SO_MARK:
  813. if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  814. ret = -EPERM;
  815. else
  816. sk->sk_mark = val;
  817. break;
  818. /* We implement the SO_SNDLOWAT etc to
  819. not be settable (1003.1g 5.3) */
  820. case SO_RXQ_OVFL:
  821. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  822. break;
  823. case SO_WIFI_STATUS:
  824. sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
  825. break;
  826. case SO_PEEK_OFF:
  827. if (sock->ops->set_peek_off)
  828. ret = sock->ops->set_peek_off(sk, val);
  829. else
  830. ret = -EOPNOTSUPP;
  831. break;
  832. case SO_NOFCS:
  833. sock_valbool_flag(sk, SOCK_NOFCS, valbool);
  834. break;
  835. case SO_SELECT_ERR_QUEUE:
  836. sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
  837. break;
  838. #ifdef CONFIG_NET_RX_BUSY_POLL
  839. case SO_BUSY_POLL:
  840. /* allow unprivileged users to decrease the value */
  841. if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
  842. ret = -EPERM;
  843. else {
  844. if (val < 0)
  845. ret = -EINVAL;
  846. else
  847. sk->sk_ll_usec = val;
  848. }
  849. break;
  850. #endif
  851. case SO_MAX_PACING_RATE:
  852. sk->sk_max_pacing_rate = val;
  853. sk->sk_pacing_rate = min(sk->sk_pacing_rate,
  854. sk->sk_max_pacing_rate);
  855. break;
  856. default:
  857. ret = -ENOPROTOOPT;
  858. break;
  859. }
  860. release_sock(sk);
  861. return ret;
  862. }
  863. EXPORT_SYMBOL(sock_setsockopt);
  864. static void cred_to_ucred(struct pid *pid, const struct cred *cred,
  865. struct ucred *ucred)
  866. {
  867. ucred->pid = pid_vnr(pid);
  868. ucred->uid = ucred->gid = -1;
  869. if (cred) {
  870. struct user_namespace *current_ns = current_user_ns();
  871. ucred->uid = from_kuid_munged(current_ns, cred->euid);
  872. ucred->gid = from_kgid_munged(current_ns, cred->egid);
  873. }
  874. }
  875. int sock_getsockopt(struct socket *sock, int level, int optname,
  876. char __user *optval, int __user *optlen)
  877. {
  878. struct sock *sk = sock->sk;
  879. union {
  880. int val;
  881. struct linger ling;
  882. struct timeval tm;
  883. } v;
  884. int lv = sizeof(int);
  885. int len;
  886. if (get_user(len, optlen))
  887. return -EFAULT;
  888. if (len < 0)
  889. return -EINVAL;
  890. memset(&v, 0, sizeof(v));
  891. switch (optname) {
  892. case SO_DEBUG:
  893. v.val = sock_flag(sk, SOCK_DBG);
  894. break;
  895. case SO_DONTROUTE:
  896. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  897. break;
  898. case SO_BROADCAST:
  899. v.val = sock_flag(sk, SOCK_BROADCAST);
  900. break;
  901. case SO_SNDBUF:
  902. v.val = sk->sk_sndbuf;
  903. break;
  904. case SO_RCVBUF:
  905. v.val = sk->sk_rcvbuf;
  906. break;
  907. case SO_REUSEADDR:
  908. v.val = sk->sk_reuse;
  909. break;
  910. case SO_REUSEPORT:
  911. v.val = sk->sk_reuseport;
  912. break;
  913. case SO_KEEPALIVE:
  914. v.val = sock_flag(sk, SOCK_KEEPOPEN);
  915. break;
  916. case SO_TYPE:
  917. v.val = sk->sk_type;
  918. break;
  919. case SO_PROTOCOL:
  920. v.val = sk->sk_protocol;
  921. break;
  922. case SO_DOMAIN:
  923. v.val = sk->sk_family;
  924. break;
  925. case SO_ERROR:
  926. v.val = -sock_error(sk);
  927. if (v.val == 0)
  928. v.val = xchg(&sk->sk_err_soft, 0);
  929. break;
  930. case SO_OOBINLINE:
  931. v.val = sock_flag(sk, SOCK_URGINLINE);
  932. break;
  933. case SO_NO_CHECK:
  934. v.val = sk->sk_no_check_tx;
  935. break;
  936. case SO_PRIORITY:
  937. v.val = sk->sk_priority;
  938. break;
  939. case SO_LINGER:
  940. lv = sizeof(v.ling);
  941. v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
  942. v.ling.l_linger = sk->sk_lingertime / HZ;
  943. break;
  944. case SO_BSDCOMPAT:
  945. sock_warn_obsolete_bsdism("getsockopt");
  946. break;
  947. case SO_TIMESTAMP:
  948. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  949. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  950. break;
  951. case SO_TIMESTAMPNS:
  952. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  953. break;
  954. case SO_TIMESTAMPING:
  955. v.val = sk->sk_tsflags;
  956. break;
  957. case SO_RCVTIMEO:
  958. lv = sizeof(struct timeval);
  959. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  960. v.tm.tv_sec = 0;
  961. v.tm.tv_usec = 0;
  962. } else {
  963. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  964. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  965. }
  966. break;
  967. case SO_SNDTIMEO:
  968. lv = sizeof(struct timeval);
  969. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  970. v.tm.tv_sec = 0;
  971. v.tm.tv_usec = 0;
  972. } else {
  973. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  974. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  975. }
  976. break;
  977. case SO_RCVLOWAT:
  978. v.val = sk->sk_rcvlowat;
  979. break;
  980. case SO_SNDLOWAT:
  981. v.val = 1;
  982. break;
  983. case SO_PASSCRED:
  984. v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
  985. break;
  986. case SO_PEERCRED:
  987. {
  988. struct ucred peercred;
  989. if (len > sizeof(peercred))
  990. len = sizeof(peercred);
  991. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  992. if (copy_to_user(optval, &peercred, len))
  993. return -EFAULT;
  994. goto lenout;
  995. }
  996. case SO_PEERNAME:
  997. {
  998. char address[128];
  999. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  1000. return -ENOTCONN;
  1001. if (lv < len)
  1002. return -EINVAL;
  1003. if (copy_to_user(optval, address, len))
  1004. return -EFAULT;
  1005. goto lenout;
  1006. }
  1007. /* Dubious BSD thing... Probably nobody even uses it, but
  1008. * the UNIX standard wants it for whatever reason... -DaveM
  1009. */
  1010. case SO_ACCEPTCONN:
  1011. v.val = sk->sk_state == TCP_LISTEN;
  1012. break;
  1013. case SO_PASSSEC:
  1014. v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
  1015. break;
  1016. case SO_PEERSEC:
  1017. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  1018. case SO_MARK:
  1019. v.val = sk->sk_mark;
  1020. break;
  1021. case SO_RXQ_OVFL:
  1022. v.val = sock_flag(sk, SOCK_RXQ_OVFL);
  1023. break;
  1024. case SO_WIFI_STATUS:
  1025. v.val = sock_flag(sk, SOCK_WIFI_STATUS);
  1026. break;
  1027. case SO_PEEK_OFF:
  1028. if (!sock->ops->set_peek_off)
  1029. return -EOPNOTSUPP;
  1030. v.val = sk->sk_peek_off;
  1031. break;
  1032. case SO_NOFCS:
  1033. v.val = sock_flag(sk, SOCK_NOFCS);
  1034. break;
  1035. case SO_BINDTODEVICE:
  1036. return sock_getbindtodevice(sk, optval, optlen, len);
  1037. case SO_GET_FILTER:
  1038. len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
  1039. if (len < 0)
  1040. return len;
  1041. goto lenout;
  1042. case SO_LOCK_FILTER:
  1043. v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
  1044. break;
  1045. case SO_BPF_EXTENSIONS:
  1046. v.val = bpf_tell_extensions();
  1047. break;
  1048. case SO_SELECT_ERR_QUEUE:
  1049. v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
  1050. break;
  1051. #ifdef CONFIG_NET_RX_BUSY_POLL
  1052. case SO_BUSY_POLL:
  1053. v.val = sk->sk_ll_usec;
  1054. break;
  1055. #endif
  1056. case SO_MAX_PACING_RATE:
  1057. v.val = sk->sk_max_pacing_rate;
  1058. break;
  1059. default:
  1060. return -ENOPROTOOPT;
  1061. }
  1062. if (len > lv)
  1063. len = lv;
  1064. if (copy_to_user(optval, &v, len))
  1065. return -EFAULT;
  1066. lenout:
  1067. if (put_user(len, optlen))
  1068. return -EFAULT;
  1069. return 0;
  1070. }
  1071. /*
  1072. * Initialize an sk_lock.
  1073. *
  1074. * (We also register the sk_lock with the lock validator.)
  1075. */
  1076. static inline void sock_lock_init(struct sock *sk)
  1077. {
  1078. sock_lock_init_class_and_name(sk,
  1079. af_family_slock_key_strings[sk->sk_family],
  1080. af_family_slock_keys + sk->sk_family,
  1081. af_family_key_strings[sk->sk_family],
  1082. af_family_keys + sk->sk_family);
  1083. }
  1084. /*
  1085. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  1086. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  1087. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  1088. */
  1089. static void sock_copy(struct sock *nsk, const struct sock *osk)
  1090. {
  1091. #ifdef CONFIG_SECURITY_NETWORK
  1092. void *sptr = nsk->sk_security;
  1093. #endif
  1094. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  1095. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  1096. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  1097. #ifdef CONFIG_SECURITY_NETWORK
  1098. nsk->sk_security = sptr;
  1099. security_sk_clone(osk, nsk);
  1100. #endif
  1101. }
  1102. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  1103. {
  1104. unsigned long nulls1, nulls2;
  1105. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  1106. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  1107. if (nulls1 > nulls2)
  1108. swap(nulls1, nulls2);
  1109. if (nulls1 != 0)
  1110. memset((char *)sk, 0, nulls1);
  1111. memset((char *)sk + nulls1 + sizeof(void *), 0,
  1112. nulls2 - nulls1 - sizeof(void *));
  1113. memset((char *)sk + nulls2 + sizeof(void *), 0,
  1114. size - nulls2 - sizeof(void *));
  1115. }
  1116. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  1117. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  1118. int family)
  1119. {
  1120. struct sock *sk;
  1121. struct kmem_cache *slab;
  1122. slab = prot->slab;
  1123. if (slab != NULL) {
  1124. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  1125. if (!sk)
  1126. return sk;
  1127. if (priority & __GFP_ZERO) {
  1128. if (prot->clear_sk)
  1129. prot->clear_sk(sk, prot->obj_size);
  1130. else
  1131. sk_prot_clear_nulls(sk, prot->obj_size);
  1132. }
  1133. } else
  1134. sk = kmalloc(prot->obj_size, priority);
  1135. if (sk != NULL) {
  1136. kmemcheck_annotate_bitfield(sk, flags);
  1137. if (security_sk_alloc(sk, family, priority))
  1138. goto out_free;
  1139. if (!try_module_get(prot->owner))
  1140. goto out_free_sec;
  1141. sk_tx_queue_clear(sk);
  1142. }
  1143. return sk;
  1144. out_free_sec:
  1145. security_sk_free(sk);
  1146. out_free:
  1147. if (slab != NULL)
  1148. kmem_cache_free(slab, sk);
  1149. else
  1150. kfree(sk);
  1151. return NULL;
  1152. }
  1153. static void sk_prot_free(struct proto *prot, struct sock *sk)
  1154. {
  1155. struct kmem_cache *slab;
  1156. struct module *owner;
  1157. owner = prot->owner;
  1158. slab = prot->slab;
  1159. security_sk_free(sk);
  1160. if (slab != NULL)
  1161. kmem_cache_free(slab, sk);
  1162. else
  1163. kfree(sk);
  1164. module_put(owner);
  1165. }
  1166. #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
  1167. void sock_update_netprioidx(struct sock *sk)
  1168. {
  1169. if (in_interrupt())
  1170. return;
  1171. sk->sk_cgrp_prioidx = task_netprioidx(current);
  1172. }
  1173. EXPORT_SYMBOL_GPL(sock_update_netprioidx);
  1174. #endif
  1175. /**
  1176. * sk_alloc - All socket objects are allocated here
  1177. * @net: the applicable net namespace
  1178. * @family: protocol family
  1179. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1180. * @prot: struct proto associated with this new sock instance
  1181. */
  1182. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  1183. struct proto *prot)
  1184. {
  1185. struct sock *sk;
  1186. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  1187. if (sk) {
  1188. sk->sk_family = family;
  1189. /*
  1190. * See comment in struct sock definition to understand
  1191. * why we need sk_prot_creator -acme
  1192. */
  1193. sk->sk_prot = sk->sk_prot_creator = prot;
  1194. sock_lock_init(sk);
  1195. sock_net_set(sk, get_net(net));
  1196. atomic_set(&sk->sk_wmem_alloc, 1);
  1197. sock_update_classid(sk);
  1198. sock_update_netprioidx(sk);
  1199. }
  1200. return sk;
  1201. }
  1202. EXPORT_SYMBOL(sk_alloc);
  1203. static void __sk_free(struct sock *sk)
  1204. {
  1205. struct sk_filter *filter;
  1206. if (sk->sk_destruct)
  1207. sk->sk_destruct(sk);
  1208. filter = rcu_dereference_check(sk->sk_filter,
  1209. atomic_read(&sk->sk_wmem_alloc) == 0);
  1210. if (filter) {
  1211. sk_filter_uncharge(sk, filter);
  1212. RCU_INIT_POINTER(sk->sk_filter, NULL);
  1213. }
  1214. sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
  1215. if (atomic_read(&sk->sk_omem_alloc))
  1216. pr_debug("%s: optmem leakage (%d bytes) detected\n",
  1217. __func__, atomic_read(&sk->sk_omem_alloc));
  1218. if (sk->sk_peer_cred)
  1219. put_cred(sk->sk_peer_cred);
  1220. put_pid(sk->sk_peer_pid);
  1221. put_net(sock_net(sk));
  1222. sk_prot_free(sk->sk_prot_creator, sk);
  1223. }
  1224. void sk_free(struct sock *sk)
  1225. {
  1226. /*
  1227. * We subtract one from sk_wmem_alloc and can know if
  1228. * some packets are still in some tx queue.
  1229. * If not null, sock_wfree() will call __sk_free(sk) later
  1230. */
  1231. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1232. __sk_free(sk);
  1233. }
  1234. EXPORT_SYMBOL(sk_free);
  1235. /*
  1236. * Last sock_put should drop reference to sk->sk_net. It has already
  1237. * been dropped in sk_change_net. Taking reference to stopping namespace
  1238. * is not an option.
  1239. * Take reference to a socket to remove it from hash _alive_ and after that
  1240. * destroy it in the context of init_net.
  1241. */
  1242. void sk_release_kernel(struct sock *sk)
  1243. {
  1244. if (sk == NULL || sk->sk_socket == NULL)
  1245. return;
  1246. sock_hold(sk);
  1247. sock_release(sk->sk_socket);
  1248. release_net(sock_net(sk));
  1249. sock_net_set(sk, get_net(&init_net));
  1250. sock_put(sk);
  1251. }
  1252. EXPORT_SYMBOL(sk_release_kernel);
  1253. static void sk_update_clone(const struct sock *sk, struct sock *newsk)
  1254. {
  1255. if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
  1256. sock_update_memcg(newsk);
  1257. }
  1258. /**
  1259. * sk_clone_lock - clone a socket, and lock its clone
  1260. * @sk: the socket to clone
  1261. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1262. *
  1263. * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
  1264. */
  1265. struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
  1266. {
  1267. struct sock *newsk;
  1268. bool is_charged = true;
  1269. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1270. if (newsk != NULL) {
  1271. struct sk_filter *filter;
  1272. sock_copy(newsk, sk);
  1273. /* SANITY */
  1274. get_net(sock_net(newsk));
  1275. sk_node_init(&newsk->sk_node);
  1276. sock_lock_init(newsk);
  1277. bh_lock_sock(newsk);
  1278. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1279. newsk->sk_backlog.len = 0;
  1280. atomic_set(&newsk->sk_rmem_alloc, 0);
  1281. /*
  1282. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1283. */
  1284. atomic_set(&newsk->sk_wmem_alloc, 1);
  1285. atomic_set(&newsk->sk_omem_alloc, 0);
  1286. skb_queue_head_init(&newsk->sk_receive_queue);
  1287. skb_queue_head_init(&newsk->sk_write_queue);
  1288. spin_lock_init(&newsk->sk_dst_lock);
  1289. rwlock_init(&newsk->sk_callback_lock);
  1290. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1291. af_callback_keys + newsk->sk_family,
  1292. af_family_clock_key_strings[newsk->sk_family]);
  1293. newsk->sk_dst_cache = NULL;
  1294. newsk->sk_wmem_queued = 0;
  1295. newsk->sk_forward_alloc = 0;
  1296. newsk->sk_send_head = NULL;
  1297. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1298. sock_reset_flag(newsk, SOCK_DONE);
  1299. skb_queue_head_init(&newsk->sk_error_queue);
  1300. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1301. if (filter != NULL)
  1302. /* though it's an empty new sock, the charging may fail
  1303. * if sysctl_optmem_max was changed between creation of
  1304. * original socket and cloning
  1305. */
  1306. is_charged = sk_filter_charge(newsk, filter);
  1307. if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
  1308. /* It is still raw copy of parent, so invalidate
  1309. * destructor and make plain sk_free() */
  1310. newsk->sk_destruct = NULL;
  1311. bh_unlock_sock(newsk);
  1312. sk_free(newsk);
  1313. newsk = NULL;
  1314. goto out;
  1315. }
  1316. newsk->sk_err = 0;
  1317. newsk->sk_priority = 0;
  1318. /*
  1319. * Before updating sk_refcnt, we must commit prior changes to memory
  1320. * (Documentation/RCU/rculist_nulls.txt for details)
  1321. */
  1322. smp_wmb();
  1323. atomic_set(&newsk->sk_refcnt, 2);
  1324. /*
  1325. * Increment the counter in the same struct proto as the master
  1326. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1327. * is the same as sk->sk_prot->socks, as this field was copied
  1328. * with memcpy).
  1329. *
  1330. * This _changes_ the previous behaviour, where
  1331. * tcp_create_openreq_child always was incrementing the
  1332. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1333. * to be taken into account in all callers. -acme
  1334. */
  1335. sk_refcnt_debug_inc(newsk);
  1336. sk_set_socket(newsk, NULL);
  1337. newsk->sk_wq = NULL;
  1338. sk_update_clone(sk, newsk);
  1339. if (newsk->sk_prot->sockets_allocated)
  1340. sk_sockets_allocated_inc(newsk);
  1341. if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
  1342. net_enable_timestamp();
  1343. }
  1344. out:
  1345. return newsk;
  1346. }
  1347. EXPORT_SYMBOL_GPL(sk_clone_lock);
  1348. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1349. {
  1350. __sk_dst_set(sk, dst);
  1351. sk->sk_route_caps = dst->dev->features;
  1352. if (sk->sk_route_caps & NETIF_F_GSO)
  1353. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1354. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1355. if (sk_can_gso(sk)) {
  1356. if (dst->header_len) {
  1357. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1358. } else {
  1359. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1360. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1361. sk->sk_gso_max_segs = dst->dev->gso_max_segs;
  1362. }
  1363. }
  1364. }
  1365. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1366. /*
  1367. * Simple resource managers for sockets.
  1368. */
  1369. /*
  1370. * Write buffer destructor automatically called from kfree_skb.
  1371. */
  1372. void sock_wfree(struct sk_buff *skb)
  1373. {
  1374. struct sock *sk = skb->sk;
  1375. unsigned int len = skb->truesize;
  1376. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1377. /*
  1378. * Keep a reference on sk_wmem_alloc, this will be released
  1379. * after sk_write_space() call
  1380. */
  1381. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1382. sk->sk_write_space(sk);
  1383. len = 1;
  1384. }
  1385. /*
  1386. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1387. * could not do because of in-flight packets
  1388. */
  1389. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1390. __sk_free(sk);
  1391. }
  1392. EXPORT_SYMBOL(sock_wfree);
  1393. void skb_orphan_partial(struct sk_buff *skb)
  1394. {
  1395. /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
  1396. * so we do not completely orphan skb, but transfert all
  1397. * accounted bytes but one, to avoid unexpected reorders.
  1398. */
  1399. if (skb->destructor == sock_wfree
  1400. #ifdef CONFIG_INET
  1401. || skb->destructor == tcp_wfree
  1402. #endif
  1403. ) {
  1404. atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
  1405. skb->truesize = 1;
  1406. } else {
  1407. skb_orphan(skb);
  1408. }
  1409. }
  1410. EXPORT_SYMBOL(skb_orphan_partial);
  1411. /*
  1412. * Read buffer destructor automatically called from kfree_skb.
  1413. */
  1414. void sock_rfree(struct sk_buff *skb)
  1415. {
  1416. struct sock *sk = skb->sk;
  1417. unsigned int len = skb->truesize;
  1418. atomic_sub(len, &sk->sk_rmem_alloc);
  1419. sk_mem_uncharge(sk, len);
  1420. }
  1421. EXPORT_SYMBOL(sock_rfree);
  1422. void sock_efree(struct sk_buff *skb)
  1423. {
  1424. sock_put(skb->sk);
  1425. }
  1426. EXPORT_SYMBOL(sock_efree);
  1427. #ifdef CONFIG_INET
  1428. void sock_edemux(struct sk_buff *skb)
  1429. {
  1430. struct sock *sk = skb->sk;
  1431. if (sk->sk_state == TCP_TIME_WAIT)
  1432. inet_twsk_put(inet_twsk(sk));
  1433. else
  1434. sock_put(sk);
  1435. }
  1436. EXPORT_SYMBOL(sock_edemux);
  1437. #endif
  1438. kuid_t sock_i_uid(struct sock *sk)
  1439. {
  1440. kuid_t uid;
  1441. /*mtk_net: fix kernel bug*/
  1442. if (!sk) {
  1443. pr_info("sk == NULL for sock_i_uid\n");
  1444. return GLOBAL_ROOT_UID;
  1445. }
  1446. read_lock_bh(&sk->sk_callback_lock);
  1447. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
  1448. read_unlock_bh(&sk->sk_callback_lock);
  1449. return uid;
  1450. }
  1451. EXPORT_SYMBOL(sock_i_uid);
  1452. unsigned long sock_i_ino(struct sock *sk)
  1453. {
  1454. unsigned long ino;
  1455. read_lock_bh(&sk->sk_callback_lock);
  1456. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1457. read_unlock_bh(&sk->sk_callback_lock);
  1458. return ino;
  1459. }
  1460. EXPORT_SYMBOL(sock_i_ino);
  1461. /*
  1462. * Allocate a skb from the socket's send buffer.
  1463. */
  1464. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1465. gfp_t priority)
  1466. {
  1467. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1468. struct sk_buff *skb = alloc_skb(size, priority);
  1469. if (skb) {
  1470. skb_set_owner_w(skb, sk);
  1471. return skb;
  1472. }
  1473. }
  1474. return NULL;
  1475. }
  1476. EXPORT_SYMBOL(sock_wmalloc);
  1477. /*
  1478. * Allocate a memory block from the socket's option memory buffer.
  1479. */
  1480. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1481. {
  1482. if ((unsigned int)size <= sysctl_optmem_max &&
  1483. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1484. void *mem;
  1485. /* First do the add, to avoid the race if kmalloc
  1486. * might sleep.
  1487. */
  1488. atomic_add(size, &sk->sk_omem_alloc);
  1489. mem = kmalloc(size, priority);
  1490. if (mem)
  1491. return mem;
  1492. atomic_sub(size, &sk->sk_omem_alloc);
  1493. }
  1494. return NULL;
  1495. }
  1496. EXPORT_SYMBOL(sock_kmalloc);
  1497. /*
  1498. * Free an option memory block.
  1499. */
  1500. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1501. {
  1502. if (WARN_ON_ONCE(!mem))
  1503. return;
  1504. kfree(mem);
  1505. atomic_sub(size, &sk->sk_omem_alloc);
  1506. }
  1507. EXPORT_SYMBOL(sock_kfree_s);
  1508. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1509. I think, these locks should be removed for datagram sockets.
  1510. */
  1511. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1512. {
  1513. DEFINE_WAIT(wait);
  1514. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1515. for (;;) {
  1516. if (!timeo)
  1517. break;
  1518. if (signal_pending(current))
  1519. break;
  1520. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1521. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1522. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1523. break;
  1524. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1525. break;
  1526. if (sk->sk_err)
  1527. break;
  1528. timeo = schedule_timeout(timeo);
  1529. }
  1530. finish_wait(sk_sleep(sk), &wait);
  1531. return timeo;
  1532. }
  1533. static int sock_dump_info(struct sock *sk)
  1534. {
  1535. if (sk->sk_family == AF_UNIX) {
  1536. struct unix_sock *u = unix_sk(sk);
  1537. struct sock *other = NULL;
  1538. if ((u->path.dentry != NULL) && (u->path.dentry->d_iname != NULL)) {
  1539. #ifdef CONFIG_MTK_NET_LOGGING
  1540. pr_debug("[mtk_net][sock]sockdbg: socket-Name:%s\n", u->path.dentry->d_iname);
  1541. #endif
  1542. } else {
  1543. #ifdef CONFIG_MTK_NET_LOGGING
  1544. pr_debug("[mtk_net][sock]sockdbg:socket Name (NULL)\n");
  1545. #endif
  1546. }
  1547. if (sk->sk_socket && SOCK_INODE(sk->sk_socket)) {
  1548. #ifdef CONFIG_MTK_NET_LOGGING
  1549. pr_debug("[mtk_net][sock]sockdbg:socket Inode[%lu]\n",
  1550. SOCK_INODE(sk->sk_socket)->i_ino);
  1551. #endif
  1552. }
  1553. other = unix_sk(sk)->peer;
  1554. if (!other) {
  1555. #ifdef CONFIG_MTK_NET_LOGGING
  1556. pr_debug("[mtk_net][sock]sockdbg:peer is (NULL)\n");
  1557. #endif
  1558. } else {
  1559. if ((((struct unix_sock *)other)->path.dentry != NULL) &&
  1560. (((struct unix_sock *)other)->path.dentry->d_iname != NULL)) {
  1561. #ifdef CONFIG_MTK_NET_LOGGING
  1562. char *name = ((struct unix_sock *)other)->path.dentry->d_iname;
  1563. pr_debug("[mtk_net][sock]sockdbg: Peer Name:%s\n", name);
  1564. #endif
  1565. } else {
  1566. #ifdef CONFIG_MTK_NET_LOGGING
  1567. pr_debug("[mtk_net][sock]sockdbg: Peer Name (NULL)\n");
  1568. #endif
  1569. }
  1570. if (other->sk_socket && SOCK_INODE(other->sk_socket)) {
  1571. #ifdef CONFIG_MTK_NET_LOGGING
  1572. char *name = ((struct unix_sock *)other)->path.dentry->d_iname;
  1573. pr_debug("[mtk_net][sock]sockdbg: Peer Inode [%lu]\n", name);
  1574. #endif
  1575. }
  1576. #ifdef CONFIG_MTK_NET_LOGGING
  1577. pr_debug("[mtk_net][sock]sockdbg: Peer Receive Queue len:%d\n", other->sk_receive_queue.qlen);
  1578. #endif
  1579. }
  1580. }
  1581. return 0;
  1582. }
  1583. /*
  1584. * Generic send/receive buffer handlers
  1585. */
  1586. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1587. unsigned long data_len, int noblock,
  1588. int *errcode, int max_page_order)
  1589. {
  1590. struct sk_buff *skb;
  1591. long timeo;
  1592. int err;
  1593. timeo = sock_sndtimeo(sk, noblock);
  1594. for (;;) {
  1595. err = sock_error(sk);
  1596. if (err != 0)
  1597. goto failure;
  1598. err = -EPIPE;
  1599. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1600. goto failure;
  1601. if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
  1602. break;
  1603. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1604. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1605. err = -EAGAIN;
  1606. if (!timeo)
  1607. goto failure;
  1608. if (signal_pending(current))
  1609. goto interrupted;
  1610. sock_dump_info(sk);
  1611. #ifdef CONFIG_MTK_NET_LOGGING
  1612. pr_debug("[mtk_net][sock]sockdbg: wait_for_wmem, timeo =%ld, wmem =%d, snd buf =%d\n",
  1613. timeo, atomic_read(&sk->sk_wmem_alloc), sk->sk_sndbuf);
  1614. #endif
  1615. timeo = sock_wait_for_wmem(sk, timeo);
  1616. #ifdef CONFIG_MTK_NET_LOGGING
  1617. pr_debug("[mtk_net][sock]sockdbg: wait_for_wmem done, header_len=0x%lx, data_len=0x%lx,timeo =%ld\n",
  1618. header_len, data_len, timeo);
  1619. #endif
  1620. }
  1621. skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
  1622. errcode, sk->sk_allocation);
  1623. if (skb)
  1624. skb_set_owner_w(skb, sk);
  1625. return skb;
  1626. interrupted:
  1627. err = sock_intr_errno(timeo);
  1628. failure:
  1629. *errcode = err;
  1630. return NULL;
  1631. }
  1632. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1633. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1634. int noblock, int *errcode)
  1635. {
  1636. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
  1637. }
  1638. EXPORT_SYMBOL(sock_alloc_send_skb);
  1639. /* On 32bit arches, an skb frag is limited to 2^15 */
  1640. #define SKB_FRAG_PAGE_ORDER get_order(32768)
  1641. /**
  1642. * skb_page_frag_refill - check that a page_frag contains enough room
  1643. * @sz: minimum size of the fragment we want to get
  1644. * @pfrag: pointer to page_frag
  1645. * @gfp: priority for memory allocation
  1646. *
  1647. * Note: While this allocator tries to use high order pages, there is
  1648. * no guarantee that allocations succeed. Therefore, @sz MUST be
  1649. * less or equal than PAGE_SIZE.
  1650. */
  1651. bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
  1652. {
  1653. if (pfrag->page) {
  1654. if (atomic_read(&pfrag->page->_count) == 1) {
  1655. pfrag->offset = 0;
  1656. return true;
  1657. }
  1658. if (pfrag->offset + sz <= pfrag->size)
  1659. return true;
  1660. put_page(pfrag->page);
  1661. }
  1662. pfrag->offset = 0;
  1663. if (SKB_FRAG_PAGE_ORDER) {
  1664. pfrag->page = alloc_pages((gfp & ~__GFP_WAIT) | __GFP_COMP |
  1665. __GFP_NOWARN | __GFP_NORETRY,
  1666. SKB_FRAG_PAGE_ORDER);
  1667. if (likely(pfrag->page)) {
  1668. pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
  1669. return true;
  1670. }
  1671. }
  1672. pfrag->page = alloc_page(gfp);
  1673. if (likely(pfrag->page)) {
  1674. pfrag->size = PAGE_SIZE;
  1675. return true;
  1676. }
  1677. return false;
  1678. }
  1679. EXPORT_SYMBOL(skb_page_frag_refill);
  1680. bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
  1681. {
  1682. if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
  1683. return true;
  1684. sk_enter_memory_pressure(sk);
  1685. sk_stream_moderate_sndbuf(sk);
  1686. return false;
  1687. }
  1688. EXPORT_SYMBOL(sk_page_frag_refill);
  1689. static void __lock_sock(struct sock *sk)
  1690. __releases(&sk->sk_lock.slock)
  1691. __acquires(&sk->sk_lock.slock)
  1692. {
  1693. DEFINE_WAIT(wait);
  1694. for (;;) {
  1695. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1696. TASK_UNINTERRUPTIBLE);
  1697. spin_unlock_bh(&sk->sk_lock.slock);
  1698. schedule();
  1699. spin_lock_bh(&sk->sk_lock.slock);
  1700. if (!sock_owned_by_user(sk))
  1701. break;
  1702. }
  1703. finish_wait(&sk->sk_lock.wq, &wait);
  1704. }
  1705. static void __release_sock(struct sock *sk)
  1706. __releases(&sk->sk_lock.slock)
  1707. __acquires(&sk->sk_lock.slock)
  1708. {
  1709. struct sk_buff *skb = sk->sk_backlog.head;
  1710. do {
  1711. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1712. bh_unlock_sock(sk);
  1713. do {
  1714. struct sk_buff *next = skb->next;
  1715. prefetch(next);
  1716. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1717. skb->next = NULL;
  1718. sk_backlog_rcv(sk, skb);
  1719. /*
  1720. * We are in process context here with softirqs
  1721. * disabled, use cond_resched_softirq() to preempt.
  1722. * This is safe to do because we've taken the backlog
  1723. * queue private:
  1724. */
  1725. cond_resched_softirq();
  1726. skb = next;
  1727. } while (skb != NULL);
  1728. bh_lock_sock(sk);
  1729. } while ((skb = sk->sk_backlog.head) != NULL);
  1730. /*
  1731. * Doing the zeroing here guarantee we can not loop forever
  1732. * while a wild producer attempts to flood us.
  1733. */
  1734. sk->sk_backlog.len = 0;
  1735. }
  1736. /**
  1737. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1738. * @sk: sock to wait on
  1739. * @timeo: for how long
  1740. *
  1741. * Now socket state including sk->sk_err is changed only under lock,
  1742. * hence we may omit checks after joining wait queue.
  1743. * We check receive queue before schedule() only as optimization;
  1744. * it is very likely that release_sock() added new data.
  1745. */
  1746. int sk_wait_data(struct sock *sk, long *timeo)
  1747. {
  1748. int rc;
  1749. DEFINE_WAIT(wait);
  1750. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1751. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1752. rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
  1753. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1754. finish_wait(sk_sleep(sk), &wait);
  1755. return rc;
  1756. }
  1757. EXPORT_SYMBOL(sk_wait_data);
  1758. /**
  1759. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1760. * @sk: socket
  1761. * @size: memory size to allocate
  1762. * @kind: allocation type
  1763. *
  1764. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1765. * rmem allocation. This function assumes that protocols which have
  1766. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1767. */
  1768. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1769. {
  1770. struct proto *prot = sk->sk_prot;
  1771. int amt = sk_mem_pages(size);
  1772. long allocated;
  1773. int parent_status = UNDER_LIMIT;
  1774. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1775. allocated = sk_memory_allocated_add(sk, amt, &parent_status);
  1776. /* Under limit. */
  1777. if (parent_status == UNDER_LIMIT &&
  1778. allocated <= sk_prot_mem_limits(sk, 0)) {
  1779. sk_leave_memory_pressure(sk);
  1780. return 1;
  1781. }
  1782. /* Under pressure. (we or our parents) */
  1783. if ((parent_status > SOFT_LIMIT) ||
  1784. allocated > sk_prot_mem_limits(sk, 1))
  1785. sk_enter_memory_pressure(sk);
  1786. /* Over hard limit (we or our parents) */
  1787. if ((parent_status == OVER_LIMIT) ||
  1788. (allocated > sk_prot_mem_limits(sk, 2)))
  1789. goto suppress_allocation;
  1790. /* guarantee minimum buffer size under pressure */
  1791. if (kind == SK_MEM_RECV) {
  1792. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1793. return 1;
  1794. } else { /* SK_MEM_SEND */
  1795. if (sk->sk_type == SOCK_STREAM) {
  1796. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1797. return 1;
  1798. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1799. prot->sysctl_wmem[0])
  1800. return 1;
  1801. }
  1802. if (sk_has_memory_pressure(sk)) {
  1803. int alloc;
  1804. if (!sk_under_memory_pressure(sk))
  1805. return 1;
  1806. alloc = sk_sockets_allocated_read_positive(sk);
  1807. if (sk_prot_mem_limits(sk, 2) > alloc *
  1808. sk_mem_pages(sk->sk_wmem_queued +
  1809. atomic_read(&sk->sk_rmem_alloc) +
  1810. sk->sk_forward_alloc))
  1811. return 1;
  1812. }
  1813. suppress_allocation:
  1814. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1815. sk_stream_moderate_sndbuf(sk);
  1816. /* Fail only if socket is _under_ its sndbuf.
  1817. * In this case we cannot block, so that we have to fail.
  1818. */
  1819. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1820. return 1;
  1821. }
  1822. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1823. /* Alas. Undo changes. */
  1824. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1825. sk_memory_allocated_sub(sk, amt);
  1826. return 0;
  1827. }
  1828. EXPORT_SYMBOL(__sk_mem_schedule);
  1829. /**
  1830. * __sk_reclaim - reclaim memory_allocated
  1831. * @sk: socket
  1832. */
  1833. void __sk_mem_reclaim(struct sock *sk)
  1834. {
  1835. sk_memory_allocated_sub(sk,
  1836. sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
  1837. sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
  1838. if (sk_under_memory_pressure(sk) &&
  1839. (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
  1840. sk_leave_memory_pressure(sk);
  1841. }
  1842. EXPORT_SYMBOL(__sk_mem_reclaim);
  1843. /*
  1844. * Set of default routines for initialising struct proto_ops when
  1845. * the protocol does not support a particular function. In certain
  1846. * cases where it makes no sense for a protocol to have a "do nothing"
  1847. * function, some default processing is provided.
  1848. */
  1849. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1850. {
  1851. return -EOPNOTSUPP;
  1852. }
  1853. EXPORT_SYMBOL(sock_no_bind);
  1854. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1855. int len, int flags)
  1856. {
  1857. return -EOPNOTSUPP;
  1858. }
  1859. EXPORT_SYMBOL(sock_no_connect);
  1860. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1861. {
  1862. return -EOPNOTSUPP;
  1863. }
  1864. EXPORT_SYMBOL(sock_no_socketpair);
  1865. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1866. {
  1867. return -EOPNOTSUPP;
  1868. }
  1869. EXPORT_SYMBOL(sock_no_accept);
  1870. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1871. int *len, int peer)
  1872. {
  1873. return -EOPNOTSUPP;
  1874. }
  1875. EXPORT_SYMBOL(sock_no_getname);
  1876. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1877. {
  1878. return 0;
  1879. }
  1880. EXPORT_SYMBOL(sock_no_poll);
  1881. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1882. {
  1883. return -EOPNOTSUPP;
  1884. }
  1885. EXPORT_SYMBOL(sock_no_ioctl);
  1886. int sock_no_listen(struct socket *sock, int backlog)
  1887. {
  1888. return -EOPNOTSUPP;
  1889. }
  1890. EXPORT_SYMBOL(sock_no_listen);
  1891. int sock_no_shutdown(struct socket *sock, int how)
  1892. {
  1893. return -EOPNOTSUPP;
  1894. }
  1895. EXPORT_SYMBOL(sock_no_shutdown);
  1896. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1897. char __user *optval, unsigned int optlen)
  1898. {
  1899. return -EOPNOTSUPP;
  1900. }
  1901. EXPORT_SYMBOL(sock_no_setsockopt);
  1902. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1903. char __user *optval, int __user *optlen)
  1904. {
  1905. return -EOPNOTSUPP;
  1906. }
  1907. EXPORT_SYMBOL(sock_no_getsockopt);
  1908. int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1909. size_t len)
  1910. {
  1911. return -EOPNOTSUPP;
  1912. }
  1913. EXPORT_SYMBOL(sock_no_sendmsg);
  1914. int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1915. size_t len, int flags)
  1916. {
  1917. return -EOPNOTSUPP;
  1918. }
  1919. EXPORT_SYMBOL(sock_no_recvmsg);
  1920. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1921. {
  1922. /* Mirror missing mmap method error code */
  1923. return -ENODEV;
  1924. }
  1925. EXPORT_SYMBOL(sock_no_mmap);
  1926. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1927. {
  1928. ssize_t res;
  1929. struct msghdr msg = {.msg_flags = flags};
  1930. struct kvec iov;
  1931. char *kaddr = kmap(page);
  1932. iov.iov_base = kaddr + offset;
  1933. iov.iov_len = size;
  1934. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1935. kunmap(page);
  1936. return res;
  1937. }
  1938. EXPORT_SYMBOL(sock_no_sendpage);
  1939. /*
  1940. * Default Socket Callbacks
  1941. */
  1942. static void sock_def_wakeup(struct sock *sk)
  1943. {
  1944. struct socket_wq *wq;
  1945. rcu_read_lock();
  1946. wq = rcu_dereference(sk->sk_wq);
  1947. if (wq_has_sleeper(wq))
  1948. wake_up_interruptible_all(&wq->wait);
  1949. rcu_read_unlock();
  1950. }
  1951. static void sock_def_error_report(struct sock *sk)
  1952. {
  1953. struct socket_wq *wq;
  1954. rcu_read_lock();
  1955. wq = rcu_dereference(sk->sk_wq);
  1956. if (wq_has_sleeper(wq))
  1957. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1958. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1959. rcu_read_unlock();
  1960. }
  1961. static void sock_def_readable(struct sock *sk)
  1962. {
  1963. struct socket_wq *wq;
  1964. rcu_read_lock();
  1965. wq = rcu_dereference(sk->sk_wq);
  1966. if (wq_has_sleeper(wq))
  1967. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1968. POLLRDNORM | POLLRDBAND);
  1969. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1970. rcu_read_unlock();
  1971. }
  1972. static void sock_def_write_space(struct sock *sk)
  1973. {
  1974. struct socket_wq *wq;
  1975. rcu_read_lock();
  1976. /* Do not wake up a writer until he can make "significant"
  1977. * progress. --DaveM
  1978. */
  1979. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1980. wq = rcu_dereference(sk->sk_wq);
  1981. if (wq_has_sleeper(wq))
  1982. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  1983. POLLWRNORM | POLLWRBAND);
  1984. /* Should agree with poll, otherwise some programs break */
  1985. if (sock_writeable(sk))
  1986. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1987. }
  1988. rcu_read_unlock();
  1989. }
  1990. static void sock_def_destruct(struct sock *sk)
  1991. {
  1992. kfree(sk->sk_protinfo);
  1993. }
  1994. void sk_send_sigurg(struct sock *sk)
  1995. {
  1996. if (sk->sk_socket && sk->sk_socket->file)
  1997. if (send_sigurg(&sk->sk_socket->file->f_owner))
  1998. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  1999. }
  2000. EXPORT_SYMBOL(sk_send_sigurg);
  2001. void sk_reset_timer(struct sock *sk, struct timer_list *timer,
  2002. unsigned long expires)
  2003. {
  2004. if (!mod_timer(timer, expires))
  2005. sock_hold(sk);
  2006. }
  2007. EXPORT_SYMBOL(sk_reset_timer);
  2008. void sk_stop_timer(struct sock *sk, struct timer_list *timer)
  2009. {
  2010. if (del_timer(timer))
  2011. __sock_put(sk);
  2012. }
  2013. EXPORT_SYMBOL(sk_stop_timer);
  2014. void sock_init_data(struct socket *sock, struct sock *sk)
  2015. {
  2016. skb_queue_head_init(&sk->sk_receive_queue);
  2017. skb_queue_head_init(&sk->sk_write_queue);
  2018. skb_queue_head_init(&sk->sk_error_queue);
  2019. sk->sk_send_head = NULL;
  2020. init_timer(&sk->sk_timer);
  2021. sk->sk_allocation = GFP_KERNEL;
  2022. sk->sk_rcvbuf = sysctl_rmem_default;
  2023. sk->sk_sndbuf = sysctl_wmem_default;
  2024. sk->sk_state = TCP_CLOSE;
  2025. sk_set_socket(sk, sock);
  2026. sock_set_flag(sk, SOCK_ZAPPED);
  2027. if (sock) {
  2028. sk->sk_type = sock->type;
  2029. sk->sk_wq = sock->wq;
  2030. sock->sk = sk;
  2031. } else
  2032. sk->sk_wq = NULL;
  2033. spin_lock_init(&sk->sk_dst_lock);
  2034. rwlock_init(&sk->sk_callback_lock);
  2035. lockdep_set_class_and_name(&sk->sk_callback_lock,
  2036. af_callback_keys + sk->sk_family,
  2037. af_family_clock_key_strings[sk->sk_family]);
  2038. sk->sk_state_change = sock_def_wakeup;
  2039. sk->sk_data_ready = sock_def_readable;
  2040. sk->sk_write_space = sock_def_write_space;
  2041. sk->sk_error_report = sock_def_error_report;
  2042. sk->sk_destruct = sock_def_destruct;
  2043. sk->sk_frag.page = NULL;
  2044. sk->sk_frag.offset = 0;
  2045. sk->sk_peek_off = -1;
  2046. sk->sk_peer_pid = NULL;
  2047. sk->sk_peer_cred = NULL;
  2048. sk->sk_write_pending = 0;
  2049. sk->sk_rcvlowat = 1;
  2050. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  2051. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  2052. sk->sk_stamp = ktime_set(-1L, 0);
  2053. #ifdef CONFIG_NET_RX_BUSY_POLL
  2054. sk->sk_napi_id = 0;
  2055. sk->sk_ll_usec = sysctl_net_busy_read;
  2056. #endif
  2057. sk->sk_max_pacing_rate = ~0U;
  2058. sk->sk_pacing_rate = ~0U;
  2059. /*
  2060. * Before updating sk_refcnt, we must commit prior changes to memory
  2061. * (Documentation/RCU/rculist_nulls.txt for details)
  2062. */
  2063. smp_wmb();
  2064. atomic_set(&sk->sk_refcnt, 1);
  2065. atomic_set(&sk->sk_drops, 0);
  2066. }
  2067. EXPORT_SYMBOL(sock_init_data);
  2068. void lock_sock_nested(struct sock *sk, int subclass)
  2069. {
  2070. might_sleep();
  2071. spin_lock_bh(&sk->sk_lock.slock);
  2072. if (sk->sk_lock.owned)
  2073. __lock_sock(sk);
  2074. sk->sk_lock.owned = 1;
  2075. spin_unlock(&sk->sk_lock.slock);
  2076. /*
  2077. * The sk_lock has mutex_lock() semantics here:
  2078. */
  2079. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  2080. local_bh_enable();
  2081. }
  2082. EXPORT_SYMBOL(lock_sock_nested);
  2083. void release_sock(struct sock *sk)
  2084. {
  2085. /*
  2086. * The sk_lock has mutex_unlock() semantics:
  2087. */
  2088. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  2089. spin_lock_bh(&sk->sk_lock.slock);
  2090. if (sk->sk_backlog.tail)
  2091. __release_sock(sk);
  2092. /* Warning : release_cb() might need to release sk ownership,
  2093. * ie call sock_release_ownership(sk) before us.
  2094. */
  2095. if (sk->sk_prot->release_cb)
  2096. sk->sk_prot->release_cb(sk);
  2097. sock_release_ownership(sk);
  2098. if (waitqueue_active(&sk->sk_lock.wq))
  2099. wake_up(&sk->sk_lock.wq);
  2100. spin_unlock_bh(&sk->sk_lock.slock);
  2101. }
  2102. EXPORT_SYMBOL(release_sock);
  2103. /**
  2104. * lock_sock_fast - fast version of lock_sock
  2105. * @sk: socket
  2106. *
  2107. * This version should be used for very small section, where process wont block
  2108. * return false if fast path is taken
  2109. * sk_lock.slock locked, owned = 0, BH disabled
  2110. * return true if slow path is taken
  2111. * sk_lock.slock unlocked, owned = 1, BH enabled
  2112. */
  2113. bool lock_sock_fast(struct sock *sk)
  2114. {
  2115. might_sleep();
  2116. spin_lock_bh(&sk->sk_lock.slock);
  2117. if (!sk->sk_lock.owned)
  2118. /*
  2119. * Note : We must disable BH
  2120. */
  2121. return false;
  2122. __lock_sock(sk);
  2123. sk->sk_lock.owned = 1;
  2124. spin_unlock(&sk->sk_lock.slock);
  2125. /*
  2126. * The sk_lock has mutex_lock() semantics here:
  2127. */
  2128. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  2129. local_bh_enable();
  2130. return true;
  2131. }
  2132. EXPORT_SYMBOL(lock_sock_fast);
  2133. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  2134. {
  2135. struct timeval tv;
  2136. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2137. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2138. tv = ktime_to_timeval(sk->sk_stamp);
  2139. if (tv.tv_sec == -1)
  2140. return -ENOENT;
  2141. if (tv.tv_sec == 0) {
  2142. sk->sk_stamp = ktime_get_real();
  2143. tv = ktime_to_timeval(sk->sk_stamp);
  2144. }
  2145. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  2146. }
  2147. EXPORT_SYMBOL(sock_get_timestamp);
  2148. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  2149. {
  2150. struct timespec ts;
  2151. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2152. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2153. ts = ktime_to_timespec(sk->sk_stamp);
  2154. if (ts.tv_sec == -1)
  2155. return -ENOENT;
  2156. if (ts.tv_sec == 0) {
  2157. sk->sk_stamp = ktime_get_real();
  2158. ts = ktime_to_timespec(sk->sk_stamp);
  2159. }
  2160. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  2161. }
  2162. EXPORT_SYMBOL(sock_get_timestampns);
  2163. void sock_enable_timestamp(struct sock *sk, int flag)
  2164. {
  2165. if (!sock_flag(sk, flag)) {
  2166. unsigned long previous_flags = sk->sk_flags;
  2167. sock_set_flag(sk, flag);
  2168. /*
  2169. * we just set one of the two flags which require net
  2170. * time stamping, but time stamping might have been on
  2171. * already because of the other one
  2172. */
  2173. if (!(previous_flags & SK_FLAGS_TIMESTAMP))
  2174. net_enable_timestamp();
  2175. }
  2176. }
  2177. int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
  2178. int level, int type)
  2179. {
  2180. struct sock_exterr_skb *serr;
  2181. struct sk_buff *skb;
  2182. int copied, err;
  2183. err = -EAGAIN;
  2184. skb = sock_dequeue_err_skb(sk);
  2185. if (skb == NULL)
  2186. goto out;
  2187. copied = skb->len;
  2188. if (copied > len) {
  2189. msg->msg_flags |= MSG_TRUNC;
  2190. copied = len;
  2191. }
  2192. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  2193. if (err)
  2194. goto out_free_skb;
  2195. sock_recv_timestamp(msg, sk, skb);
  2196. serr = SKB_EXT_ERR(skb);
  2197. put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
  2198. msg->msg_flags |= MSG_ERRQUEUE;
  2199. err = copied;
  2200. out_free_skb:
  2201. kfree_skb(skb);
  2202. out:
  2203. return err;
  2204. }
  2205. EXPORT_SYMBOL(sock_recv_errqueue);
  2206. /*
  2207. * Get a socket option on an socket.
  2208. *
  2209. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  2210. * asynchronous errors should be reported by getsockopt. We assume
  2211. * this means if you specify SO_ERROR (otherwise whats the point of it).
  2212. */
  2213. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  2214. char __user *optval, int __user *optlen)
  2215. {
  2216. struct sock *sk = sock->sk;
  2217. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2218. }
  2219. EXPORT_SYMBOL(sock_common_getsockopt);
  2220. #ifdef CONFIG_COMPAT
  2221. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  2222. char __user *optval, int __user *optlen)
  2223. {
  2224. struct sock *sk = sock->sk;
  2225. if (sk->sk_prot->compat_getsockopt != NULL)
  2226. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  2227. optval, optlen);
  2228. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2229. }
  2230. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  2231. #endif
  2232. int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
  2233. struct msghdr *msg, size_t size, int flags)
  2234. {
  2235. struct sock *sk = sock->sk;
  2236. int addr_len = 0;
  2237. int err;
  2238. err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
  2239. flags & ~MSG_DONTWAIT, &addr_len);
  2240. if (err >= 0)
  2241. msg->msg_namelen = addr_len;
  2242. return err;
  2243. }
  2244. EXPORT_SYMBOL(sock_common_recvmsg);
  2245. /*
  2246. * Set socket options on an inet socket.
  2247. */
  2248. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  2249. char __user *optval, unsigned int optlen)
  2250. {
  2251. struct sock *sk = sock->sk;
  2252. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2253. }
  2254. EXPORT_SYMBOL(sock_common_setsockopt);
  2255. #ifdef CONFIG_COMPAT
  2256. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  2257. char __user *optval, unsigned int optlen)
  2258. {
  2259. struct sock *sk = sock->sk;
  2260. if (sk->sk_prot->compat_setsockopt != NULL)
  2261. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  2262. optval, optlen);
  2263. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2264. }
  2265. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  2266. #endif
  2267. void sk_common_release(struct sock *sk)
  2268. {
  2269. if (sk->sk_prot->destroy)
  2270. sk->sk_prot->destroy(sk);
  2271. /*
  2272. * Observation: when sock_common_release is called, processes have
  2273. * no access to socket. But net still has.
  2274. * Step one, detach it from networking:
  2275. *
  2276. * A. Remove from hash tables.
  2277. */
  2278. sk->sk_prot->unhash(sk);
  2279. /*
  2280. * In this point socket cannot receive new packets, but it is possible
  2281. * that some packets are in flight because some CPU runs receiver and
  2282. * did hash table lookup before we unhashed socket. They will achieve
  2283. * receive queue and will be purged by socket destructor.
  2284. *
  2285. * Also we still have packets pending on receive queue and probably,
  2286. * our own packets waiting in device queues. sock_destroy will drain
  2287. * receive queue, but transmitted packets will delay socket destruction
  2288. * until the last reference will be released.
  2289. */
  2290. sock_orphan(sk);
  2291. xfrm_sk_free_policy(sk);
  2292. sk_refcnt_debug_release(sk);
  2293. if (sk->sk_frag.page) {
  2294. put_page(sk->sk_frag.page);
  2295. sk->sk_frag.page = NULL;
  2296. }
  2297. sock_put(sk);
  2298. }
  2299. EXPORT_SYMBOL(sk_common_release);
  2300. #ifdef CONFIG_PROC_FS
  2301. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  2302. struct prot_inuse {
  2303. int val[PROTO_INUSE_NR];
  2304. };
  2305. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  2306. #ifdef CONFIG_NET_NS
  2307. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2308. {
  2309. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  2310. }
  2311. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2312. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2313. {
  2314. int cpu, idx = prot->inuse_idx;
  2315. int res = 0;
  2316. for_each_possible_cpu(cpu)
  2317. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  2318. return res >= 0 ? res : 0;
  2319. }
  2320. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2321. static int __net_init sock_inuse_init_net(struct net *net)
  2322. {
  2323. net->core.inuse = alloc_percpu(struct prot_inuse);
  2324. return net->core.inuse ? 0 : -ENOMEM;
  2325. }
  2326. static void __net_exit sock_inuse_exit_net(struct net *net)
  2327. {
  2328. free_percpu(net->core.inuse);
  2329. }
  2330. static struct pernet_operations net_inuse_ops = {
  2331. .init = sock_inuse_init_net,
  2332. .exit = sock_inuse_exit_net,
  2333. };
  2334. static __init int net_inuse_init(void)
  2335. {
  2336. if (register_pernet_subsys(&net_inuse_ops))
  2337. panic("Cannot initialize net inuse counters");
  2338. return 0;
  2339. }
  2340. core_initcall(net_inuse_init);
  2341. #else
  2342. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  2343. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2344. {
  2345. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  2346. }
  2347. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2348. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2349. {
  2350. int cpu, idx = prot->inuse_idx;
  2351. int res = 0;
  2352. for_each_possible_cpu(cpu)
  2353. res += per_cpu(prot_inuse, cpu).val[idx];
  2354. return res >= 0 ? res : 0;
  2355. }
  2356. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2357. #endif
  2358. static void assign_proto_idx(struct proto *prot)
  2359. {
  2360. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2361. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2362. pr_debug("PROTO_INUSE_NR exhausted\n");
  2363. return;
  2364. }
  2365. set_bit(prot->inuse_idx, proto_inuse_idx);
  2366. }
  2367. static void release_proto_idx(struct proto *prot)
  2368. {
  2369. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2370. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2371. }
  2372. #else
  2373. static inline void assign_proto_idx(struct proto *prot)
  2374. {
  2375. }
  2376. static inline void release_proto_idx(struct proto *prot)
  2377. {
  2378. }
  2379. #endif
  2380. int proto_register(struct proto *prot, int alloc_slab)
  2381. {
  2382. if (alloc_slab) {
  2383. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2384. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2385. NULL);
  2386. if (prot->slab == NULL) {
  2387. pr_debug("%s: Can't create sock SLAB cache!\n",
  2388. prot->name);
  2389. goto out;
  2390. }
  2391. if (prot->rsk_prot != NULL) {
  2392. prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
  2393. if (prot->rsk_prot->slab_name == NULL)
  2394. goto out_free_sock_slab;
  2395. prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
  2396. prot->rsk_prot->obj_size, 0,
  2397. SLAB_HWCACHE_ALIGN, NULL);
  2398. if (prot->rsk_prot->slab == NULL) {
  2399. pr_debug("%s: Can't create request sock SLAB cache!\n",
  2400. prot->name);
  2401. goto out_free_request_sock_slab_name;
  2402. }
  2403. }
  2404. if (prot->twsk_prot != NULL) {
  2405. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2406. if (prot->twsk_prot->twsk_slab_name == NULL)
  2407. goto out_free_request_sock_slab;
  2408. prot->twsk_prot->twsk_slab =
  2409. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2410. prot->twsk_prot->twsk_obj_size,
  2411. 0,
  2412. SLAB_HWCACHE_ALIGN |
  2413. prot->slab_flags,
  2414. NULL);
  2415. if (prot->twsk_prot->twsk_slab == NULL)
  2416. goto out_free_timewait_sock_slab_name;
  2417. }
  2418. }
  2419. mutex_lock(&proto_list_mutex);
  2420. list_add(&prot->node, &proto_list);
  2421. assign_proto_idx(prot);
  2422. mutex_unlock(&proto_list_mutex);
  2423. return 0;
  2424. out_free_timewait_sock_slab_name:
  2425. kfree(prot->twsk_prot->twsk_slab_name);
  2426. out_free_request_sock_slab:
  2427. if (prot->rsk_prot && prot->rsk_prot->slab) {
  2428. kmem_cache_destroy(prot->rsk_prot->slab);
  2429. prot->rsk_prot->slab = NULL;
  2430. }
  2431. out_free_request_sock_slab_name:
  2432. if (prot->rsk_prot)
  2433. kfree(prot->rsk_prot->slab_name);
  2434. out_free_sock_slab:
  2435. kmem_cache_destroy(prot->slab);
  2436. prot->slab = NULL;
  2437. out:
  2438. return -ENOBUFS;
  2439. }
  2440. EXPORT_SYMBOL(proto_register);
  2441. void proto_unregister(struct proto *prot)
  2442. {
  2443. mutex_lock(&proto_list_mutex);
  2444. release_proto_idx(prot);
  2445. list_del(&prot->node);
  2446. mutex_unlock(&proto_list_mutex);
  2447. if (prot->slab != NULL) {
  2448. kmem_cache_destroy(prot->slab);
  2449. prot->slab = NULL;
  2450. }
  2451. if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
  2452. kmem_cache_destroy(prot->rsk_prot->slab);
  2453. kfree(prot->rsk_prot->slab_name);
  2454. prot->rsk_prot->slab = NULL;
  2455. }
  2456. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2457. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2458. kfree(prot->twsk_prot->twsk_slab_name);
  2459. prot->twsk_prot->twsk_slab = NULL;
  2460. }
  2461. }
  2462. EXPORT_SYMBOL(proto_unregister);
  2463. #ifdef CONFIG_PROC_FS
  2464. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2465. __acquires(proto_list_mutex)
  2466. {
  2467. mutex_lock(&proto_list_mutex);
  2468. return seq_list_start_head(&proto_list, *pos);
  2469. }
  2470. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2471. {
  2472. return seq_list_next(v, &proto_list, pos);
  2473. }
  2474. static void proto_seq_stop(struct seq_file *seq, void *v)
  2475. __releases(proto_list_mutex)
  2476. {
  2477. mutex_unlock(&proto_list_mutex);
  2478. }
  2479. static char proto_method_implemented(const void *method)
  2480. {
  2481. return method == NULL ? 'n' : 'y';
  2482. }
  2483. static long sock_prot_memory_allocated(struct proto *proto)
  2484. {
  2485. return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
  2486. }
  2487. static char *sock_prot_memory_pressure(struct proto *proto)
  2488. {
  2489. return proto->memory_pressure != NULL ?
  2490. proto_memory_pressure(proto) ? "yes" : "no" : "NI";
  2491. }
  2492. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2493. {
  2494. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2495. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2496. proto->name,
  2497. proto->obj_size,
  2498. sock_prot_inuse_get(seq_file_net(seq), proto),
  2499. sock_prot_memory_allocated(proto),
  2500. sock_prot_memory_pressure(proto),
  2501. proto->max_header,
  2502. proto->slab == NULL ? "no" : "yes",
  2503. module_name(proto->owner),
  2504. proto_method_implemented(proto->close),
  2505. proto_method_implemented(proto->connect),
  2506. proto_method_implemented(proto->disconnect),
  2507. proto_method_implemented(proto->accept),
  2508. proto_method_implemented(proto->ioctl),
  2509. proto_method_implemented(proto->init),
  2510. proto_method_implemented(proto->destroy),
  2511. proto_method_implemented(proto->shutdown),
  2512. proto_method_implemented(proto->setsockopt),
  2513. proto_method_implemented(proto->getsockopt),
  2514. proto_method_implemented(proto->sendmsg),
  2515. proto_method_implemented(proto->recvmsg),
  2516. proto_method_implemented(proto->sendpage),
  2517. proto_method_implemented(proto->bind),
  2518. proto_method_implemented(proto->backlog_rcv),
  2519. proto_method_implemented(proto->hash),
  2520. proto_method_implemented(proto->unhash),
  2521. proto_method_implemented(proto->get_port),
  2522. proto_method_implemented(proto->enter_memory_pressure));
  2523. }
  2524. static int proto_seq_show(struct seq_file *seq, void *v)
  2525. {
  2526. if (v == &proto_list)
  2527. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2528. "protocol",
  2529. "size",
  2530. "sockets",
  2531. "memory",
  2532. "press",
  2533. "maxhdr",
  2534. "slab",
  2535. "module",
  2536. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2537. else
  2538. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2539. return 0;
  2540. }
  2541. static const struct seq_operations proto_seq_ops = {
  2542. .start = proto_seq_start,
  2543. .next = proto_seq_next,
  2544. .stop = proto_seq_stop,
  2545. .show = proto_seq_show,
  2546. };
  2547. static int proto_seq_open(struct inode *inode, struct file *file)
  2548. {
  2549. return seq_open_net(inode, file, &proto_seq_ops,
  2550. sizeof(struct seq_net_private));
  2551. }
  2552. static const struct file_operations proto_seq_fops = {
  2553. .owner = THIS_MODULE,
  2554. .open = proto_seq_open,
  2555. .read = seq_read,
  2556. .llseek = seq_lseek,
  2557. .release = seq_release_net,
  2558. };
  2559. static __net_init int proto_init_net(struct net *net)
  2560. {
  2561. if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
  2562. return -ENOMEM;
  2563. return 0;
  2564. }
  2565. static __net_exit void proto_exit_net(struct net *net)
  2566. {
  2567. remove_proc_entry("protocols", net->proc_net);
  2568. }
  2569. static __net_initdata struct pernet_operations proto_net_ops = {
  2570. .init = proto_init_net,
  2571. .exit = proto_exit_net,
  2572. };
  2573. static int __init proto_init(void)
  2574. {
  2575. return register_pernet_subsys(&proto_net_ops);
  2576. }
  2577. subsys_initcall(proto_init);
  2578. #endif /* PROC_FS */