super.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526
  1. /*
  2. * linux/fs/ufs/super.c
  3. *
  4. * Copyright (C) 1998
  5. * Daniel Pirkl <daniel.pirkl@email.cz>
  6. * Charles University, Faculty of Mathematics and Physics
  7. */
  8. /* Derived from
  9. *
  10. * linux/fs/ext2/super.c
  11. *
  12. * Copyright (C) 1992, 1993, 1994, 1995
  13. * Remy Card (card@masi.ibp.fr)
  14. * Laboratoire MASI - Institut Blaise Pascal
  15. * Universite Pierre et Marie Curie (Paris VI)
  16. *
  17. * from
  18. *
  19. * linux/fs/minix/inode.c
  20. *
  21. * Copyright (C) 1991, 1992 Linus Torvalds
  22. *
  23. * Big-endian to little-endian byte-swapping/bitmaps by
  24. * David S. Miller (davem@caip.rutgers.edu), 1995
  25. */
  26. /*
  27. * Inspired by
  28. *
  29. * linux/fs/ufs/super.c
  30. *
  31. * Copyright (C) 1996
  32. * Adrian Rodriguez (adrian@franklins-tower.rutgers.edu)
  33. * Laboratory for Computer Science Research Computing Facility
  34. * Rutgers, The State University of New Jersey
  35. *
  36. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  37. *
  38. * Kernel module support added on 96/04/26 by
  39. * Stefan Reinauer <stepan@home.culture.mipt.ru>
  40. *
  41. * Module usage counts added on 96/04/29 by
  42. * Gertjan van Wingerde <gwingerde@gmail.com>
  43. *
  44. * Clean swab support on 19970406 by
  45. * Francois-Rene Rideau <fare@tunes.org>
  46. *
  47. * 4.4BSD (FreeBSD) support added on February 1st 1998 by
  48. * Niels Kristian Bech Jensen <nkbj@image.dk> partially based
  49. * on code by Martin von Loewis <martin@mira.isdn.cs.tu-berlin.de>.
  50. *
  51. * NeXTstep support added on February 5th 1998 by
  52. * Niels Kristian Bech Jensen <nkbj@image.dk>.
  53. *
  54. * write support Daniel Pirkl <daniel.pirkl@email.cz> 1998
  55. *
  56. * HP/UX hfs filesystem support added by
  57. * Martin K. Petersen <mkp@mkp.net>, August 1999
  58. *
  59. * UFS2 (of FreeBSD 5.x) support added by
  60. * Niraj Kumar <niraj17@iitbombay.org>, Jan 2004
  61. *
  62. * UFS2 write support added by
  63. * Evgeniy Dushistov <dushistov@mail.ru>, 2007
  64. */
  65. #include <linux/exportfs.h>
  66. #include <linux/module.h>
  67. #include <linux/bitops.h>
  68. #include <stdarg.h>
  69. #include <asm/uaccess.h>
  70. #include <linux/errno.h>
  71. #include <linux/fs.h>
  72. #include <linux/slab.h>
  73. #include <linux/time.h>
  74. #include <linux/stat.h>
  75. #include <linux/string.h>
  76. #include <linux/blkdev.h>
  77. #include <linux/init.h>
  78. #include <linux/parser.h>
  79. #include <linux/buffer_head.h>
  80. #include <linux/vfs.h>
  81. #include <linux/log2.h>
  82. #include <linux/mount.h>
  83. #include <linux/seq_file.h>
  84. #include "ufs_fs.h"
  85. #include "ufs.h"
  86. #include "swab.h"
  87. #include "util.h"
  88. void lock_ufs(struct super_block *sb)
  89. {
  90. #if defined(CONFIG_SMP) || defined (CONFIG_PREEMPT)
  91. struct ufs_sb_info *sbi = UFS_SB(sb);
  92. mutex_lock(&sbi->mutex);
  93. sbi->mutex_owner = current;
  94. #endif
  95. }
  96. void unlock_ufs(struct super_block *sb)
  97. {
  98. #if defined(CONFIG_SMP) || defined (CONFIG_PREEMPT)
  99. struct ufs_sb_info *sbi = UFS_SB(sb);
  100. sbi->mutex_owner = NULL;
  101. mutex_unlock(&sbi->mutex);
  102. #endif
  103. }
  104. static struct inode *ufs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
  105. {
  106. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  107. struct inode *inode;
  108. if (ino < UFS_ROOTINO || ino > uspi->s_ncg * uspi->s_ipg)
  109. return ERR_PTR(-ESTALE);
  110. inode = ufs_iget(sb, ino);
  111. if (IS_ERR(inode))
  112. return ERR_CAST(inode);
  113. if (generation && inode->i_generation != generation) {
  114. iput(inode);
  115. return ERR_PTR(-ESTALE);
  116. }
  117. return inode;
  118. }
  119. static struct dentry *ufs_fh_to_dentry(struct super_block *sb, struct fid *fid,
  120. int fh_len, int fh_type)
  121. {
  122. return generic_fh_to_dentry(sb, fid, fh_len, fh_type, ufs_nfs_get_inode);
  123. }
  124. static struct dentry *ufs_fh_to_parent(struct super_block *sb, struct fid *fid,
  125. int fh_len, int fh_type)
  126. {
  127. return generic_fh_to_parent(sb, fid, fh_len, fh_type, ufs_nfs_get_inode);
  128. }
  129. static struct dentry *ufs_get_parent(struct dentry *child)
  130. {
  131. struct qstr dot_dot = QSTR_INIT("..", 2);
  132. ino_t ino;
  133. ino = ufs_inode_by_name(child->d_inode, &dot_dot);
  134. if (!ino)
  135. return ERR_PTR(-ENOENT);
  136. return d_obtain_alias(ufs_iget(child->d_inode->i_sb, ino));
  137. }
  138. static const struct export_operations ufs_export_ops = {
  139. .fh_to_dentry = ufs_fh_to_dentry,
  140. .fh_to_parent = ufs_fh_to_parent,
  141. .get_parent = ufs_get_parent,
  142. };
  143. #ifdef CONFIG_UFS_DEBUG
  144. /*
  145. * Print contents of ufs_super_block, useful for debugging
  146. */
  147. static void ufs_print_super_stuff(struct super_block *sb,
  148. struct ufs_super_block_first *usb1,
  149. struct ufs_super_block_second *usb2,
  150. struct ufs_super_block_third *usb3)
  151. {
  152. u32 magic = fs32_to_cpu(sb, usb3->fs_magic);
  153. pr_debug("ufs_print_super_stuff\n");
  154. pr_debug(" magic: 0x%x\n", magic);
  155. if (fs32_to_cpu(sb, usb3->fs_magic) == UFS2_MAGIC) {
  156. pr_debug(" fs_size: %llu\n", (unsigned long long)
  157. fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size));
  158. pr_debug(" fs_dsize: %llu\n", (unsigned long long)
  159. fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize));
  160. pr_debug(" bsize: %u\n",
  161. fs32_to_cpu(sb, usb1->fs_bsize));
  162. pr_debug(" fsize: %u\n",
  163. fs32_to_cpu(sb, usb1->fs_fsize));
  164. pr_debug(" fs_volname: %s\n", usb2->fs_un.fs_u2.fs_volname);
  165. pr_debug(" fs_sblockloc: %llu\n", (unsigned long long)
  166. fs64_to_cpu(sb, usb2->fs_un.fs_u2.fs_sblockloc));
  167. pr_debug(" cs_ndir(No of dirs): %llu\n", (unsigned long long)
  168. fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir));
  169. pr_debug(" cs_nbfree(No of free blocks): %llu\n",
  170. (unsigned long long)
  171. fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree));
  172. pr_info(" cs_nifree(Num of free inodes): %llu\n",
  173. (unsigned long long)
  174. fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree));
  175. pr_info(" cs_nffree(Num of free frags): %llu\n",
  176. (unsigned long long)
  177. fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree));
  178. pr_info(" fs_maxsymlinklen: %u\n",
  179. fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen));
  180. } else {
  181. pr_debug(" sblkno: %u\n", fs32_to_cpu(sb, usb1->fs_sblkno));
  182. pr_debug(" cblkno: %u\n", fs32_to_cpu(sb, usb1->fs_cblkno));
  183. pr_debug(" iblkno: %u\n", fs32_to_cpu(sb, usb1->fs_iblkno));
  184. pr_debug(" dblkno: %u\n", fs32_to_cpu(sb, usb1->fs_dblkno));
  185. pr_debug(" cgoffset: %u\n",
  186. fs32_to_cpu(sb, usb1->fs_cgoffset));
  187. pr_debug(" ~cgmask: 0x%x\n",
  188. ~fs32_to_cpu(sb, usb1->fs_cgmask));
  189. pr_debug(" size: %u\n", fs32_to_cpu(sb, usb1->fs_size));
  190. pr_debug(" dsize: %u\n", fs32_to_cpu(sb, usb1->fs_dsize));
  191. pr_debug(" ncg: %u\n", fs32_to_cpu(sb, usb1->fs_ncg));
  192. pr_debug(" bsize: %u\n", fs32_to_cpu(sb, usb1->fs_bsize));
  193. pr_debug(" fsize: %u\n", fs32_to_cpu(sb, usb1->fs_fsize));
  194. pr_debug(" frag: %u\n", fs32_to_cpu(sb, usb1->fs_frag));
  195. pr_debug(" fragshift: %u\n",
  196. fs32_to_cpu(sb, usb1->fs_fragshift));
  197. pr_debug(" ~fmask: %u\n", ~fs32_to_cpu(sb, usb1->fs_fmask));
  198. pr_debug(" fshift: %u\n", fs32_to_cpu(sb, usb1->fs_fshift));
  199. pr_debug(" sbsize: %u\n", fs32_to_cpu(sb, usb1->fs_sbsize));
  200. pr_debug(" spc: %u\n", fs32_to_cpu(sb, usb1->fs_spc));
  201. pr_debug(" cpg: %u\n", fs32_to_cpu(sb, usb1->fs_cpg));
  202. pr_debug(" ipg: %u\n", fs32_to_cpu(sb, usb1->fs_ipg));
  203. pr_debug(" fpg: %u\n", fs32_to_cpu(sb, usb1->fs_fpg));
  204. pr_debug(" csaddr: %u\n", fs32_to_cpu(sb, usb1->fs_csaddr));
  205. pr_debug(" cssize: %u\n", fs32_to_cpu(sb, usb1->fs_cssize));
  206. pr_debug(" cgsize: %u\n", fs32_to_cpu(sb, usb1->fs_cgsize));
  207. pr_debug(" fstodb: %u\n",
  208. fs32_to_cpu(sb, usb1->fs_fsbtodb));
  209. pr_debug(" nrpos: %u\n", fs32_to_cpu(sb, usb3->fs_nrpos));
  210. pr_debug(" ndir %u\n",
  211. fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir));
  212. pr_debug(" nifree %u\n",
  213. fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree));
  214. pr_debug(" nbfree %u\n",
  215. fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree));
  216. pr_debug(" nffree %u\n",
  217. fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree));
  218. }
  219. pr_debug("\n");
  220. }
  221. /*
  222. * Print contents of ufs_cylinder_group, useful for debugging
  223. */
  224. static void ufs_print_cylinder_stuff(struct super_block *sb,
  225. struct ufs_cylinder_group *cg)
  226. {
  227. pr_debug("\nufs_print_cylinder_stuff\n");
  228. pr_debug("size of ucg: %zu\n", sizeof(struct ufs_cylinder_group));
  229. pr_debug(" magic: %x\n", fs32_to_cpu(sb, cg->cg_magic));
  230. pr_debug(" time: %u\n", fs32_to_cpu(sb, cg->cg_time));
  231. pr_debug(" cgx: %u\n", fs32_to_cpu(sb, cg->cg_cgx));
  232. pr_debug(" ncyl: %u\n", fs16_to_cpu(sb, cg->cg_ncyl));
  233. pr_debug(" niblk: %u\n", fs16_to_cpu(sb, cg->cg_niblk));
  234. pr_debug(" ndblk: %u\n", fs32_to_cpu(sb, cg->cg_ndblk));
  235. pr_debug(" cs_ndir: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_ndir));
  236. pr_debug(" cs_nbfree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nbfree));
  237. pr_debug(" cs_nifree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nifree));
  238. pr_debug(" cs_nffree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nffree));
  239. pr_debug(" rotor: %u\n", fs32_to_cpu(sb, cg->cg_rotor));
  240. pr_debug(" frotor: %u\n", fs32_to_cpu(sb, cg->cg_frotor));
  241. pr_debug(" irotor: %u\n", fs32_to_cpu(sb, cg->cg_irotor));
  242. pr_debug(" frsum: %u, %u, %u, %u, %u, %u, %u, %u\n",
  243. fs32_to_cpu(sb, cg->cg_frsum[0]), fs32_to_cpu(sb, cg->cg_frsum[1]),
  244. fs32_to_cpu(sb, cg->cg_frsum[2]), fs32_to_cpu(sb, cg->cg_frsum[3]),
  245. fs32_to_cpu(sb, cg->cg_frsum[4]), fs32_to_cpu(sb, cg->cg_frsum[5]),
  246. fs32_to_cpu(sb, cg->cg_frsum[6]), fs32_to_cpu(sb, cg->cg_frsum[7]));
  247. pr_debug(" btotoff: %u\n", fs32_to_cpu(sb, cg->cg_btotoff));
  248. pr_debug(" boff: %u\n", fs32_to_cpu(sb, cg->cg_boff));
  249. pr_debug(" iuseoff: %u\n", fs32_to_cpu(sb, cg->cg_iusedoff));
  250. pr_debug(" freeoff: %u\n", fs32_to_cpu(sb, cg->cg_freeoff));
  251. pr_debug(" nextfreeoff: %u\n", fs32_to_cpu(sb, cg->cg_nextfreeoff));
  252. pr_debug(" clustersumoff %u\n",
  253. fs32_to_cpu(sb, cg->cg_u.cg_44.cg_clustersumoff));
  254. pr_debug(" clusteroff %u\n",
  255. fs32_to_cpu(sb, cg->cg_u.cg_44.cg_clusteroff));
  256. pr_debug(" nclusterblks %u\n",
  257. fs32_to_cpu(sb, cg->cg_u.cg_44.cg_nclusterblks));
  258. pr_debug("\n");
  259. }
  260. #else
  261. # define ufs_print_super_stuff(sb, usb1, usb2, usb3) /**/
  262. # define ufs_print_cylinder_stuff(sb, cg) /**/
  263. #endif /* CONFIG_UFS_DEBUG */
  264. static const struct super_operations ufs_super_ops;
  265. void ufs_error (struct super_block * sb, const char * function,
  266. const char * fmt, ...)
  267. {
  268. struct ufs_sb_private_info * uspi;
  269. struct ufs_super_block_first * usb1;
  270. struct va_format vaf;
  271. va_list args;
  272. uspi = UFS_SB(sb)->s_uspi;
  273. usb1 = ubh_get_usb_first(uspi);
  274. if (!(sb->s_flags & MS_RDONLY)) {
  275. usb1->fs_clean = UFS_FSBAD;
  276. ubh_mark_buffer_dirty(USPI_UBH(uspi));
  277. ufs_mark_sb_dirty(sb);
  278. sb->s_flags |= MS_RDONLY;
  279. }
  280. va_start(args, fmt);
  281. vaf.fmt = fmt;
  282. vaf.va = &args;
  283. switch (UFS_SB(sb)->s_mount_opt & UFS_MOUNT_ONERROR) {
  284. case UFS_MOUNT_ONERROR_PANIC:
  285. panic("panic (device %s): %s: %pV\n",
  286. sb->s_id, function, &vaf);
  287. case UFS_MOUNT_ONERROR_LOCK:
  288. case UFS_MOUNT_ONERROR_UMOUNT:
  289. case UFS_MOUNT_ONERROR_REPAIR:
  290. pr_crit("error (device %s): %s: %pV\n",
  291. sb->s_id, function, &vaf);
  292. }
  293. va_end(args);
  294. }
  295. void ufs_panic (struct super_block * sb, const char * function,
  296. const char * fmt, ...)
  297. {
  298. struct ufs_sb_private_info * uspi;
  299. struct ufs_super_block_first * usb1;
  300. struct va_format vaf;
  301. va_list args;
  302. uspi = UFS_SB(sb)->s_uspi;
  303. usb1 = ubh_get_usb_first(uspi);
  304. if (!(sb->s_flags & MS_RDONLY)) {
  305. usb1->fs_clean = UFS_FSBAD;
  306. ubh_mark_buffer_dirty(USPI_UBH(uspi));
  307. ufs_mark_sb_dirty(sb);
  308. }
  309. va_start(args, fmt);
  310. vaf.fmt = fmt;
  311. vaf.va = &args;
  312. sb->s_flags |= MS_RDONLY;
  313. pr_crit("panic (device %s): %s: %pV\n",
  314. sb->s_id, function, &vaf);
  315. va_end(args);
  316. }
  317. void ufs_warning (struct super_block * sb, const char * function,
  318. const char * fmt, ...)
  319. {
  320. struct va_format vaf;
  321. va_list args;
  322. va_start(args, fmt);
  323. vaf.fmt = fmt;
  324. vaf.va = &args;
  325. pr_warn("(device %s): %s: %pV\n",
  326. sb->s_id, function, &vaf);
  327. va_end(args);
  328. }
  329. enum {
  330. Opt_type_old = UFS_MOUNT_UFSTYPE_OLD,
  331. Opt_type_sunx86 = UFS_MOUNT_UFSTYPE_SUNx86,
  332. Opt_type_sun = UFS_MOUNT_UFSTYPE_SUN,
  333. Opt_type_sunos = UFS_MOUNT_UFSTYPE_SUNOS,
  334. Opt_type_44bsd = UFS_MOUNT_UFSTYPE_44BSD,
  335. Opt_type_ufs2 = UFS_MOUNT_UFSTYPE_UFS2,
  336. Opt_type_hp = UFS_MOUNT_UFSTYPE_HP,
  337. Opt_type_nextstepcd = UFS_MOUNT_UFSTYPE_NEXTSTEP_CD,
  338. Opt_type_nextstep = UFS_MOUNT_UFSTYPE_NEXTSTEP,
  339. Opt_type_openstep = UFS_MOUNT_UFSTYPE_OPENSTEP,
  340. Opt_onerror_panic = UFS_MOUNT_ONERROR_PANIC,
  341. Opt_onerror_lock = UFS_MOUNT_ONERROR_LOCK,
  342. Opt_onerror_umount = UFS_MOUNT_ONERROR_UMOUNT,
  343. Opt_onerror_repair = UFS_MOUNT_ONERROR_REPAIR,
  344. Opt_err
  345. };
  346. static const match_table_t tokens = {
  347. {Opt_type_old, "ufstype=old"},
  348. {Opt_type_sunx86, "ufstype=sunx86"},
  349. {Opt_type_sun, "ufstype=sun"},
  350. {Opt_type_sunos, "ufstype=sunos"},
  351. {Opt_type_44bsd, "ufstype=44bsd"},
  352. {Opt_type_ufs2, "ufstype=ufs2"},
  353. {Opt_type_ufs2, "ufstype=5xbsd"},
  354. {Opt_type_hp, "ufstype=hp"},
  355. {Opt_type_nextstepcd, "ufstype=nextstep-cd"},
  356. {Opt_type_nextstep, "ufstype=nextstep"},
  357. {Opt_type_openstep, "ufstype=openstep"},
  358. /*end of possible ufs types */
  359. {Opt_onerror_panic, "onerror=panic"},
  360. {Opt_onerror_lock, "onerror=lock"},
  361. {Opt_onerror_umount, "onerror=umount"},
  362. {Opt_onerror_repair, "onerror=repair"},
  363. {Opt_err, NULL}
  364. };
  365. static int ufs_parse_options (char * options, unsigned * mount_options)
  366. {
  367. char * p;
  368. UFSD("ENTER\n");
  369. if (!options)
  370. return 1;
  371. while ((p = strsep(&options, ",")) != NULL) {
  372. substring_t args[MAX_OPT_ARGS];
  373. int token;
  374. if (!*p)
  375. continue;
  376. token = match_token(p, tokens, args);
  377. switch (token) {
  378. case Opt_type_old:
  379. ufs_clear_opt (*mount_options, UFSTYPE);
  380. ufs_set_opt (*mount_options, UFSTYPE_OLD);
  381. break;
  382. case Opt_type_sunx86:
  383. ufs_clear_opt (*mount_options, UFSTYPE);
  384. ufs_set_opt (*mount_options, UFSTYPE_SUNx86);
  385. break;
  386. case Opt_type_sun:
  387. ufs_clear_opt (*mount_options, UFSTYPE);
  388. ufs_set_opt (*mount_options, UFSTYPE_SUN);
  389. break;
  390. case Opt_type_sunos:
  391. ufs_clear_opt(*mount_options, UFSTYPE);
  392. ufs_set_opt(*mount_options, UFSTYPE_SUNOS);
  393. break;
  394. case Opt_type_44bsd:
  395. ufs_clear_opt (*mount_options, UFSTYPE);
  396. ufs_set_opt (*mount_options, UFSTYPE_44BSD);
  397. break;
  398. case Opt_type_ufs2:
  399. ufs_clear_opt(*mount_options, UFSTYPE);
  400. ufs_set_opt(*mount_options, UFSTYPE_UFS2);
  401. break;
  402. case Opt_type_hp:
  403. ufs_clear_opt (*mount_options, UFSTYPE);
  404. ufs_set_opt (*mount_options, UFSTYPE_HP);
  405. break;
  406. case Opt_type_nextstepcd:
  407. ufs_clear_opt (*mount_options, UFSTYPE);
  408. ufs_set_opt (*mount_options, UFSTYPE_NEXTSTEP_CD);
  409. break;
  410. case Opt_type_nextstep:
  411. ufs_clear_opt (*mount_options, UFSTYPE);
  412. ufs_set_opt (*mount_options, UFSTYPE_NEXTSTEP);
  413. break;
  414. case Opt_type_openstep:
  415. ufs_clear_opt (*mount_options, UFSTYPE);
  416. ufs_set_opt (*mount_options, UFSTYPE_OPENSTEP);
  417. break;
  418. case Opt_onerror_panic:
  419. ufs_clear_opt (*mount_options, ONERROR);
  420. ufs_set_opt (*mount_options, ONERROR_PANIC);
  421. break;
  422. case Opt_onerror_lock:
  423. ufs_clear_opt (*mount_options, ONERROR);
  424. ufs_set_opt (*mount_options, ONERROR_LOCK);
  425. break;
  426. case Opt_onerror_umount:
  427. ufs_clear_opt (*mount_options, ONERROR);
  428. ufs_set_opt (*mount_options, ONERROR_UMOUNT);
  429. break;
  430. case Opt_onerror_repair:
  431. pr_err("Unable to do repair on error, will lock lock instead\n");
  432. ufs_clear_opt (*mount_options, ONERROR);
  433. ufs_set_opt (*mount_options, ONERROR_REPAIR);
  434. break;
  435. default:
  436. pr_err("Invalid option: \"%s\" or missing value\n", p);
  437. return 0;
  438. }
  439. }
  440. return 1;
  441. }
  442. /*
  443. * Different types of UFS hold fs_cstotal in different
  444. * places, and use different data structure for it.
  445. * To make things simpler we just copy fs_cstotal to ufs_sb_private_info
  446. */
  447. static void ufs_setup_cstotal(struct super_block *sb)
  448. {
  449. struct ufs_sb_info *sbi = UFS_SB(sb);
  450. struct ufs_sb_private_info *uspi = sbi->s_uspi;
  451. struct ufs_super_block_first *usb1;
  452. struct ufs_super_block_second *usb2;
  453. struct ufs_super_block_third *usb3;
  454. unsigned mtype = sbi->s_mount_opt & UFS_MOUNT_UFSTYPE;
  455. UFSD("ENTER, mtype=%u\n", mtype);
  456. usb1 = ubh_get_usb_first(uspi);
  457. usb2 = ubh_get_usb_second(uspi);
  458. usb3 = ubh_get_usb_third(uspi);
  459. if ((mtype == UFS_MOUNT_UFSTYPE_44BSD &&
  460. (usb1->fs_flags & UFS_FLAGS_UPDATED)) ||
  461. mtype == UFS_MOUNT_UFSTYPE_UFS2) {
  462. /*we have statistic in different place, then usual*/
  463. uspi->cs_total.cs_ndir = fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir);
  464. uspi->cs_total.cs_nbfree = fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree);
  465. uspi->cs_total.cs_nifree = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree);
  466. uspi->cs_total.cs_nffree = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree);
  467. } else {
  468. uspi->cs_total.cs_ndir = fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir);
  469. uspi->cs_total.cs_nbfree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree);
  470. uspi->cs_total.cs_nifree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree);
  471. uspi->cs_total.cs_nffree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree);
  472. }
  473. UFSD("EXIT\n");
  474. }
  475. /*
  476. * Read on-disk structures associated with cylinder groups
  477. */
  478. static int ufs_read_cylinder_structures(struct super_block *sb)
  479. {
  480. struct ufs_sb_info *sbi = UFS_SB(sb);
  481. struct ufs_sb_private_info *uspi = sbi->s_uspi;
  482. struct ufs_buffer_head * ubh;
  483. unsigned char * base, * space;
  484. unsigned size, blks, i;
  485. UFSD("ENTER\n");
  486. /*
  487. * Read cs structures from (usually) first data block
  488. * on the device.
  489. */
  490. size = uspi->s_cssize;
  491. blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
  492. base = space = kmalloc(size, GFP_NOFS);
  493. if (!base)
  494. goto failed;
  495. sbi->s_csp = (struct ufs_csum *)space;
  496. for (i = 0; i < blks; i += uspi->s_fpb) {
  497. size = uspi->s_bsize;
  498. if (i + uspi->s_fpb > blks)
  499. size = (blks - i) * uspi->s_fsize;
  500. ubh = ubh_bread(sb, uspi->s_csaddr + i, size);
  501. if (!ubh)
  502. goto failed;
  503. ubh_ubhcpymem (space, ubh, size);
  504. space += size;
  505. ubh_brelse (ubh);
  506. ubh = NULL;
  507. }
  508. /*
  509. * Read cylinder group (we read only first fragment from block
  510. * at this time) and prepare internal data structures for cg caching.
  511. */
  512. if (!(sbi->s_ucg = kmalloc (sizeof(struct buffer_head *) * uspi->s_ncg, GFP_NOFS)))
  513. goto failed;
  514. for (i = 0; i < uspi->s_ncg; i++)
  515. sbi->s_ucg[i] = NULL;
  516. for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) {
  517. sbi->s_ucpi[i] = NULL;
  518. sbi->s_cgno[i] = UFS_CGNO_EMPTY;
  519. }
  520. for (i = 0; i < uspi->s_ncg; i++) {
  521. UFSD("read cg %u\n", i);
  522. if (!(sbi->s_ucg[i] = sb_bread(sb, ufs_cgcmin(i))))
  523. goto failed;
  524. if (!ufs_cg_chkmagic (sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data))
  525. goto failed;
  526. ufs_print_cylinder_stuff(sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data);
  527. }
  528. for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) {
  529. if (!(sbi->s_ucpi[i] = kmalloc (sizeof(struct ufs_cg_private_info), GFP_NOFS)))
  530. goto failed;
  531. sbi->s_cgno[i] = UFS_CGNO_EMPTY;
  532. }
  533. sbi->s_cg_loaded = 0;
  534. UFSD("EXIT\n");
  535. return 1;
  536. failed:
  537. kfree (base);
  538. if (sbi->s_ucg) {
  539. for (i = 0; i < uspi->s_ncg; i++)
  540. if (sbi->s_ucg[i])
  541. brelse (sbi->s_ucg[i]);
  542. kfree (sbi->s_ucg);
  543. for (i = 0; i < UFS_MAX_GROUP_LOADED; i++)
  544. kfree (sbi->s_ucpi[i]);
  545. }
  546. UFSD("EXIT (FAILED)\n");
  547. return 0;
  548. }
  549. /*
  550. * Sync our internal copy of fs_cstotal with disk
  551. */
  552. static void ufs_put_cstotal(struct super_block *sb)
  553. {
  554. unsigned mtype = UFS_SB(sb)->s_mount_opt & UFS_MOUNT_UFSTYPE;
  555. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  556. struct ufs_super_block_first *usb1;
  557. struct ufs_super_block_second *usb2;
  558. struct ufs_super_block_third *usb3;
  559. UFSD("ENTER\n");
  560. usb1 = ubh_get_usb_first(uspi);
  561. usb2 = ubh_get_usb_second(uspi);
  562. usb3 = ubh_get_usb_third(uspi);
  563. if ((mtype == UFS_MOUNT_UFSTYPE_44BSD &&
  564. (usb1->fs_flags & UFS_FLAGS_UPDATED)) ||
  565. mtype == UFS_MOUNT_UFSTYPE_UFS2) {
  566. /*we have statistic in different place, then usual*/
  567. usb2->fs_un.fs_u2.cs_ndir =
  568. cpu_to_fs64(sb, uspi->cs_total.cs_ndir);
  569. usb2->fs_un.fs_u2.cs_nbfree =
  570. cpu_to_fs64(sb, uspi->cs_total.cs_nbfree);
  571. usb3->fs_un1.fs_u2.cs_nifree =
  572. cpu_to_fs64(sb, uspi->cs_total.cs_nifree);
  573. usb3->fs_un1.fs_u2.cs_nffree =
  574. cpu_to_fs64(sb, uspi->cs_total.cs_nffree);
  575. } else {
  576. usb1->fs_cstotal.cs_ndir =
  577. cpu_to_fs32(sb, uspi->cs_total.cs_ndir);
  578. usb1->fs_cstotal.cs_nbfree =
  579. cpu_to_fs32(sb, uspi->cs_total.cs_nbfree);
  580. usb1->fs_cstotal.cs_nifree =
  581. cpu_to_fs32(sb, uspi->cs_total.cs_nifree);
  582. usb1->fs_cstotal.cs_nffree =
  583. cpu_to_fs32(sb, uspi->cs_total.cs_nffree);
  584. }
  585. ubh_mark_buffer_dirty(USPI_UBH(uspi));
  586. ufs_print_super_stuff(sb, usb1, usb2, usb3);
  587. UFSD("EXIT\n");
  588. }
  589. /**
  590. * ufs_put_super_internal() - put on-disk intrenal structures
  591. * @sb: pointer to super_block structure
  592. * Put on-disk structures associated with cylinder groups
  593. * and write them back to disk, also update cs_total on disk
  594. */
  595. static void ufs_put_super_internal(struct super_block *sb)
  596. {
  597. struct ufs_sb_info *sbi = UFS_SB(sb);
  598. struct ufs_sb_private_info *uspi = sbi->s_uspi;
  599. struct ufs_buffer_head * ubh;
  600. unsigned char * base, * space;
  601. unsigned blks, size, i;
  602. UFSD("ENTER\n");
  603. ufs_put_cstotal(sb);
  604. size = uspi->s_cssize;
  605. blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
  606. base = space = (char*) sbi->s_csp;
  607. for (i = 0; i < blks; i += uspi->s_fpb) {
  608. size = uspi->s_bsize;
  609. if (i + uspi->s_fpb > blks)
  610. size = (blks - i) * uspi->s_fsize;
  611. ubh = ubh_bread(sb, uspi->s_csaddr + i, size);
  612. ubh_memcpyubh (ubh, space, size);
  613. space += size;
  614. ubh_mark_buffer_uptodate (ubh, 1);
  615. ubh_mark_buffer_dirty (ubh);
  616. ubh_brelse (ubh);
  617. }
  618. for (i = 0; i < sbi->s_cg_loaded; i++) {
  619. ufs_put_cylinder (sb, i);
  620. kfree (sbi->s_ucpi[i]);
  621. }
  622. for (; i < UFS_MAX_GROUP_LOADED; i++)
  623. kfree (sbi->s_ucpi[i]);
  624. for (i = 0; i < uspi->s_ncg; i++)
  625. brelse (sbi->s_ucg[i]);
  626. kfree (sbi->s_ucg);
  627. kfree (base);
  628. UFSD("EXIT\n");
  629. }
  630. static int ufs_sync_fs(struct super_block *sb, int wait)
  631. {
  632. struct ufs_sb_private_info * uspi;
  633. struct ufs_super_block_first * usb1;
  634. struct ufs_super_block_third * usb3;
  635. unsigned flags;
  636. lock_ufs(sb);
  637. mutex_lock(&UFS_SB(sb)->s_lock);
  638. UFSD("ENTER\n");
  639. flags = UFS_SB(sb)->s_flags;
  640. uspi = UFS_SB(sb)->s_uspi;
  641. usb1 = ubh_get_usb_first(uspi);
  642. usb3 = ubh_get_usb_third(uspi);
  643. usb1->fs_time = cpu_to_fs32(sb, get_seconds());
  644. if ((flags & UFS_ST_MASK) == UFS_ST_SUN ||
  645. (flags & UFS_ST_MASK) == UFS_ST_SUNOS ||
  646. (flags & UFS_ST_MASK) == UFS_ST_SUNx86)
  647. ufs_set_fs_state(sb, usb1, usb3,
  648. UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time));
  649. ufs_put_cstotal(sb);
  650. UFSD("EXIT\n");
  651. mutex_unlock(&UFS_SB(sb)->s_lock);
  652. unlock_ufs(sb);
  653. return 0;
  654. }
  655. static void delayed_sync_fs(struct work_struct *work)
  656. {
  657. struct ufs_sb_info *sbi;
  658. sbi = container_of(work, struct ufs_sb_info, sync_work.work);
  659. spin_lock(&sbi->work_lock);
  660. sbi->work_queued = 0;
  661. spin_unlock(&sbi->work_lock);
  662. ufs_sync_fs(sbi->sb, 1);
  663. }
  664. void ufs_mark_sb_dirty(struct super_block *sb)
  665. {
  666. struct ufs_sb_info *sbi = UFS_SB(sb);
  667. unsigned long delay;
  668. spin_lock(&sbi->work_lock);
  669. if (!sbi->work_queued) {
  670. delay = msecs_to_jiffies(dirty_writeback_interval * 10);
  671. queue_delayed_work(system_long_wq, &sbi->sync_work, delay);
  672. sbi->work_queued = 1;
  673. }
  674. spin_unlock(&sbi->work_lock);
  675. }
  676. static void ufs_put_super(struct super_block *sb)
  677. {
  678. struct ufs_sb_info * sbi = UFS_SB(sb);
  679. UFSD("ENTER\n");
  680. if (!(sb->s_flags & MS_RDONLY))
  681. ufs_put_super_internal(sb);
  682. cancel_delayed_work_sync(&sbi->sync_work);
  683. ubh_brelse_uspi (sbi->s_uspi);
  684. kfree (sbi->s_uspi);
  685. mutex_destroy(&sbi->mutex);
  686. kfree (sbi);
  687. sb->s_fs_info = NULL;
  688. UFSD("EXIT\n");
  689. return;
  690. }
  691. static int ufs_fill_super(struct super_block *sb, void *data, int silent)
  692. {
  693. struct ufs_sb_info * sbi;
  694. struct ufs_sb_private_info * uspi;
  695. struct ufs_super_block_first * usb1;
  696. struct ufs_super_block_second * usb2;
  697. struct ufs_super_block_third * usb3;
  698. struct ufs_buffer_head * ubh;
  699. struct inode *inode;
  700. unsigned block_size, super_block_size;
  701. unsigned flags;
  702. unsigned super_block_offset;
  703. unsigned maxsymlen;
  704. int ret = -EINVAL;
  705. uspi = NULL;
  706. ubh = NULL;
  707. flags = 0;
  708. UFSD("ENTER\n");
  709. #ifndef CONFIG_UFS_FS_WRITE
  710. if (!(sb->s_flags & MS_RDONLY)) {
  711. pr_err("ufs was compiled with read-only support, can't be mounted as read-write\n");
  712. return -EROFS;
  713. }
  714. #endif
  715. sbi = kzalloc(sizeof(struct ufs_sb_info), GFP_KERNEL);
  716. if (!sbi)
  717. goto failed_nomem;
  718. sb->s_fs_info = sbi;
  719. sbi->sb = sb;
  720. UFSD("flag %u\n", (int)(sb->s_flags & MS_RDONLY));
  721. mutex_init(&sbi->mutex);
  722. mutex_init(&sbi->s_lock);
  723. spin_lock_init(&sbi->work_lock);
  724. INIT_DELAYED_WORK(&sbi->sync_work, delayed_sync_fs);
  725. /*
  726. * Set default mount options
  727. * Parse mount options
  728. */
  729. sbi->s_mount_opt = 0;
  730. ufs_set_opt (sbi->s_mount_opt, ONERROR_LOCK);
  731. if (!ufs_parse_options ((char *) data, &sbi->s_mount_opt)) {
  732. pr_err("wrong mount options\n");
  733. goto failed;
  734. }
  735. if (!(sbi->s_mount_opt & UFS_MOUNT_UFSTYPE)) {
  736. if (!silent)
  737. pr_err("You didn't specify the type of your ufs filesystem\n\n"
  738. "mount -t ufs -o ufstype="
  739. "sun|sunx86|44bsd|ufs2|5xbsd|old|hp|nextstep|nextstep-cd|openstep ...\n\n"
  740. ">>>WARNING<<< Wrong ufstype may corrupt your filesystem, "
  741. "default is ufstype=old\n");
  742. ufs_set_opt (sbi->s_mount_opt, UFSTYPE_OLD);
  743. }
  744. uspi = kzalloc(sizeof(struct ufs_sb_private_info), GFP_KERNEL);
  745. sbi->s_uspi = uspi;
  746. if (!uspi)
  747. goto failed;
  748. uspi->s_dirblksize = UFS_SECTOR_SIZE;
  749. super_block_offset=UFS_SBLOCK;
  750. /* Keep 2Gig file limit. Some UFS variants need to override
  751. this but as I don't know which I'll let those in the know loosen
  752. the rules */
  753. switch (sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) {
  754. case UFS_MOUNT_UFSTYPE_44BSD:
  755. UFSD("ufstype=44bsd\n");
  756. uspi->s_fsize = block_size = 512;
  757. uspi->s_fmask = ~(512 - 1);
  758. uspi->s_fshift = 9;
  759. uspi->s_sbsize = super_block_size = 1536;
  760. uspi->s_sbbase = 0;
  761. flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
  762. break;
  763. case UFS_MOUNT_UFSTYPE_UFS2:
  764. UFSD("ufstype=ufs2\n");
  765. super_block_offset=SBLOCK_UFS2;
  766. uspi->s_fsize = block_size = 512;
  767. uspi->s_fmask = ~(512 - 1);
  768. uspi->s_fshift = 9;
  769. uspi->s_sbsize = super_block_size = 1536;
  770. uspi->s_sbbase = 0;
  771. flags |= UFS_TYPE_UFS2 | UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
  772. break;
  773. case UFS_MOUNT_UFSTYPE_SUN:
  774. UFSD("ufstype=sun\n");
  775. uspi->s_fsize = block_size = 1024;
  776. uspi->s_fmask = ~(1024 - 1);
  777. uspi->s_fshift = 10;
  778. uspi->s_sbsize = super_block_size = 2048;
  779. uspi->s_sbbase = 0;
  780. uspi->s_maxsymlinklen = 0; /* Not supported on disk */
  781. flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUN | UFS_CG_SUN;
  782. break;
  783. case UFS_MOUNT_UFSTYPE_SUNOS:
  784. UFSD("ufstype=sunos\n");
  785. uspi->s_fsize = block_size = 1024;
  786. uspi->s_fmask = ~(1024 - 1);
  787. uspi->s_fshift = 10;
  788. uspi->s_sbsize = 2048;
  789. super_block_size = 2048;
  790. uspi->s_sbbase = 0;
  791. uspi->s_maxsymlinklen = 0; /* Not supported on disk */
  792. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_SUNOS | UFS_CG_SUN;
  793. break;
  794. case UFS_MOUNT_UFSTYPE_SUNx86:
  795. UFSD("ufstype=sunx86\n");
  796. uspi->s_fsize = block_size = 1024;
  797. uspi->s_fmask = ~(1024 - 1);
  798. uspi->s_fshift = 10;
  799. uspi->s_sbsize = super_block_size = 2048;
  800. uspi->s_sbbase = 0;
  801. uspi->s_maxsymlinklen = 0; /* Not supported on disk */
  802. flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUNx86 | UFS_CG_SUN;
  803. break;
  804. case UFS_MOUNT_UFSTYPE_OLD:
  805. UFSD("ufstype=old\n");
  806. uspi->s_fsize = block_size = 1024;
  807. uspi->s_fmask = ~(1024 - 1);
  808. uspi->s_fshift = 10;
  809. uspi->s_sbsize = super_block_size = 2048;
  810. uspi->s_sbbase = 0;
  811. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
  812. if (!(sb->s_flags & MS_RDONLY)) {
  813. if (!silent)
  814. pr_info("ufstype=old is supported read-only\n");
  815. sb->s_flags |= MS_RDONLY;
  816. }
  817. break;
  818. case UFS_MOUNT_UFSTYPE_NEXTSTEP:
  819. UFSD("ufstype=nextstep\n");
  820. uspi->s_fsize = block_size = 1024;
  821. uspi->s_fmask = ~(1024 - 1);
  822. uspi->s_fshift = 10;
  823. uspi->s_sbsize = super_block_size = 2048;
  824. uspi->s_sbbase = 0;
  825. uspi->s_dirblksize = 1024;
  826. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
  827. if (!(sb->s_flags & MS_RDONLY)) {
  828. if (!silent)
  829. pr_info("ufstype=nextstep is supported read-only\n");
  830. sb->s_flags |= MS_RDONLY;
  831. }
  832. break;
  833. case UFS_MOUNT_UFSTYPE_NEXTSTEP_CD:
  834. UFSD("ufstype=nextstep-cd\n");
  835. uspi->s_fsize = block_size = 2048;
  836. uspi->s_fmask = ~(2048 - 1);
  837. uspi->s_fshift = 11;
  838. uspi->s_sbsize = super_block_size = 2048;
  839. uspi->s_sbbase = 0;
  840. uspi->s_dirblksize = 1024;
  841. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
  842. if (!(sb->s_flags & MS_RDONLY)) {
  843. if (!silent)
  844. pr_info("ufstype=nextstep-cd is supported read-only\n");
  845. sb->s_flags |= MS_RDONLY;
  846. }
  847. break;
  848. case UFS_MOUNT_UFSTYPE_OPENSTEP:
  849. UFSD("ufstype=openstep\n");
  850. uspi->s_fsize = block_size = 1024;
  851. uspi->s_fmask = ~(1024 - 1);
  852. uspi->s_fshift = 10;
  853. uspi->s_sbsize = super_block_size = 2048;
  854. uspi->s_sbbase = 0;
  855. uspi->s_dirblksize = 1024;
  856. flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD;
  857. if (!(sb->s_flags & MS_RDONLY)) {
  858. if (!silent)
  859. pr_info("ufstype=openstep is supported read-only\n");
  860. sb->s_flags |= MS_RDONLY;
  861. }
  862. break;
  863. case UFS_MOUNT_UFSTYPE_HP:
  864. UFSD("ufstype=hp\n");
  865. uspi->s_fsize = block_size = 1024;
  866. uspi->s_fmask = ~(1024 - 1);
  867. uspi->s_fshift = 10;
  868. uspi->s_sbsize = super_block_size = 2048;
  869. uspi->s_sbbase = 0;
  870. flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD;
  871. if (!(sb->s_flags & MS_RDONLY)) {
  872. if (!silent)
  873. pr_info("ufstype=hp is supported read-only\n");
  874. sb->s_flags |= MS_RDONLY;
  875. }
  876. break;
  877. default:
  878. if (!silent)
  879. pr_err("unknown ufstype\n");
  880. goto failed;
  881. }
  882. again:
  883. if (!sb_set_blocksize(sb, block_size)) {
  884. pr_err("failed to set blocksize\n");
  885. goto failed;
  886. }
  887. /*
  888. * read ufs super block from device
  889. */
  890. ubh = ubh_bread_uspi(uspi, sb, uspi->s_sbbase + super_block_offset/block_size, super_block_size);
  891. if (!ubh)
  892. goto failed;
  893. usb1 = ubh_get_usb_first(uspi);
  894. usb2 = ubh_get_usb_second(uspi);
  895. usb3 = ubh_get_usb_third(uspi);
  896. /* Sort out mod used on SunOS 4.1.3 for fs_state */
  897. uspi->s_postblformat = fs32_to_cpu(sb, usb3->fs_postblformat);
  898. if (((flags & UFS_ST_MASK) == UFS_ST_SUNOS) &&
  899. (uspi->s_postblformat != UFS_42POSTBLFMT)) {
  900. flags &= ~UFS_ST_MASK;
  901. flags |= UFS_ST_SUN;
  902. }
  903. /*
  904. * Check ufs magic number
  905. */
  906. sbi->s_bytesex = BYTESEX_LE;
  907. switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) {
  908. case UFS_MAGIC:
  909. case UFS_MAGIC_BW:
  910. case UFS2_MAGIC:
  911. case UFS_MAGIC_LFN:
  912. case UFS_MAGIC_FEA:
  913. case UFS_MAGIC_4GB:
  914. goto magic_found;
  915. }
  916. sbi->s_bytesex = BYTESEX_BE;
  917. switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) {
  918. case UFS_MAGIC:
  919. case UFS_MAGIC_BW:
  920. case UFS2_MAGIC:
  921. case UFS_MAGIC_LFN:
  922. case UFS_MAGIC_FEA:
  923. case UFS_MAGIC_4GB:
  924. goto magic_found;
  925. }
  926. if ((((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP)
  927. || ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP_CD)
  928. || ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_OPENSTEP))
  929. && uspi->s_sbbase < 256) {
  930. ubh_brelse_uspi(uspi);
  931. ubh = NULL;
  932. uspi->s_sbbase += 8;
  933. goto again;
  934. }
  935. if (!silent)
  936. pr_err("%s(): bad magic number\n", __func__);
  937. goto failed;
  938. magic_found:
  939. /*
  940. * Check block and fragment sizes
  941. */
  942. uspi->s_bsize = fs32_to_cpu(sb, usb1->fs_bsize);
  943. uspi->s_fsize = fs32_to_cpu(sb, usb1->fs_fsize);
  944. uspi->s_sbsize = fs32_to_cpu(sb, usb1->fs_sbsize);
  945. uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask);
  946. uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift);
  947. if (!is_power_of_2(uspi->s_fsize)) {
  948. pr_err("%s(): fragment size %u is not a power of 2\n",
  949. __func__, uspi->s_fsize);
  950. goto failed;
  951. }
  952. if (uspi->s_fsize < 512) {
  953. pr_err("%s(): fragment size %u is too small\n",
  954. __func__, uspi->s_fsize);
  955. goto failed;
  956. }
  957. if (uspi->s_fsize > 4096) {
  958. pr_err("%s(): fragment size %u is too large\n",
  959. __func__, uspi->s_fsize);
  960. goto failed;
  961. }
  962. if (!is_power_of_2(uspi->s_bsize)) {
  963. pr_err("%s(): block size %u is not a power of 2\n",
  964. __func__, uspi->s_bsize);
  965. goto failed;
  966. }
  967. if (uspi->s_bsize < 4096) {
  968. pr_err("%s(): block size %u is too small\n",
  969. __func__, uspi->s_bsize);
  970. goto failed;
  971. }
  972. if (uspi->s_bsize / uspi->s_fsize > 8) {
  973. pr_err("%s(): too many fragments per block (%u)\n",
  974. __func__, uspi->s_bsize / uspi->s_fsize);
  975. goto failed;
  976. }
  977. if (uspi->s_fsize != block_size || uspi->s_sbsize != super_block_size) {
  978. ubh_brelse_uspi(uspi);
  979. ubh = NULL;
  980. block_size = uspi->s_fsize;
  981. super_block_size = uspi->s_sbsize;
  982. UFSD("another value of block_size or super_block_size %u, %u\n", block_size, super_block_size);
  983. goto again;
  984. }
  985. sbi->s_flags = flags;/*after that line some functions use s_flags*/
  986. ufs_print_super_stuff(sb, usb1, usb2, usb3);
  987. /*
  988. * Check, if file system was correctly unmounted.
  989. * If not, make it read only.
  990. */
  991. if (((flags & UFS_ST_MASK) == UFS_ST_44BSD) ||
  992. ((flags & UFS_ST_MASK) == UFS_ST_OLD) ||
  993. (((flags & UFS_ST_MASK) == UFS_ST_SUN ||
  994. (flags & UFS_ST_MASK) == UFS_ST_SUNOS ||
  995. (flags & UFS_ST_MASK) == UFS_ST_SUNx86) &&
  996. (ufs_get_fs_state(sb, usb1, usb3) == (UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time))))) {
  997. switch(usb1->fs_clean) {
  998. case UFS_FSCLEAN:
  999. UFSD("fs is clean\n");
  1000. break;
  1001. case UFS_FSSTABLE:
  1002. UFSD("fs is stable\n");
  1003. break;
  1004. case UFS_FSLOG:
  1005. UFSD("fs is logging fs\n");
  1006. break;
  1007. case UFS_FSOSF1:
  1008. UFSD("fs is DEC OSF/1\n");
  1009. break;
  1010. case UFS_FSACTIVE:
  1011. pr_err("%s(): fs is active\n", __func__);
  1012. sb->s_flags |= MS_RDONLY;
  1013. break;
  1014. case UFS_FSBAD:
  1015. pr_err("%s(): fs is bad\n", __func__);
  1016. sb->s_flags |= MS_RDONLY;
  1017. break;
  1018. default:
  1019. pr_err("%s(): can't grok fs_clean 0x%x\n",
  1020. __func__, usb1->fs_clean);
  1021. sb->s_flags |= MS_RDONLY;
  1022. break;
  1023. }
  1024. } else {
  1025. pr_err("%s(): fs needs fsck\n", __func__);
  1026. sb->s_flags |= MS_RDONLY;
  1027. }
  1028. /*
  1029. * Read ufs_super_block into internal data structures
  1030. */
  1031. sb->s_op = &ufs_super_ops;
  1032. sb->s_export_op = &ufs_export_ops;
  1033. sb->s_magic = fs32_to_cpu(sb, usb3->fs_magic);
  1034. uspi->s_sblkno = fs32_to_cpu(sb, usb1->fs_sblkno);
  1035. uspi->s_cblkno = fs32_to_cpu(sb, usb1->fs_cblkno);
  1036. uspi->s_iblkno = fs32_to_cpu(sb, usb1->fs_iblkno);
  1037. uspi->s_dblkno = fs32_to_cpu(sb, usb1->fs_dblkno);
  1038. uspi->s_cgoffset = fs32_to_cpu(sb, usb1->fs_cgoffset);
  1039. uspi->s_cgmask = fs32_to_cpu(sb, usb1->fs_cgmask);
  1040. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
  1041. uspi->s_u2_size = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size);
  1042. uspi->s_u2_dsize = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize);
  1043. } else {
  1044. uspi->s_size = fs32_to_cpu(sb, usb1->fs_size);
  1045. uspi->s_dsize = fs32_to_cpu(sb, usb1->fs_dsize);
  1046. }
  1047. uspi->s_ncg = fs32_to_cpu(sb, usb1->fs_ncg);
  1048. /* s_bsize already set */
  1049. /* s_fsize already set */
  1050. uspi->s_fpb = fs32_to_cpu(sb, usb1->fs_frag);
  1051. uspi->s_minfree = fs32_to_cpu(sb, usb1->fs_minfree);
  1052. uspi->s_bmask = fs32_to_cpu(sb, usb1->fs_bmask);
  1053. uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask);
  1054. uspi->s_bshift = fs32_to_cpu(sb, usb1->fs_bshift);
  1055. uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift);
  1056. UFSD("uspi->s_bshift = %d,uspi->s_fshift = %d", uspi->s_bshift,
  1057. uspi->s_fshift);
  1058. uspi->s_fpbshift = fs32_to_cpu(sb, usb1->fs_fragshift);
  1059. uspi->s_fsbtodb = fs32_to_cpu(sb, usb1->fs_fsbtodb);
  1060. /* s_sbsize already set */
  1061. uspi->s_csmask = fs32_to_cpu(sb, usb1->fs_csmask);
  1062. uspi->s_csshift = fs32_to_cpu(sb, usb1->fs_csshift);
  1063. uspi->s_nindir = fs32_to_cpu(sb, usb1->fs_nindir);
  1064. uspi->s_inopb = fs32_to_cpu(sb, usb1->fs_inopb);
  1065. uspi->s_nspf = fs32_to_cpu(sb, usb1->fs_nspf);
  1066. uspi->s_npsect = ufs_get_fs_npsect(sb, usb1, usb3);
  1067. uspi->s_interleave = fs32_to_cpu(sb, usb1->fs_interleave);
  1068. uspi->s_trackskew = fs32_to_cpu(sb, usb1->fs_trackskew);
  1069. if (uspi->fs_magic == UFS2_MAGIC)
  1070. uspi->s_csaddr = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_csaddr);
  1071. else
  1072. uspi->s_csaddr = fs32_to_cpu(sb, usb1->fs_csaddr);
  1073. uspi->s_cssize = fs32_to_cpu(sb, usb1->fs_cssize);
  1074. uspi->s_cgsize = fs32_to_cpu(sb, usb1->fs_cgsize);
  1075. uspi->s_ntrak = fs32_to_cpu(sb, usb1->fs_ntrak);
  1076. uspi->s_nsect = fs32_to_cpu(sb, usb1->fs_nsect);
  1077. uspi->s_spc = fs32_to_cpu(sb, usb1->fs_spc);
  1078. uspi->s_ipg = fs32_to_cpu(sb, usb1->fs_ipg);
  1079. uspi->s_fpg = fs32_to_cpu(sb, usb1->fs_fpg);
  1080. uspi->s_cpc = fs32_to_cpu(sb, usb2->fs_un.fs_u1.fs_cpc);
  1081. uspi->s_contigsumsize = fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_contigsumsize);
  1082. uspi->s_qbmask = ufs_get_fs_qbmask(sb, usb3);
  1083. uspi->s_qfmask = ufs_get_fs_qfmask(sb, usb3);
  1084. uspi->s_nrpos = fs32_to_cpu(sb, usb3->fs_nrpos);
  1085. uspi->s_postbloff = fs32_to_cpu(sb, usb3->fs_postbloff);
  1086. uspi->s_rotbloff = fs32_to_cpu(sb, usb3->fs_rotbloff);
  1087. /*
  1088. * Compute another frequently used values
  1089. */
  1090. uspi->s_fpbmask = uspi->s_fpb - 1;
  1091. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  1092. uspi->s_apbshift = uspi->s_bshift - 3;
  1093. else
  1094. uspi->s_apbshift = uspi->s_bshift - 2;
  1095. uspi->s_2apbshift = uspi->s_apbshift * 2;
  1096. uspi->s_3apbshift = uspi->s_apbshift * 3;
  1097. uspi->s_apb = 1 << uspi->s_apbshift;
  1098. uspi->s_2apb = 1 << uspi->s_2apbshift;
  1099. uspi->s_3apb = 1 << uspi->s_3apbshift;
  1100. uspi->s_apbmask = uspi->s_apb - 1;
  1101. uspi->s_nspfshift = uspi->s_fshift - UFS_SECTOR_BITS;
  1102. uspi->s_nspb = uspi->s_nspf << uspi->s_fpbshift;
  1103. uspi->s_inopf = uspi->s_inopb >> uspi->s_fpbshift;
  1104. uspi->s_bpf = uspi->s_fsize << 3;
  1105. uspi->s_bpfshift = uspi->s_fshift + 3;
  1106. uspi->s_bpfmask = uspi->s_bpf - 1;
  1107. if ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_44BSD ||
  1108. (sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_UFS2)
  1109. uspi->s_maxsymlinklen =
  1110. fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen);
  1111. if (uspi->fs_magic == UFS2_MAGIC)
  1112. maxsymlen = 2 * 4 * (UFS_NDADDR + UFS_NINDIR);
  1113. else
  1114. maxsymlen = 4 * (UFS_NDADDR + UFS_NINDIR);
  1115. if (uspi->s_maxsymlinklen > maxsymlen) {
  1116. ufs_warning(sb, __func__, "ufs_read_super: excessive maximum "
  1117. "fast symlink size (%u)\n", uspi->s_maxsymlinklen);
  1118. uspi->s_maxsymlinklen = maxsymlen;
  1119. }
  1120. sb->s_max_links = UFS_LINK_MAX;
  1121. inode = ufs_iget(sb, UFS_ROOTINO);
  1122. if (IS_ERR(inode)) {
  1123. ret = PTR_ERR(inode);
  1124. goto failed;
  1125. }
  1126. sb->s_root = d_make_root(inode);
  1127. if (!sb->s_root) {
  1128. ret = -ENOMEM;
  1129. goto failed;
  1130. }
  1131. ufs_setup_cstotal(sb);
  1132. /*
  1133. * Read cylinder group structures
  1134. */
  1135. if (!(sb->s_flags & MS_RDONLY))
  1136. if (!ufs_read_cylinder_structures(sb))
  1137. goto failed;
  1138. UFSD("EXIT\n");
  1139. return 0;
  1140. failed:
  1141. mutex_destroy(&sbi->mutex);
  1142. if (ubh)
  1143. ubh_brelse_uspi (uspi);
  1144. kfree (uspi);
  1145. kfree(sbi);
  1146. sb->s_fs_info = NULL;
  1147. UFSD("EXIT (FAILED)\n");
  1148. return ret;
  1149. failed_nomem:
  1150. UFSD("EXIT (NOMEM)\n");
  1151. return -ENOMEM;
  1152. }
  1153. static int ufs_remount (struct super_block *sb, int *mount_flags, char *data)
  1154. {
  1155. struct ufs_sb_private_info * uspi;
  1156. struct ufs_super_block_first * usb1;
  1157. struct ufs_super_block_third * usb3;
  1158. unsigned new_mount_opt, ufstype;
  1159. unsigned flags;
  1160. sync_filesystem(sb);
  1161. lock_ufs(sb);
  1162. mutex_lock(&UFS_SB(sb)->s_lock);
  1163. uspi = UFS_SB(sb)->s_uspi;
  1164. flags = UFS_SB(sb)->s_flags;
  1165. usb1 = ubh_get_usb_first(uspi);
  1166. usb3 = ubh_get_usb_third(uspi);
  1167. /*
  1168. * Allow the "check" option to be passed as a remount option.
  1169. * It is not possible to change ufstype option during remount
  1170. */
  1171. ufstype = UFS_SB(sb)->s_mount_opt & UFS_MOUNT_UFSTYPE;
  1172. new_mount_opt = 0;
  1173. ufs_set_opt (new_mount_opt, ONERROR_LOCK);
  1174. if (!ufs_parse_options (data, &new_mount_opt)) {
  1175. mutex_unlock(&UFS_SB(sb)->s_lock);
  1176. unlock_ufs(sb);
  1177. return -EINVAL;
  1178. }
  1179. if (!(new_mount_opt & UFS_MOUNT_UFSTYPE)) {
  1180. new_mount_opt |= ufstype;
  1181. } else if ((new_mount_opt & UFS_MOUNT_UFSTYPE) != ufstype) {
  1182. pr_err("ufstype can't be changed during remount\n");
  1183. mutex_unlock(&UFS_SB(sb)->s_lock);
  1184. unlock_ufs(sb);
  1185. return -EINVAL;
  1186. }
  1187. if ((*mount_flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) {
  1188. UFS_SB(sb)->s_mount_opt = new_mount_opt;
  1189. mutex_unlock(&UFS_SB(sb)->s_lock);
  1190. unlock_ufs(sb);
  1191. return 0;
  1192. }
  1193. /*
  1194. * fs was mouted as rw, remounting ro
  1195. */
  1196. if (*mount_flags & MS_RDONLY) {
  1197. ufs_put_super_internal(sb);
  1198. usb1->fs_time = cpu_to_fs32(sb, get_seconds());
  1199. if ((flags & UFS_ST_MASK) == UFS_ST_SUN
  1200. || (flags & UFS_ST_MASK) == UFS_ST_SUNOS
  1201. || (flags & UFS_ST_MASK) == UFS_ST_SUNx86)
  1202. ufs_set_fs_state(sb, usb1, usb3,
  1203. UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time));
  1204. ubh_mark_buffer_dirty (USPI_UBH(uspi));
  1205. sb->s_flags |= MS_RDONLY;
  1206. } else {
  1207. /*
  1208. * fs was mounted as ro, remounting rw
  1209. */
  1210. #ifndef CONFIG_UFS_FS_WRITE
  1211. pr_err("ufs was compiled with read-only support, can't be mounted as read-write\n");
  1212. mutex_unlock(&UFS_SB(sb)->s_lock);
  1213. unlock_ufs(sb);
  1214. return -EINVAL;
  1215. #else
  1216. if (ufstype != UFS_MOUNT_UFSTYPE_SUN &&
  1217. ufstype != UFS_MOUNT_UFSTYPE_SUNOS &&
  1218. ufstype != UFS_MOUNT_UFSTYPE_44BSD &&
  1219. ufstype != UFS_MOUNT_UFSTYPE_SUNx86 &&
  1220. ufstype != UFS_MOUNT_UFSTYPE_UFS2) {
  1221. pr_err("this ufstype is read-only supported\n");
  1222. mutex_unlock(&UFS_SB(sb)->s_lock);
  1223. unlock_ufs(sb);
  1224. return -EINVAL;
  1225. }
  1226. if (!ufs_read_cylinder_structures(sb)) {
  1227. pr_err("failed during remounting\n");
  1228. mutex_unlock(&UFS_SB(sb)->s_lock);
  1229. unlock_ufs(sb);
  1230. return -EPERM;
  1231. }
  1232. sb->s_flags &= ~MS_RDONLY;
  1233. #endif
  1234. }
  1235. UFS_SB(sb)->s_mount_opt = new_mount_opt;
  1236. mutex_unlock(&UFS_SB(sb)->s_lock);
  1237. unlock_ufs(sb);
  1238. return 0;
  1239. }
  1240. static int ufs_show_options(struct seq_file *seq, struct dentry *root)
  1241. {
  1242. struct ufs_sb_info *sbi = UFS_SB(root->d_sb);
  1243. unsigned mval = sbi->s_mount_opt & UFS_MOUNT_UFSTYPE;
  1244. const struct match_token *tp = tokens;
  1245. while (tp->token != Opt_onerror_panic && tp->token != mval)
  1246. ++tp;
  1247. BUG_ON(tp->token == Opt_onerror_panic);
  1248. seq_printf(seq, ",%s", tp->pattern);
  1249. mval = sbi->s_mount_opt & UFS_MOUNT_ONERROR;
  1250. while (tp->token != Opt_err && tp->token != mval)
  1251. ++tp;
  1252. BUG_ON(tp->token == Opt_err);
  1253. seq_printf(seq, ",%s", tp->pattern);
  1254. return 0;
  1255. }
  1256. static int ufs_statfs(struct dentry *dentry, struct kstatfs *buf)
  1257. {
  1258. struct super_block *sb = dentry->d_sb;
  1259. struct ufs_sb_private_info *uspi= UFS_SB(sb)->s_uspi;
  1260. unsigned flags = UFS_SB(sb)->s_flags;
  1261. struct ufs_super_block_third *usb3;
  1262. u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
  1263. lock_ufs(sb);
  1264. usb3 = ubh_get_usb_third(uspi);
  1265. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
  1266. buf->f_type = UFS2_MAGIC;
  1267. buf->f_blocks = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize);
  1268. } else {
  1269. buf->f_type = UFS_MAGIC;
  1270. buf->f_blocks = uspi->s_dsize;
  1271. }
  1272. buf->f_bfree = ufs_blkstofrags(uspi->cs_total.cs_nbfree) +
  1273. uspi->cs_total.cs_nffree;
  1274. buf->f_ffree = uspi->cs_total.cs_nifree;
  1275. buf->f_bsize = sb->s_blocksize;
  1276. buf->f_bavail = (buf->f_bfree > (((long)buf->f_blocks / 100) * uspi->s_minfree))
  1277. ? (buf->f_bfree - (((long)buf->f_blocks / 100) * uspi->s_minfree)) : 0;
  1278. buf->f_files = uspi->s_ncg * uspi->s_ipg;
  1279. buf->f_namelen = UFS_MAXNAMLEN;
  1280. buf->f_fsid.val[0] = (u32)id;
  1281. buf->f_fsid.val[1] = (u32)(id >> 32);
  1282. unlock_ufs(sb);
  1283. return 0;
  1284. }
  1285. static struct kmem_cache * ufs_inode_cachep;
  1286. static struct inode *ufs_alloc_inode(struct super_block *sb)
  1287. {
  1288. struct ufs_inode_info *ei;
  1289. ei = (struct ufs_inode_info *)kmem_cache_alloc(ufs_inode_cachep, GFP_NOFS);
  1290. if (!ei)
  1291. return NULL;
  1292. ei->vfs_inode.i_version = 1;
  1293. return &ei->vfs_inode;
  1294. }
  1295. static void ufs_i_callback(struct rcu_head *head)
  1296. {
  1297. struct inode *inode = container_of(head, struct inode, i_rcu);
  1298. kmem_cache_free(ufs_inode_cachep, UFS_I(inode));
  1299. }
  1300. static void ufs_destroy_inode(struct inode *inode)
  1301. {
  1302. call_rcu(&inode->i_rcu, ufs_i_callback);
  1303. }
  1304. static void init_once(void *foo)
  1305. {
  1306. struct ufs_inode_info *ei = (struct ufs_inode_info *) foo;
  1307. inode_init_once(&ei->vfs_inode);
  1308. }
  1309. static int __init init_inodecache(void)
  1310. {
  1311. ufs_inode_cachep = kmem_cache_create("ufs_inode_cache",
  1312. sizeof(struct ufs_inode_info),
  1313. 0, (SLAB_RECLAIM_ACCOUNT|
  1314. SLAB_MEM_SPREAD),
  1315. init_once);
  1316. if (ufs_inode_cachep == NULL)
  1317. return -ENOMEM;
  1318. return 0;
  1319. }
  1320. static void destroy_inodecache(void)
  1321. {
  1322. /*
  1323. * Make sure all delayed rcu free inodes are flushed before we
  1324. * destroy cache.
  1325. */
  1326. rcu_barrier();
  1327. kmem_cache_destroy(ufs_inode_cachep);
  1328. }
  1329. static const struct super_operations ufs_super_ops = {
  1330. .alloc_inode = ufs_alloc_inode,
  1331. .destroy_inode = ufs_destroy_inode,
  1332. .write_inode = ufs_write_inode,
  1333. .evict_inode = ufs_evict_inode,
  1334. .put_super = ufs_put_super,
  1335. .sync_fs = ufs_sync_fs,
  1336. .statfs = ufs_statfs,
  1337. .remount_fs = ufs_remount,
  1338. .show_options = ufs_show_options,
  1339. };
  1340. static struct dentry *ufs_mount(struct file_system_type *fs_type,
  1341. int flags, const char *dev_name, void *data)
  1342. {
  1343. return mount_bdev(fs_type, flags, dev_name, data, ufs_fill_super);
  1344. }
  1345. static struct file_system_type ufs_fs_type = {
  1346. .owner = THIS_MODULE,
  1347. .name = "ufs",
  1348. .mount = ufs_mount,
  1349. .kill_sb = kill_block_super,
  1350. .fs_flags = FS_REQUIRES_DEV,
  1351. };
  1352. MODULE_ALIAS_FS("ufs");
  1353. static int __init init_ufs_fs(void)
  1354. {
  1355. int err = init_inodecache();
  1356. if (err)
  1357. goto out1;
  1358. err = register_filesystem(&ufs_fs_type);
  1359. if (err)
  1360. goto out;
  1361. return 0;
  1362. out:
  1363. destroy_inodecache();
  1364. out1:
  1365. return err;
  1366. }
  1367. static void __exit exit_ufs_fs(void)
  1368. {
  1369. unregister_filesystem(&ufs_fs_type);
  1370. destroy_inodecache();
  1371. }
  1372. module_init(init_ufs_fs)
  1373. module_exit(exit_ufs_fs)
  1374. MODULE_LICENSE("GPL");