ram_core.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553
  1. /*
  2. * Copyright (C) 2012 Google, Inc.
  3. *
  4. * This software is licensed under the terms of the GNU General Public
  5. * License version 2, as published by the Free Software Foundation, and
  6. * may be copied, distributed, and modified under those terms.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. */
  14. #define pr_fmt(fmt) "persistent_ram: " fmt
  15. #include <linux/device.h>
  16. #include <linux/err.h>
  17. #include <linux/errno.h>
  18. #include <linux/kernel.h>
  19. #include <linux/init.h>
  20. #include <linux/io.h>
  21. #include <linux/list.h>
  22. #include <linux/memblock.h>
  23. #include <linux/rslib.h>
  24. #include <linux/slab.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/pstore_ram.h>
  27. #include <asm/page.h>
  28. struct persistent_ram_buffer {
  29. uint32_t sig;
  30. atomic_t start;
  31. atomic_t size;
  32. uint8_t data[0];
  33. };
  34. #ifdef __aarch64__
  35. static void *_memcpy(void *dest, const void *src, size_t count)
  36. {
  37. char *tmp = dest;
  38. const char *s = src;
  39. while (count--)
  40. *tmp++ = *s++;
  41. return dest;
  42. }
  43. #define memcpy _memcpy
  44. #endif
  45. #define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
  46. static inline size_t buffer_size(struct persistent_ram_zone *prz)
  47. {
  48. return atomic_read(&prz->buffer->size);
  49. }
  50. static inline size_t buffer_start(struct persistent_ram_zone *prz)
  51. {
  52. return atomic_read(&prz->buffer->start);
  53. }
  54. /* increase and wrap the start pointer, returning the old value */
  55. static size_t buffer_start_add_atomic(struct persistent_ram_zone *prz, size_t a)
  56. {
  57. int old;
  58. int new;
  59. do {
  60. old = atomic_read(&prz->buffer->start);
  61. new = old + a;
  62. while (unlikely(new >= prz->buffer_size))
  63. new -= prz->buffer_size;
  64. } while (atomic_cmpxchg(&prz->buffer->start, old, new) != old);
  65. return old;
  66. }
  67. /* increase the size counter until it hits the max size */
  68. static void buffer_size_add_atomic(struct persistent_ram_zone *prz, size_t a)
  69. {
  70. size_t old;
  71. size_t new;
  72. if (atomic_read(&prz->buffer->size) == prz->buffer_size)
  73. return;
  74. do {
  75. old = atomic_read(&prz->buffer->size);
  76. new = old + a;
  77. if (new > prz->buffer_size)
  78. new = prz->buffer_size;
  79. } while (atomic_cmpxchg(&prz->buffer->size, old, new) != old);
  80. }
  81. static DEFINE_RAW_SPINLOCK(buffer_lock);
  82. /* increase and wrap the start pointer, returning the old value */
  83. static size_t buffer_start_add_locked(struct persistent_ram_zone *prz, size_t a)
  84. {
  85. int old;
  86. int new;
  87. unsigned long flags;
  88. raw_spin_lock_irqsave(&buffer_lock, flags);
  89. old = atomic_read(&prz->buffer->start);
  90. new = old + a;
  91. while (unlikely(new >= prz->buffer_size))
  92. new -= prz->buffer_size;
  93. atomic_set(&prz->buffer->start, new);
  94. raw_spin_unlock_irqrestore(&buffer_lock, flags);
  95. return old;
  96. }
  97. /* increase the size counter until it hits the max size */
  98. static void buffer_size_add_locked(struct persistent_ram_zone *prz, size_t a)
  99. {
  100. size_t old;
  101. size_t new;
  102. unsigned long flags;
  103. raw_spin_lock_irqsave(&buffer_lock, flags);
  104. old = atomic_read(&prz->buffer->size);
  105. if (old == prz->buffer_size)
  106. goto exit;
  107. new = old + a;
  108. if (new > prz->buffer_size)
  109. new = prz->buffer_size;
  110. atomic_set(&prz->buffer->size, new);
  111. exit:
  112. raw_spin_unlock_irqrestore(&buffer_lock, flags);
  113. }
  114. static size_t (*buffer_start_add)(struct persistent_ram_zone *, size_t) = buffer_start_add_atomic;
  115. static void (*buffer_size_add)(struct persistent_ram_zone *, size_t) = buffer_size_add_atomic;
  116. static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
  117. uint8_t *data, size_t len, uint8_t *ecc)
  118. {
  119. int i;
  120. uint16_t par[prz->ecc_info.ecc_size];
  121. /* Initialize the parity buffer */
  122. memset(par, 0, sizeof(par));
  123. encode_rs8(prz->rs_decoder, data, len, par, 0);
  124. for (i = 0; i < prz->ecc_info.ecc_size; i++)
  125. ecc[i] = par[i];
  126. }
  127. static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
  128. void *data, size_t len, uint8_t *ecc)
  129. {
  130. int i;
  131. uint16_t par[prz->ecc_info.ecc_size];
  132. for (i = 0; i < prz->ecc_info.ecc_size; i++)
  133. par[i] = ecc[i];
  134. return decode_rs8(prz->rs_decoder, data, par, len,
  135. NULL, 0, NULL, 0, NULL);
  136. }
  137. static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
  138. unsigned int start, unsigned int count)
  139. {
  140. struct persistent_ram_buffer *buffer = prz->buffer;
  141. uint8_t *buffer_end = buffer->data + prz->buffer_size;
  142. uint8_t *block;
  143. uint8_t *par;
  144. int ecc_block_size = prz->ecc_info.block_size;
  145. int ecc_size = prz->ecc_info.ecc_size;
  146. int size = ecc_block_size;
  147. if (!ecc_size)
  148. return;
  149. block = buffer->data + (start & ~(ecc_block_size - 1));
  150. par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
  151. do {
  152. if (block + ecc_block_size > buffer_end)
  153. size = buffer_end - block;
  154. persistent_ram_encode_rs8(prz, block, size, par);
  155. block += ecc_block_size;
  156. par += ecc_size;
  157. } while (block < buffer->data + start + count);
  158. }
  159. static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
  160. {
  161. struct persistent_ram_buffer *buffer = prz->buffer;
  162. if (!prz->ecc_info.ecc_size)
  163. return;
  164. persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
  165. prz->par_header);
  166. }
  167. static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
  168. {
  169. struct persistent_ram_buffer *buffer = prz->buffer;
  170. uint8_t *block;
  171. uint8_t *par;
  172. if (!prz->ecc_info.ecc_size)
  173. return;
  174. block = buffer->data;
  175. par = prz->par_buffer;
  176. while (block < buffer->data + buffer_size(prz)) {
  177. int numerr;
  178. int size = prz->ecc_info.block_size;
  179. if (block + size > buffer->data + prz->buffer_size)
  180. size = buffer->data + prz->buffer_size - block;
  181. numerr = persistent_ram_decode_rs8(prz, block, size, par);
  182. if (numerr > 0) {
  183. pr_devel("error in block %p, %d\n", block, numerr);
  184. prz->corrected_bytes += numerr;
  185. } else if (numerr < 0) {
  186. pr_devel("uncorrectable error in block %p\n", block);
  187. prz->bad_blocks++;
  188. }
  189. block += prz->ecc_info.block_size;
  190. par += prz->ecc_info.ecc_size;
  191. }
  192. }
  193. static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
  194. struct persistent_ram_ecc_info *ecc_info)
  195. {
  196. int numerr;
  197. struct persistent_ram_buffer *buffer = prz->buffer;
  198. int ecc_blocks;
  199. size_t ecc_total;
  200. if (!ecc_info || !ecc_info->ecc_size)
  201. return 0;
  202. prz->ecc_info.block_size = ecc_info->block_size ?: 128;
  203. prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
  204. prz->ecc_info.symsize = ecc_info->symsize ?: 8;
  205. prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
  206. ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
  207. prz->ecc_info.block_size +
  208. prz->ecc_info.ecc_size);
  209. ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
  210. if (ecc_total >= prz->buffer_size) {
  211. pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
  212. __func__, prz->ecc_info.ecc_size,
  213. ecc_total, prz->buffer_size);
  214. return -EINVAL;
  215. }
  216. prz->buffer_size -= ecc_total;
  217. prz->par_buffer = buffer->data + prz->buffer_size;
  218. prz->par_header = prz->par_buffer +
  219. ecc_blocks * prz->ecc_info.ecc_size;
  220. /*
  221. * first consecutive root is 0
  222. * primitive element to generate roots = 1
  223. */
  224. prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
  225. 0, 1, prz->ecc_info.ecc_size);
  226. if (prz->rs_decoder == NULL) {
  227. pr_info("init_rs failed\n");
  228. return -EINVAL;
  229. }
  230. prz->corrected_bytes = 0;
  231. prz->bad_blocks = 0;
  232. numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
  233. prz->par_header);
  234. if (numerr > 0) {
  235. pr_info("error in header, %d\n", numerr);
  236. prz->corrected_bytes += numerr;
  237. } else if (numerr < 0) {
  238. pr_info("uncorrectable error in header\n");
  239. prz->bad_blocks++;
  240. }
  241. return 0;
  242. }
  243. ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
  244. char *str, size_t len)
  245. {
  246. ssize_t ret;
  247. if (!prz->ecc_info.ecc_size)
  248. return 0;
  249. if (prz->corrected_bytes || prz->bad_blocks)
  250. ret = snprintf(str, len, ""
  251. "\n%d Corrected bytes, %d unrecoverable blocks\n",
  252. prz->corrected_bytes, prz->bad_blocks);
  253. else
  254. ret = snprintf(str, len, "\nNo errors detected\n");
  255. return ret;
  256. }
  257. static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
  258. const void *s, unsigned int start, unsigned int count)
  259. {
  260. struct persistent_ram_buffer *buffer = prz->buffer;
  261. memcpy(buffer->data + start, s, count);
  262. persistent_ram_update_ecc(prz, start, count);
  263. }
  264. void persistent_ram_save_old(struct persistent_ram_zone *prz)
  265. {
  266. struct persistent_ram_buffer *buffer = prz->buffer;
  267. size_t size = buffer_size(prz);
  268. size_t start = buffer_start(prz);
  269. if (!size)
  270. return;
  271. if (!prz->old_log) {
  272. persistent_ram_ecc_old(prz);
  273. prz->old_log = kmalloc(size, GFP_KERNEL);
  274. }
  275. if (!prz->old_log) {
  276. pr_err("failed to allocate buffer\n");
  277. return;
  278. }
  279. prz->old_log_size = size;
  280. memcpy(prz->old_log, &buffer->data[start], size - start);
  281. memcpy(prz->old_log + size - start, &buffer->data[0], start);
  282. }
  283. int notrace persistent_ram_write(struct persistent_ram_zone *prz,
  284. const void *s, unsigned int count)
  285. {
  286. int rem;
  287. int c = count;
  288. size_t start;
  289. if (unlikely(c > prz->buffer_size)) {
  290. s += c - prz->buffer_size;
  291. c = prz->buffer_size;
  292. }
  293. buffer_size_add(prz, c);
  294. start = buffer_start_add(prz, c);
  295. rem = prz->buffer_size - start;
  296. if (unlikely(rem < c)) {
  297. persistent_ram_update(prz, s, start, rem);
  298. s += rem;
  299. c -= rem;
  300. start = 0;
  301. }
  302. persistent_ram_update(prz, s, start, c);
  303. persistent_ram_update_header_ecc(prz);
  304. return count;
  305. }
  306. size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
  307. {
  308. return prz->old_log_size;
  309. }
  310. void *persistent_ram_old(struct persistent_ram_zone *prz)
  311. {
  312. return prz->old_log;
  313. }
  314. void persistent_ram_free_old(struct persistent_ram_zone *prz)
  315. {
  316. kfree(prz->old_log);
  317. prz->old_log = NULL;
  318. prz->old_log_size = 0;
  319. }
  320. void persistent_ram_zap(struct persistent_ram_zone *prz)
  321. {
  322. atomic_set(&prz->buffer->start, 0);
  323. atomic_set(&prz->buffer->size, 0);
  324. persistent_ram_update_header_ecc(prz);
  325. }
  326. static void *persistent_ram_vmap(phys_addr_t start, size_t size,
  327. unsigned int memtype)
  328. {
  329. struct page **pages;
  330. phys_addr_t page_start;
  331. unsigned int page_count;
  332. pgprot_t prot;
  333. unsigned int i;
  334. void *vaddr;
  335. page_start = start - offset_in_page(start);
  336. page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
  337. if (memtype)
  338. prot = pgprot_noncached(PAGE_KERNEL);
  339. else
  340. prot = pgprot_writecombine(PAGE_KERNEL);
  341. pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
  342. if (!pages) {
  343. pr_err("%s: Failed to allocate array for %u pages\n",
  344. __func__, page_count);
  345. return NULL;
  346. }
  347. for (i = 0; i < page_count; i++) {
  348. phys_addr_t addr = page_start + i * PAGE_SIZE;
  349. pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
  350. }
  351. vaddr = vmap(pages, page_count, VM_MAP, prot);
  352. kfree(pages);
  353. return vaddr;
  354. }
  355. static void *persistent_ram_iomap(phys_addr_t start, size_t size,
  356. unsigned int memtype)
  357. {
  358. void *va;
  359. if (!request_mem_region(start, size, "persistent_ram")) {
  360. pr_err("request mem region (0x%llx@0x%llx) failed\n",
  361. (unsigned long long)size, (unsigned long long)start);
  362. return NULL;
  363. }
  364. buffer_start_add = buffer_start_add_locked;
  365. buffer_size_add = buffer_size_add_locked;
  366. if (memtype)
  367. va = ioremap(start, size);
  368. else
  369. va = ioremap_wc(start, size);
  370. return va;
  371. }
  372. static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
  373. struct persistent_ram_zone *prz, int memtype)
  374. {
  375. prz->paddr = start;
  376. prz->size = size;
  377. if (pfn_valid(start >> PAGE_SHIFT))
  378. prz->vaddr = persistent_ram_vmap(start, size, memtype);
  379. else
  380. prz->vaddr = persistent_ram_iomap(start, size, memtype);
  381. if (!prz->vaddr) {
  382. pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
  383. (unsigned long long)size, (unsigned long long)start);
  384. return -ENOMEM;
  385. }
  386. prz->buffer = prz->vaddr + offset_in_page(start);
  387. prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
  388. return 0;
  389. }
  390. static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
  391. struct persistent_ram_ecc_info *ecc_info)
  392. {
  393. int ret;
  394. ret = persistent_ram_init_ecc(prz, ecc_info);
  395. if (ret)
  396. return ret;
  397. sig ^= PERSISTENT_RAM_SIG;
  398. if (prz->buffer->sig == sig) {
  399. if (buffer_size(prz) > prz->buffer_size ||
  400. buffer_start(prz) > buffer_size(prz))
  401. pr_info("found existing invalid buffer, size %zu, start %zu\n",
  402. buffer_size(prz), buffer_start(prz));
  403. else {
  404. pr_debug("found existing buffer, size %zu, start %zu\n",
  405. buffer_size(prz), buffer_start(prz));
  406. persistent_ram_save_old(prz);
  407. return 0;
  408. }
  409. } else {
  410. pr_debug("no valid data in buffer (sig = 0x%08x)\n",
  411. prz->buffer->sig);
  412. }
  413. prz->buffer->sig = sig;
  414. persistent_ram_zap(prz);
  415. return 0;
  416. }
  417. void persistent_ram_free(struct persistent_ram_zone *prz)
  418. {
  419. if (!prz)
  420. return;
  421. if (prz->vaddr) {
  422. if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
  423. vunmap(prz->vaddr);
  424. } else {
  425. iounmap(prz->vaddr);
  426. release_mem_region(prz->paddr, prz->size);
  427. }
  428. prz->vaddr = NULL;
  429. }
  430. persistent_ram_free_old(prz);
  431. kfree(prz);
  432. }
  433. struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
  434. u32 sig, struct persistent_ram_ecc_info *ecc_info,
  435. unsigned int memtype)
  436. {
  437. struct persistent_ram_zone *prz;
  438. int ret = -ENOMEM;
  439. prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
  440. if (!prz) {
  441. pr_err("failed to allocate persistent ram zone\n");
  442. goto err;
  443. }
  444. ret = persistent_ram_buffer_map(start, size, prz, memtype);
  445. if (ret)
  446. goto err;
  447. ret = persistent_ram_post_init(prz, sig, ecc_info);
  448. if (ret)
  449. goto err;
  450. return prz;
  451. err:
  452. persistent_ram_free(prz);
  453. return ERR_PTR(ret);
  454. }