inode.c 250 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/kernel.h>
  19. #include <linux/bio.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/file.h>
  22. #include <linux/fs.h>
  23. #include <linux/pagemap.h>
  24. #include <linux/highmem.h>
  25. #include <linux/time.h>
  26. #include <linux/init.h>
  27. #include <linux/string.h>
  28. #include <linux/backing-dev.h>
  29. #include <linux/mpage.h>
  30. #include <linux/swap.h>
  31. #include <linux/writeback.h>
  32. #include <linux/statfs.h>
  33. #include <linux/compat.h>
  34. #include <linux/aio.h>
  35. #include <linux/bit_spinlock.h>
  36. #include <linux/xattr.h>
  37. #include <linux/posix_acl.h>
  38. #include <linux/falloc.h>
  39. #include <linux/slab.h>
  40. #include <linux/ratelimit.h>
  41. #include <linux/mount.h>
  42. #include <linux/btrfs.h>
  43. #include <linux/blkdev.h>
  44. #include <linux/posix_acl_xattr.h>
  45. #include "ctree.h"
  46. #include "disk-io.h"
  47. #include "transaction.h"
  48. #include "btrfs_inode.h"
  49. #include "print-tree.h"
  50. #include "ordered-data.h"
  51. #include "xattr.h"
  52. #include "tree-log.h"
  53. #include "volumes.h"
  54. #include "compression.h"
  55. #include "locking.h"
  56. #include "free-space-cache.h"
  57. #include "inode-map.h"
  58. #include "backref.h"
  59. #include "hash.h"
  60. #include "props.h"
  61. struct btrfs_iget_args {
  62. struct btrfs_key *location;
  63. struct btrfs_root *root;
  64. };
  65. static const struct inode_operations btrfs_dir_inode_operations;
  66. static const struct inode_operations btrfs_symlink_inode_operations;
  67. static const struct inode_operations btrfs_dir_ro_inode_operations;
  68. static const struct inode_operations btrfs_special_inode_operations;
  69. static const struct inode_operations btrfs_file_inode_operations;
  70. static const struct address_space_operations btrfs_aops;
  71. static const struct address_space_operations btrfs_symlink_aops;
  72. static const struct file_operations btrfs_dir_file_operations;
  73. static struct extent_io_ops btrfs_extent_io_ops;
  74. static struct kmem_cache *btrfs_inode_cachep;
  75. static struct kmem_cache *btrfs_delalloc_work_cachep;
  76. struct kmem_cache *btrfs_trans_handle_cachep;
  77. struct kmem_cache *btrfs_transaction_cachep;
  78. struct kmem_cache *btrfs_path_cachep;
  79. struct kmem_cache *btrfs_free_space_cachep;
  80. #define S_SHIFT 12
  81. static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
  82. [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
  83. [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
  84. [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
  85. [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
  86. [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
  87. [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
  88. [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
  89. };
  90. static int btrfs_setsize(struct inode *inode, struct iattr *attr);
  91. static int btrfs_truncate(struct inode *inode);
  92. static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
  93. static noinline int cow_file_range(struct inode *inode,
  94. struct page *locked_page,
  95. u64 start, u64 end, int *page_started,
  96. unsigned long *nr_written, int unlock);
  97. static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
  98. u64 len, u64 orig_start,
  99. u64 block_start, u64 block_len,
  100. u64 orig_block_len, u64 ram_bytes,
  101. int type);
  102. static int btrfs_dirty_inode(struct inode *inode);
  103. static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
  104. struct inode *inode, struct inode *dir,
  105. const struct qstr *qstr)
  106. {
  107. int err;
  108. err = btrfs_init_acl(trans, inode, dir);
  109. if (!err)
  110. err = btrfs_xattr_security_init(trans, inode, dir, qstr);
  111. return err;
  112. }
  113. /*
  114. * this does all the hard work for inserting an inline extent into
  115. * the btree. The caller should have done a btrfs_drop_extents so that
  116. * no overlapping inline items exist in the btree
  117. */
  118. static int insert_inline_extent(struct btrfs_trans_handle *trans,
  119. struct btrfs_path *path, int extent_inserted,
  120. struct btrfs_root *root, struct inode *inode,
  121. u64 start, size_t size, size_t compressed_size,
  122. int compress_type,
  123. struct page **compressed_pages)
  124. {
  125. struct extent_buffer *leaf;
  126. struct page *page = NULL;
  127. char *kaddr;
  128. unsigned long ptr;
  129. struct btrfs_file_extent_item *ei;
  130. int err = 0;
  131. int ret;
  132. size_t cur_size = size;
  133. unsigned long offset;
  134. if (compressed_size && compressed_pages)
  135. cur_size = compressed_size;
  136. inode_add_bytes(inode, size);
  137. if (!extent_inserted) {
  138. struct btrfs_key key;
  139. size_t datasize;
  140. key.objectid = btrfs_ino(inode);
  141. key.offset = start;
  142. key.type = BTRFS_EXTENT_DATA_KEY;
  143. datasize = btrfs_file_extent_calc_inline_size(cur_size);
  144. path->leave_spinning = 1;
  145. ret = btrfs_insert_empty_item(trans, root, path, &key,
  146. datasize);
  147. if (ret) {
  148. err = ret;
  149. goto fail;
  150. }
  151. }
  152. leaf = path->nodes[0];
  153. ei = btrfs_item_ptr(leaf, path->slots[0],
  154. struct btrfs_file_extent_item);
  155. btrfs_set_file_extent_generation(leaf, ei, trans->transid);
  156. btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
  157. btrfs_set_file_extent_encryption(leaf, ei, 0);
  158. btrfs_set_file_extent_other_encoding(leaf, ei, 0);
  159. btrfs_set_file_extent_ram_bytes(leaf, ei, size);
  160. ptr = btrfs_file_extent_inline_start(ei);
  161. if (compress_type != BTRFS_COMPRESS_NONE) {
  162. struct page *cpage;
  163. int i = 0;
  164. while (compressed_size > 0) {
  165. cpage = compressed_pages[i];
  166. cur_size = min_t(unsigned long, compressed_size,
  167. PAGE_CACHE_SIZE);
  168. kaddr = kmap_atomic(cpage);
  169. write_extent_buffer(leaf, kaddr, ptr, cur_size);
  170. kunmap_atomic(kaddr);
  171. i++;
  172. ptr += cur_size;
  173. compressed_size -= cur_size;
  174. }
  175. btrfs_set_file_extent_compression(leaf, ei,
  176. compress_type);
  177. } else {
  178. page = find_get_page(inode->i_mapping,
  179. start >> PAGE_CACHE_SHIFT);
  180. btrfs_set_file_extent_compression(leaf, ei, 0);
  181. kaddr = kmap_atomic(page);
  182. offset = start & (PAGE_CACHE_SIZE - 1);
  183. write_extent_buffer(leaf, kaddr + offset, ptr, size);
  184. kunmap_atomic(kaddr);
  185. page_cache_release(page);
  186. }
  187. btrfs_mark_buffer_dirty(leaf);
  188. btrfs_release_path(path);
  189. /*
  190. * we're an inline extent, so nobody can
  191. * extend the file past i_size without locking
  192. * a page we already have locked.
  193. *
  194. * We must do any isize and inode updates
  195. * before we unlock the pages. Otherwise we
  196. * could end up racing with unlink.
  197. */
  198. BTRFS_I(inode)->disk_i_size = inode->i_size;
  199. ret = btrfs_update_inode(trans, root, inode);
  200. return ret;
  201. fail:
  202. return err;
  203. }
  204. /*
  205. * conditionally insert an inline extent into the file. This
  206. * does the checks required to make sure the data is small enough
  207. * to fit as an inline extent.
  208. */
  209. static noinline int cow_file_range_inline(struct btrfs_root *root,
  210. struct inode *inode, u64 start,
  211. u64 end, size_t compressed_size,
  212. int compress_type,
  213. struct page **compressed_pages)
  214. {
  215. struct btrfs_trans_handle *trans;
  216. u64 isize = i_size_read(inode);
  217. u64 actual_end = min(end + 1, isize);
  218. u64 inline_len = actual_end - start;
  219. u64 aligned_end = ALIGN(end, root->sectorsize);
  220. u64 data_len = inline_len;
  221. int ret;
  222. struct btrfs_path *path;
  223. int extent_inserted = 0;
  224. u32 extent_item_size;
  225. if (compressed_size)
  226. data_len = compressed_size;
  227. if (start > 0 ||
  228. actual_end > PAGE_CACHE_SIZE ||
  229. data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
  230. (!compressed_size &&
  231. (actual_end & (root->sectorsize - 1)) == 0) ||
  232. end + 1 < isize ||
  233. data_len > root->fs_info->max_inline) {
  234. return 1;
  235. }
  236. path = btrfs_alloc_path();
  237. if (!path)
  238. return -ENOMEM;
  239. trans = btrfs_join_transaction(root);
  240. if (IS_ERR(trans)) {
  241. btrfs_free_path(path);
  242. return PTR_ERR(trans);
  243. }
  244. trans->block_rsv = &root->fs_info->delalloc_block_rsv;
  245. if (compressed_size && compressed_pages)
  246. extent_item_size = btrfs_file_extent_calc_inline_size(
  247. compressed_size);
  248. else
  249. extent_item_size = btrfs_file_extent_calc_inline_size(
  250. inline_len);
  251. ret = __btrfs_drop_extents(trans, root, inode, path,
  252. start, aligned_end, NULL,
  253. 1, 1, extent_item_size, &extent_inserted);
  254. if (ret) {
  255. btrfs_abort_transaction(trans, root, ret);
  256. goto out;
  257. }
  258. if (isize > actual_end)
  259. inline_len = min_t(u64, isize, actual_end);
  260. ret = insert_inline_extent(trans, path, extent_inserted,
  261. root, inode, start,
  262. inline_len, compressed_size,
  263. compress_type, compressed_pages);
  264. if (ret && ret != -ENOSPC) {
  265. btrfs_abort_transaction(trans, root, ret);
  266. goto out;
  267. } else if (ret == -ENOSPC) {
  268. ret = 1;
  269. goto out;
  270. }
  271. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
  272. btrfs_delalloc_release_metadata(inode, end + 1 - start);
  273. btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
  274. out:
  275. btrfs_free_path(path);
  276. btrfs_end_transaction(trans, root);
  277. return ret;
  278. }
  279. struct async_extent {
  280. u64 start;
  281. u64 ram_size;
  282. u64 compressed_size;
  283. struct page **pages;
  284. unsigned long nr_pages;
  285. int compress_type;
  286. struct list_head list;
  287. };
  288. struct async_cow {
  289. struct inode *inode;
  290. struct btrfs_root *root;
  291. struct page *locked_page;
  292. u64 start;
  293. u64 end;
  294. struct list_head extents;
  295. struct btrfs_work work;
  296. };
  297. static noinline int add_async_extent(struct async_cow *cow,
  298. u64 start, u64 ram_size,
  299. u64 compressed_size,
  300. struct page **pages,
  301. unsigned long nr_pages,
  302. int compress_type)
  303. {
  304. struct async_extent *async_extent;
  305. async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
  306. BUG_ON(!async_extent); /* -ENOMEM */
  307. async_extent->start = start;
  308. async_extent->ram_size = ram_size;
  309. async_extent->compressed_size = compressed_size;
  310. async_extent->pages = pages;
  311. async_extent->nr_pages = nr_pages;
  312. async_extent->compress_type = compress_type;
  313. list_add_tail(&async_extent->list, &cow->extents);
  314. return 0;
  315. }
  316. static inline int inode_need_compress(struct inode *inode)
  317. {
  318. struct btrfs_root *root = BTRFS_I(inode)->root;
  319. /* force compress */
  320. if (btrfs_test_opt(root, FORCE_COMPRESS))
  321. return 1;
  322. /* bad compression ratios */
  323. if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
  324. return 0;
  325. if (btrfs_test_opt(root, COMPRESS) ||
  326. BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
  327. BTRFS_I(inode)->force_compress)
  328. return 1;
  329. return 0;
  330. }
  331. /*
  332. * we create compressed extents in two phases. The first
  333. * phase compresses a range of pages that have already been
  334. * locked (both pages and state bits are locked).
  335. *
  336. * This is done inside an ordered work queue, and the compression
  337. * is spread across many cpus. The actual IO submission is step
  338. * two, and the ordered work queue takes care of making sure that
  339. * happens in the same order things were put onto the queue by
  340. * writepages and friends.
  341. *
  342. * If this code finds it can't get good compression, it puts an
  343. * entry onto the work queue to write the uncompressed bytes. This
  344. * makes sure that both compressed inodes and uncompressed inodes
  345. * are written in the same order that the flusher thread sent them
  346. * down.
  347. */
  348. static noinline int compress_file_range(struct inode *inode,
  349. struct page *locked_page,
  350. u64 start, u64 end,
  351. struct async_cow *async_cow,
  352. int *num_added)
  353. {
  354. struct btrfs_root *root = BTRFS_I(inode)->root;
  355. u64 num_bytes;
  356. u64 blocksize = root->sectorsize;
  357. u64 actual_end;
  358. u64 isize = i_size_read(inode);
  359. int ret = 0;
  360. struct page **pages = NULL;
  361. unsigned long nr_pages;
  362. unsigned long nr_pages_ret = 0;
  363. unsigned long total_compressed = 0;
  364. unsigned long total_in = 0;
  365. unsigned long max_compressed = 128 * 1024;
  366. unsigned long max_uncompressed = 128 * 1024;
  367. int i;
  368. int will_compress;
  369. int compress_type = root->fs_info->compress_type;
  370. int redirty = 0;
  371. /* if this is a small write inside eof, kick off a defrag */
  372. if ((end - start + 1) < 16 * 1024 &&
  373. (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
  374. btrfs_add_inode_defrag(NULL, inode);
  375. /*
  376. * skip compression for a small file range(<=blocksize) that
  377. * isn't an inline extent, since it dosen't save disk space at all.
  378. */
  379. if ((end - start + 1) <= blocksize &&
  380. (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
  381. goto cleanup_and_bail_uncompressed;
  382. actual_end = min_t(u64, isize, end + 1);
  383. again:
  384. will_compress = 0;
  385. nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
  386. nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
  387. /*
  388. * we don't want to send crud past the end of i_size through
  389. * compression, that's just a waste of CPU time. So, if the
  390. * end of the file is before the start of our current
  391. * requested range of bytes, we bail out to the uncompressed
  392. * cleanup code that can deal with all of this.
  393. *
  394. * It isn't really the fastest way to fix things, but this is a
  395. * very uncommon corner.
  396. */
  397. if (actual_end <= start)
  398. goto cleanup_and_bail_uncompressed;
  399. total_compressed = actual_end - start;
  400. /* we want to make sure that amount of ram required to uncompress
  401. * an extent is reasonable, so we limit the total size in ram
  402. * of a compressed extent to 128k. This is a crucial number
  403. * because it also controls how easily we can spread reads across
  404. * cpus for decompression.
  405. *
  406. * We also want to make sure the amount of IO required to do
  407. * a random read is reasonably small, so we limit the size of
  408. * a compressed extent to 128k.
  409. */
  410. total_compressed = min(total_compressed, max_uncompressed);
  411. num_bytes = ALIGN(end - start + 1, blocksize);
  412. num_bytes = max(blocksize, num_bytes);
  413. total_in = 0;
  414. ret = 0;
  415. /*
  416. * we do compression for mount -o compress and when the
  417. * inode has not been flagged as nocompress. This flag can
  418. * change at any time if we discover bad compression ratios.
  419. */
  420. if (inode_need_compress(inode)) {
  421. WARN_ON(pages);
  422. pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
  423. if (!pages) {
  424. /* just bail out to the uncompressed code */
  425. goto cont;
  426. }
  427. if (BTRFS_I(inode)->force_compress)
  428. compress_type = BTRFS_I(inode)->force_compress;
  429. /*
  430. * we need to call clear_page_dirty_for_io on each
  431. * page in the range. Otherwise applications with the file
  432. * mmap'd can wander in and change the page contents while
  433. * we are compressing them.
  434. *
  435. * If the compression fails for any reason, we set the pages
  436. * dirty again later on.
  437. */
  438. extent_range_clear_dirty_for_io(inode, start, end);
  439. redirty = 1;
  440. ret = btrfs_compress_pages(compress_type,
  441. inode->i_mapping, start,
  442. total_compressed, pages,
  443. nr_pages, &nr_pages_ret,
  444. &total_in,
  445. &total_compressed,
  446. max_compressed);
  447. if (!ret) {
  448. unsigned long offset = total_compressed &
  449. (PAGE_CACHE_SIZE - 1);
  450. struct page *page = pages[nr_pages_ret - 1];
  451. char *kaddr;
  452. /* zero the tail end of the last page, we might be
  453. * sending it down to disk
  454. */
  455. if (offset) {
  456. kaddr = kmap_atomic(page);
  457. memset(kaddr + offset, 0,
  458. PAGE_CACHE_SIZE - offset);
  459. kunmap_atomic(kaddr);
  460. }
  461. will_compress = 1;
  462. }
  463. }
  464. cont:
  465. if (start == 0) {
  466. /* lets try to make an inline extent */
  467. if (ret || total_in < (actual_end - start)) {
  468. /* we didn't compress the entire range, try
  469. * to make an uncompressed inline extent.
  470. */
  471. ret = cow_file_range_inline(root, inode, start, end,
  472. 0, 0, NULL);
  473. } else {
  474. /* try making a compressed inline extent */
  475. ret = cow_file_range_inline(root, inode, start, end,
  476. total_compressed,
  477. compress_type, pages);
  478. }
  479. if (ret <= 0) {
  480. unsigned long clear_flags = EXTENT_DELALLOC |
  481. EXTENT_DEFRAG;
  482. clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
  483. /*
  484. * inline extent creation worked or returned error,
  485. * we don't need to create any more async work items.
  486. * Unlock and free up our temp pages.
  487. */
  488. extent_clear_unlock_delalloc(inode, start, end, NULL,
  489. clear_flags, PAGE_UNLOCK |
  490. PAGE_CLEAR_DIRTY |
  491. PAGE_SET_WRITEBACK |
  492. PAGE_END_WRITEBACK);
  493. goto free_pages_out;
  494. }
  495. }
  496. if (will_compress) {
  497. /*
  498. * we aren't doing an inline extent round the compressed size
  499. * up to a block size boundary so the allocator does sane
  500. * things
  501. */
  502. total_compressed = ALIGN(total_compressed, blocksize);
  503. /*
  504. * one last check to make sure the compression is really a
  505. * win, compare the page count read with the blocks on disk
  506. */
  507. total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
  508. if (total_compressed >= total_in) {
  509. will_compress = 0;
  510. } else {
  511. num_bytes = total_in;
  512. }
  513. }
  514. if (!will_compress && pages) {
  515. /*
  516. * the compression code ran but failed to make things smaller,
  517. * free any pages it allocated and our page pointer array
  518. */
  519. for (i = 0; i < nr_pages_ret; i++) {
  520. WARN_ON(pages[i]->mapping);
  521. page_cache_release(pages[i]);
  522. }
  523. kfree(pages);
  524. pages = NULL;
  525. total_compressed = 0;
  526. nr_pages_ret = 0;
  527. /* flag the file so we don't compress in the future */
  528. if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
  529. !(BTRFS_I(inode)->force_compress)) {
  530. BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
  531. }
  532. }
  533. if (will_compress) {
  534. *num_added += 1;
  535. /* the async work queues will take care of doing actual
  536. * allocation on disk for these compressed pages,
  537. * and will submit them to the elevator.
  538. */
  539. add_async_extent(async_cow, start, num_bytes,
  540. total_compressed, pages, nr_pages_ret,
  541. compress_type);
  542. if (start + num_bytes < end) {
  543. start += num_bytes;
  544. pages = NULL;
  545. cond_resched();
  546. goto again;
  547. }
  548. } else {
  549. cleanup_and_bail_uncompressed:
  550. /*
  551. * No compression, but we still need to write the pages in
  552. * the file we've been given so far. redirty the locked
  553. * page if it corresponds to our extent and set things up
  554. * for the async work queue to run cow_file_range to do
  555. * the normal delalloc dance
  556. */
  557. if (page_offset(locked_page) >= start &&
  558. page_offset(locked_page) <= end) {
  559. __set_page_dirty_nobuffers(locked_page);
  560. /* unlocked later on in the async handlers */
  561. }
  562. if (redirty)
  563. extent_range_redirty_for_io(inode, start, end);
  564. add_async_extent(async_cow, start, end - start + 1,
  565. 0, NULL, 0, BTRFS_COMPRESS_NONE);
  566. *num_added += 1;
  567. }
  568. out:
  569. return ret;
  570. free_pages_out:
  571. for (i = 0; i < nr_pages_ret; i++) {
  572. WARN_ON(pages[i]->mapping);
  573. page_cache_release(pages[i]);
  574. }
  575. kfree(pages);
  576. goto out;
  577. }
  578. /*
  579. * phase two of compressed writeback. This is the ordered portion
  580. * of the code, which only gets called in the order the work was
  581. * queued. We walk all the async extents created by compress_file_range
  582. * and send them down to the disk.
  583. */
  584. static noinline int submit_compressed_extents(struct inode *inode,
  585. struct async_cow *async_cow)
  586. {
  587. struct async_extent *async_extent;
  588. u64 alloc_hint = 0;
  589. struct btrfs_key ins;
  590. struct extent_map *em;
  591. struct btrfs_root *root = BTRFS_I(inode)->root;
  592. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  593. struct extent_io_tree *io_tree;
  594. int ret = 0;
  595. if (list_empty(&async_cow->extents))
  596. return 0;
  597. again:
  598. while (!list_empty(&async_cow->extents)) {
  599. async_extent = list_entry(async_cow->extents.next,
  600. struct async_extent, list);
  601. list_del(&async_extent->list);
  602. io_tree = &BTRFS_I(inode)->io_tree;
  603. retry:
  604. /* did the compression code fall back to uncompressed IO? */
  605. if (!async_extent->pages) {
  606. int page_started = 0;
  607. unsigned long nr_written = 0;
  608. lock_extent(io_tree, async_extent->start,
  609. async_extent->start +
  610. async_extent->ram_size - 1);
  611. /* allocate blocks */
  612. ret = cow_file_range(inode, async_cow->locked_page,
  613. async_extent->start,
  614. async_extent->start +
  615. async_extent->ram_size - 1,
  616. &page_started, &nr_written, 0);
  617. /* JDM XXX */
  618. /*
  619. * if page_started, cow_file_range inserted an
  620. * inline extent and took care of all the unlocking
  621. * and IO for us. Otherwise, we need to submit
  622. * all those pages down to the drive.
  623. */
  624. if (!page_started && !ret)
  625. extent_write_locked_range(io_tree,
  626. inode, async_extent->start,
  627. async_extent->start +
  628. async_extent->ram_size - 1,
  629. btrfs_get_extent,
  630. WB_SYNC_ALL);
  631. else if (ret)
  632. unlock_page(async_cow->locked_page);
  633. kfree(async_extent);
  634. cond_resched();
  635. continue;
  636. }
  637. lock_extent(io_tree, async_extent->start,
  638. async_extent->start + async_extent->ram_size - 1);
  639. ret = btrfs_reserve_extent(root,
  640. async_extent->compressed_size,
  641. async_extent->compressed_size,
  642. 0, alloc_hint, &ins, 1, 1);
  643. if (ret) {
  644. int i;
  645. for (i = 0; i < async_extent->nr_pages; i++) {
  646. WARN_ON(async_extent->pages[i]->mapping);
  647. page_cache_release(async_extent->pages[i]);
  648. }
  649. kfree(async_extent->pages);
  650. async_extent->nr_pages = 0;
  651. async_extent->pages = NULL;
  652. if (ret == -ENOSPC) {
  653. unlock_extent(io_tree, async_extent->start,
  654. async_extent->start +
  655. async_extent->ram_size - 1);
  656. /*
  657. * we need to redirty the pages if we decide to
  658. * fallback to uncompressed IO, otherwise we
  659. * will not submit these pages down to lower
  660. * layers.
  661. */
  662. extent_range_redirty_for_io(inode,
  663. async_extent->start,
  664. async_extent->start +
  665. async_extent->ram_size - 1);
  666. goto retry;
  667. }
  668. goto out_free;
  669. }
  670. /*
  671. * here we're doing allocation and writeback of the
  672. * compressed pages
  673. */
  674. btrfs_drop_extent_cache(inode, async_extent->start,
  675. async_extent->start +
  676. async_extent->ram_size - 1, 0);
  677. em = alloc_extent_map();
  678. if (!em) {
  679. ret = -ENOMEM;
  680. goto out_free_reserve;
  681. }
  682. em->start = async_extent->start;
  683. em->len = async_extent->ram_size;
  684. em->orig_start = em->start;
  685. em->mod_start = em->start;
  686. em->mod_len = em->len;
  687. em->block_start = ins.objectid;
  688. em->block_len = ins.offset;
  689. em->orig_block_len = ins.offset;
  690. em->ram_bytes = async_extent->ram_size;
  691. em->bdev = root->fs_info->fs_devices->latest_bdev;
  692. em->compress_type = async_extent->compress_type;
  693. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  694. set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  695. em->generation = -1;
  696. while (1) {
  697. write_lock(&em_tree->lock);
  698. ret = add_extent_mapping(em_tree, em, 1);
  699. write_unlock(&em_tree->lock);
  700. if (ret != -EEXIST) {
  701. free_extent_map(em);
  702. break;
  703. }
  704. btrfs_drop_extent_cache(inode, async_extent->start,
  705. async_extent->start +
  706. async_extent->ram_size - 1, 0);
  707. }
  708. if (ret)
  709. goto out_free_reserve;
  710. ret = btrfs_add_ordered_extent_compress(inode,
  711. async_extent->start,
  712. ins.objectid,
  713. async_extent->ram_size,
  714. ins.offset,
  715. BTRFS_ORDERED_COMPRESSED,
  716. async_extent->compress_type);
  717. if (ret) {
  718. btrfs_drop_extent_cache(inode, async_extent->start,
  719. async_extent->start +
  720. async_extent->ram_size - 1, 0);
  721. goto out_free_reserve;
  722. }
  723. /*
  724. * clear dirty, set writeback and unlock the pages.
  725. */
  726. extent_clear_unlock_delalloc(inode, async_extent->start,
  727. async_extent->start +
  728. async_extent->ram_size - 1,
  729. NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
  730. PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
  731. PAGE_SET_WRITEBACK);
  732. ret = btrfs_submit_compressed_write(inode,
  733. async_extent->start,
  734. async_extent->ram_size,
  735. ins.objectid,
  736. ins.offset, async_extent->pages,
  737. async_extent->nr_pages);
  738. alloc_hint = ins.objectid + ins.offset;
  739. kfree(async_extent);
  740. if (ret)
  741. goto out;
  742. cond_resched();
  743. }
  744. ret = 0;
  745. out:
  746. return ret;
  747. out_free_reserve:
  748. btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
  749. out_free:
  750. extent_clear_unlock_delalloc(inode, async_extent->start,
  751. async_extent->start +
  752. async_extent->ram_size - 1,
  753. NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
  754. EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
  755. PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
  756. PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
  757. kfree(async_extent);
  758. goto again;
  759. }
  760. static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
  761. u64 num_bytes)
  762. {
  763. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  764. struct extent_map *em;
  765. u64 alloc_hint = 0;
  766. read_lock(&em_tree->lock);
  767. em = search_extent_mapping(em_tree, start, num_bytes);
  768. if (em) {
  769. /*
  770. * if block start isn't an actual block number then find the
  771. * first block in this inode and use that as a hint. If that
  772. * block is also bogus then just don't worry about it.
  773. */
  774. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  775. free_extent_map(em);
  776. em = search_extent_mapping(em_tree, 0, 0);
  777. if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
  778. alloc_hint = em->block_start;
  779. if (em)
  780. free_extent_map(em);
  781. } else {
  782. alloc_hint = em->block_start;
  783. free_extent_map(em);
  784. }
  785. }
  786. read_unlock(&em_tree->lock);
  787. return alloc_hint;
  788. }
  789. /*
  790. * when extent_io.c finds a delayed allocation range in the file,
  791. * the call backs end up in this code. The basic idea is to
  792. * allocate extents on disk for the range, and create ordered data structs
  793. * in ram to track those extents.
  794. *
  795. * locked_page is the page that writepage had locked already. We use
  796. * it to make sure we don't do extra locks or unlocks.
  797. *
  798. * *page_started is set to one if we unlock locked_page and do everything
  799. * required to start IO on it. It may be clean and already done with
  800. * IO when we return.
  801. */
  802. static noinline int cow_file_range(struct inode *inode,
  803. struct page *locked_page,
  804. u64 start, u64 end, int *page_started,
  805. unsigned long *nr_written,
  806. int unlock)
  807. {
  808. struct btrfs_root *root = BTRFS_I(inode)->root;
  809. u64 alloc_hint = 0;
  810. u64 num_bytes;
  811. unsigned long ram_size;
  812. u64 disk_num_bytes;
  813. u64 cur_alloc_size;
  814. u64 blocksize = root->sectorsize;
  815. struct btrfs_key ins;
  816. struct extent_map *em;
  817. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  818. int ret = 0;
  819. if (btrfs_is_free_space_inode(inode)) {
  820. WARN_ON_ONCE(1);
  821. ret = -EINVAL;
  822. goto out_unlock;
  823. }
  824. num_bytes = ALIGN(end - start + 1, blocksize);
  825. num_bytes = max(blocksize, num_bytes);
  826. disk_num_bytes = num_bytes;
  827. /* if this is a small write inside eof, kick off defrag */
  828. if (num_bytes < 64 * 1024 &&
  829. (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
  830. btrfs_add_inode_defrag(NULL, inode);
  831. if (start == 0) {
  832. /* lets try to make an inline extent */
  833. ret = cow_file_range_inline(root, inode, start, end, 0, 0,
  834. NULL);
  835. if (ret == 0) {
  836. extent_clear_unlock_delalloc(inode, start, end, NULL,
  837. EXTENT_LOCKED | EXTENT_DELALLOC |
  838. EXTENT_DEFRAG, PAGE_UNLOCK |
  839. PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
  840. PAGE_END_WRITEBACK);
  841. *nr_written = *nr_written +
  842. (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
  843. *page_started = 1;
  844. goto out;
  845. } else if (ret < 0) {
  846. goto out_unlock;
  847. }
  848. }
  849. BUG_ON(disk_num_bytes >
  850. btrfs_super_total_bytes(root->fs_info->super_copy));
  851. alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
  852. btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
  853. while (disk_num_bytes > 0) {
  854. unsigned long op;
  855. cur_alloc_size = disk_num_bytes;
  856. ret = btrfs_reserve_extent(root, cur_alloc_size,
  857. root->sectorsize, 0, alloc_hint,
  858. &ins, 1, 1);
  859. if (ret < 0)
  860. goto out_unlock;
  861. em = alloc_extent_map();
  862. if (!em) {
  863. ret = -ENOMEM;
  864. goto out_reserve;
  865. }
  866. em->start = start;
  867. em->orig_start = em->start;
  868. ram_size = ins.offset;
  869. em->len = ins.offset;
  870. em->mod_start = em->start;
  871. em->mod_len = em->len;
  872. em->block_start = ins.objectid;
  873. em->block_len = ins.offset;
  874. em->orig_block_len = ins.offset;
  875. em->ram_bytes = ram_size;
  876. em->bdev = root->fs_info->fs_devices->latest_bdev;
  877. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  878. em->generation = -1;
  879. while (1) {
  880. write_lock(&em_tree->lock);
  881. ret = add_extent_mapping(em_tree, em, 1);
  882. write_unlock(&em_tree->lock);
  883. if (ret != -EEXIST) {
  884. free_extent_map(em);
  885. break;
  886. }
  887. btrfs_drop_extent_cache(inode, start,
  888. start + ram_size - 1, 0);
  889. }
  890. if (ret)
  891. goto out_reserve;
  892. cur_alloc_size = ins.offset;
  893. ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
  894. ram_size, cur_alloc_size, 0);
  895. if (ret)
  896. goto out_drop_extent_cache;
  897. if (root->root_key.objectid ==
  898. BTRFS_DATA_RELOC_TREE_OBJECTID) {
  899. ret = btrfs_reloc_clone_csums(inode, start,
  900. cur_alloc_size);
  901. if (ret)
  902. goto out_drop_extent_cache;
  903. }
  904. if (disk_num_bytes < cur_alloc_size)
  905. break;
  906. /* we're not doing compressed IO, don't unlock the first
  907. * page (which the caller expects to stay locked), don't
  908. * clear any dirty bits and don't set any writeback bits
  909. *
  910. * Do set the Private2 bit so we know this page was properly
  911. * setup for writepage
  912. */
  913. op = unlock ? PAGE_UNLOCK : 0;
  914. op |= PAGE_SET_PRIVATE2;
  915. extent_clear_unlock_delalloc(inode, start,
  916. start + ram_size - 1, locked_page,
  917. EXTENT_LOCKED | EXTENT_DELALLOC,
  918. op);
  919. disk_num_bytes -= cur_alloc_size;
  920. num_bytes -= cur_alloc_size;
  921. alloc_hint = ins.objectid + ins.offset;
  922. start += cur_alloc_size;
  923. }
  924. out:
  925. return ret;
  926. out_drop_extent_cache:
  927. btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
  928. out_reserve:
  929. btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
  930. out_unlock:
  931. extent_clear_unlock_delalloc(inode, start, end, locked_page,
  932. EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
  933. EXTENT_DELALLOC | EXTENT_DEFRAG,
  934. PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
  935. PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
  936. goto out;
  937. }
  938. /*
  939. * work queue call back to started compression on a file and pages
  940. */
  941. static noinline void async_cow_start(struct btrfs_work *work)
  942. {
  943. struct async_cow *async_cow;
  944. int num_added = 0;
  945. async_cow = container_of(work, struct async_cow, work);
  946. compress_file_range(async_cow->inode, async_cow->locked_page,
  947. async_cow->start, async_cow->end, async_cow,
  948. &num_added);
  949. if (num_added == 0) {
  950. btrfs_add_delayed_iput(async_cow->inode);
  951. async_cow->inode = NULL;
  952. }
  953. }
  954. /*
  955. * work queue call back to submit previously compressed pages
  956. */
  957. static noinline void async_cow_submit(struct btrfs_work *work)
  958. {
  959. struct async_cow *async_cow;
  960. struct btrfs_root *root;
  961. unsigned long nr_pages;
  962. async_cow = container_of(work, struct async_cow, work);
  963. root = async_cow->root;
  964. nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
  965. PAGE_CACHE_SHIFT;
  966. if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
  967. 5 * 1024 * 1024 &&
  968. waitqueue_active(&root->fs_info->async_submit_wait))
  969. wake_up(&root->fs_info->async_submit_wait);
  970. if (async_cow->inode)
  971. submit_compressed_extents(async_cow->inode, async_cow);
  972. }
  973. static noinline void async_cow_free(struct btrfs_work *work)
  974. {
  975. struct async_cow *async_cow;
  976. async_cow = container_of(work, struct async_cow, work);
  977. if (async_cow->inode)
  978. btrfs_add_delayed_iput(async_cow->inode);
  979. kfree(async_cow);
  980. }
  981. static int cow_file_range_async(struct inode *inode, struct page *locked_page,
  982. u64 start, u64 end, int *page_started,
  983. unsigned long *nr_written)
  984. {
  985. struct async_cow *async_cow;
  986. struct btrfs_root *root = BTRFS_I(inode)->root;
  987. unsigned long nr_pages;
  988. u64 cur_end;
  989. int limit = 10 * 1024 * 1024;
  990. clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
  991. 1, 0, NULL, GFP_NOFS);
  992. while (start < end) {
  993. async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
  994. BUG_ON(!async_cow); /* -ENOMEM */
  995. async_cow->inode = igrab(inode);
  996. async_cow->root = root;
  997. async_cow->locked_page = locked_page;
  998. async_cow->start = start;
  999. if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
  1000. !btrfs_test_opt(root, FORCE_COMPRESS))
  1001. cur_end = end;
  1002. else
  1003. cur_end = min(end, start + 512 * 1024 - 1);
  1004. async_cow->end = cur_end;
  1005. INIT_LIST_HEAD(&async_cow->extents);
  1006. btrfs_init_work(&async_cow->work,
  1007. btrfs_delalloc_helper,
  1008. async_cow_start, async_cow_submit,
  1009. async_cow_free);
  1010. nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
  1011. PAGE_CACHE_SHIFT;
  1012. atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
  1013. btrfs_queue_work(root->fs_info->delalloc_workers,
  1014. &async_cow->work);
  1015. if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
  1016. wait_event(root->fs_info->async_submit_wait,
  1017. (atomic_read(&root->fs_info->async_delalloc_pages) <
  1018. limit));
  1019. }
  1020. while (atomic_read(&root->fs_info->async_submit_draining) &&
  1021. atomic_read(&root->fs_info->async_delalloc_pages)) {
  1022. wait_event(root->fs_info->async_submit_wait,
  1023. (atomic_read(&root->fs_info->async_delalloc_pages) ==
  1024. 0));
  1025. }
  1026. *nr_written += nr_pages;
  1027. start = cur_end + 1;
  1028. }
  1029. *page_started = 1;
  1030. return 0;
  1031. }
  1032. static noinline int csum_exist_in_range(struct btrfs_root *root,
  1033. u64 bytenr, u64 num_bytes)
  1034. {
  1035. int ret;
  1036. struct btrfs_ordered_sum *sums;
  1037. LIST_HEAD(list);
  1038. ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
  1039. bytenr + num_bytes - 1, &list, 0);
  1040. if (ret == 0 && list_empty(&list))
  1041. return 0;
  1042. while (!list_empty(&list)) {
  1043. sums = list_entry(list.next, struct btrfs_ordered_sum, list);
  1044. list_del(&sums->list);
  1045. kfree(sums);
  1046. }
  1047. return 1;
  1048. }
  1049. /*
  1050. * when nowcow writeback call back. This checks for snapshots or COW copies
  1051. * of the extents that exist in the file, and COWs the file as required.
  1052. *
  1053. * If no cow copies or snapshots exist, we write directly to the existing
  1054. * blocks on disk
  1055. */
  1056. static noinline int run_delalloc_nocow(struct inode *inode,
  1057. struct page *locked_page,
  1058. u64 start, u64 end, int *page_started, int force,
  1059. unsigned long *nr_written)
  1060. {
  1061. struct btrfs_root *root = BTRFS_I(inode)->root;
  1062. struct btrfs_trans_handle *trans;
  1063. struct extent_buffer *leaf;
  1064. struct btrfs_path *path;
  1065. struct btrfs_file_extent_item *fi;
  1066. struct btrfs_key found_key;
  1067. u64 cow_start;
  1068. u64 cur_offset;
  1069. u64 extent_end;
  1070. u64 extent_offset;
  1071. u64 disk_bytenr;
  1072. u64 num_bytes;
  1073. u64 disk_num_bytes;
  1074. u64 ram_bytes;
  1075. int extent_type;
  1076. int ret, err;
  1077. int type;
  1078. int nocow;
  1079. int check_prev = 1;
  1080. bool nolock;
  1081. u64 ino = btrfs_ino(inode);
  1082. path = btrfs_alloc_path();
  1083. if (!path) {
  1084. extent_clear_unlock_delalloc(inode, start, end, locked_page,
  1085. EXTENT_LOCKED | EXTENT_DELALLOC |
  1086. EXTENT_DO_ACCOUNTING |
  1087. EXTENT_DEFRAG, PAGE_UNLOCK |
  1088. PAGE_CLEAR_DIRTY |
  1089. PAGE_SET_WRITEBACK |
  1090. PAGE_END_WRITEBACK);
  1091. return -ENOMEM;
  1092. }
  1093. nolock = btrfs_is_free_space_inode(inode);
  1094. if (nolock)
  1095. trans = btrfs_join_transaction_nolock(root);
  1096. else
  1097. trans = btrfs_join_transaction(root);
  1098. if (IS_ERR(trans)) {
  1099. extent_clear_unlock_delalloc(inode, start, end, locked_page,
  1100. EXTENT_LOCKED | EXTENT_DELALLOC |
  1101. EXTENT_DO_ACCOUNTING |
  1102. EXTENT_DEFRAG, PAGE_UNLOCK |
  1103. PAGE_CLEAR_DIRTY |
  1104. PAGE_SET_WRITEBACK |
  1105. PAGE_END_WRITEBACK);
  1106. btrfs_free_path(path);
  1107. return PTR_ERR(trans);
  1108. }
  1109. trans->block_rsv = &root->fs_info->delalloc_block_rsv;
  1110. cow_start = (u64)-1;
  1111. cur_offset = start;
  1112. while (1) {
  1113. ret = btrfs_lookup_file_extent(trans, root, path, ino,
  1114. cur_offset, 0);
  1115. if (ret < 0)
  1116. goto error;
  1117. if (ret > 0 && path->slots[0] > 0 && check_prev) {
  1118. leaf = path->nodes[0];
  1119. btrfs_item_key_to_cpu(leaf, &found_key,
  1120. path->slots[0] - 1);
  1121. if (found_key.objectid == ino &&
  1122. found_key.type == BTRFS_EXTENT_DATA_KEY)
  1123. path->slots[0]--;
  1124. }
  1125. check_prev = 0;
  1126. next_slot:
  1127. leaf = path->nodes[0];
  1128. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  1129. ret = btrfs_next_leaf(root, path);
  1130. if (ret < 0)
  1131. goto error;
  1132. if (ret > 0)
  1133. break;
  1134. leaf = path->nodes[0];
  1135. }
  1136. nocow = 0;
  1137. disk_bytenr = 0;
  1138. num_bytes = 0;
  1139. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  1140. if (found_key.objectid > ino ||
  1141. found_key.type > BTRFS_EXTENT_DATA_KEY ||
  1142. found_key.offset > end)
  1143. break;
  1144. if (found_key.offset > cur_offset) {
  1145. extent_end = found_key.offset;
  1146. extent_type = 0;
  1147. goto out_check;
  1148. }
  1149. fi = btrfs_item_ptr(leaf, path->slots[0],
  1150. struct btrfs_file_extent_item);
  1151. extent_type = btrfs_file_extent_type(leaf, fi);
  1152. ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
  1153. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  1154. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  1155. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1156. extent_offset = btrfs_file_extent_offset(leaf, fi);
  1157. extent_end = found_key.offset +
  1158. btrfs_file_extent_num_bytes(leaf, fi);
  1159. disk_num_bytes =
  1160. btrfs_file_extent_disk_num_bytes(leaf, fi);
  1161. if (extent_end <= start) {
  1162. path->slots[0]++;
  1163. goto next_slot;
  1164. }
  1165. if (disk_bytenr == 0)
  1166. goto out_check;
  1167. if (btrfs_file_extent_compression(leaf, fi) ||
  1168. btrfs_file_extent_encryption(leaf, fi) ||
  1169. btrfs_file_extent_other_encoding(leaf, fi))
  1170. goto out_check;
  1171. if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
  1172. goto out_check;
  1173. if (btrfs_extent_readonly(root, disk_bytenr))
  1174. goto out_check;
  1175. if (btrfs_cross_ref_exist(trans, root, ino,
  1176. found_key.offset -
  1177. extent_offset, disk_bytenr))
  1178. goto out_check;
  1179. disk_bytenr += extent_offset;
  1180. disk_bytenr += cur_offset - found_key.offset;
  1181. num_bytes = min(end + 1, extent_end) - cur_offset;
  1182. /*
  1183. * if there are pending snapshots for this root,
  1184. * we fall into common COW way.
  1185. */
  1186. if (!nolock) {
  1187. err = btrfs_start_nocow_write(root);
  1188. if (!err)
  1189. goto out_check;
  1190. }
  1191. /*
  1192. * force cow if csum exists in the range.
  1193. * this ensure that csum for a given extent are
  1194. * either valid or do not exist.
  1195. */
  1196. if (csum_exist_in_range(root, disk_bytenr, num_bytes))
  1197. goto out_check;
  1198. nocow = 1;
  1199. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  1200. extent_end = found_key.offset +
  1201. btrfs_file_extent_inline_len(leaf,
  1202. path->slots[0], fi);
  1203. extent_end = ALIGN(extent_end, root->sectorsize);
  1204. } else {
  1205. BUG_ON(1);
  1206. }
  1207. out_check:
  1208. if (extent_end <= start) {
  1209. path->slots[0]++;
  1210. if (!nolock && nocow)
  1211. btrfs_end_nocow_write(root);
  1212. goto next_slot;
  1213. }
  1214. if (!nocow) {
  1215. if (cow_start == (u64)-1)
  1216. cow_start = cur_offset;
  1217. cur_offset = extent_end;
  1218. if (cur_offset > end)
  1219. break;
  1220. path->slots[0]++;
  1221. goto next_slot;
  1222. }
  1223. btrfs_release_path(path);
  1224. if (cow_start != (u64)-1) {
  1225. ret = cow_file_range(inode, locked_page,
  1226. cow_start, found_key.offset - 1,
  1227. page_started, nr_written, 1);
  1228. if (ret) {
  1229. if (!nolock && nocow)
  1230. btrfs_end_nocow_write(root);
  1231. goto error;
  1232. }
  1233. cow_start = (u64)-1;
  1234. }
  1235. if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  1236. struct extent_map *em;
  1237. struct extent_map_tree *em_tree;
  1238. em_tree = &BTRFS_I(inode)->extent_tree;
  1239. em = alloc_extent_map();
  1240. BUG_ON(!em); /* -ENOMEM */
  1241. em->start = cur_offset;
  1242. em->orig_start = found_key.offset - extent_offset;
  1243. em->len = num_bytes;
  1244. em->block_len = num_bytes;
  1245. em->block_start = disk_bytenr;
  1246. em->orig_block_len = disk_num_bytes;
  1247. em->ram_bytes = ram_bytes;
  1248. em->bdev = root->fs_info->fs_devices->latest_bdev;
  1249. em->mod_start = em->start;
  1250. em->mod_len = em->len;
  1251. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  1252. set_bit(EXTENT_FLAG_FILLING, &em->flags);
  1253. em->generation = -1;
  1254. while (1) {
  1255. write_lock(&em_tree->lock);
  1256. ret = add_extent_mapping(em_tree, em, 1);
  1257. write_unlock(&em_tree->lock);
  1258. if (ret != -EEXIST) {
  1259. free_extent_map(em);
  1260. break;
  1261. }
  1262. btrfs_drop_extent_cache(inode, em->start,
  1263. em->start + em->len - 1, 0);
  1264. }
  1265. type = BTRFS_ORDERED_PREALLOC;
  1266. } else {
  1267. type = BTRFS_ORDERED_NOCOW;
  1268. }
  1269. ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
  1270. num_bytes, num_bytes, type);
  1271. BUG_ON(ret); /* -ENOMEM */
  1272. if (root->root_key.objectid ==
  1273. BTRFS_DATA_RELOC_TREE_OBJECTID) {
  1274. ret = btrfs_reloc_clone_csums(inode, cur_offset,
  1275. num_bytes);
  1276. if (ret) {
  1277. if (!nolock && nocow)
  1278. btrfs_end_nocow_write(root);
  1279. goto error;
  1280. }
  1281. }
  1282. extent_clear_unlock_delalloc(inode, cur_offset,
  1283. cur_offset + num_bytes - 1,
  1284. locked_page, EXTENT_LOCKED |
  1285. EXTENT_DELALLOC, PAGE_UNLOCK |
  1286. PAGE_SET_PRIVATE2);
  1287. if (!nolock && nocow)
  1288. btrfs_end_nocow_write(root);
  1289. cur_offset = extent_end;
  1290. if (cur_offset > end)
  1291. break;
  1292. }
  1293. btrfs_release_path(path);
  1294. if (cur_offset <= end && cow_start == (u64)-1) {
  1295. cow_start = cur_offset;
  1296. cur_offset = end;
  1297. }
  1298. if (cow_start != (u64)-1) {
  1299. ret = cow_file_range(inode, locked_page, cow_start, end,
  1300. page_started, nr_written, 1);
  1301. if (ret)
  1302. goto error;
  1303. }
  1304. error:
  1305. err = btrfs_end_transaction(trans, root);
  1306. if (!ret)
  1307. ret = err;
  1308. if (ret && cur_offset < end)
  1309. extent_clear_unlock_delalloc(inode, cur_offset, end,
  1310. locked_page, EXTENT_LOCKED |
  1311. EXTENT_DELALLOC | EXTENT_DEFRAG |
  1312. EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
  1313. PAGE_CLEAR_DIRTY |
  1314. PAGE_SET_WRITEBACK |
  1315. PAGE_END_WRITEBACK);
  1316. btrfs_free_path(path);
  1317. return ret;
  1318. }
  1319. static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
  1320. {
  1321. if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
  1322. !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
  1323. return 0;
  1324. /*
  1325. * @defrag_bytes is a hint value, no spinlock held here,
  1326. * if is not zero, it means the file is defragging.
  1327. * Force cow if given extent needs to be defragged.
  1328. */
  1329. if (BTRFS_I(inode)->defrag_bytes &&
  1330. test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
  1331. EXTENT_DEFRAG, 0, NULL))
  1332. return 1;
  1333. return 0;
  1334. }
  1335. /*
  1336. * extent_io.c call back to do delayed allocation processing
  1337. */
  1338. static int run_delalloc_range(struct inode *inode, struct page *locked_page,
  1339. u64 start, u64 end, int *page_started,
  1340. unsigned long *nr_written)
  1341. {
  1342. int ret;
  1343. int force_cow = need_force_cow(inode, start, end);
  1344. if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
  1345. ret = run_delalloc_nocow(inode, locked_page, start, end,
  1346. page_started, 1, nr_written);
  1347. } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
  1348. ret = run_delalloc_nocow(inode, locked_page, start, end,
  1349. page_started, 0, nr_written);
  1350. } else if (!inode_need_compress(inode)) {
  1351. ret = cow_file_range(inode, locked_page, start, end,
  1352. page_started, nr_written, 1);
  1353. } else {
  1354. set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  1355. &BTRFS_I(inode)->runtime_flags);
  1356. ret = cow_file_range_async(inode, locked_page, start, end,
  1357. page_started, nr_written);
  1358. }
  1359. return ret;
  1360. }
  1361. static void btrfs_split_extent_hook(struct inode *inode,
  1362. struct extent_state *orig, u64 split)
  1363. {
  1364. /* not delalloc, ignore it */
  1365. if (!(orig->state & EXTENT_DELALLOC))
  1366. return;
  1367. spin_lock(&BTRFS_I(inode)->lock);
  1368. BTRFS_I(inode)->outstanding_extents++;
  1369. spin_unlock(&BTRFS_I(inode)->lock);
  1370. }
  1371. /*
  1372. * extent_io.c merge_extent_hook, used to track merged delayed allocation
  1373. * extents so we can keep track of new extents that are just merged onto old
  1374. * extents, such as when we are doing sequential writes, so we can properly
  1375. * account for the metadata space we'll need.
  1376. */
  1377. static void btrfs_merge_extent_hook(struct inode *inode,
  1378. struct extent_state *new,
  1379. struct extent_state *other)
  1380. {
  1381. /* not delalloc, ignore it */
  1382. if (!(other->state & EXTENT_DELALLOC))
  1383. return;
  1384. spin_lock(&BTRFS_I(inode)->lock);
  1385. BTRFS_I(inode)->outstanding_extents--;
  1386. spin_unlock(&BTRFS_I(inode)->lock);
  1387. }
  1388. static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
  1389. struct inode *inode)
  1390. {
  1391. spin_lock(&root->delalloc_lock);
  1392. if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
  1393. list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
  1394. &root->delalloc_inodes);
  1395. set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  1396. &BTRFS_I(inode)->runtime_flags);
  1397. root->nr_delalloc_inodes++;
  1398. if (root->nr_delalloc_inodes == 1) {
  1399. spin_lock(&root->fs_info->delalloc_root_lock);
  1400. BUG_ON(!list_empty(&root->delalloc_root));
  1401. list_add_tail(&root->delalloc_root,
  1402. &root->fs_info->delalloc_roots);
  1403. spin_unlock(&root->fs_info->delalloc_root_lock);
  1404. }
  1405. }
  1406. spin_unlock(&root->delalloc_lock);
  1407. }
  1408. static void btrfs_del_delalloc_inode(struct btrfs_root *root,
  1409. struct inode *inode)
  1410. {
  1411. spin_lock(&root->delalloc_lock);
  1412. if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
  1413. list_del_init(&BTRFS_I(inode)->delalloc_inodes);
  1414. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  1415. &BTRFS_I(inode)->runtime_flags);
  1416. root->nr_delalloc_inodes--;
  1417. if (!root->nr_delalloc_inodes) {
  1418. spin_lock(&root->fs_info->delalloc_root_lock);
  1419. BUG_ON(list_empty(&root->delalloc_root));
  1420. list_del_init(&root->delalloc_root);
  1421. spin_unlock(&root->fs_info->delalloc_root_lock);
  1422. }
  1423. }
  1424. spin_unlock(&root->delalloc_lock);
  1425. }
  1426. /*
  1427. * extent_io.c set_bit_hook, used to track delayed allocation
  1428. * bytes in this file, and to maintain the list of inodes that
  1429. * have pending delalloc work to be done.
  1430. */
  1431. static void btrfs_set_bit_hook(struct inode *inode,
  1432. struct extent_state *state, unsigned long *bits)
  1433. {
  1434. if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
  1435. WARN_ON(1);
  1436. /*
  1437. * set_bit and clear bit hooks normally require _irqsave/restore
  1438. * but in this case, we are only testing for the DELALLOC
  1439. * bit, which is only set or cleared with irqs on
  1440. */
  1441. if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
  1442. struct btrfs_root *root = BTRFS_I(inode)->root;
  1443. u64 len = state->end + 1 - state->start;
  1444. bool do_list = !btrfs_is_free_space_inode(inode);
  1445. if (*bits & EXTENT_FIRST_DELALLOC) {
  1446. *bits &= ~EXTENT_FIRST_DELALLOC;
  1447. } else {
  1448. spin_lock(&BTRFS_I(inode)->lock);
  1449. BTRFS_I(inode)->outstanding_extents++;
  1450. spin_unlock(&BTRFS_I(inode)->lock);
  1451. }
  1452. __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
  1453. root->fs_info->delalloc_batch);
  1454. spin_lock(&BTRFS_I(inode)->lock);
  1455. BTRFS_I(inode)->delalloc_bytes += len;
  1456. if (*bits & EXTENT_DEFRAG)
  1457. BTRFS_I(inode)->defrag_bytes += len;
  1458. if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  1459. &BTRFS_I(inode)->runtime_flags))
  1460. btrfs_add_delalloc_inodes(root, inode);
  1461. spin_unlock(&BTRFS_I(inode)->lock);
  1462. }
  1463. }
  1464. /*
  1465. * extent_io.c clear_bit_hook, see set_bit_hook for why
  1466. */
  1467. static void btrfs_clear_bit_hook(struct inode *inode,
  1468. struct extent_state *state,
  1469. unsigned long *bits)
  1470. {
  1471. u64 len = state->end + 1 - state->start;
  1472. spin_lock(&BTRFS_I(inode)->lock);
  1473. if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
  1474. BTRFS_I(inode)->defrag_bytes -= len;
  1475. spin_unlock(&BTRFS_I(inode)->lock);
  1476. /*
  1477. * set_bit and clear bit hooks normally require _irqsave/restore
  1478. * but in this case, we are only testing for the DELALLOC
  1479. * bit, which is only set or cleared with irqs on
  1480. */
  1481. if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
  1482. struct btrfs_root *root = BTRFS_I(inode)->root;
  1483. bool do_list = !btrfs_is_free_space_inode(inode);
  1484. if (*bits & EXTENT_FIRST_DELALLOC) {
  1485. *bits &= ~EXTENT_FIRST_DELALLOC;
  1486. } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
  1487. spin_lock(&BTRFS_I(inode)->lock);
  1488. BTRFS_I(inode)->outstanding_extents--;
  1489. spin_unlock(&BTRFS_I(inode)->lock);
  1490. }
  1491. /*
  1492. * We don't reserve metadata space for space cache inodes so we
  1493. * don't need to call dellalloc_release_metadata if there is an
  1494. * error.
  1495. */
  1496. if (*bits & EXTENT_DO_ACCOUNTING &&
  1497. root != root->fs_info->tree_root)
  1498. btrfs_delalloc_release_metadata(inode, len);
  1499. if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
  1500. && do_list && !(state->state & EXTENT_NORESERVE))
  1501. btrfs_free_reserved_data_space(inode, len);
  1502. __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
  1503. root->fs_info->delalloc_batch);
  1504. spin_lock(&BTRFS_I(inode)->lock);
  1505. BTRFS_I(inode)->delalloc_bytes -= len;
  1506. if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
  1507. test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  1508. &BTRFS_I(inode)->runtime_flags))
  1509. btrfs_del_delalloc_inode(root, inode);
  1510. spin_unlock(&BTRFS_I(inode)->lock);
  1511. }
  1512. }
  1513. /*
  1514. * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
  1515. * we don't create bios that span stripes or chunks
  1516. */
  1517. int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
  1518. size_t size, struct bio *bio,
  1519. unsigned long bio_flags)
  1520. {
  1521. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  1522. u64 logical = (u64)bio->bi_iter.bi_sector << 9;
  1523. u64 length = 0;
  1524. u64 map_length;
  1525. int ret;
  1526. if (bio_flags & EXTENT_BIO_COMPRESSED)
  1527. return 0;
  1528. length = bio->bi_iter.bi_size;
  1529. map_length = length;
  1530. ret = btrfs_map_block(root->fs_info, rw, logical,
  1531. &map_length, NULL, 0);
  1532. /* Will always return 0 with map_multi == NULL */
  1533. BUG_ON(ret < 0);
  1534. if (map_length < length + size)
  1535. return 1;
  1536. return 0;
  1537. }
  1538. /*
  1539. * in order to insert checksums into the metadata in large chunks,
  1540. * we wait until bio submission time. All the pages in the bio are
  1541. * checksummed and sums are attached onto the ordered extent record.
  1542. *
  1543. * At IO completion time the cums attached on the ordered extent record
  1544. * are inserted into the btree
  1545. */
  1546. static int __btrfs_submit_bio_start(struct inode *inode, int rw,
  1547. struct bio *bio, int mirror_num,
  1548. unsigned long bio_flags,
  1549. u64 bio_offset)
  1550. {
  1551. struct btrfs_root *root = BTRFS_I(inode)->root;
  1552. int ret = 0;
  1553. ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
  1554. BUG_ON(ret); /* -ENOMEM */
  1555. return 0;
  1556. }
  1557. /*
  1558. * in order to insert checksums into the metadata in large chunks,
  1559. * we wait until bio submission time. All the pages in the bio are
  1560. * checksummed and sums are attached onto the ordered extent record.
  1561. *
  1562. * At IO completion time the cums attached on the ordered extent record
  1563. * are inserted into the btree
  1564. */
  1565. static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  1566. int mirror_num, unsigned long bio_flags,
  1567. u64 bio_offset)
  1568. {
  1569. struct btrfs_root *root = BTRFS_I(inode)->root;
  1570. int ret;
  1571. ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
  1572. if (ret)
  1573. bio_endio(bio, ret);
  1574. return ret;
  1575. }
  1576. /*
  1577. * extent_io.c submission hook. This does the right thing for csum calculation
  1578. * on write, or reading the csums from the tree before a read
  1579. */
  1580. static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  1581. int mirror_num, unsigned long bio_flags,
  1582. u64 bio_offset)
  1583. {
  1584. struct btrfs_root *root = BTRFS_I(inode)->root;
  1585. int ret = 0;
  1586. int skip_sum;
  1587. int metadata = 0;
  1588. int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
  1589. skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
  1590. if (btrfs_is_free_space_inode(inode))
  1591. metadata = 2;
  1592. if (!(rw & REQ_WRITE)) {
  1593. ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
  1594. if (ret)
  1595. goto out;
  1596. if (bio_flags & EXTENT_BIO_COMPRESSED) {
  1597. ret = btrfs_submit_compressed_read(inode, bio,
  1598. mirror_num,
  1599. bio_flags);
  1600. goto out;
  1601. } else if (!skip_sum) {
  1602. ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
  1603. if (ret)
  1604. goto out;
  1605. }
  1606. goto mapit;
  1607. } else if (async && !skip_sum) {
  1608. /* csum items have already been cloned */
  1609. if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
  1610. goto mapit;
  1611. /* we're doing a write, do the async checksumming */
  1612. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  1613. inode, rw, bio, mirror_num,
  1614. bio_flags, bio_offset,
  1615. __btrfs_submit_bio_start,
  1616. __btrfs_submit_bio_done);
  1617. goto out;
  1618. } else if (!skip_sum) {
  1619. ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
  1620. if (ret)
  1621. goto out;
  1622. }
  1623. mapit:
  1624. ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
  1625. out:
  1626. if (ret < 0)
  1627. bio_endio(bio, ret);
  1628. return ret;
  1629. }
  1630. /*
  1631. * given a list of ordered sums record them in the inode. This happens
  1632. * at IO completion time based on sums calculated at bio submission time.
  1633. */
  1634. static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
  1635. struct inode *inode, u64 file_offset,
  1636. struct list_head *list)
  1637. {
  1638. struct btrfs_ordered_sum *sum;
  1639. list_for_each_entry(sum, list, list) {
  1640. trans->adding_csums = 1;
  1641. btrfs_csum_file_blocks(trans,
  1642. BTRFS_I(inode)->root->fs_info->csum_root, sum);
  1643. trans->adding_csums = 0;
  1644. }
  1645. return 0;
  1646. }
  1647. int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
  1648. struct extent_state **cached_state)
  1649. {
  1650. WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
  1651. return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
  1652. cached_state, GFP_NOFS);
  1653. }
  1654. /* see btrfs_writepage_start_hook for details on why this is required */
  1655. struct btrfs_writepage_fixup {
  1656. struct page *page;
  1657. struct btrfs_work work;
  1658. };
  1659. static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
  1660. {
  1661. struct btrfs_writepage_fixup *fixup;
  1662. struct btrfs_ordered_extent *ordered;
  1663. struct extent_state *cached_state = NULL;
  1664. struct page *page;
  1665. struct inode *inode;
  1666. u64 page_start;
  1667. u64 page_end;
  1668. int ret;
  1669. fixup = container_of(work, struct btrfs_writepage_fixup, work);
  1670. page = fixup->page;
  1671. again:
  1672. lock_page(page);
  1673. if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
  1674. ClearPageChecked(page);
  1675. goto out_page;
  1676. }
  1677. inode = page->mapping->host;
  1678. page_start = page_offset(page);
  1679. page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
  1680. lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
  1681. &cached_state);
  1682. /* already ordered? We're done */
  1683. if (PagePrivate2(page))
  1684. goto out;
  1685. ordered = btrfs_lookup_ordered_extent(inode, page_start);
  1686. if (ordered) {
  1687. unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
  1688. page_end, &cached_state, GFP_NOFS);
  1689. unlock_page(page);
  1690. btrfs_start_ordered_extent(inode, ordered, 1);
  1691. btrfs_put_ordered_extent(ordered);
  1692. goto again;
  1693. }
  1694. ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
  1695. if (ret) {
  1696. mapping_set_error(page->mapping, ret);
  1697. end_extent_writepage(page, ret, page_start, page_end);
  1698. ClearPageChecked(page);
  1699. goto out;
  1700. }
  1701. btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
  1702. ClearPageChecked(page);
  1703. set_page_dirty(page);
  1704. out:
  1705. unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
  1706. &cached_state, GFP_NOFS);
  1707. out_page:
  1708. unlock_page(page);
  1709. page_cache_release(page);
  1710. kfree(fixup);
  1711. }
  1712. /*
  1713. * There are a few paths in the higher layers of the kernel that directly
  1714. * set the page dirty bit without asking the filesystem if it is a
  1715. * good idea. This causes problems because we want to make sure COW
  1716. * properly happens and the data=ordered rules are followed.
  1717. *
  1718. * In our case any range that doesn't have the ORDERED bit set
  1719. * hasn't been properly setup for IO. We kick off an async process
  1720. * to fix it up. The async helper will wait for ordered extents, set
  1721. * the delalloc bit and make it safe to write the page.
  1722. */
  1723. static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
  1724. {
  1725. struct inode *inode = page->mapping->host;
  1726. struct btrfs_writepage_fixup *fixup;
  1727. struct btrfs_root *root = BTRFS_I(inode)->root;
  1728. /* this page is properly in the ordered list */
  1729. if (TestClearPagePrivate2(page))
  1730. return 0;
  1731. if (PageChecked(page))
  1732. return -EAGAIN;
  1733. fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
  1734. if (!fixup)
  1735. return -EAGAIN;
  1736. SetPageChecked(page);
  1737. page_cache_get(page);
  1738. btrfs_init_work(&fixup->work, btrfs_fixup_helper,
  1739. btrfs_writepage_fixup_worker, NULL, NULL);
  1740. fixup->page = page;
  1741. btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
  1742. return -EBUSY;
  1743. }
  1744. static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
  1745. struct inode *inode, u64 file_pos,
  1746. u64 disk_bytenr, u64 disk_num_bytes,
  1747. u64 num_bytes, u64 ram_bytes,
  1748. u8 compression, u8 encryption,
  1749. u16 other_encoding, int extent_type)
  1750. {
  1751. struct btrfs_root *root = BTRFS_I(inode)->root;
  1752. struct btrfs_file_extent_item *fi;
  1753. struct btrfs_path *path;
  1754. struct extent_buffer *leaf;
  1755. struct btrfs_key ins;
  1756. int extent_inserted = 0;
  1757. int ret;
  1758. path = btrfs_alloc_path();
  1759. if (!path)
  1760. return -ENOMEM;
  1761. /*
  1762. * we may be replacing one extent in the tree with another.
  1763. * The new extent is pinned in the extent map, and we don't want
  1764. * to drop it from the cache until it is completely in the btree.
  1765. *
  1766. * So, tell btrfs_drop_extents to leave this extent in the cache.
  1767. * the caller is expected to unpin it and allow it to be merged
  1768. * with the others.
  1769. */
  1770. ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
  1771. file_pos + num_bytes, NULL, 0,
  1772. 1, sizeof(*fi), &extent_inserted);
  1773. if (ret)
  1774. goto out;
  1775. if (!extent_inserted) {
  1776. ins.objectid = btrfs_ino(inode);
  1777. ins.offset = file_pos;
  1778. ins.type = BTRFS_EXTENT_DATA_KEY;
  1779. path->leave_spinning = 1;
  1780. ret = btrfs_insert_empty_item(trans, root, path, &ins,
  1781. sizeof(*fi));
  1782. if (ret)
  1783. goto out;
  1784. }
  1785. leaf = path->nodes[0];
  1786. fi = btrfs_item_ptr(leaf, path->slots[0],
  1787. struct btrfs_file_extent_item);
  1788. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1789. btrfs_set_file_extent_type(leaf, fi, extent_type);
  1790. btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
  1791. btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
  1792. btrfs_set_file_extent_offset(leaf, fi, 0);
  1793. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1794. btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
  1795. btrfs_set_file_extent_compression(leaf, fi, compression);
  1796. btrfs_set_file_extent_encryption(leaf, fi, encryption);
  1797. btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
  1798. btrfs_mark_buffer_dirty(leaf);
  1799. btrfs_release_path(path);
  1800. inode_add_bytes(inode, num_bytes);
  1801. ins.objectid = disk_bytenr;
  1802. ins.offset = disk_num_bytes;
  1803. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1804. ret = btrfs_alloc_reserved_file_extent(trans, root,
  1805. root->root_key.objectid,
  1806. btrfs_ino(inode), file_pos, &ins);
  1807. out:
  1808. btrfs_free_path(path);
  1809. return ret;
  1810. }
  1811. /* snapshot-aware defrag */
  1812. struct sa_defrag_extent_backref {
  1813. struct rb_node node;
  1814. struct old_sa_defrag_extent *old;
  1815. u64 root_id;
  1816. u64 inum;
  1817. u64 file_pos;
  1818. u64 extent_offset;
  1819. u64 num_bytes;
  1820. u64 generation;
  1821. };
  1822. struct old_sa_defrag_extent {
  1823. struct list_head list;
  1824. struct new_sa_defrag_extent *new;
  1825. u64 extent_offset;
  1826. u64 bytenr;
  1827. u64 offset;
  1828. u64 len;
  1829. int count;
  1830. };
  1831. struct new_sa_defrag_extent {
  1832. struct rb_root root;
  1833. struct list_head head;
  1834. struct btrfs_path *path;
  1835. struct inode *inode;
  1836. u64 file_pos;
  1837. u64 len;
  1838. u64 bytenr;
  1839. u64 disk_len;
  1840. u8 compress_type;
  1841. };
  1842. static int backref_comp(struct sa_defrag_extent_backref *b1,
  1843. struct sa_defrag_extent_backref *b2)
  1844. {
  1845. if (b1->root_id < b2->root_id)
  1846. return -1;
  1847. else if (b1->root_id > b2->root_id)
  1848. return 1;
  1849. if (b1->inum < b2->inum)
  1850. return -1;
  1851. else if (b1->inum > b2->inum)
  1852. return 1;
  1853. if (b1->file_pos < b2->file_pos)
  1854. return -1;
  1855. else if (b1->file_pos > b2->file_pos)
  1856. return 1;
  1857. /*
  1858. * [------------------------------] ===> (a range of space)
  1859. * |<--->| |<---->| =============> (fs/file tree A)
  1860. * |<---------------------------->| ===> (fs/file tree B)
  1861. *
  1862. * A range of space can refer to two file extents in one tree while
  1863. * refer to only one file extent in another tree.
  1864. *
  1865. * So we may process a disk offset more than one time(two extents in A)
  1866. * and locate at the same extent(one extent in B), then insert two same
  1867. * backrefs(both refer to the extent in B).
  1868. */
  1869. return 0;
  1870. }
  1871. static void backref_insert(struct rb_root *root,
  1872. struct sa_defrag_extent_backref *backref)
  1873. {
  1874. struct rb_node **p = &root->rb_node;
  1875. struct rb_node *parent = NULL;
  1876. struct sa_defrag_extent_backref *entry;
  1877. int ret;
  1878. while (*p) {
  1879. parent = *p;
  1880. entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
  1881. ret = backref_comp(backref, entry);
  1882. if (ret < 0)
  1883. p = &(*p)->rb_left;
  1884. else
  1885. p = &(*p)->rb_right;
  1886. }
  1887. rb_link_node(&backref->node, parent, p);
  1888. rb_insert_color(&backref->node, root);
  1889. }
  1890. /*
  1891. * Note the backref might has changed, and in this case we just return 0.
  1892. */
  1893. static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
  1894. void *ctx)
  1895. {
  1896. struct btrfs_file_extent_item *extent;
  1897. struct btrfs_fs_info *fs_info;
  1898. struct old_sa_defrag_extent *old = ctx;
  1899. struct new_sa_defrag_extent *new = old->new;
  1900. struct btrfs_path *path = new->path;
  1901. struct btrfs_key key;
  1902. struct btrfs_root *root;
  1903. struct sa_defrag_extent_backref *backref;
  1904. struct extent_buffer *leaf;
  1905. struct inode *inode = new->inode;
  1906. int slot;
  1907. int ret;
  1908. u64 extent_offset;
  1909. u64 num_bytes;
  1910. if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
  1911. inum == btrfs_ino(inode))
  1912. return 0;
  1913. key.objectid = root_id;
  1914. key.type = BTRFS_ROOT_ITEM_KEY;
  1915. key.offset = (u64)-1;
  1916. fs_info = BTRFS_I(inode)->root->fs_info;
  1917. root = btrfs_read_fs_root_no_name(fs_info, &key);
  1918. if (IS_ERR(root)) {
  1919. if (PTR_ERR(root) == -ENOENT)
  1920. return 0;
  1921. WARN_ON(1);
  1922. pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
  1923. inum, offset, root_id);
  1924. return PTR_ERR(root);
  1925. }
  1926. key.objectid = inum;
  1927. key.type = BTRFS_EXTENT_DATA_KEY;
  1928. if (offset > (u64)-1 << 32)
  1929. key.offset = 0;
  1930. else
  1931. key.offset = offset;
  1932. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1933. if (WARN_ON(ret < 0))
  1934. return ret;
  1935. ret = 0;
  1936. while (1) {
  1937. cond_resched();
  1938. leaf = path->nodes[0];
  1939. slot = path->slots[0];
  1940. if (slot >= btrfs_header_nritems(leaf)) {
  1941. ret = btrfs_next_leaf(root, path);
  1942. if (ret < 0) {
  1943. goto out;
  1944. } else if (ret > 0) {
  1945. ret = 0;
  1946. goto out;
  1947. }
  1948. continue;
  1949. }
  1950. path->slots[0]++;
  1951. btrfs_item_key_to_cpu(leaf, &key, slot);
  1952. if (key.objectid > inum)
  1953. goto out;
  1954. if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
  1955. continue;
  1956. extent = btrfs_item_ptr(leaf, slot,
  1957. struct btrfs_file_extent_item);
  1958. if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
  1959. continue;
  1960. /*
  1961. * 'offset' refers to the exact key.offset,
  1962. * NOT the 'offset' field in btrfs_extent_data_ref, ie.
  1963. * (key.offset - extent_offset).
  1964. */
  1965. if (key.offset != offset)
  1966. continue;
  1967. extent_offset = btrfs_file_extent_offset(leaf, extent);
  1968. num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
  1969. if (extent_offset >= old->extent_offset + old->offset +
  1970. old->len || extent_offset + num_bytes <=
  1971. old->extent_offset + old->offset)
  1972. continue;
  1973. break;
  1974. }
  1975. backref = kmalloc(sizeof(*backref), GFP_NOFS);
  1976. if (!backref) {
  1977. ret = -ENOENT;
  1978. goto out;
  1979. }
  1980. backref->root_id = root_id;
  1981. backref->inum = inum;
  1982. backref->file_pos = offset;
  1983. backref->num_bytes = num_bytes;
  1984. backref->extent_offset = extent_offset;
  1985. backref->generation = btrfs_file_extent_generation(leaf, extent);
  1986. backref->old = old;
  1987. backref_insert(&new->root, backref);
  1988. old->count++;
  1989. out:
  1990. btrfs_release_path(path);
  1991. WARN_ON(ret);
  1992. return ret;
  1993. }
  1994. static noinline bool record_extent_backrefs(struct btrfs_path *path,
  1995. struct new_sa_defrag_extent *new)
  1996. {
  1997. struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
  1998. struct old_sa_defrag_extent *old, *tmp;
  1999. int ret;
  2000. new->path = path;
  2001. list_for_each_entry_safe(old, tmp, &new->head, list) {
  2002. ret = iterate_inodes_from_logical(old->bytenr +
  2003. old->extent_offset, fs_info,
  2004. path, record_one_backref,
  2005. old);
  2006. if (ret < 0 && ret != -ENOENT)
  2007. return false;
  2008. /* no backref to be processed for this extent */
  2009. if (!old->count) {
  2010. list_del(&old->list);
  2011. kfree(old);
  2012. }
  2013. }
  2014. if (list_empty(&new->head))
  2015. return false;
  2016. return true;
  2017. }
  2018. static int relink_is_mergable(struct extent_buffer *leaf,
  2019. struct btrfs_file_extent_item *fi,
  2020. struct new_sa_defrag_extent *new)
  2021. {
  2022. if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
  2023. return 0;
  2024. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
  2025. return 0;
  2026. if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
  2027. return 0;
  2028. if (btrfs_file_extent_encryption(leaf, fi) ||
  2029. btrfs_file_extent_other_encoding(leaf, fi))
  2030. return 0;
  2031. return 1;
  2032. }
  2033. /*
  2034. * Note the backref might has changed, and in this case we just return 0.
  2035. */
  2036. static noinline int relink_extent_backref(struct btrfs_path *path,
  2037. struct sa_defrag_extent_backref *prev,
  2038. struct sa_defrag_extent_backref *backref)
  2039. {
  2040. struct btrfs_file_extent_item *extent;
  2041. struct btrfs_file_extent_item *item;
  2042. struct btrfs_ordered_extent *ordered;
  2043. struct btrfs_trans_handle *trans;
  2044. struct btrfs_fs_info *fs_info;
  2045. struct btrfs_root *root;
  2046. struct btrfs_key key;
  2047. struct extent_buffer *leaf;
  2048. struct old_sa_defrag_extent *old = backref->old;
  2049. struct new_sa_defrag_extent *new = old->new;
  2050. struct inode *src_inode = new->inode;
  2051. struct inode *inode;
  2052. struct extent_state *cached = NULL;
  2053. int ret = 0;
  2054. u64 start;
  2055. u64 len;
  2056. u64 lock_start;
  2057. u64 lock_end;
  2058. bool merge = false;
  2059. int index;
  2060. if (prev && prev->root_id == backref->root_id &&
  2061. prev->inum == backref->inum &&
  2062. prev->file_pos + prev->num_bytes == backref->file_pos)
  2063. merge = true;
  2064. /* step 1: get root */
  2065. key.objectid = backref->root_id;
  2066. key.type = BTRFS_ROOT_ITEM_KEY;
  2067. key.offset = (u64)-1;
  2068. fs_info = BTRFS_I(src_inode)->root->fs_info;
  2069. index = srcu_read_lock(&fs_info->subvol_srcu);
  2070. root = btrfs_read_fs_root_no_name(fs_info, &key);
  2071. if (IS_ERR(root)) {
  2072. srcu_read_unlock(&fs_info->subvol_srcu, index);
  2073. if (PTR_ERR(root) == -ENOENT)
  2074. return 0;
  2075. return PTR_ERR(root);
  2076. }
  2077. if (btrfs_root_readonly(root)) {
  2078. srcu_read_unlock(&fs_info->subvol_srcu, index);
  2079. return 0;
  2080. }
  2081. /* step 2: get inode */
  2082. key.objectid = backref->inum;
  2083. key.type = BTRFS_INODE_ITEM_KEY;
  2084. key.offset = 0;
  2085. inode = btrfs_iget(fs_info->sb, &key, root, NULL);
  2086. if (IS_ERR(inode)) {
  2087. srcu_read_unlock(&fs_info->subvol_srcu, index);
  2088. return 0;
  2089. }
  2090. srcu_read_unlock(&fs_info->subvol_srcu, index);
  2091. /* step 3: relink backref */
  2092. lock_start = backref->file_pos;
  2093. lock_end = backref->file_pos + backref->num_bytes - 1;
  2094. lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
  2095. 0, &cached);
  2096. ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
  2097. if (ordered) {
  2098. btrfs_put_ordered_extent(ordered);
  2099. goto out_unlock;
  2100. }
  2101. trans = btrfs_join_transaction(root);
  2102. if (IS_ERR(trans)) {
  2103. ret = PTR_ERR(trans);
  2104. goto out_unlock;
  2105. }
  2106. key.objectid = backref->inum;
  2107. key.type = BTRFS_EXTENT_DATA_KEY;
  2108. key.offset = backref->file_pos;
  2109. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  2110. if (ret < 0) {
  2111. goto out_free_path;
  2112. } else if (ret > 0) {
  2113. ret = 0;
  2114. goto out_free_path;
  2115. }
  2116. extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
  2117. struct btrfs_file_extent_item);
  2118. if (btrfs_file_extent_generation(path->nodes[0], extent) !=
  2119. backref->generation)
  2120. goto out_free_path;
  2121. btrfs_release_path(path);
  2122. start = backref->file_pos;
  2123. if (backref->extent_offset < old->extent_offset + old->offset)
  2124. start += old->extent_offset + old->offset -
  2125. backref->extent_offset;
  2126. len = min(backref->extent_offset + backref->num_bytes,
  2127. old->extent_offset + old->offset + old->len);
  2128. len -= max(backref->extent_offset, old->extent_offset + old->offset);
  2129. ret = btrfs_drop_extents(trans, root, inode, start,
  2130. start + len, 1);
  2131. if (ret)
  2132. goto out_free_path;
  2133. again:
  2134. key.objectid = btrfs_ino(inode);
  2135. key.type = BTRFS_EXTENT_DATA_KEY;
  2136. key.offset = start;
  2137. path->leave_spinning = 1;
  2138. if (merge) {
  2139. struct btrfs_file_extent_item *fi;
  2140. u64 extent_len;
  2141. struct btrfs_key found_key;
  2142. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2143. if (ret < 0)
  2144. goto out_free_path;
  2145. path->slots[0]--;
  2146. leaf = path->nodes[0];
  2147. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  2148. fi = btrfs_item_ptr(leaf, path->slots[0],
  2149. struct btrfs_file_extent_item);
  2150. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2151. if (extent_len + found_key.offset == start &&
  2152. relink_is_mergable(leaf, fi, new)) {
  2153. btrfs_set_file_extent_num_bytes(leaf, fi,
  2154. extent_len + len);
  2155. btrfs_mark_buffer_dirty(leaf);
  2156. inode_add_bytes(inode, len);
  2157. ret = 1;
  2158. goto out_free_path;
  2159. } else {
  2160. merge = false;
  2161. btrfs_release_path(path);
  2162. goto again;
  2163. }
  2164. }
  2165. ret = btrfs_insert_empty_item(trans, root, path, &key,
  2166. sizeof(*extent));
  2167. if (ret) {
  2168. btrfs_abort_transaction(trans, root, ret);
  2169. goto out_free_path;
  2170. }
  2171. leaf = path->nodes[0];
  2172. item = btrfs_item_ptr(leaf, path->slots[0],
  2173. struct btrfs_file_extent_item);
  2174. btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
  2175. btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
  2176. btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
  2177. btrfs_set_file_extent_num_bytes(leaf, item, len);
  2178. btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
  2179. btrfs_set_file_extent_generation(leaf, item, trans->transid);
  2180. btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
  2181. btrfs_set_file_extent_compression(leaf, item, new->compress_type);
  2182. btrfs_set_file_extent_encryption(leaf, item, 0);
  2183. btrfs_set_file_extent_other_encoding(leaf, item, 0);
  2184. btrfs_mark_buffer_dirty(leaf);
  2185. inode_add_bytes(inode, len);
  2186. btrfs_release_path(path);
  2187. ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
  2188. new->disk_len, 0,
  2189. backref->root_id, backref->inum,
  2190. new->file_pos, 0); /* start - extent_offset */
  2191. if (ret) {
  2192. btrfs_abort_transaction(trans, root, ret);
  2193. goto out_free_path;
  2194. }
  2195. ret = 1;
  2196. out_free_path:
  2197. btrfs_release_path(path);
  2198. path->leave_spinning = 0;
  2199. btrfs_end_transaction(trans, root);
  2200. out_unlock:
  2201. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
  2202. &cached, GFP_NOFS);
  2203. iput(inode);
  2204. return ret;
  2205. }
  2206. static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
  2207. {
  2208. struct old_sa_defrag_extent *old, *tmp;
  2209. if (!new)
  2210. return;
  2211. list_for_each_entry_safe(old, tmp, &new->head, list) {
  2212. list_del(&old->list);
  2213. kfree(old);
  2214. }
  2215. kfree(new);
  2216. }
  2217. static void relink_file_extents(struct new_sa_defrag_extent *new)
  2218. {
  2219. struct btrfs_path *path;
  2220. struct sa_defrag_extent_backref *backref;
  2221. struct sa_defrag_extent_backref *prev = NULL;
  2222. struct inode *inode;
  2223. struct btrfs_root *root;
  2224. struct rb_node *node;
  2225. int ret;
  2226. inode = new->inode;
  2227. root = BTRFS_I(inode)->root;
  2228. path = btrfs_alloc_path();
  2229. if (!path)
  2230. return;
  2231. if (!record_extent_backrefs(path, new)) {
  2232. btrfs_free_path(path);
  2233. goto out;
  2234. }
  2235. btrfs_release_path(path);
  2236. while (1) {
  2237. node = rb_first(&new->root);
  2238. if (!node)
  2239. break;
  2240. rb_erase(node, &new->root);
  2241. backref = rb_entry(node, struct sa_defrag_extent_backref, node);
  2242. ret = relink_extent_backref(path, prev, backref);
  2243. WARN_ON(ret < 0);
  2244. kfree(prev);
  2245. if (ret == 1)
  2246. prev = backref;
  2247. else
  2248. prev = NULL;
  2249. cond_resched();
  2250. }
  2251. kfree(prev);
  2252. btrfs_free_path(path);
  2253. out:
  2254. free_sa_defrag_extent(new);
  2255. atomic_dec(&root->fs_info->defrag_running);
  2256. wake_up(&root->fs_info->transaction_wait);
  2257. }
  2258. static struct new_sa_defrag_extent *
  2259. record_old_file_extents(struct inode *inode,
  2260. struct btrfs_ordered_extent *ordered)
  2261. {
  2262. struct btrfs_root *root = BTRFS_I(inode)->root;
  2263. struct btrfs_path *path;
  2264. struct btrfs_key key;
  2265. struct old_sa_defrag_extent *old;
  2266. struct new_sa_defrag_extent *new;
  2267. int ret;
  2268. new = kmalloc(sizeof(*new), GFP_NOFS);
  2269. if (!new)
  2270. return NULL;
  2271. new->inode = inode;
  2272. new->file_pos = ordered->file_offset;
  2273. new->len = ordered->len;
  2274. new->bytenr = ordered->start;
  2275. new->disk_len = ordered->disk_len;
  2276. new->compress_type = ordered->compress_type;
  2277. new->root = RB_ROOT;
  2278. INIT_LIST_HEAD(&new->head);
  2279. path = btrfs_alloc_path();
  2280. if (!path)
  2281. goto out_kfree;
  2282. key.objectid = btrfs_ino(inode);
  2283. key.type = BTRFS_EXTENT_DATA_KEY;
  2284. key.offset = new->file_pos;
  2285. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  2286. if (ret < 0)
  2287. goto out_free_path;
  2288. if (ret > 0 && path->slots[0] > 0)
  2289. path->slots[0]--;
  2290. /* find out all the old extents for the file range */
  2291. while (1) {
  2292. struct btrfs_file_extent_item *extent;
  2293. struct extent_buffer *l;
  2294. int slot;
  2295. u64 num_bytes;
  2296. u64 offset;
  2297. u64 end;
  2298. u64 disk_bytenr;
  2299. u64 extent_offset;
  2300. l = path->nodes[0];
  2301. slot = path->slots[0];
  2302. if (slot >= btrfs_header_nritems(l)) {
  2303. ret = btrfs_next_leaf(root, path);
  2304. if (ret < 0)
  2305. goto out_free_path;
  2306. else if (ret > 0)
  2307. break;
  2308. continue;
  2309. }
  2310. btrfs_item_key_to_cpu(l, &key, slot);
  2311. if (key.objectid != btrfs_ino(inode))
  2312. break;
  2313. if (key.type != BTRFS_EXTENT_DATA_KEY)
  2314. break;
  2315. if (key.offset >= new->file_pos + new->len)
  2316. break;
  2317. extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
  2318. num_bytes = btrfs_file_extent_num_bytes(l, extent);
  2319. if (key.offset + num_bytes < new->file_pos)
  2320. goto next;
  2321. disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
  2322. if (!disk_bytenr)
  2323. goto next;
  2324. extent_offset = btrfs_file_extent_offset(l, extent);
  2325. old = kmalloc(sizeof(*old), GFP_NOFS);
  2326. if (!old)
  2327. goto out_free_path;
  2328. offset = max(new->file_pos, key.offset);
  2329. end = min(new->file_pos + new->len, key.offset + num_bytes);
  2330. old->bytenr = disk_bytenr;
  2331. old->extent_offset = extent_offset;
  2332. old->offset = offset - key.offset;
  2333. old->len = end - offset;
  2334. old->new = new;
  2335. old->count = 0;
  2336. list_add_tail(&old->list, &new->head);
  2337. next:
  2338. path->slots[0]++;
  2339. cond_resched();
  2340. }
  2341. btrfs_free_path(path);
  2342. atomic_inc(&root->fs_info->defrag_running);
  2343. return new;
  2344. out_free_path:
  2345. btrfs_free_path(path);
  2346. out_kfree:
  2347. free_sa_defrag_extent(new);
  2348. return NULL;
  2349. }
  2350. static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
  2351. u64 start, u64 len)
  2352. {
  2353. struct btrfs_block_group_cache *cache;
  2354. cache = btrfs_lookup_block_group(root->fs_info, start);
  2355. ASSERT(cache);
  2356. spin_lock(&cache->lock);
  2357. cache->delalloc_bytes -= len;
  2358. spin_unlock(&cache->lock);
  2359. btrfs_put_block_group(cache);
  2360. }
  2361. /* as ordered data IO finishes, this gets called so we can finish
  2362. * an ordered extent if the range of bytes in the file it covers are
  2363. * fully written.
  2364. */
  2365. static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
  2366. {
  2367. struct inode *inode = ordered_extent->inode;
  2368. struct btrfs_root *root = BTRFS_I(inode)->root;
  2369. struct btrfs_trans_handle *trans = NULL;
  2370. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2371. struct extent_state *cached_state = NULL;
  2372. struct new_sa_defrag_extent *new = NULL;
  2373. int compress_type = 0;
  2374. int ret = 0;
  2375. u64 logical_len = ordered_extent->len;
  2376. bool nolock;
  2377. bool truncated = false;
  2378. nolock = btrfs_is_free_space_inode(inode);
  2379. if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
  2380. ret = -EIO;
  2381. goto out;
  2382. }
  2383. btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
  2384. ordered_extent->file_offset +
  2385. ordered_extent->len - 1);
  2386. if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
  2387. truncated = true;
  2388. logical_len = ordered_extent->truncated_len;
  2389. /* Truncated the entire extent, don't bother adding */
  2390. if (!logical_len)
  2391. goto out;
  2392. }
  2393. if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
  2394. BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
  2395. btrfs_ordered_update_i_size(inode, 0, ordered_extent);
  2396. if (nolock)
  2397. trans = btrfs_join_transaction_nolock(root);
  2398. else
  2399. trans = btrfs_join_transaction(root);
  2400. if (IS_ERR(trans)) {
  2401. ret = PTR_ERR(trans);
  2402. trans = NULL;
  2403. goto out;
  2404. }
  2405. trans->block_rsv = &root->fs_info->delalloc_block_rsv;
  2406. ret = btrfs_update_inode_fallback(trans, root, inode);
  2407. if (ret) /* -ENOMEM or corruption */
  2408. btrfs_abort_transaction(trans, root, ret);
  2409. goto out;
  2410. }
  2411. lock_extent_bits(io_tree, ordered_extent->file_offset,
  2412. ordered_extent->file_offset + ordered_extent->len - 1,
  2413. 0, &cached_state);
  2414. ret = test_range_bit(io_tree, ordered_extent->file_offset,
  2415. ordered_extent->file_offset + ordered_extent->len - 1,
  2416. EXTENT_DEFRAG, 1, cached_state);
  2417. if (ret) {
  2418. u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  2419. if (0 && last_snapshot >= BTRFS_I(inode)->generation)
  2420. /* the inode is shared */
  2421. new = record_old_file_extents(inode, ordered_extent);
  2422. clear_extent_bit(io_tree, ordered_extent->file_offset,
  2423. ordered_extent->file_offset + ordered_extent->len - 1,
  2424. EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
  2425. }
  2426. if (nolock)
  2427. trans = btrfs_join_transaction_nolock(root);
  2428. else
  2429. trans = btrfs_join_transaction(root);
  2430. if (IS_ERR(trans)) {
  2431. ret = PTR_ERR(trans);
  2432. trans = NULL;
  2433. goto out_unlock;
  2434. }
  2435. trans->block_rsv = &root->fs_info->delalloc_block_rsv;
  2436. if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
  2437. compress_type = ordered_extent->compress_type;
  2438. if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
  2439. BUG_ON(compress_type);
  2440. ret = btrfs_mark_extent_written(trans, inode,
  2441. ordered_extent->file_offset,
  2442. ordered_extent->file_offset +
  2443. logical_len);
  2444. } else {
  2445. BUG_ON(root == root->fs_info->tree_root);
  2446. ret = insert_reserved_file_extent(trans, inode,
  2447. ordered_extent->file_offset,
  2448. ordered_extent->start,
  2449. ordered_extent->disk_len,
  2450. logical_len, logical_len,
  2451. compress_type, 0, 0,
  2452. BTRFS_FILE_EXTENT_REG);
  2453. if (!ret)
  2454. btrfs_release_delalloc_bytes(root,
  2455. ordered_extent->start,
  2456. ordered_extent->disk_len);
  2457. }
  2458. unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
  2459. ordered_extent->file_offset, ordered_extent->len,
  2460. trans->transid);
  2461. if (ret < 0) {
  2462. btrfs_abort_transaction(trans, root, ret);
  2463. goto out_unlock;
  2464. }
  2465. add_pending_csums(trans, inode, ordered_extent->file_offset,
  2466. &ordered_extent->list);
  2467. btrfs_ordered_update_i_size(inode, 0, ordered_extent);
  2468. ret = btrfs_update_inode_fallback(trans, root, inode);
  2469. if (ret) { /* -ENOMEM or corruption */
  2470. btrfs_abort_transaction(trans, root, ret);
  2471. goto out_unlock;
  2472. }
  2473. ret = 0;
  2474. out_unlock:
  2475. unlock_extent_cached(io_tree, ordered_extent->file_offset,
  2476. ordered_extent->file_offset +
  2477. ordered_extent->len - 1, &cached_state, GFP_NOFS);
  2478. out:
  2479. if (root != root->fs_info->tree_root)
  2480. btrfs_delalloc_release_metadata(inode, ordered_extent->len);
  2481. if (trans)
  2482. btrfs_end_transaction(trans, root);
  2483. if (ret || truncated) {
  2484. u64 start, end;
  2485. if (truncated)
  2486. start = ordered_extent->file_offset + logical_len;
  2487. else
  2488. start = ordered_extent->file_offset;
  2489. end = ordered_extent->file_offset + ordered_extent->len - 1;
  2490. clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
  2491. /* Drop the cache for the part of the extent we didn't write. */
  2492. btrfs_drop_extent_cache(inode, start, end, 0);
  2493. /*
  2494. * If the ordered extent had an IOERR or something else went
  2495. * wrong we need to return the space for this ordered extent
  2496. * back to the allocator. We only free the extent in the
  2497. * truncated case if we didn't write out the extent at all.
  2498. */
  2499. if ((ret || !logical_len) &&
  2500. !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
  2501. !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
  2502. btrfs_free_reserved_extent(root, ordered_extent->start,
  2503. ordered_extent->disk_len, 1);
  2504. }
  2505. /*
  2506. * This needs to be done to make sure anybody waiting knows we are done
  2507. * updating everything for this ordered extent.
  2508. */
  2509. btrfs_remove_ordered_extent(inode, ordered_extent);
  2510. /* for snapshot-aware defrag */
  2511. if (new) {
  2512. if (ret) {
  2513. free_sa_defrag_extent(new);
  2514. atomic_dec(&root->fs_info->defrag_running);
  2515. } else {
  2516. relink_file_extents(new);
  2517. }
  2518. }
  2519. /* once for us */
  2520. btrfs_put_ordered_extent(ordered_extent);
  2521. /* once for the tree */
  2522. btrfs_put_ordered_extent(ordered_extent);
  2523. return ret;
  2524. }
  2525. static void finish_ordered_fn(struct btrfs_work *work)
  2526. {
  2527. struct btrfs_ordered_extent *ordered_extent;
  2528. ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
  2529. btrfs_finish_ordered_io(ordered_extent);
  2530. }
  2531. static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
  2532. struct extent_state *state, int uptodate)
  2533. {
  2534. struct inode *inode = page->mapping->host;
  2535. struct btrfs_root *root = BTRFS_I(inode)->root;
  2536. struct btrfs_ordered_extent *ordered_extent = NULL;
  2537. struct btrfs_workqueue *wq;
  2538. btrfs_work_func_t func;
  2539. trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
  2540. ClearPagePrivate2(page);
  2541. if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
  2542. end - start + 1, uptodate))
  2543. return 0;
  2544. if (btrfs_is_free_space_inode(inode)) {
  2545. wq = root->fs_info->endio_freespace_worker;
  2546. func = btrfs_freespace_write_helper;
  2547. } else {
  2548. wq = root->fs_info->endio_write_workers;
  2549. func = btrfs_endio_write_helper;
  2550. }
  2551. btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
  2552. NULL);
  2553. btrfs_queue_work(wq, &ordered_extent->work);
  2554. return 0;
  2555. }
  2556. static int __readpage_endio_check(struct inode *inode,
  2557. struct btrfs_io_bio *io_bio,
  2558. int icsum, struct page *page,
  2559. int pgoff, u64 start, size_t len)
  2560. {
  2561. char *kaddr;
  2562. u32 csum_expected;
  2563. u32 csum = ~(u32)0;
  2564. static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
  2565. DEFAULT_RATELIMIT_BURST);
  2566. csum_expected = *(((u32 *)io_bio->csum) + icsum);
  2567. kaddr = kmap_atomic(page);
  2568. csum = btrfs_csum_data(kaddr + pgoff, csum, len);
  2569. btrfs_csum_final(csum, (char *)&csum);
  2570. if (csum != csum_expected)
  2571. goto zeroit;
  2572. kunmap_atomic(kaddr);
  2573. return 0;
  2574. zeroit:
  2575. if (__ratelimit(&_rs))
  2576. btrfs_info(BTRFS_I(inode)->root->fs_info,
  2577. "csum failed ino %llu off %llu csum %u expected csum %u",
  2578. btrfs_ino(inode), start, csum, csum_expected);
  2579. memset(kaddr + pgoff, 1, len);
  2580. flush_dcache_page(page);
  2581. kunmap_atomic(kaddr);
  2582. if (csum_expected == 0)
  2583. return 0;
  2584. return -EIO;
  2585. }
  2586. /*
  2587. * when reads are done, we need to check csums to verify the data is correct
  2588. * if there's a match, we allow the bio to finish. If not, the code in
  2589. * extent_io.c will try to find good copies for us.
  2590. */
  2591. static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  2592. u64 phy_offset, struct page *page,
  2593. u64 start, u64 end, int mirror)
  2594. {
  2595. size_t offset = start - page_offset(page);
  2596. struct inode *inode = page->mapping->host;
  2597. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2598. struct btrfs_root *root = BTRFS_I(inode)->root;
  2599. if (PageChecked(page)) {
  2600. ClearPageChecked(page);
  2601. return 0;
  2602. }
  2603. if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
  2604. return 0;
  2605. if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
  2606. test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
  2607. clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
  2608. GFP_NOFS);
  2609. return 0;
  2610. }
  2611. phy_offset >>= inode->i_sb->s_blocksize_bits;
  2612. return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
  2613. start, (size_t)(end - start + 1));
  2614. }
  2615. struct delayed_iput {
  2616. struct list_head list;
  2617. struct inode *inode;
  2618. };
  2619. /* JDM: If this is fs-wide, why can't we add a pointer to
  2620. * btrfs_inode instead and avoid the allocation? */
  2621. void btrfs_add_delayed_iput(struct inode *inode)
  2622. {
  2623. struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
  2624. struct delayed_iput *delayed;
  2625. if (atomic_add_unless(&inode->i_count, -1, 1))
  2626. return;
  2627. delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
  2628. delayed->inode = inode;
  2629. spin_lock(&fs_info->delayed_iput_lock);
  2630. list_add_tail(&delayed->list, &fs_info->delayed_iputs);
  2631. spin_unlock(&fs_info->delayed_iput_lock);
  2632. }
  2633. void btrfs_run_delayed_iputs(struct btrfs_root *root)
  2634. {
  2635. LIST_HEAD(list);
  2636. struct btrfs_fs_info *fs_info = root->fs_info;
  2637. struct delayed_iput *delayed;
  2638. int empty;
  2639. spin_lock(&fs_info->delayed_iput_lock);
  2640. empty = list_empty(&fs_info->delayed_iputs);
  2641. spin_unlock(&fs_info->delayed_iput_lock);
  2642. if (empty)
  2643. return;
  2644. spin_lock(&fs_info->delayed_iput_lock);
  2645. list_splice_init(&fs_info->delayed_iputs, &list);
  2646. spin_unlock(&fs_info->delayed_iput_lock);
  2647. while (!list_empty(&list)) {
  2648. delayed = list_entry(list.next, struct delayed_iput, list);
  2649. list_del(&delayed->list);
  2650. iput(delayed->inode);
  2651. kfree(delayed);
  2652. }
  2653. }
  2654. /*
  2655. * This is called in transaction commit time. If there are no orphan
  2656. * files in the subvolume, it removes orphan item and frees block_rsv
  2657. * structure.
  2658. */
  2659. void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
  2660. struct btrfs_root *root)
  2661. {
  2662. struct btrfs_block_rsv *block_rsv;
  2663. int ret;
  2664. if (atomic_read(&root->orphan_inodes) ||
  2665. root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
  2666. return;
  2667. spin_lock(&root->orphan_lock);
  2668. if (atomic_read(&root->orphan_inodes)) {
  2669. spin_unlock(&root->orphan_lock);
  2670. return;
  2671. }
  2672. if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
  2673. spin_unlock(&root->orphan_lock);
  2674. return;
  2675. }
  2676. block_rsv = root->orphan_block_rsv;
  2677. root->orphan_block_rsv = NULL;
  2678. spin_unlock(&root->orphan_lock);
  2679. if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
  2680. btrfs_root_refs(&root->root_item) > 0) {
  2681. ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
  2682. root->root_key.objectid);
  2683. if (ret)
  2684. btrfs_abort_transaction(trans, root, ret);
  2685. else
  2686. clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
  2687. &root->state);
  2688. }
  2689. if (block_rsv) {
  2690. WARN_ON(block_rsv->size > 0);
  2691. btrfs_free_block_rsv(root, block_rsv);
  2692. }
  2693. }
  2694. /*
  2695. * This creates an orphan entry for the given inode in case something goes
  2696. * wrong in the middle of an unlink/truncate.
  2697. *
  2698. * NOTE: caller of this function should reserve 5 units of metadata for
  2699. * this function.
  2700. */
  2701. int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
  2702. {
  2703. struct btrfs_root *root = BTRFS_I(inode)->root;
  2704. struct btrfs_block_rsv *block_rsv = NULL;
  2705. int reserve = 0;
  2706. int insert = 0;
  2707. int ret;
  2708. if (!root->orphan_block_rsv) {
  2709. block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
  2710. if (!block_rsv)
  2711. return -ENOMEM;
  2712. }
  2713. spin_lock(&root->orphan_lock);
  2714. if (!root->orphan_block_rsv) {
  2715. root->orphan_block_rsv = block_rsv;
  2716. } else if (block_rsv) {
  2717. btrfs_free_block_rsv(root, block_rsv);
  2718. block_rsv = NULL;
  2719. }
  2720. if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  2721. &BTRFS_I(inode)->runtime_flags)) {
  2722. #if 0
  2723. /*
  2724. * For proper ENOSPC handling, we should do orphan
  2725. * cleanup when mounting. But this introduces backward
  2726. * compatibility issue.
  2727. */
  2728. if (!xchg(&root->orphan_item_inserted, 1))
  2729. insert = 2;
  2730. else
  2731. insert = 1;
  2732. #endif
  2733. insert = 1;
  2734. atomic_inc(&root->orphan_inodes);
  2735. }
  2736. if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
  2737. &BTRFS_I(inode)->runtime_flags))
  2738. reserve = 1;
  2739. spin_unlock(&root->orphan_lock);
  2740. /* grab metadata reservation from transaction handle */
  2741. if (reserve) {
  2742. ret = btrfs_orphan_reserve_metadata(trans, inode);
  2743. BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
  2744. }
  2745. /* insert an orphan item to track this unlinked/truncated file */
  2746. if (insert >= 1) {
  2747. ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
  2748. if (ret) {
  2749. atomic_dec(&root->orphan_inodes);
  2750. if (reserve) {
  2751. clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
  2752. &BTRFS_I(inode)->runtime_flags);
  2753. btrfs_orphan_release_metadata(inode);
  2754. }
  2755. if (ret != -EEXIST) {
  2756. clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  2757. &BTRFS_I(inode)->runtime_flags);
  2758. btrfs_abort_transaction(trans, root, ret);
  2759. return ret;
  2760. }
  2761. }
  2762. ret = 0;
  2763. }
  2764. /* insert an orphan item to track subvolume contains orphan files */
  2765. if (insert >= 2) {
  2766. ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
  2767. root->root_key.objectid);
  2768. if (ret && ret != -EEXIST) {
  2769. btrfs_abort_transaction(trans, root, ret);
  2770. return ret;
  2771. }
  2772. }
  2773. return 0;
  2774. }
  2775. /*
  2776. * We have done the truncate/delete so we can go ahead and remove the orphan
  2777. * item for this particular inode.
  2778. */
  2779. static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
  2780. struct inode *inode)
  2781. {
  2782. struct btrfs_root *root = BTRFS_I(inode)->root;
  2783. int delete_item = 0;
  2784. int release_rsv = 0;
  2785. int ret = 0;
  2786. spin_lock(&root->orphan_lock);
  2787. if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  2788. &BTRFS_I(inode)->runtime_flags))
  2789. delete_item = 1;
  2790. if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
  2791. &BTRFS_I(inode)->runtime_flags))
  2792. release_rsv = 1;
  2793. spin_unlock(&root->orphan_lock);
  2794. if (delete_item) {
  2795. atomic_dec(&root->orphan_inodes);
  2796. if (trans)
  2797. ret = btrfs_del_orphan_item(trans, root,
  2798. btrfs_ino(inode));
  2799. }
  2800. if (release_rsv)
  2801. btrfs_orphan_release_metadata(inode);
  2802. return ret;
  2803. }
  2804. /*
  2805. * this cleans up any orphans that may be left on the list from the last use
  2806. * of this root.
  2807. */
  2808. int btrfs_orphan_cleanup(struct btrfs_root *root)
  2809. {
  2810. struct btrfs_path *path;
  2811. struct extent_buffer *leaf;
  2812. struct btrfs_key key, found_key;
  2813. struct btrfs_trans_handle *trans;
  2814. struct inode *inode;
  2815. u64 last_objectid = 0;
  2816. int ret = 0, nr_unlink = 0, nr_truncate = 0;
  2817. if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
  2818. return 0;
  2819. path = btrfs_alloc_path();
  2820. if (!path) {
  2821. ret = -ENOMEM;
  2822. goto out;
  2823. }
  2824. path->reada = -1;
  2825. key.objectid = BTRFS_ORPHAN_OBJECTID;
  2826. key.type = BTRFS_ORPHAN_ITEM_KEY;
  2827. key.offset = (u64)-1;
  2828. while (1) {
  2829. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  2830. if (ret < 0)
  2831. goto out;
  2832. /*
  2833. * if ret == 0 means we found what we were searching for, which
  2834. * is weird, but possible, so only screw with path if we didn't
  2835. * find the key and see if we have stuff that matches
  2836. */
  2837. if (ret > 0) {
  2838. ret = 0;
  2839. if (path->slots[0] == 0)
  2840. break;
  2841. path->slots[0]--;
  2842. }
  2843. /* pull out the item */
  2844. leaf = path->nodes[0];
  2845. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  2846. /* make sure the item matches what we want */
  2847. if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
  2848. break;
  2849. if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
  2850. break;
  2851. /* release the path since we're done with it */
  2852. btrfs_release_path(path);
  2853. /*
  2854. * this is where we are basically btrfs_lookup, without the
  2855. * crossing root thing. we store the inode number in the
  2856. * offset of the orphan item.
  2857. */
  2858. if (found_key.offset == last_objectid) {
  2859. btrfs_err(root->fs_info,
  2860. "Error removing orphan entry, stopping orphan cleanup");
  2861. ret = -EINVAL;
  2862. goto out;
  2863. }
  2864. last_objectid = found_key.offset;
  2865. found_key.objectid = found_key.offset;
  2866. found_key.type = BTRFS_INODE_ITEM_KEY;
  2867. found_key.offset = 0;
  2868. inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
  2869. ret = PTR_ERR_OR_ZERO(inode);
  2870. if (ret && ret != -ESTALE)
  2871. goto out;
  2872. if (ret == -ESTALE && root == root->fs_info->tree_root) {
  2873. struct btrfs_root *dead_root;
  2874. struct btrfs_fs_info *fs_info = root->fs_info;
  2875. int is_dead_root = 0;
  2876. /*
  2877. * this is an orphan in the tree root. Currently these
  2878. * could come from 2 sources:
  2879. * a) a snapshot deletion in progress
  2880. * b) a free space cache inode
  2881. * We need to distinguish those two, as the snapshot
  2882. * orphan must not get deleted.
  2883. * find_dead_roots already ran before us, so if this
  2884. * is a snapshot deletion, we should find the root
  2885. * in the dead_roots list
  2886. */
  2887. spin_lock(&fs_info->trans_lock);
  2888. list_for_each_entry(dead_root, &fs_info->dead_roots,
  2889. root_list) {
  2890. if (dead_root->root_key.objectid ==
  2891. found_key.objectid) {
  2892. is_dead_root = 1;
  2893. break;
  2894. }
  2895. }
  2896. spin_unlock(&fs_info->trans_lock);
  2897. if (is_dead_root) {
  2898. /* prevent this orphan from being found again */
  2899. key.offset = found_key.objectid - 1;
  2900. continue;
  2901. }
  2902. }
  2903. /*
  2904. * Inode is already gone but the orphan item is still there,
  2905. * kill the orphan item.
  2906. */
  2907. if (ret == -ESTALE) {
  2908. trans = btrfs_start_transaction(root, 1);
  2909. if (IS_ERR(trans)) {
  2910. ret = PTR_ERR(trans);
  2911. goto out;
  2912. }
  2913. btrfs_debug(root->fs_info, "auto deleting %Lu",
  2914. found_key.objectid);
  2915. ret = btrfs_del_orphan_item(trans, root,
  2916. found_key.objectid);
  2917. btrfs_end_transaction(trans, root);
  2918. if (ret)
  2919. goto out;
  2920. continue;
  2921. }
  2922. /*
  2923. * add this inode to the orphan list so btrfs_orphan_del does
  2924. * the proper thing when we hit it
  2925. */
  2926. set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  2927. &BTRFS_I(inode)->runtime_flags);
  2928. atomic_inc(&root->orphan_inodes);
  2929. /* if we have links, this was a truncate, lets do that */
  2930. if (inode->i_nlink) {
  2931. if (WARN_ON(!S_ISREG(inode->i_mode))) {
  2932. iput(inode);
  2933. continue;
  2934. }
  2935. nr_truncate++;
  2936. /* 1 for the orphan item deletion. */
  2937. trans = btrfs_start_transaction(root, 1);
  2938. if (IS_ERR(trans)) {
  2939. iput(inode);
  2940. ret = PTR_ERR(trans);
  2941. goto out;
  2942. }
  2943. ret = btrfs_orphan_add(trans, inode);
  2944. btrfs_end_transaction(trans, root);
  2945. if (ret) {
  2946. iput(inode);
  2947. goto out;
  2948. }
  2949. ret = btrfs_truncate(inode);
  2950. if (ret)
  2951. btrfs_orphan_del(NULL, inode);
  2952. } else {
  2953. nr_unlink++;
  2954. }
  2955. /* this will do delete_inode and everything for us */
  2956. iput(inode);
  2957. if (ret)
  2958. goto out;
  2959. }
  2960. /* release the path since we're done with it */
  2961. btrfs_release_path(path);
  2962. root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
  2963. if (root->orphan_block_rsv)
  2964. btrfs_block_rsv_release(root, root->orphan_block_rsv,
  2965. (u64)-1);
  2966. if (root->orphan_block_rsv ||
  2967. test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
  2968. trans = btrfs_join_transaction(root);
  2969. if (!IS_ERR(trans))
  2970. btrfs_end_transaction(trans, root);
  2971. }
  2972. if (nr_unlink)
  2973. btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
  2974. if (nr_truncate)
  2975. btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
  2976. out:
  2977. if (ret)
  2978. btrfs_crit(root->fs_info,
  2979. "could not do orphan cleanup %d", ret);
  2980. btrfs_free_path(path);
  2981. return ret;
  2982. }
  2983. /*
  2984. * very simple check to peek ahead in the leaf looking for xattrs. If we
  2985. * don't find any xattrs, we know there can't be any acls.
  2986. *
  2987. * slot is the slot the inode is in, objectid is the objectid of the inode
  2988. */
  2989. static noinline int acls_after_inode_item(struct extent_buffer *leaf,
  2990. int slot, u64 objectid,
  2991. int *first_xattr_slot)
  2992. {
  2993. u32 nritems = btrfs_header_nritems(leaf);
  2994. struct btrfs_key found_key;
  2995. static u64 xattr_access = 0;
  2996. static u64 xattr_default = 0;
  2997. int scanned = 0;
  2998. if (!xattr_access) {
  2999. xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
  3000. strlen(POSIX_ACL_XATTR_ACCESS));
  3001. xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
  3002. strlen(POSIX_ACL_XATTR_DEFAULT));
  3003. }
  3004. slot++;
  3005. *first_xattr_slot = -1;
  3006. while (slot < nritems) {
  3007. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3008. /* we found a different objectid, there must not be acls */
  3009. if (found_key.objectid != objectid)
  3010. return 0;
  3011. /* we found an xattr, assume we've got an acl */
  3012. if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
  3013. if (*first_xattr_slot == -1)
  3014. *first_xattr_slot = slot;
  3015. if (found_key.offset == xattr_access ||
  3016. found_key.offset == xattr_default)
  3017. return 1;
  3018. }
  3019. /*
  3020. * we found a key greater than an xattr key, there can't
  3021. * be any acls later on
  3022. */
  3023. if (found_key.type > BTRFS_XATTR_ITEM_KEY)
  3024. return 0;
  3025. slot++;
  3026. scanned++;
  3027. /*
  3028. * it goes inode, inode backrefs, xattrs, extents,
  3029. * so if there are a ton of hard links to an inode there can
  3030. * be a lot of backrefs. Don't waste time searching too hard,
  3031. * this is just an optimization
  3032. */
  3033. if (scanned >= 8)
  3034. break;
  3035. }
  3036. /* we hit the end of the leaf before we found an xattr or
  3037. * something larger than an xattr. We have to assume the inode
  3038. * has acls
  3039. */
  3040. if (*first_xattr_slot == -1)
  3041. *first_xattr_slot = slot;
  3042. return 1;
  3043. }
  3044. /*
  3045. * read an inode from the btree into the in-memory inode
  3046. */
  3047. static void btrfs_read_locked_inode(struct inode *inode)
  3048. {
  3049. struct btrfs_path *path;
  3050. struct extent_buffer *leaf;
  3051. struct btrfs_inode_item *inode_item;
  3052. struct btrfs_timespec *tspec;
  3053. struct btrfs_root *root = BTRFS_I(inode)->root;
  3054. struct btrfs_key location;
  3055. unsigned long ptr;
  3056. int maybe_acls;
  3057. u32 rdev;
  3058. int ret;
  3059. bool filled = false;
  3060. int first_xattr_slot;
  3061. ret = btrfs_fill_inode(inode, &rdev);
  3062. if (!ret)
  3063. filled = true;
  3064. path = btrfs_alloc_path();
  3065. if (!path)
  3066. goto make_bad;
  3067. memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
  3068. ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
  3069. if (ret)
  3070. goto make_bad;
  3071. leaf = path->nodes[0];
  3072. if (filled)
  3073. goto cache_index;
  3074. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  3075. struct btrfs_inode_item);
  3076. inode->i_mode = btrfs_inode_mode(leaf, inode_item);
  3077. set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
  3078. i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
  3079. i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
  3080. btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
  3081. tspec = btrfs_inode_atime(inode_item);
  3082. inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
  3083. inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
  3084. tspec = btrfs_inode_mtime(inode_item);
  3085. inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
  3086. inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
  3087. tspec = btrfs_inode_ctime(inode_item);
  3088. inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
  3089. inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
  3090. inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
  3091. BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
  3092. BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
  3093. /*
  3094. * If we were modified in the current generation and evicted from memory
  3095. * and then re-read we need to do a full sync since we don't have any
  3096. * idea about which extents were modified before we were evicted from
  3097. * cache.
  3098. */
  3099. if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
  3100. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  3101. &BTRFS_I(inode)->runtime_flags);
  3102. inode->i_version = btrfs_inode_sequence(leaf, inode_item);
  3103. inode->i_generation = BTRFS_I(inode)->generation;
  3104. inode->i_rdev = 0;
  3105. rdev = btrfs_inode_rdev(leaf, inode_item);
  3106. BTRFS_I(inode)->index_cnt = (u64)-1;
  3107. BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
  3108. cache_index:
  3109. path->slots[0]++;
  3110. if (inode->i_nlink != 1 ||
  3111. path->slots[0] >= btrfs_header_nritems(leaf))
  3112. goto cache_acl;
  3113. btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
  3114. if (location.objectid != btrfs_ino(inode))
  3115. goto cache_acl;
  3116. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3117. if (location.type == BTRFS_INODE_REF_KEY) {
  3118. struct btrfs_inode_ref *ref;
  3119. ref = (struct btrfs_inode_ref *)ptr;
  3120. BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
  3121. } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
  3122. struct btrfs_inode_extref *extref;
  3123. extref = (struct btrfs_inode_extref *)ptr;
  3124. BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
  3125. extref);
  3126. }
  3127. cache_acl:
  3128. /*
  3129. * try to precache a NULL acl entry for files that don't have
  3130. * any xattrs or acls
  3131. */
  3132. maybe_acls = acls_after_inode_item(leaf, path->slots[0],
  3133. btrfs_ino(inode), &first_xattr_slot);
  3134. if (first_xattr_slot != -1) {
  3135. path->slots[0] = first_xattr_slot;
  3136. ret = btrfs_load_inode_props(inode, path);
  3137. if (ret)
  3138. btrfs_err(root->fs_info,
  3139. "error loading props for ino %llu (root %llu): %d",
  3140. btrfs_ino(inode),
  3141. root->root_key.objectid, ret);
  3142. }
  3143. btrfs_free_path(path);
  3144. if (!maybe_acls)
  3145. cache_no_acl(inode);
  3146. switch (inode->i_mode & S_IFMT) {
  3147. case S_IFREG:
  3148. inode->i_mapping->a_ops = &btrfs_aops;
  3149. inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
  3150. BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
  3151. inode->i_fop = &btrfs_file_operations;
  3152. inode->i_op = &btrfs_file_inode_operations;
  3153. break;
  3154. case S_IFDIR:
  3155. inode->i_fop = &btrfs_dir_file_operations;
  3156. if (root == root->fs_info->tree_root)
  3157. inode->i_op = &btrfs_dir_ro_inode_operations;
  3158. else
  3159. inode->i_op = &btrfs_dir_inode_operations;
  3160. break;
  3161. case S_IFLNK:
  3162. inode->i_op = &btrfs_symlink_inode_operations;
  3163. inode->i_mapping->a_ops = &btrfs_symlink_aops;
  3164. inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
  3165. break;
  3166. default:
  3167. inode->i_op = &btrfs_special_inode_operations;
  3168. init_special_inode(inode, inode->i_mode, rdev);
  3169. break;
  3170. }
  3171. btrfs_update_iflags(inode);
  3172. return;
  3173. make_bad:
  3174. btrfs_free_path(path);
  3175. make_bad_inode(inode);
  3176. }
  3177. /*
  3178. * given a leaf and an inode, copy the inode fields into the leaf
  3179. */
  3180. static void fill_inode_item(struct btrfs_trans_handle *trans,
  3181. struct extent_buffer *leaf,
  3182. struct btrfs_inode_item *item,
  3183. struct inode *inode)
  3184. {
  3185. struct btrfs_map_token token;
  3186. btrfs_init_map_token(&token);
  3187. btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
  3188. btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
  3189. btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
  3190. &token);
  3191. btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
  3192. btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
  3193. btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
  3194. inode->i_atime.tv_sec, &token);
  3195. btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
  3196. inode->i_atime.tv_nsec, &token);
  3197. btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
  3198. inode->i_mtime.tv_sec, &token);
  3199. btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
  3200. inode->i_mtime.tv_nsec, &token);
  3201. btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
  3202. inode->i_ctime.tv_sec, &token);
  3203. btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
  3204. inode->i_ctime.tv_nsec, &token);
  3205. btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
  3206. &token);
  3207. btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
  3208. &token);
  3209. btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
  3210. btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
  3211. btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
  3212. btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
  3213. btrfs_set_token_inode_block_group(leaf, item, 0, &token);
  3214. }
  3215. /*
  3216. * copy everything in the in-memory inode into the btree.
  3217. */
  3218. static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
  3219. struct btrfs_root *root, struct inode *inode)
  3220. {
  3221. struct btrfs_inode_item *inode_item;
  3222. struct btrfs_path *path;
  3223. struct extent_buffer *leaf;
  3224. int ret;
  3225. path = btrfs_alloc_path();
  3226. if (!path)
  3227. return -ENOMEM;
  3228. path->leave_spinning = 1;
  3229. ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
  3230. 1);
  3231. if (ret) {
  3232. if (ret > 0)
  3233. ret = -ENOENT;
  3234. goto failed;
  3235. }
  3236. leaf = path->nodes[0];
  3237. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  3238. struct btrfs_inode_item);
  3239. fill_inode_item(trans, leaf, inode_item, inode);
  3240. btrfs_mark_buffer_dirty(leaf);
  3241. btrfs_set_inode_last_trans(trans, inode);
  3242. ret = 0;
  3243. failed:
  3244. btrfs_free_path(path);
  3245. return ret;
  3246. }
  3247. /*
  3248. * copy everything in the in-memory inode into the btree.
  3249. */
  3250. noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
  3251. struct btrfs_root *root, struct inode *inode)
  3252. {
  3253. int ret;
  3254. /*
  3255. * If the inode is a free space inode, we can deadlock during commit
  3256. * if we put it into the delayed code.
  3257. *
  3258. * The data relocation inode should also be directly updated
  3259. * without delay
  3260. */
  3261. if (!btrfs_is_free_space_inode(inode)
  3262. && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
  3263. && !root->fs_info->log_root_recovering) {
  3264. btrfs_update_root_times(trans, root);
  3265. ret = btrfs_delayed_update_inode(trans, root, inode);
  3266. if (!ret)
  3267. btrfs_set_inode_last_trans(trans, inode);
  3268. return ret;
  3269. }
  3270. return btrfs_update_inode_item(trans, root, inode);
  3271. }
  3272. noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
  3273. struct btrfs_root *root,
  3274. struct inode *inode)
  3275. {
  3276. int ret;
  3277. ret = btrfs_update_inode(trans, root, inode);
  3278. if (ret == -ENOSPC)
  3279. return btrfs_update_inode_item(trans, root, inode);
  3280. return ret;
  3281. }
  3282. /*
  3283. * unlink helper that gets used here in inode.c and in the tree logging
  3284. * recovery code. It remove a link in a directory with a given name, and
  3285. * also drops the back refs in the inode to the directory
  3286. */
  3287. static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
  3288. struct btrfs_root *root,
  3289. struct inode *dir, struct inode *inode,
  3290. const char *name, int name_len)
  3291. {
  3292. struct btrfs_path *path;
  3293. int ret = 0;
  3294. struct extent_buffer *leaf;
  3295. struct btrfs_dir_item *di;
  3296. struct btrfs_key key;
  3297. u64 index;
  3298. u64 ino = btrfs_ino(inode);
  3299. u64 dir_ino = btrfs_ino(dir);
  3300. path = btrfs_alloc_path();
  3301. if (!path) {
  3302. ret = -ENOMEM;
  3303. goto out;
  3304. }
  3305. path->leave_spinning = 1;
  3306. di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
  3307. name, name_len, -1);
  3308. if (IS_ERR(di)) {
  3309. ret = PTR_ERR(di);
  3310. goto err;
  3311. }
  3312. if (!di) {
  3313. ret = -ENOENT;
  3314. goto err;
  3315. }
  3316. leaf = path->nodes[0];
  3317. btrfs_dir_item_key_to_cpu(leaf, di, &key);
  3318. ret = btrfs_delete_one_dir_name(trans, root, path, di);
  3319. if (ret)
  3320. goto err;
  3321. btrfs_release_path(path);
  3322. /*
  3323. * If we don't have dir index, we have to get it by looking up
  3324. * the inode ref, since we get the inode ref, remove it directly,
  3325. * it is unnecessary to do delayed deletion.
  3326. *
  3327. * But if we have dir index, needn't search inode ref to get it.
  3328. * Since the inode ref is close to the inode item, it is better
  3329. * that we delay to delete it, and just do this deletion when
  3330. * we update the inode item.
  3331. */
  3332. if (BTRFS_I(inode)->dir_index) {
  3333. ret = btrfs_delayed_delete_inode_ref(inode);
  3334. if (!ret) {
  3335. index = BTRFS_I(inode)->dir_index;
  3336. goto skip_backref;
  3337. }
  3338. }
  3339. ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
  3340. dir_ino, &index);
  3341. if (ret) {
  3342. btrfs_info(root->fs_info,
  3343. "failed to delete reference to %.*s, inode %llu parent %llu",
  3344. name_len, name, ino, dir_ino);
  3345. btrfs_abort_transaction(trans, root, ret);
  3346. goto err;
  3347. }
  3348. skip_backref:
  3349. ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
  3350. if (ret) {
  3351. btrfs_abort_transaction(trans, root, ret);
  3352. goto err;
  3353. }
  3354. ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
  3355. inode, dir_ino);
  3356. if (ret != 0 && ret != -ENOENT) {
  3357. btrfs_abort_transaction(trans, root, ret);
  3358. goto err;
  3359. }
  3360. ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
  3361. dir, index);
  3362. if (ret == -ENOENT)
  3363. ret = 0;
  3364. else if (ret)
  3365. btrfs_abort_transaction(trans, root, ret);
  3366. err:
  3367. btrfs_free_path(path);
  3368. if (ret)
  3369. goto out;
  3370. btrfs_i_size_write(dir, dir->i_size - name_len * 2);
  3371. inode_inc_iversion(inode);
  3372. inode_inc_iversion(dir);
  3373. inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
  3374. ret = btrfs_update_inode(trans, root, dir);
  3375. out:
  3376. return ret;
  3377. }
  3378. int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
  3379. struct btrfs_root *root,
  3380. struct inode *dir, struct inode *inode,
  3381. const char *name, int name_len)
  3382. {
  3383. int ret;
  3384. ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
  3385. if (!ret) {
  3386. drop_nlink(inode);
  3387. ret = btrfs_update_inode(trans, root, inode);
  3388. }
  3389. return ret;
  3390. }
  3391. /*
  3392. * helper to start transaction for unlink and rmdir.
  3393. *
  3394. * unlink and rmdir are special in btrfs, they do not always free space, so
  3395. * if we cannot make our reservations the normal way try and see if there is
  3396. * plenty of slack room in the global reserve to migrate, otherwise we cannot
  3397. * allow the unlink to occur.
  3398. */
  3399. static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
  3400. {
  3401. struct btrfs_trans_handle *trans;
  3402. struct btrfs_root *root = BTRFS_I(dir)->root;
  3403. int ret;
  3404. /*
  3405. * 1 for the possible orphan item
  3406. * 1 for the dir item
  3407. * 1 for the dir index
  3408. * 1 for the inode ref
  3409. * 1 for the inode
  3410. */
  3411. trans = btrfs_start_transaction(root, 5);
  3412. if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
  3413. return trans;
  3414. if (PTR_ERR(trans) == -ENOSPC) {
  3415. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
  3416. trans = btrfs_start_transaction(root, 0);
  3417. if (IS_ERR(trans))
  3418. return trans;
  3419. ret = btrfs_cond_migrate_bytes(root->fs_info,
  3420. &root->fs_info->trans_block_rsv,
  3421. num_bytes, 5);
  3422. if (ret) {
  3423. btrfs_end_transaction(trans, root);
  3424. return ERR_PTR(ret);
  3425. }
  3426. trans->block_rsv = &root->fs_info->trans_block_rsv;
  3427. trans->bytes_reserved = num_bytes;
  3428. }
  3429. return trans;
  3430. }
  3431. static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
  3432. {
  3433. struct btrfs_root *root = BTRFS_I(dir)->root;
  3434. struct btrfs_trans_handle *trans;
  3435. struct inode *inode = dentry->d_inode;
  3436. int ret;
  3437. trans = __unlink_start_trans(dir);
  3438. if (IS_ERR(trans))
  3439. return PTR_ERR(trans);
  3440. btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
  3441. ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
  3442. dentry->d_name.name, dentry->d_name.len);
  3443. if (ret)
  3444. goto out;
  3445. if (inode->i_nlink == 0) {
  3446. ret = btrfs_orphan_add(trans, inode);
  3447. if (ret)
  3448. goto out;
  3449. }
  3450. out:
  3451. btrfs_end_transaction(trans, root);
  3452. btrfs_btree_balance_dirty(root);
  3453. return ret;
  3454. }
  3455. int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
  3456. struct btrfs_root *root,
  3457. struct inode *dir, u64 objectid,
  3458. const char *name, int name_len)
  3459. {
  3460. struct btrfs_path *path;
  3461. struct extent_buffer *leaf;
  3462. struct btrfs_dir_item *di;
  3463. struct btrfs_key key;
  3464. u64 index;
  3465. int ret;
  3466. u64 dir_ino = btrfs_ino(dir);
  3467. path = btrfs_alloc_path();
  3468. if (!path)
  3469. return -ENOMEM;
  3470. di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
  3471. name, name_len, -1);
  3472. if (IS_ERR_OR_NULL(di)) {
  3473. if (!di)
  3474. ret = -ENOENT;
  3475. else
  3476. ret = PTR_ERR(di);
  3477. goto out;
  3478. }
  3479. leaf = path->nodes[0];
  3480. btrfs_dir_item_key_to_cpu(leaf, di, &key);
  3481. WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
  3482. ret = btrfs_delete_one_dir_name(trans, root, path, di);
  3483. if (ret) {
  3484. btrfs_abort_transaction(trans, root, ret);
  3485. goto out;
  3486. }
  3487. btrfs_release_path(path);
  3488. ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
  3489. objectid, root->root_key.objectid,
  3490. dir_ino, &index, name, name_len);
  3491. if (ret < 0) {
  3492. if (ret != -ENOENT) {
  3493. btrfs_abort_transaction(trans, root, ret);
  3494. goto out;
  3495. }
  3496. di = btrfs_search_dir_index_item(root, path, dir_ino,
  3497. name, name_len);
  3498. if (IS_ERR_OR_NULL(di)) {
  3499. if (!di)
  3500. ret = -ENOENT;
  3501. else
  3502. ret = PTR_ERR(di);
  3503. btrfs_abort_transaction(trans, root, ret);
  3504. goto out;
  3505. }
  3506. leaf = path->nodes[0];
  3507. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3508. btrfs_release_path(path);
  3509. index = key.offset;
  3510. }
  3511. btrfs_release_path(path);
  3512. ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
  3513. if (ret) {
  3514. btrfs_abort_transaction(trans, root, ret);
  3515. goto out;
  3516. }
  3517. btrfs_i_size_write(dir, dir->i_size - name_len * 2);
  3518. inode_inc_iversion(dir);
  3519. dir->i_mtime = dir->i_ctime = CURRENT_TIME;
  3520. ret = btrfs_update_inode_fallback(trans, root, dir);
  3521. if (ret)
  3522. btrfs_abort_transaction(trans, root, ret);
  3523. out:
  3524. btrfs_free_path(path);
  3525. return ret;
  3526. }
  3527. static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
  3528. {
  3529. struct inode *inode = dentry->d_inode;
  3530. int err = 0;
  3531. struct btrfs_root *root = BTRFS_I(dir)->root;
  3532. struct btrfs_trans_handle *trans;
  3533. if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
  3534. return -ENOTEMPTY;
  3535. if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
  3536. return -EPERM;
  3537. trans = __unlink_start_trans(dir);
  3538. if (IS_ERR(trans))
  3539. return PTR_ERR(trans);
  3540. if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
  3541. err = btrfs_unlink_subvol(trans, root, dir,
  3542. BTRFS_I(inode)->location.objectid,
  3543. dentry->d_name.name,
  3544. dentry->d_name.len);
  3545. goto out;
  3546. }
  3547. err = btrfs_orphan_add(trans, inode);
  3548. if (err)
  3549. goto out;
  3550. /* now the directory is empty */
  3551. err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
  3552. dentry->d_name.name, dentry->d_name.len);
  3553. if (!err)
  3554. btrfs_i_size_write(inode, 0);
  3555. out:
  3556. btrfs_end_transaction(trans, root);
  3557. btrfs_btree_balance_dirty(root);
  3558. return err;
  3559. }
  3560. /*
  3561. * this can truncate away extent items, csum items and directory items.
  3562. * It starts at a high offset and removes keys until it can't find
  3563. * any higher than new_size
  3564. *
  3565. * csum items that cross the new i_size are truncated to the new size
  3566. * as well.
  3567. *
  3568. * min_type is the minimum key type to truncate down to. If set to 0, this
  3569. * will kill all the items on this inode, including the INODE_ITEM_KEY.
  3570. */
  3571. int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
  3572. struct btrfs_root *root,
  3573. struct inode *inode,
  3574. u64 new_size, u32 min_type)
  3575. {
  3576. struct btrfs_path *path;
  3577. struct extent_buffer *leaf;
  3578. struct btrfs_file_extent_item *fi;
  3579. struct btrfs_key key;
  3580. struct btrfs_key found_key;
  3581. u64 extent_start = 0;
  3582. u64 extent_num_bytes = 0;
  3583. u64 extent_offset = 0;
  3584. u64 item_end = 0;
  3585. u64 last_size = (u64)-1;
  3586. u32 found_type = (u8)-1;
  3587. int found_extent;
  3588. int del_item;
  3589. int pending_del_nr = 0;
  3590. int pending_del_slot = 0;
  3591. int extent_type = -1;
  3592. int ret;
  3593. int err = 0;
  3594. u64 ino = btrfs_ino(inode);
  3595. BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
  3596. path = btrfs_alloc_path();
  3597. if (!path)
  3598. return -ENOMEM;
  3599. path->reada = -1;
  3600. /*
  3601. * We want to drop from the next block forward in case this new size is
  3602. * not block aligned since we will be keeping the last block of the
  3603. * extent just the way it is.
  3604. */
  3605. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
  3606. root == root->fs_info->tree_root)
  3607. btrfs_drop_extent_cache(inode, ALIGN(new_size,
  3608. root->sectorsize), (u64)-1, 0);
  3609. /*
  3610. * This function is also used to drop the items in the log tree before
  3611. * we relog the inode, so if root != BTRFS_I(inode)->root, it means
  3612. * it is used to drop the loged items. So we shouldn't kill the delayed
  3613. * items.
  3614. */
  3615. if (min_type == 0 && root == BTRFS_I(inode)->root)
  3616. btrfs_kill_delayed_inode_items(inode);
  3617. key.objectid = ino;
  3618. key.offset = (u64)-1;
  3619. key.type = (u8)-1;
  3620. search_again:
  3621. path->leave_spinning = 1;
  3622. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  3623. if (ret < 0) {
  3624. err = ret;
  3625. goto out;
  3626. }
  3627. if (ret > 0) {
  3628. /* there are no items in the tree for us to truncate, we're
  3629. * done
  3630. */
  3631. if (path->slots[0] == 0)
  3632. goto out;
  3633. path->slots[0]--;
  3634. }
  3635. while (1) {
  3636. fi = NULL;
  3637. leaf = path->nodes[0];
  3638. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3639. found_type = found_key.type;
  3640. if (found_key.objectid != ino)
  3641. break;
  3642. if (found_type < min_type)
  3643. break;
  3644. item_end = found_key.offset;
  3645. if (found_type == BTRFS_EXTENT_DATA_KEY) {
  3646. fi = btrfs_item_ptr(leaf, path->slots[0],
  3647. struct btrfs_file_extent_item);
  3648. extent_type = btrfs_file_extent_type(leaf, fi);
  3649. if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
  3650. item_end +=
  3651. btrfs_file_extent_num_bytes(leaf, fi);
  3652. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  3653. item_end += btrfs_file_extent_inline_len(leaf,
  3654. path->slots[0], fi);
  3655. }
  3656. item_end--;
  3657. }
  3658. if (found_type > min_type) {
  3659. del_item = 1;
  3660. } else {
  3661. if (item_end < new_size)
  3662. break;
  3663. if (found_key.offset >= new_size)
  3664. del_item = 1;
  3665. else
  3666. del_item = 0;
  3667. }
  3668. found_extent = 0;
  3669. /* FIXME, shrink the extent if the ref count is only 1 */
  3670. if (found_type != BTRFS_EXTENT_DATA_KEY)
  3671. goto delete;
  3672. if (del_item)
  3673. last_size = found_key.offset;
  3674. else
  3675. last_size = new_size;
  3676. if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
  3677. u64 num_dec;
  3678. extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
  3679. if (!del_item) {
  3680. u64 orig_num_bytes =
  3681. btrfs_file_extent_num_bytes(leaf, fi);
  3682. extent_num_bytes = ALIGN(new_size -
  3683. found_key.offset,
  3684. root->sectorsize);
  3685. btrfs_set_file_extent_num_bytes(leaf, fi,
  3686. extent_num_bytes);
  3687. num_dec = (orig_num_bytes -
  3688. extent_num_bytes);
  3689. if (test_bit(BTRFS_ROOT_REF_COWS,
  3690. &root->state) &&
  3691. extent_start != 0)
  3692. inode_sub_bytes(inode, num_dec);
  3693. btrfs_mark_buffer_dirty(leaf);
  3694. } else {
  3695. extent_num_bytes =
  3696. btrfs_file_extent_disk_num_bytes(leaf,
  3697. fi);
  3698. extent_offset = found_key.offset -
  3699. btrfs_file_extent_offset(leaf, fi);
  3700. /* FIXME blocksize != 4096 */
  3701. num_dec = btrfs_file_extent_num_bytes(leaf, fi);
  3702. if (extent_start != 0) {
  3703. found_extent = 1;
  3704. if (test_bit(BTRFS_ROOT_REF_COWS,
  3705. &root->state))
  3706. inode_sub_bytes(inode, num_dec);
  3707. }
  3708. }
  3709. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  3710. /*
  3711. * we can't truncate inline items that have had
  3712. * special encodings
  3713. */
  3714. if (!del_item &&
  3715. btrfs_file_extent_compression(leaf, fi) == 0 &&
  3716. btrfs_file_extent_encryption(leaf, fi) == 0 &&
  3717. btrfs_file_extent_other_encoding(leaf, fi) == 0) {
  3718. u32 size = new_size - found_key.offset;
  3719. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  3720. inode_sub_bytes(inode, item_end + 1 -
  3721. new_size);
  3722. /*
  3723. * update the ram bytes to properly reflect
  3724. * the new size of our item
  3725. */
  3726. btrfs_set_file_extent_ram_bytes(leaf, fi, size);
  3727. size =
  3728. btrfs_file_extent_calc_inline_size(size);
  3729. btrfs_truncate_item(root, path, size, 1);
  3730. } else if (test_bit(BTRFS_ROOT_REF_COWS,
  3731. &root->state)) {
  3732. inode_sub_bytes(inode, item_end + 1 -
  3733. found_key.offset);
  3734. }
  3735. }
  3736. delete:
  3737. if (del_item) {
  3738. if (!pending_del_nr) {
  3739. /* no pending yet, add ourselves */
  3740. pending_del_slot = path->slots[0];
  3741. pending_del_nr = 1;
  3742. } else if (pending_del_nr &&
  3743. path->slots[0] + 1 == pending_del_slot) {
  3744. /* hop on the pending chunk */
  3745. pending_del_nr++;
  3746. pending_del_slot = path->slots[0];
  3747. } else {
  3748. BUG();
  3749. }
  3750. } else {
  3751. break;
  3752. }
  3753. if (found_extent &&
  3754. (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
  3755. root == root->fs_info->tree_root)) {
  3756. btrfs_set_path_blocking(path);
  3757. ret = btrfs_free_extent(trans, root, extent_start,
  3758. extent_num_bytes, 0,
  3759. btrfs_header_owner(leaf),
  3760. ino, extent_offset, 0);
  3761. BUG_ON(ret);
  3762. }
  3763. if (found_type == BTRFS_INODE_ITEM_KEY)
  3764. break;
  3765. if (path->slots[0] == 0 ||
  3766. path->slots[0] != pending_del_slot) {
  3767. if (pending_del_nr) {
  3768. ret = btrfs_del_items(trans, root, path,
  3769. pending_del_slot,
  3770. pending_del_nr);
  3771. if (ret) {
  3772. btrfs_abort_transaction(trans,
  3773. root, ret);
  3774. goto error;
  3775. }
  3776. pending_del_nr = 0;
  3777. }
  3778. btrfs_release_path(path);
  3779. goto search_again;
  3780. } else {
  3781. path->slots[0]--;
  3782. }
  3783. }
  3784. out:
  3785. if (pending_del_nr) {
  3786. ret = btrfs_del_items(trans, root, path, pending_del_slot,
  3787. pending_del_nr);
  3788. if (ret)
  3789. btrfs_abort_transaction(trans, root, ret);
  3790. }
  3791. error:
  3792. if (last_size != (u64)-1 &&
  3793. root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
  3794. btrfs_ordered_update_i_size(inode, last_size, NULL);
  3795. btrfs_free_path(path);
  3796. return err;
  3797. }
  3798. /*
  3799. * btrfs_truncate_page - read, zero a chunk and write a page
  3800. * @inode - inode that we're zeroing
  3801. * @from - the offset to start zeroing
  3802. * @len - the length to zero, 0 to zero the entire range respective to the
  3803. * offset
  3804. * @front - zero up to the offset instead of from the offset on
  3805. *
  3806. * This will find the page for the "from" offset and cow the page and zero the
  3807. * part we want to zero. This is used with truncate and hole punching.
  3808. */
  3809. int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
  3810. int front)
  3811. {
  3812. struct address_space *mapping = inode->i_mapping;
  3813. struct btrfs_root *root = BTRFS_I(inode)->root;
  3814. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  3815. struct btrfs_ordered_extent *ordered;
  3816. struct extent_state *cached_state = NULL;
  3817. char *kaddr;
  3818. u32 blocksize = root->sectorsize;
  3819. pgoff_t index = from >> PAGE_CACHE_SHIFT;
  3820. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  3821. struct page *page;
  3822. gfp_t mask = btrfs_alloc_write_mask(mapping);
  3823. int ret = 0;
  3824. u64 page_start;
  3825. u64 page_end;
  3826. if ((offset & (blocksize - 1)) == 0 &&
  3827. (!len || ((len & (blocksize - 1)) == 0)))
  3828. goto out;
  3829. ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
  3830. if (ret)
  3831. goto out;
  3832. again:
  3833. page = find_or_create_page(mapping, index, mask);
  3834. if (!page) {
  3835. btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
  3836. ret = -ENOMEM;
  3837. goto out;
  3838. }
  3839. page_start = page_offset(page);
  3840. page_end = page_start + PAGE_CACHE_SIZE - 1;
  3841. if (!PageUptodate(page)) {
  3842. ret = btrfs_readpage(NULL, page);
  3843. lock_page(page);
  3844. if (page->mapping != mapping) {
  3845. unlock_page(page);
  3846. page_cache_release(page);
  3847. goto again;
  3848. }
  3849. if (!PageUptodate(page)) {
  3850. ret = -EIO;
  3851. goto out_unlock;
  3852. }
  3853. }
  3854. wait_on_page_writeback(page);
  3855. lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
  3856. set_page_extent_mapped(page);
  3857. ordered = btrfs_lookup_ordered_extent(inode, page_start);
  3858. if (ordered) {
  3859. unlock_extent_cached(io_tree, page_start, page_end,
  3860. &cached_state, GFP_NOFS);
  3861. unlock_page(page);
  3862. page_cache_release(page);
  3863. btrfs_start_ordered_extent(inode, ordered, 1);
  3864. btrfs_put_ordered_extent(ordered);
  3865. goto again;
  3866. }
  3867. clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
  3868. EXTENT_DIRTY | EXTENT_DELALLOC |
  3869. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  3870. 0, 0, &cached_state, GFP_NOFS);
  3871. ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
  3872. &cached_state);
  3873. if (ret) {
  3874. unlock_extent_cached(io_tree, page_start, page_end,
  3875. &cached_state, GFP_NOFS);
  3876. goto out_unlock;
  3877. }
  3878. if (offset != PAGE_CACHE_SIZE) {
  3879. if (!len)
  3880. len = PAGE_CACHE_SIZE - offset;
  3881. kaddr = kmap(page);
  3882. if (front)
  3883. memset(kaddr, 0, offset);
  3884. else
  3885. memset(kaddr + offset, 0, len);
  3886. flush_dcache_page(page);
  3887. kunmap(page);
  3888. }
  3889. ClearPageChecked(page);
  3890. set_page_dirty(page);
  3891. unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
  3892. GFP_NOFS);
  3893. out_unlock:
  3894. if (ret)
  3895. btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
  3896. unlock_page(page);
  3897. page_cache_release(page);
  3898. out:
  3899. return ret;
  3900. }
  3901. static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
  3902. u64 offset, u64 len)
  3903. {
  3904. struct btrfs_trans_handle *trans;
  3905. int ret;
  3906. /*
  3907. * Still need to make sure the inode looks like it's been updated so
  3908. * that any holes get logged if we fsync.
  3909. */
  3910. if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
  3911. BTRFS_I(inode)->last_trans = root->fs_info->generation;
  3912. BTRFS_I(inode)->last_sub_trans = root->log_transid;
  3913. BTRFS_I(inode)->last_log_commit = root->last_log_commit;
  3914. return 0;
  3915. }
  3916. /*
  3917. * 1 - for the one we're dropping
  3918. * 1 - for the one we're adding
  3919. * 1 - for updating the inode.
  3920. */
  3921. trans = btrfs_start_transaction(root, 3);
  3922. if (IS_ERR(trans))
  3923. return PTR_ERR(trans);
  3924. ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
  3925. if (ret) {
  3926. btrfs_abort_transaction(trans, root, ret);
  3927. btrfs_end_transaction(trans, root);
  3928. return ret;
  3929. }
  3930. ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
  3931. 0, 0, len, 0, len, 0, 0, 0);
  3932. if (ret)
  3933. btrfs_abort_transaction(trans, root, ret);
  3934. else
  3935. btrfs_update_inode(trans, root, inode);
  3936. btrfs_end_transaction(trans, root);
  3937. return ret;
  3938. }
  3939. /*
  3940. * This function puts in dummy file extents for the area we're creating a hole
  3941. * for. So if we are truncating this file to a larger size we need to insert
  3942. * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
  3943. * the range between oldsize and size
  3944. */
  3945. int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
  3946. {
  3947. struct btrfs_root *root = BTRFS_I(inode)->root;
  3948. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  3949. struct extent_map *em = NULL;
  3950. struct extent_state *cached_state = NULL;
  3951. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  3952. u64 hole_start = ALIGN(oldsize, root->sectorsize);
  3953. u64 block_end = ALIGN(size, root->sectorsize);
  3954. u64 last_byte;
  3955. u64 cur_offset;
  3956. u64 hole_size;
  3957. int err = 0;
  3958. /*
  3959. * If our size started in the middle of a page we need to zero out the
  3960. * rest of the page before we expand the i_size, otherwise we could
  3961. * expose stale data.
  3962. */
  3963. err = btrfs_truncate_page(inode, oldsize, 0, 0);
  3964. if (err)
  3965. return err;
  3966. if (size <= hole_start)
  3967. return 0;
  3968. while (1) {
  3969. struct btrfs_ordered_extent *ordered;
  3970. lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
  3971. &cached_state);
  3972. ordered = btrfs_lookup_ordered_range(inode, hole_start,
  3973. block_end - hole_start);
  3974. if (!ordered)
  3975. break;
  3976. unlock_extent_cached(io_tree, hole_start, block_end - 1,
  3977. &cached_state, GFP_NOFS);
  3978. btrfs_start_ordered_extent(inode, ordered, 1);
  3979. btrfs_put_ordered_extent(ordered);
  3980. }
  3981. cur_offset = hole_start;
  3982. while (1) {
  3983. em = btrfs_get_extent(inode, NULL, 0, cur_offset,
  3984. block_end - cur_offset, 0);
  3985. if (IS_ERR(em)) {
  3986. err = PTR_ERR(em);
  3987. em = NULL;
  3988. break;
  3989. }
  3990. last_byte = min(extent_map_end(em), block_end);
  3991. last_byte = ALIGN(last_byte , root->sectorsize);
  3992. if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
  3993. struct extent_map *hole_em;
  3994. hole_size = last_byte - cur_offset;
  3995. err = maybe_insert_hole(root, inode, cur_offset,
  3996. hole_size);
  3997. if (err)
  3998. break;
  3999. btrfs_drop_extent_cache(inode, cur_offset,
  4000. cur_offset + hole_size - 1, 0);
  4001. hole_em = alloc_extent_map();
  4002. if (!hole_em) {
  4003. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  4004. &BTRFS_I(inode)->runtime_flags);
  4005. goto next;
  4006. }
  4007. hole_em->start = cur_offset;
  4008. hole_em->len = hole_size;
  4009. hole_em->orig_start = cur_offset;
  4010. hole_em->block_start = EXTENT_MAP_HOLE;
  4011. hole_em->block_len = 0;
  4012. hole_em->orig_block_len = 0;
  4013. hole_em->ram_bytes = hole_size;
  4014. hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
  4015. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  4016. hole_em->generation = root->fs_info->generation;
  4017. while (1) {
  4018. write_lock(&em_tree->lock);
  4019. err = add_extent_mapping(em_tree, hole_em, 1);
  4020. write_unlock(&em_tree->lock);
  4021. if (err != -EEXIST)
  4022. break;
  4023. btrfs_drop_extent_cache(inode, cur_offset,
  4024. cur_offset +
  4025. hole_size - 1, 0);
  4026. }
  4027. free_extent_map(hole_em);
  4028. }
  4029. next:
  4030. free_extent_map(em);
  4031. em = NULL;
  4032. cur_offset = last_byte;
  4033. if (cur_offset >= block_end)
  4034. break;
  4035. }
  4036. free_extent_map(em);
  4037. unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
  4038. GFP_NOFS);
  4039. return err;
  4040. }
  4041. static int btrfs_setsize(struct inode *inode, struct iattr *attr)
  4042. {
  4043. struct btrfs_root *root = BTRFS_I(inode)->root;
  4044. struct btrfs_trans_handle *trans;
  4045. loff_t oldsize = i_size_read(inode);
  4046. loff_t newsize = attr->ia_size;
  4047. int mask = attr->ia_valid;
  4048. int ret;
  4049. /*
  4050. * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
  4051. * special case where we need to update the times despite not having
  4052. * these flags set. For all other operations the VFS set these flags
  4053. * explicitly if it wants a timestamp update.
  4054. */
  4055. if (newsize != oldsize) {
  4056. inode_inc_iversion(inode);
  4057. if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
  4058. inode->i_ctime = inode->i_mtime =
  4059. current_fs_time(inode->i_sb);
  4060. }
  4061. if (newsize > oldsize) {
  4062. truncate_pagecache(inode, newsize);
  4063. ret = btrfs_cont_expand(inode, oldsize, newsize);
  4064. if (ret)
  4065. return ret;
  4066. trans = btrfs_start_transaction(root, 1);
  4067. if (IS_ERR(trans))
  4068. return PTR_ERR(trans);
  4069. i_size_write(inode, newsize);
  4070. btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
  4071. ret = btrfs_update_inode(trans, root, inode);
  4072. btrfs_end_transaction(trans, root);
  4073. } else {
  4074. /*
  4075. * We're truncating a file that used to have good data down to
  4076. * zero. Make sure it gets into the ordered flush list so that
  4077. * any new writes get down to disk quickly.
  4078. */
  4079. if (newsize == 0)
  4080. set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  4081. &BTRFS_I(inode)->runtime_flags);
  4082. /*
  4083. * 1 for the orphan item we're going to add
  4084. * 1 for the orphan item deletion.
  4085. */
  4086. trans = btrfs_start_transaction(root, 2);
  4087. if (IS_ERR(trans))
  4088. return PTR_ERR(trans);
  4089. /*
  4090. * We need to do this in case we fail at _any_ point during the
  4091. * actual truncate. Once we do the truncate_setsize we could
  4092. * invalidate pages which forces any outstanding ordered io to
  4093. * be instantly completed which will give us extents that need
  4094. * to be truncated. If we fail to get an orphan inode down we
  4095. * could have left over extents that were never meant to live,
  4096. * so we need to garuntee from this point on that everything
  4097. * will be consistent.
  4098. */
  4099. ret = btrfs_orphan_add(trans, inode);
  4100. btrfs_end_transaction(trans, root);
  4101. if (ret)
  4102. return ret;
  4103. /* we don't support swapfiles, so vmtruncate shouldn't fail */
  4104. truncate_setsize(inode, newsize);
  4105. /* Disable nonlocked read DIO to avoid the end less truncate */
  4106. btrfs_inode_block_unlocked_dio(inode);
  4107. inode_dio_wait(inode);
  4108. btrfs_inode_resume_unlocked_dio(inode);
  4109. ret = btrfs_truncate(inode);
  4110. if (ret && inode->i_nlink) {
  4111. int err;
  4112. /*
  4113. * failed to truncate, disk_i_size is only adjusted down
  4114. * as we remove extents, so it should represent the true
  4115. * size of the inode, so reset the in memory size and
  4116. * delete our orphan entry.
  4117. */
  4118. trans = btrfs_join_transaction(root);
  4119. if (IS_ERR(trans)) {
  4120. btrfs_orphan_del(NULL, inode);
  4121. return ret;
  4122. }
  4123. i_size_write(inode, BTRFS_I(inode)->disk_i_size);
  4124. err = btrfs_orphan_del(trans, inode);
  4125. if (err)
  4126. btrfs_abort_transaction(trans, root, err);
  4127. btrfs_end_transaction(trans, root);
  4128. }
  4129. }
  4130. return ret;
  4131. }
  4132. static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
  4133. {
  4134. struct inode *inode = dentry->d_inode;
  4135. struct btrfs_root *root = BTRFS_I(inode)->root;
  4136. int err;
  4137. if (btrfs_root_readonly(root))
  4138. return -EROFS;
  4139. err = inode_change_ok(inode, attr);
  4140. if (err)
  4141. return err;
  4142. if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
  4143. err = btrfs_setsize(inode, attr);
  4144. if (err)
  4145. return err;
  4146. }
  4147. if (attr->ia_valid) {
  4148. setattr_copy(inode, attr);
  4149. inode_inc_iversion(inode);
  4150. err = btrfs_dirty_inode(inode);
  4151. if (!err && attr->ia_valid & ATTR_MODE)
  4152. err = posix_acl_chmod(inode, inode->i_mode);
  4153. }
  4154. return err;
  4155. }
  4156. /*
  4157. * While truncating the inode pages during eviction, we get the VFS calling
  4158. * btrfs_invalidatepage() against each page of the inode. This is slow because
  4159. * the calls to btrfs_invalidatepage() result in a huge amount of calls to
  4160. * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
  4161. * extent_state structures over and over, wasting lots of time.
  4162. *
  4163. * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
  4164. * those expensive operations on a per page basis and do only the ordered io
  4165. * finishing, while we release here the extent_map and extent_state structures,
  4166. * without the excessive merging and splitting.
  4167. */
  4168. static void evict_inode_truncate_pages(struct inode *inode)
  4169. {
  4170. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  4171. struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
  4172. struct rb_node *node;
  4173. ASSERT(inode->i_state & I_FREEING);
  4174. truncate_inode_pages_final(&inode->i_data);
  4175. write_lock(&map_tree->lock);
  4176. while (!RB_EMPTY_ROOT(&map_tree->map)) {
  4177. struct extent_map *em;
  4178. node = rb_first(&map_tree->map);
  4179. em = rb_entry(node, struct extent_map, rb_node);
  4180. clear_bit(EXTENT_FLAG_PINNED, &em->flags);
  4181. clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
  4182. remove_extent_mapping(map_tree, em);
  4183. free_extent_map(em);
  4184. if (need_resched()) {
  4185. write_unlock(&map_tree->lock);
  4186. cond_resched();
  4187. write_lock(&map_tree->lock);
  4188. }
  4189. }
  4190. write_unlock(&map_tree->lock);
  4191. spin_lock(&io_tree->lock);
  4192. while (!RB_EMPTY_ROOT(&io_tree->state)) {
  4193. struct extent_state *state;
  4194. struct extent_state *cached_state = NULL;
  4195. node = rb_first(&io_tree->state);
  4196. state = rb_entry(node, struct extent_state, rb_node);
  4197. atomic_inc(&state->refs);
  4198. spin_unlock(&io_tree->lock);
  4199. lock_extent_bits(io_tree, state->start, state->end,
  4200. 0, &cached_state);
  4201. clear_extent_bit(io_tree, state->start, state->end,
  4202. EXTENT_LOCKED | EXTENT_DIRTY |
  4203. EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
  4204. EXTENT_DEFRAG, 1, 1,
  4205. &cached_state, GFP_NOFS);
  4206. free_extent_state(state);
  4207. cond_resched();
  4208. spin_lock(&io_tree->lock);
  4209. }
  4210. spin_unlock(&io_tree->lock);
  4211. }
  4212. void btrfs_evict_inode(struct inode *inode)
  4213. {
  4214. struct btrfs_trans_handle *trans;
  4215. struct btrfs_root *root = BTRFS_I(inode)->root;
  4216. struct btrfs_block_rsv *rsv, *global_rsv;
  4217. u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
  4218. int ret;
  4219. trace_btrfs_inode_evict(inode);
  4220. evict_inode_truncate_pages(inode);
  4221. if (inode->i_nlink &&
  4222. ((btrfs_root_refs(&root->root_item) != 0 &&
  4223. root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
  4224. btrfs_is_free_space_inode(inode)))
  4225. goto no_delete;
  4226. if (is_bad_inode(inode)) {
  4227. btrfs_orphan_del(NULL, inode);
  4228. goto no_delete;
  4229. }
  4230. /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
  4231. btrfs_wait_ordered_range(inode, 0, (u64)-1);
  4232. btrfs_free_io_failure_record(inode, 0, (u64)-1);
  4233. if (root->fs_info->log_root_recovering) {
  4234. BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  4235. &BTRFS_I(inode)->runtime_flags));
  4236. goto no_delete;
  4237. }
  4238. if (inode->i_nlink > 0) {
  4239. BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
  4240. root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
  4241. goto no_delete;
  4242. }
  4243. ret = btrfs_commit_inode_delayed_inode(inode);
  4244. if (ret) {
  4245. btrfs_orphan_del(NULL, inode);
  4246. goto no_delete;
  4247. }
  4248. rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
  4249. if (!rsv) {
  4250. btrfs_orphan_del(NULL, inode);
  4251. goto no_delete;
  4252. }
  4253. rsv->size = min_size;
  4254. rsv->failfast = 1;
  4255. global_rsv = &root->fs_info->global_block_rsv;
  4256. btrfs_i_size_write(inode, 0);
  4257. /*
  4258. * This is a bit simpler than btrfs_truncate since we've already
  4259. * reserved our space for our orphan item in the unlink, so we just
  4260. * need to reserve some slack space in case we add bytes and update
  4261. * inode item when doing the truncate.
  4262. */
  4263. while (1) {
  4264. ret = btrfs_block_rsv_refill(root, rsv, min_size,
  4265. BTRFS_RESERVE_FLUSH_LIMIT);
  4266. /*
  4267. * Try and steal from the global reserve since we will
  4268. * likely not use this space anyway, we want to try as
  4269. * hard as possible to get this to work.
  4270. */
  4271. if (ret)
  4272. ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
  4273. if (ret) {
  4274. btrfs_warn(root->fs_info,
  4275. "Could not get space for a delete, will truncate on mount %d",
  4276. ret);
  4277. btrfs_orphan_del(NULL, inode);
  4278. btrfs_free_block_rsv(root, rsv);
  4279. goto no_delete;
  4280. }
  4281. trans = btrfs_join_transaction(root);
  4282. if (IS_ERR(trans)) {
  4283. btrfs_orphan_del(NULL, inode);
  4284. btrfs_free_block_rsv(root, rsv);
  4285. goto no_delete;
  4286. }
  4287. trans->block_rsv = rsv;
  4288. ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
  4289. if (ret != -ENOSPC)
  4290. break;
  4291. trans->block_rsv = &root->fs_info->trans_block_rsv;
  4292. btrfs_end_transaction(trans, root);
  4293. trans = NULL;
  4294. btrfs_btree_balance_dirty(root);
  4295. }
  4296. btrfs_free_block_rsv(root, rsv);
  4297. /*
  4298. * Errors here aren't a big deal, it just means we leave orphan items
  4299. * in the tree. They will be cleaned up on the next mount.
  4300. */
  4301. if (ret == 0) {
  4302. trans->block_rsv = root->orphan_block_rsv;
  4303. btrfs_orphan_del(trans, inode);
  4304. } else {
  4305. btrfs_orphan_del(NULL, inode);
  4306. }
  4307. trans->block_rsv = &root->fs_info->trans_block_rsv;
  4308. if (!(root == root->fs_info->tree_root ||
  4309. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
  4310. btrfs_return_ino(root, btrfs_ino(inode));
  4311. btrfs_end_transaction(trans, root);
  4312. btrfs_btree_balance_dirty(root);
  4313. no_delete:
  4314. btrfs_remove_delayed_node(inode);
  4315. clear_inode(inode);
  4316. return;
  4317. }
  4318. /*
  4319. * this returns the key found in the dir entry in the location pointer.
  4320. * If no dir entries were found, location->objectid is 0.
  4321. */
  4322. static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
  4323. struct btrfs_key *location)
  4324. {
  4325. const char *name = dentry->d_name.name;
  4326. int namelen = dentry->d_name.len;
  4327. struct btrfs_dir_item *di;
  4328. struct btrfs_path *path;
  4329. struct btrfs_root *root = BTRFS_I(dir)->root;
  4330. int ret = 0;
  4331. path = btrfs_alloc_path();
  4332. if (!path)
  4333. return -ENOMEM;
  4334. di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
  4335. namelen, 0);
  4336. if (IS_ERR(di))
  4337. ret = PTR_ERR(di);
  4338. if (IS_ERR_OR_NULL(di))
  4339. goto out_err;
  4340. btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
  4341. out:
  4342. btrfs_free_path(path);
  4343. return ret;
  4344. out_err:
  4345. location->objectid = 0;
  4346. goto out;
  4347. }
  4348. /*
  4349. * when we hit a tree root in a directory, the btrfs part of the inode
  4350. * needs to be changed to reflect the root directory of the tree root. This
  4351. * is kind of like crossing a mount point.
  4352. */
  4353. static int fixup_tree_root_location(struct btrfs_root *root,
  4354. struct inode *dir,
  4355. struct dentry *dentry,
  4356. struct btrfs_key *location,
  4357. struct btrfs_root **sub_root)
  4358. {
  4359. struct btrfs_path *path;
  4360. struct btrfs_root *new_root;
  4361. struct btrfs_root_ref *ref;
  4362. struct extent_buffer *leaf;
  4363. int ret;
  4364. int err = 0;
  4365. path = btrfs_alloc_path();
  4366. if (!path) {
  4367. err = -ENOMEM;
  4368. goto out;
  4369. }
  4370. err = -ENOENT;
  4371. ret = btrfs_find_item(root->fs_info->tree_root, path,
  4372. BTRFS_I(dir)->root->root_key.objectid,
  4373. location->objectid, BTRFS_ROOT_REF_KEY, NULL);
  4374. if (ret) {
  4375. if (ret < 0)
  4376. err = ret;
  4377. goto out;
  4378. }
  4379. leaf = path->nodes[0];
  4380. ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
  4381. if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
  4382. btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
  4383. goto out;
  4384. ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
  4385. (unsigned long)(ref + 1),
  4386. dentry->d_name.len);
  4387. if (ret)
  4388. goto out;
  4389. btrfs_release_path(path);
  4390. new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
  4391. if (IS_ERR(new_root)) {
  4392. err = PTR_ERR(new_root);
  4393. goto out;
  4394. }
  4395. *sub_root = new_root;
  4396. location->objectid = btrfs_root_dirid(&new_root->root_item);
  4397. location->type = BTRFS_INODE_ITEM_KEY;
  4398. location->offset = 0;
  4399. err = 0;
  4400. out:
  4401. btrfs_free_path(path);
  4402. return err;
  4403. }
  4404. static void inode_tree_add(struct inode *inode)
  4405. {
  4406. struct btrfs_root *root = BTRFS_I(inode)->root;
  4407. struct btrfs_inode *entry;
  4408. struct rb_node **p;
  4409. struct rb_node *parent;
  4410. struct rb_node *new = &BTRFS_I(inode)->rb_node;
  4411. u64 ino = btrfs_ino(inode);
  4412. if (inode_unhashed(inode))
  4413. return;
  4414. parent = NULL;
  4415. spin_lock(&root->inode_lock);
  4416. p = &root->inode_tree.rb_node;
  4417. while (*p) {
  4418. parent = *p;
  4419. entry = rb_entry(parent, struct btrfs_inode, rb_node);
  4420. if (ino < btrfs_ino(&entry->vfs_inode))
  4421. p = &parent->rb_left;
  4422. else if (ino > btrfs_ino(&entry->vfs_inode))
  4423. p = &parent->rb_right;
  4424. else {
  4425. WARN_ON(!(entry->vfs_inode.i_state &
  4426. (I_WILL_FREE | I_FREEING)));
  4427. rb_replace_node(parent, new, &root->inode_tree);
  4428. RB_CLEAR_NODE(parent);
  4429. spin_unlock(&root->inode_lock);
  4430. return;
  4431. }
  4432. }
  4433. rb_link_node(new, parent, p);
  4434. rb_insert_color(new, &root->inode_tree);
  4435. spin_unlock(&root->inode_lock);
  4436. }
  4437. static void inode_tree_del(struct inode *inode)
  4438. {
  4439. struct btrfs_root *root = BTRFS_I(inode)->root;
  4440. int empty = 0;
  4441. spin_lock(&root->inode_lock);
  4442. if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
  4443. rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
  4444. RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
  4445. empty = RB_EMPTY_ROOT(&root->inode_tree);
  4446. }
  4447. spin_unlock(&root->inode_lock);
  4448. if (empty && btrfs_root_refs(&root->root_item) == 0) {
  4449. synchronize_srcu(&root->fs_info->subvol_srcu);
  4450. spin_lock(&root->inode_lock);
  4451. empty = RB_EMPTY_ROOT(&root->inode_tree);
  4452. spin_unlock(&root->inode_lock);
  4453. if (empty)
  4454. btrfs_add_dead_root(root);
  4455. }
  4456. }
  4457. void btrfs_invalidate_inodes(struct btrfs_root *root)
  4458. {
  4459. struct rb_node *node;
  4460. struct rb_node *prev;
  4461. struct btrfs_inode *entry;
  4462. struct inode *inode;
  4463. u64 objectid = 0;
  4464. if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
  4465. WARN_ON(btrfs_root_refs(&root->root_item) != 0);
  4466. spin_lock(&root->inode_lock);
  4467. again:
  4468. node = root->inode_tree.rb_node;
  4469. prev = NULL;
  4470. while (node) {
  4471. prev = node;
  4472. entry = rb_entry(node, struct btrfs_inode, rb_node);
  4473. if (objectid < btrfs_ino(&entry->vfs_inode))
  4474. node = node->rb_left;
  4475. else if (objectid > btrfs_ino(&entry->vfs_inode))
  4476. node = node->rb_right;
  4477. else
  4478. break;
  4479. }
  4480. if (!node) {
  4481. while (prev) {
  4482. entry = rb_entry(prev, struct btrfs_inode, rb_node);
  4483. if (objectid <= btrfs_ino(&entry->vfs_inode)) {
  4484. node = prev;
  4485. break;
  4486. }
  4487. prev = rb_next(prev);
  4488. }
  4489. }
  4490. while (node) {
  4491. entry = rb_entry(node, struct btrfs_inode, rb_node);
  4492. objectid = btrfs_ino(&entry->vfs_inode) + 1;
  4493. inode = igrab(&entry->vfs_inode);
  4494. if (inode) {
  4495. spin_unlock(&root->inode_lock);
  4496. if (atomic_read(&inode->i_count) > 1)
  4497. d_prune_aliases(inode);
  4498. /*
  4499. * btrfs_drop_inode will have it removed from
  4500. * the inode cache when its usage count
  4501. * hits zero.
  4502. */
  4503. iput(inode);
  4504. cond_resched();
  4505. spin_lock(&root->inode_lock);
  4506. goto again;
  4507. }
  4508. if (cond_resched_lock(&root->inode_lock))
  4509. goto again;
  4510. node = rb_next(node);
  4511. }
  4512. spin_unlock(&root->inode_lock);
  4513. }
  4514. static int btrfs_init_locked_inode(struct inode *inode, void *p)
  4515. {
  4516. struct btrfs_iget_args *args = p;
  4517. inode->i_ino = args->location->objectid;
  4518. memcpy(&BTRFS_I(inode)->location, args->location,
  4519. sizeof(*args->location));
  4520. BTRFS_I(inode)->root = args->root;
  4521. return 0;
  4522. }
  4523. static int btrfs_find_actor(struct inode *inode, void *opaque)
  4524. {
  4525. struct btrfs_iget_args *args = opaque;
  4526. return args->location->objectid == BTRFS_I(inode)->location.objectid &&
  4527. args->root == BTRFS_I(inode)->root;
  4528. }
  4529. static struct inode *btrfs_iget_locked(struct super_block *s,
  4530. struct btrfs_key *location,
  4531. struct btrfs_root *root)
  4532. {
  4533. struct inode *inode;
  4534. struct btrfs_iget_args args;
  4535. unsigned long hashval = btrfs_inode_hash(location->objectid, root);
  4536. args.location = location;
  4537. args.root = root;
  4538. inode = iget5_locked(s, hashval, btrfs_find_actor,
  4539. btrfs_init_locked_inode,
  4540. (void *)&args);
  4541. return inode;
  4542. }
  4543. /* Get an inode object given its location and corresponding root.
  4544. * Returns in *is_new if the inode was read from disk
  4545. */
  4546. struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
  4547. struct btrfs_root *root, int *new)
  4548. {
  4549. struct inode *inode;
  4550. inode = btrfs_iget_locked(s, location, root);
  4551. if (!inode)
  4552. return ERR_PTR(-ENOMEM);
  4553. if (inode->i_state & I_NEW) {
  4554. btrfs_read_locked_inode(inode);
  4555. if (!is_bad_inode(inode)) {
  4556. inode_tree_add(inode);
  4557. unlock_new_inode(inode);
  4558. if (new)
  4559. *new = 1;
  4560. } else {
  4561. unlock_new_inode(inode);
  4562. iput(inode);
  4563. inode = ERR_PTR(-ESTALE);
  4564. }
  4565. }
  4566. return inode;
  4567. }
  4568. static struct inode *new_simple_dir(struct super_block *s,
  4569. struct btrfs_key *key,
  4570. struct btrfs_root *root)
  4571. {
  4572. struct inode *inode = new_inode(s);
  4573. if (!inode)
  4574. return ERR_PTR(-ENOMEM);
  4575. BTRFS_I(inode)->root = root;
  4576. memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
  4577. set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
  4578. inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
  4579. inode->i_op = &btrfs_dir_ro_inode_operations;
  4580. inode->i_fop = &simple_dir_operations;
  4581. inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
  4582. inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
  4583. return inode;
  4584. }
  4585. struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
  4586. {
  4587. struct inode *inode;
  4588. struct btrfs_root *root = BTRFS_I(dir)->root;
  4589. struct btrfs_root *sub_root = root;
  4590. struct btrfs_key location;
  4591. int index;
  4592. int ret = 0;
  4593. if (dentry->d_name.len > BTRFS_NAME_LEN)
  4594. return ERR_PTR(-ENAMETOOLONG);
  4595. ret = btrfs_inode_by_name(dir, dentry, &location);
  4596. if (ret < 0)
  4597. return ERR_PTR(ret);
  4598. if (location.objectid == 0)
  4599. return ERR_PTR(-ENOENT);
  4600. if (location.type == BTRFS_INODE_ITEM_KEY) {
  4601. inode = btrfs_iget(dir->i_sb, &location, root, NULL);
  4602. return inode;
  4603. }
  4604. BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
  4605. index = srcu_read_lock(&root->fs_info->subvol_srcu);
  4606. ret = fixup_tree_root_location(root, dir, dentry,
  4607. &location, &sub_root);
  4608. if (ret < 0) {
  4609. if (ret != -ENOENT)
  4610. inode = ERR_PTR(ret);
  4611. else
  4612. inode = new_simple_dir(dir->i_sb, &location, sub_root);
  4613. } else {
  4614. inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
  4615. }
  4616. srcu_read_unlock(&root->fs_info->subvol_srcu, index);
  4617. if (!IS_ERR(inode) && root != sub_root) {
  4618. down_read(&root->fs_info->cleanup_work_sem);
  4619. if (!(inode->i_sb->s_flags & MS_RDONLY))
  4620. ret = btrfs_orphan_cleanup(sub_root);
  4621. up_read(&root->fs_info->cleanup_work_sem);
  4622. if (ret) {
  4623. iput(inode);
  4624. inode = ERR_PTR(ret);
  4625. }
  4626. }
  4627. return inode;
  4628. }
  4629. static int btrfs_dentry_delete(const struct dentry *dentry)
  4630. {
  4631. struct btrfs_root *root;
  4632. struct inode *inode = dentry->d_inode;
  4633. if (!inode && !IS_ROOT(dentry))
  4634. inode = dentry->d_parent->d_inode;
  4635. if (inode) {
  4636. root = BTRFS_I(inode)->root;
  4637. if (btrfs_root_refs(&root->root_item) == 0)
  4638. return 1;
  4639. if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
  4640. return 1;
  4641. }
  4642. return 0;
  4643. }
  4644. static void btrfs_dentry_release(struct dentry *dentry)
  4645. {
  4646. kfree(dentry->d_fsdata);
  4647. }
  4648. static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
  4649. unsigned int flags)
  4650. {
  4651. struct inode *inode;
  4652. inode = btrfs_lookup_dentry(dir, dentry);
  4653. if (IS_ERR(inode)) {
  4654. if (PTR_ERR(inode) == -ENOENT)
  4655. inode = NULL;
  4656. else
  4657. return ERR_CAST(inode);
  4658. }
  4659. return d_materialise_unique(dentry, inode);
  4660. }
  4661. unsigned char btrfs_filetype_table[] = {
  4662. DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
  4663. };
  4664. static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
  4665. {
  4666. struct inode *inode = file_inode(file);
  4667. struct btrfs_root *root = BTRFS_I(inode)->root;
  4668. struct btrfs_item *item;
  4669. struct btrfs_dir_item *di;
  4670. struct btrfs_key key;
  4671. struct btrfs_key found_key;
  4672. struct btrfs_path *path;
  4673. struct list_head ins_list;
  4674. struct list_head del_list;
  4675. int ret;
  4676. struct extent_buffer *leaf;
  4677. int slot;
  4678. unsigned char d_type;
  4679. int over = 0;
  4680. u32 di_cur;
  4681. u32 di_total;
  4682. u32 di_len;
  4683. int key_type = BTRFS_DIR_INDEX_KEY;
  4684. char tmp_name[32];
  4685. char *name_ptr;
  4686. int name_len;
  4687. int is_curr = 0; /* ctx->pos points to the current index? */
  4688. /* FIXME, use a real flag for deciding about the key type */
  4689. if (root->fs_info->tree_root == root)
  4690. key_type = BTRFS_DIR_ITEM_KEY;
  4691. if (!dir_emit_dots(file, ctx))
  4692. return 0;
  4693. path = btrfs_alloc_path();
  4694. if (!path)
  4695. return -ENOMEM;
  4696. path->reada = 1;
  4697. if (key_type == BTRFS_DIR_INDEX_KEY) {
  4698. INIT_LIST_HEAD(&ins_list);
  4699. INIT_LIST_HEAD(&del_list);
  4700. btrfs_get_delayed_items(inode, &ins_list, &del_list);
  4701. }
  4702. key.type = key_type;
  4703. key.offset = ctx->pos;
  4704. key.objectid = btrfs_ino(inode);
  4705. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  4706. if (ret < 0)
  4707. goto err;
  4708. while (1) {
  4709. leaf = path->nodes[0];
  4710. slot = path->slots[0];
  4711. if (slot >= btrfs_header_nritems(leaf)) {
  4712. ret = btrfs_next_leaf(root, path);
  4713. if (ret < 0)
  4714. goto err;
  4715. else if (ret > 0)
  4716. break;
  4717. continue;
  4718. }
  4719. item = btrfs_item_nr(slot);
  4720. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  4721. if (found_key.objectid != key.objectid)
  4722. break;
  4723. if (found_key.type != key_type)
  4724. break;
  4725. if (found_key.offset < ctx->pos)
  4726. goto next;
  4727. if (key_type == BTRFS_DIR_INDEX_KEY &&
  4728. btrfs_should_delete_dir_index(&del_list,
  4729. found_key.offset))
  4730. goto next;
  4731. ctx->pos = found_key.offset;
  4732. is_curr = 1;
  4733. di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
  4734. di_cur = 0;
  4735. di_total = btrfs_item_size(leaf, item);
  4736. while (di_cur < di_total) {
  4737. struct btrfs_key location;
  4738. if (verify_dir_item(root, leaf, di))
  4739. break;
  4740. name_len = btrfs_dir_name_len(leaf, di);
  4741. if (name_len <= sizeof(tmp_name)) {
  4742. name_ptr = tmp_name;
  4743. } else {
  4744. name_ptr = kmalloc(name_len, GFP_NOFS);
  4745. if (!name_ptr) {
  4746. ret = -ENOMEM;
  4747. goto err;
  4748. }
  4749. }
  4750. read_extent_buffer(leaf, name_ptr,
  4751. (unsigned long)(di + 1), name_len);
  4752. d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
  4753. btrfs_dir_item_key_to_cpu(leaf, di, &location);
  4754. /* is this a reference to our own snapshot? If so
  4755. * skip it.
  4756. *
  4757. * In contrast to old kernels, we insert the snapshot's
  4758. * dir item and dir index after it has been created, so
  4759. * we won't find a reference to our own snapshot. We
  4760. * still keep the following code for backward
  4761. * compatibility.
  4762. */
  4763. if (location.type == BTRFS_ROOT_ITEM_KEY &&
  4764. location.objectid == root->root_key.objectid) {
  4765. over = 0;
  4766. goto skip;
  4767. }
  4768. over = !dir_emit(ctx, name_ptr, name_len,
  4769. location.objectid, d_type);
  4770. skip:
  4771. if (name_ptr != tmp_name)
  4772. kfree(name_ptr);
  4773. if (over)
  4774. goto nopos;
  4775. di_len = btrfs_dir_name_len(leaf, di) +
  4776. btrfs_dir_data_len(leaf, di) + sizeof(*di);
  4777. di_cur += di_len;
  4778. di = (struct btrfs_dir_item *)((char *)di + di_len);
  4779. }
  4780. next:
  4781. path->slots[0]++;
  4782. }
  4783. if (key_type == BTRFS_DIR_INDEX_KEY) {
  4784. if (is_curr)
  4785. ctx->pos++;
  4786. ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
  4787. if (ret)
  4788. goto nopos;
  4789. }
  4790. /* Reached end of directory/root. Bump pos past the last item. */
  4791. ctx->pos++;
  4792. /*
  4793. * Stop new entries from being returned after we return the last
  4794. * entry.
  4795. *
  4796. * New directory entries are assigned a strictly increasing
  4797. * offset. This means that new entries created during readdir
  4798. * are *guaranteed* to be seen in the future by that readdir.
  4799. * This has broken buggy programs which operate on names as
  4800. * they're returned by readdir. Until we re-use freed offsets
  4801. * we have this hack to stop new entries from being returned
  4802. * under the assumption that they'll never reach this huge
  4803. * offset.
  4804. *
  4805. * This is being careful not to overflow 32bit loff_t unless the
  4806. * last entry requires it because doing so has broken 32bit apps
  4807. * in the past.
  4808. */
  4809. if (key_type == BTRFS_DIR_INDEX_KEY) {
  4810. if (ctx->pos >= INT_MAX)
  4811. ctx->pos = LLONG_MAX;
  4812. else
  4813. ctx->pos = INT_MAX;
  4814. }
  4815. nopos:
  4816. ret = 0;
  4817. err:
  4818. if (key_type == BTRFS_DIR_INDEX_KEY)
  4819. btrfs_put_delayed_items(&ins_list, &del_list);
  4820. btrfs_free_path(path);
  4821. return ret;
  4822. }
  4823. int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
  4824. {
  4825. struct btrfs_root *root = BTRFS_I(inode)->root;
  4826. struct btrfs_trans_handle *trans;
  4827. int ret = 0;
  4828. bool nolock = false;
  4829. if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
  4830. return 0;
  4831. if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
  4832. nolock = true;
  4833. if (wbc->sync_mode == WB_SYNC_ALL) {
  4834. if (nolock)
  4835. trans = btrfs_join_transaction_nolock(root);
  4836. else
  4837. trans = btrfs_join_transaction(root);
  4838. if (IS_ERR(trans))
  4839. return PTR_ERR(trans);
  4840. ret = btrfs_commit_transaction(trans, root);
  4841. }
  4842. return ret;
  4843. }
  4844. /*
  4845. * This is somewhat expensive, updating the tree every time the
  4846. * inode changes. But, it is most likely to find the inode in cache.
  4847. * FIXME, needs more benchmarking...there are no reasons other than performance
  4848. * to keep or drop this code.
  4849. */
  4850. static int btrfs_dirty_inode(struct inode *inode)
  4851. {
  4852. struct btrfs_root *root = BTRFS_I(inode)->root;
  4853. struct btrfs_trans_handle *trans;
  4854. int ret;
  4855. if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
  4856. return 0;
  4857. trans = btrfs_join_transaction(root);
  4858. if (IS_ERR(trans))
  4859. return PTR_ERR(trans);
  4860. ret = btrfs_update_inode(trans, root, inode);
  4861. if (ret && ret == -ENOSPC) {
  4862. /* whoops, lets try again with the full transaction */
  4863. btrfs_end_transaction(trans, root);
  4864. trans = btrfs_start_transaction(root, 1);
  4865. if (IS_ERR(trans))
  4866. return PTR_ERR(trans);
  4867. ret = btrfs_update_inode(trans, root, inode);
  4868. }
  4869. btrfs_end_transaction(trans, root);
  4870. if (BTRFS_I(inode)->delayed_node)
  4871. btrfs_balance_delayed_items(root);
  4872. return ret;
  4873. }
  4874. /*
  4875. * This is a copy of file_update_time. We need this so we can return error on
  4876. * ENOSPC for updating the inode in the case of file write and mmap writes.
  4877. */
  4878. static int btrfs_update_time(struct inode *inode, struct timespec *now,
  4879. int flags)
  4880. {
  4881. struct btrfs_root *root = BTRFS_I(inode)->root;
  4882. if (btrfs_root_readonly(root))
  4883. return -EROFS;
  4884. if (flags & S_VERSION)
  4885. inode_inc_iversion(inode);
  4886. if (flags & S_CTIME)
  4887. inode->i_ctime = *now;
  4888. if (flags & S_MTIME)
  4889. inode->i_mtime = *now;
  4890. if (flags & S_ATIME)
  4891. inode->i_atime = *now;
  4892. return btrfs_dirty_inode(inode);
  4893. }
  4894. /*
  4895. * find the highest existing sequence number in a directory
  4896. * and then set the in-memory index_cnt variable to reflect
  4897. * free sequence numbers
  4898. */
  4899. static int btrfs_set_inode_index_count(struct inode *inode)
  4900. {
  4901. struct btrfs_root *root = BTRFS_I(inode)->root;
  4902. struct btrfs_key key, found_key;
  4903. struct btrfs_path *path;
  4904. struct extent_buffer *leaf;
  4905. int ret;
  4906. key.objectid = btrfs_ino(inode);
  4907. key.type = BTRFS_DIR_INDEX_KEY;
  4908. key.offset = (u64)-1;
  4909. path = btrfs_alloc_path();
  4910. if (!path)
  4911. return -ENOMEM;
  4912. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  4913. if (ret < 0)
  4914. goto out;
  4915. /* FIXME: we should be able to handle this */
  4916. if (ret == 0)
  4917. goto out;
  4918. ret = 0;
  4919. /*
  4920. * MAGIC NUMBER EXPLANATION:
  4921. * since we search a directory based on f_pos we have to start at 2
  4922. * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
  4923. * else has to start at 2
  4924. */
  4925. if (path->slots[0] == 0) {
  4926. BTRFS_I(inode)->index_cnt = 2;
  4927. goto out;
  4928. }
  4929. path->slots[0]--;
  4930. leaf = path->nodes[0];
  4931. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  4932. if (found_key.objectid != btrfs_ino(inode) ||
  4933. found_key.type != BTRFS_DIR_INDEX_KEY) {
  4934. BTRFS_I(inode)->index_cnt = 2;
  4935. goto out;
  4936. }
  4937. BTRFS_I(inode)->index_cnt = found_key.offset + 1;
  4938. out:
  4939. btrfs_free_path(path);
  4940. return ret;
  4941. }
  4942. /*
  4943. * helper to find a free sequence number in a given directory. This current
  4944. * code is very simple, later versions will do smarter things in the btree
  4945. */
  4946. int btrfs_set_inode_index(struct inode *dir, u64 *index)
  4947. {
  4948. int ret = 0;
  4949. if (BTRFS_I(dir)->index_cnt == (u64)-1) {
  4950. ret = btrfs_inode_delayed_dir_index_count(dir);
  4951. if (ret) {
  4952. ret = btrfs_set_inode_index_count(dir);
  4953. if (ret)
  4954. return ret;
  4955. }
  4956. }
  4957. *index = BTRFS_I(dir)->index_cnt;
  4958. BTRFS_I(dir)->index_cnt++;
  4959. return ret;
  4960. }
  4961. static int btrfs_insert_inode_locked(struct inode *inode)
  4962. {
  4963. struct btrfs_iget_args args;
  4964. args.location = &BTRFS_I(inode)->location;
  4965. args.root = BTRFS_I(inode)->root;
  4966. return insert_inode_locked4(inode,
  4967. btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
  4968. btrfs_find_actor, &args);
  4969. }
  4970. static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
  4971. struct btrfs_root *root,
  4972. struct inode *dir,
  4973. const char *name, int name_len,
  4974. u64 ref_objectid, u64 objectid,
  4975. umode_t mode, u64 *index)
  4976. {
  4977. struct inode *inode;
  4978. struct btrfs_inode_item *inode_item;
  4979. struct btrfs_key *location;
  4980. struct btrfs_path *path;
  4981. struct btrfs_inode_ref *ref;
  4982. struct btrfs_key key[2];
  4983. u32 sizes[2];
  4984. int nitems = name ? 2 : 1;
  4985. unsigned long ptr;
  4986. int ret;
  4987. path = btrfs_alloc_path();
  4988. if (!path)
  4989. return ERR_PTR(-ENOMEM);
  4990. inode = new_inode(root->fs_info->sb);
  4991. if (!inode) {
  4992. btrfs_free_path(path);
  4993. return ERR_PTR(-ENOMEM);
  4994. }
  4995. /*
  4996. * O_TMPFILE, set link count to 0, so that after this point,
  4997. * we fill in an inode item with the correct link count.
  4998. */
  4999. if (!name)
  5000. set_nlink(inode, 0);
  5001. /*
  5002. * we have to initialize this early, so we can reclaim the inode
  5003. * number if we fail afterwards in this function.
  5004. */
  5005. inode->i_ino = objectid;
  5006. if (dir && name) {
  5007. trace_btrfs_inode_request(dir);
  5008. ret = btrfs_set_inode_index(dir, index);
  5009. if (ret) {
  5010. btrfs_free_path(path);
  5011. iput(inode);
  5012. return ERR_PTR(ret);
  5013. }
  5014. } else if (dir) {
  5015. *index = 0;
  5016. }
  5017. /*
  5018. * index_cnt is ignored for everything but a dir,
  5019. * btrfs_get_inode_index_count has an explanation for the magic
  5020. * number
  5021. */
  5022. BTRFS_I(inode)->index_cnt = 2;
  5023. BTRFS_I(inode)->dir_index = *index;
  5024. BTRFS_I(inode)->root = root;
  5025. BTRFS_I(inode)->generation = trans->transid;
  5026. inode->i_generation = BTRFS_I(inode)->generation;
  5027. /*
  5028. * We could have gotten an inode number from somebody who was fsynced
  5029. * and then removed in this same transaction, so let's just set full
  5030. * sync since it will be a full sync anyway and this will blow away the
  5031. * old info in the log.
  5032. */
  5033. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
  5034. key[0].objectid = objectid;
  5035. key[0].type = BTRFS_INODE_ITEM_KEY;
  5036. key[0].offset = 0;
  5037. sizes[0] = sizeof(struct btrfs_inode_item);
  5038. if (name) {
  5039. /*
  5040. * Start new inodes with an inode_ref. This is slightly more
  5041. * efficient for small numbers of hard links since they will
  5042. * be packed into one item. Extended refs will kick in if we
  5043. * add more hard links than can fit in the ref item.
  5044. */
  5045. key[1].objectid = objectid;
  5046. key[1].type = BTRFS_INODE_REF_KEY;
  5047. key[1].offset = ref_objectid;
  5048. sizes[1] = name_len + sizeof(*ref);
  5049. }
  5050. location = &BTRFS_I(inode)->location;
  5051. location->objectid = objectid;
  5052. location->offset = 0;
  5053. location->type = BTRFS_INODE_ITEM_KEY;
  5054. ret = btrfs_insert_inode_locked(inode);
  5055. if (ret < 0)
  5056. goto fail;
  5057. path->leave_spinning = 1;
  5058. ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
  5059. if (ret != 0)
  5060. goto fail_unlock;
  5061. inode_init_owner(inode, dir, mode);
  5062. inode_set_bytes(inode, 0);
  5063. inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
  5064. inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
  5065. struct btrfs_inode_item);
  5066. memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
  5067. sizeof(*inode_item));
  5068. fill_inode_item(trans, path->nodes[0], inode_item, inode);
  5069. if (name) {
  5070. ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
  5071. struct btrfs_inode_ref);
  5072. btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
  5073. btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
  5074. ptr = (unsigned long)(ref + 1);
  5075. write_extent_buffer(path->nodes[0], name, ptr, name_len);
  5076. }
  5077. btrfs_mark_buffer_dirty(path->nodes[0]);
  5078. btrfs_free_path(path);
  5079. btrfs_inherit_iflags(inode, dir);
  5080. if (S_ISREG(mode)) {
  5081. if (btrfs_test_opt(root, NODATASUM))
  5082. BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
  5083. if (btrfs_test_opt(root, NODATACOW))
  5084. BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
  5085. BTRFS_INODE_NODATASUM;
  5086. }
  5087. inode_tree_add(inode);
  5088. trace_btrfs_inode_new(inode);
  5089. btrfs_set_inode_last_trans(trans, inode);
  5090. btrfs_update_root_times(trans, root);
  5091. ret = btrfs_inode_inherit_props(trans, inode, dir);
  5092. if (ret)
  5093. btrfs_err(root->fs_info,
  5094. "error inheriting props for ino %llu (root %llu): %d",
  5095. btrfs_ino(inode), root->root_key.objectid, ret);
  5096. return inode;
  5097. fail_unlock:
  5098. unlock_new_inode(inode);
  5099. fail:
  5100. if (dir && name)
  5101. BTRFS_I(dir)->index_cnt--;
  5102. btrfs_free_path(path);
  5103. iput(inode);
  5104. return ERR_PTR(ret);
  5105. }
  5106. static inline u8 btrfs_inode_type(struct inode *inode)
  5107. {
  5108. return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
  5109. }
  5110. /*
  5111. * utility function to add 'inode' into 'parent_inode' with
  5112. * a give name and a given sequence number.
  5113. * if 'add_backref' is true, also insert a backref from the
  5114. * inode to the parent directory.
  5115. */
  5116. int btrfs_add_link(struct btrfs_trans_handle *trans,
  5117. struct inode *parent_inode, struct inode *inode,
  5118. const char *name, int name_len, int add_backref, u64 index)
  5119. {
  5120. int ret = 0;
  5121. struct btrfs_key key;
  5122. struct btrfs_root *root = BTRFS_I(parent_inode)->root;
  5123. u64 ino = btrfs_ino(inode);
  5124. u64 parent_ino = btrfs_ino(parent_inode);
  5125. if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
  5126. memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
  5127. } else {
  5128. key.objectid = ino;
  5129. key.type = BTRFS_INODE_ITEM_KEY;
  5130. key.offset = 0;
  5131. }
  5132. if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
  5133. ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
  5134. key.objectid, root->root_key.objectid,
  5135. parent_ino, index, name, name_len);
  5136. } else if (add_backref) {
  5137. ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
  5138. parent_ino, index);
  5139. }
  5140. /* Nothing to clean up yet */
  5141. if (ret)
  5142. return ret;
  5143. ret = btrfs_insert_dir_item(trans, root, name, name_len,
  5144. parent_inode, &key,
  5145. btrfs_inode_type(inode), index);
  5146. if (ret == -EEXIST || ret == -EOVERFLOW)
  5147. goto fail_dir_item;
  5148. else if (ret) {
  5149. btrfs_abort_transaction(trans, root, ret);
  5150. return ret;
  5151. }
  5152. btrfs_i_size_write(parent_inode, parent_inode->i_size +
  5153. name_len * 2);
  5154. inode_inc_iversion(parent_inode);
  5155. parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
  5156. ret = btrfs_update_inode(trans, root, parent_inode);
  5157. if (ret)
  5158. btrfs_abort_transaction(trans, root, ret);
  5159. return ret;
  5160. fail_dir_item:
  5161. if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
  5162. u64 local_index;
  5163. int err;
  5164. err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
  5165. key.objectid, root->root_key.objectid,
  5166. parent_ino, &local_index, name, name_len);
  5167. } else if (add_backref) {
  5168. u64 local_index;
  5169. int err;
  5170. err = btrfs_del_inode_ref(trans, root, name, name_len,
  5171. ino, parent_ino, &local_index);
  5172. }
  5173. return ret;
  5174. }
  5175. static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
  5176. struct inode *dir, struct dentry *dentry,
  5177. struct inode *inode, int backref, u64 index)
  5178. {
  5179. int err = btrfs_add_link(trans, dir, inode,
  5180. dentry->d_name.name, dentry->d_name.len,
  5181. backref, index);
  5182. if (err > 0)
  5183. err = -EEXIST;
  5184. return err;
  5185. }
  5186. static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
  5187. umode_t mode, dev_t rdev)
  5188. {
  5189. struct btrfs_trans_handle *trans;
  5190. struct btrfs_root *root = BTRFS_I(dir)->root;
  5191. struct inode *inode = NULL;
  5192. int err;
  5193. int drop_inode = 0;
  5194. u64 objectid;
  5195. u64 index = 0;
  5196. if (!new_valid_dev(rdev))
  5197. return -EINVAL;
  5198. /*
  5199. * 2 for inode item and ref
  5200. * 2 for dir items
  5201. * 1 for xattr if selinux is on
  5202. */
  5203. trans = btrfs_start_transaction(root, 5);
  5204. if (IS_ERR(trans))
  5205. return PTR_ERR(trans);
  5206. err = btrfs_find_free_ino(root, &objectid);
  5207. if (err)
  5208. goto out_unlock;
  5209. inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
  5210. dentry->d_name.len, btrfs_ino(dir), objectid,
  5211. mode, &index);
  5212. if (IS_ERR(inode)) {
  5213. err = PTR_ERR(inode);
  5214. goto out_unlock;
  5215. }
  5216. /*
  5217. * If the active LSM wants to access the inode during
  5218. * d_instantiate it needs these. Smack checks to see
  5219. * if the filesystem supports xattrs by looking at the
  5220. * ops vector.
  5221. */
  5222. inode->i_op = &btrfs_special_inode_operations;
  5223. init_special_inode(inode, inode->i_mode, rdev);
  5224. err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
  5225. if (err)
  5226. goto out_unlock_inode;
  5227. err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
  5228. if (err) {
  5229. goto out_unlock_inode;
  5230. } else {
  5231. btrfs_update_inode(trans, root, inode);
  5232. unlock_new_inode(inode);
  5233. d_instantiate(dentry, inode);
  5234. }
  5235. out_unlock:
  5236. btrfs_end_transaction(trans, root);
  5237. btrfs_balance_delayed_items(root);
  5238. btrfs_btree_balance_dirty(root);
  5239. if (drop_inode) {
  5240. inode_dec_link_count(inode);
  5241. iput(inode);
  5242. }
  5243. return err;
  5244. out_unlock_inode:
  5245. drop_inode = 1;
  5246. unlock_new_inode(inode);
  5247. goto out_unlock;
  5248. }
  5249. static int btrfs_create(struct inode *dir, struct dentry *dentry,
  5250. umode_t mode, bool excl)
  5251. {
  5252. struct btrfs_trans_handle *trans;
  5253. struct btrfs_root *root = BTRFS_I(dir)->root;
  5254. struct inode *inode = NULL;
  5255. int drop_inode_on_err = 0;
  5256. int err;
  5257. u64 objectid;
  5258. u64 index = 0;
  5259. /*
  5260. * 2 for inode item and ref
  5261. * 2 for dir items
  5262. * 1 for xattr if selinux is on
  5263. */
  5264. trans = btrfs_start_transaction(root, 5);
  5265. if (IS_ERR(trans))
  5266. return PTR_ERR(trans);
  5267. err = btrfs_find_free_ino(root, &objectid);
  5268. if (err)
  5269. goto out_unlock;
  5270. inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
  5271. dentry->d_name.len, btrfs_ino(dir), objectid,
  5272. mode, &index);
  5273. if (IS_ERR(inode)) {
  5274. err = PTR_ERR(inode);
  5275. goto out_unlock;
  5276. }
  5277. drop_inode_on_err = 1;
  5278. /*
  5279. * If the active LSM wants to access the inode during
  5280. * d_instantiate it needs these. Smack checks to see
  5281. * if the filesystem supports xattrs by looking at the
  5282. * ops vector.
  5283. */
  5284. inode->i_fop = &btrfs_file_operations;
  5285. inode->i_op = &btrfs_file_inode_operations;
  5286. inode->i_mapping->a_ops = &btrfs_aops;
  5287. inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
  5288. err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
  5289. if (err)
  5290. goto out_unlock_inode;
  5291. err = btrfs_update_inode(trans, root, inode);
  5292. if (err)
  5293. goto out_unlock_inode;
  5294. err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
  5295. if (err)
  5296. goto out_unlock_inode;
  5297. BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
  5298. unlock_new_inode(inode);
  5299. d_instantiate(dentry, inode);
  5300. out_unlock:
  5301. btrfs_end_transaction(trans, root);
  5302. if (err && drop_inode_on_err) {
  5303. inode_dec_link_count(inode);
  5304. iput(inode);
  5305. }
  5306. btrfs_balance_delayed_items(root);
  5307. btrfs_btree_balance_dirty(root);
  5308. return err;
  5309. out_unlock_inode:
  5310. unlock_new_inode(inode);
  5311. goto out_unlock;
  5312. }
  5313. static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
  5314. struct dentry *dentry)
  5315. {
  5316. struct btrfs_trans_handle *trans;
  5317. struct btrfs_root *root = BTRFS_I(dir)->root;
  5318. struct inode *inode = old_dentry->d_inode;
  5319. u64 index;
  5320. int err;
  5321. int drop_inode = 0;
  5322. /* do not allow sys_link's with other subvols of the same device */
  5323. if (root->objectid != BTRFS_I(inode)->root->objectid)
  5324. return -EXDEV;
  5325. if (inode->i_nlink >= BTRFS_LINK_MAX)
  5326. return -EMLINK;
  5327. err = btrfs_set_inode_index(dir, &index);
  5328. if (err)
  5329. goto fail;
  5330. /*
  5331. * 2 items for inode and inode ref
  5332. * 2 items for dir items
  5333. * 1 item for parent inode
  5334. */
  5335. trans = btrfs_start_transaction(root, 5);
  5336. if (IS_ERR(trans)) {
  5337. err = PTR_ERR(trans);
  5338. goto fail;
  5339. }
  5340. /* There are several dir indexes for this inode, clear the cache. */
  5341. BTRFS_I(inode)->dir_index = 0ULL;
  5342. inc_nlink(inode);
  5343. inode_inc_iversion(inode);
  5344. inode->i_ctime = CURRENT_TIME;
  5345. ihold(inode);
  5346. set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
  5347. err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
  5348. if (err) {
  5349. drop_inode = 1;
  5350. } else {
  5351. struct dentry *parent = dentry->d_parent;
  5352. err = btrfs_update_inode(trans, root, inode);
  5353. if (err)
  5354. goto fail;
  5355. if (inode->i_nlink == 1) {
  5356. /*
  5357. * If new hard link count is 1, it's a file created
  5358. * with open(2) O_TMPFILE flag.
  5359. */
  5360. err = btrfs_orphan_del(trans, inode);
  5361. if (err)
  5362. goto fail;
  5363. }
  5364. d_instantiate(dentry, inode);
  5365. btrfs_log_new_name(trans, inode, NULL, parent);
  5366. }
  5367. btrfs_end_transaction(trans, root);
  5368. btrfs_balance_delayed_items(root);
  5369. fail:
  5370. if (drop_inode) {
  5371. inode_dec_link_count(inode);
  5372. iput(inode);
  5373. }
  5374. btrfs_btree_balance_dirty(root);
  5375. return err;
  5376. }
  5377. static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  5378. {
  5379. struct inode *inode = NULL;
  5380. struct btrfs_trans_handle *trans;
  5381. struct btrfs_root *root = BTRFS_I(dir)->root;
  5382. int err = 0;
  5383. int drop_on_err = 0;
  5384. u64 objectid = 0;
  5385. u64 index = 0;
  5386. /*
  5387. * 2 items for inode and ref
  5388. * 2 items for dir items
  5389. * 1 for xattr if selinux is on
  5390. */
  5391. trans = btrfs_start_transaction(root, 5);
  5392. if (IS_ERR(trans))
  5393. return PTR_ERR(trans);
  5394. err = btrfs_find_free_ino(root, &objectid);
  5395. if (err)
  5396. goto out_fail;
  5397. inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
  5398. dentry->d_name.len, btrfs_ino(dir), objectid,
  5399. S_IFDIR | mode, &index);
  5400. if (IS_ERR(inode)) {
  5401. err = PTR_ERR(inode);
  5402. goto out_fail;
  5403. }
  5404. drop_on_err = 1;
  5405. /* these must be set before we unlock the inode */
  5406. inode->i_op = &btrfs_dir_inode_operations;
  5407. inode->i_fop = &btrfs_dir_file_operations;
  5408. err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
  5409. if (err)
  5410. goto out_fail_inode;
  5411. btrfs_i_size_write(inode, 0);
  5412. err = btrfs_update_inode(trans, root, inode);
  5413. if (err)
  5414. goto out_fail_inode;
  5415. err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
  5416. dentry->d_name.len, 0, index);
  5417. if (err)
  5418. goto out_fail_inode;
  5419. d_instantiate(dentry, inode);
  5420. /*
  5421. * mkdir is special. We're unlocking after we call d_instantiate
  5422. * to avoid a race with nfsd calling d_instantiate.
  5423. */
  5424. unlock_new_inode(inode);
  5425. drop_on_err = 0;
  5426. out_fail:
  5427. btrfs_end_transaction(trans, root);
  5428. if (drop_on_err)
  5429. iput(inode);
  5430. btrfs_balance_delayed_items(root);
  5431. btrfs_btree_balance_dirty(root);
  5432. return err;
  5433. out_fail_inode:
  5434. unlock_new_inode(inode);
  5435. goto out_fail;
  5436. }
  5437. /* Find next extent map of a given extent map, caller needs to ensure locks */
  5438. static struct extent_map *next_extent_map(struct extent_map *em)
  5439. {
  5440. struct rb_node *next;
  5441. next = rb_next(&em->rb_node);
  5442. if (!next)
  5443. return NULL;
  5444. return container_of(next, struct extent_map, rb_node);
  5445. }
  5446. static struct extent_map *prev_extent_map(struct extent_map *em)
  5447. {
  5448. struct rb_node *prev;
  5449. prev = rb_prev(&em->rb_node);
  5450. if (!prev)
  5451. return NULL;
  5452. return container_of(prev, struct extent_map, rb_node);
  5453. }
  5454. /* helper for btfs_get_extent. Given an existing extent in the tree,
  5455. * the existing extent is the nearest extent to map_start,
  5456. * and an extent that you want to insert, deal with overlap and insert
  5457. * the best fitted new extent into the tree.
  5458. */
  5459. static int merge_extent_mapping(struct extent_map_tree *em_tree,
  5460. struct extent_map *existing,
  5461. struct extent_map *em,
  5462. u64 map_start)
  5463. {
  5464. struct extent_map *prev;
  5465. struct extent_map *next;
  5466. u64 start;
  5467. u64 end;
  5468. u64 start_diff;
  5469. BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
  5470. if (existing->start > map_start) {
  5471. next = existing;
  5472. prev = prev_extent_map(next);
  5473. } else {
  5474. prev = existing;
  5475. next = next_extent_map(prev);
  5476. }
  5477. start = prev ? extent_map_end(prev) : em->start;
  5478. start = max_t(u64, start, em->start);
  5479. end = next ? next->start : extent_map_end(em);
  5480. end = min_t(u64, end, extent_map_end(em));
  5481. start_diff = start - em->start;
  5482. em->start = start;
  5483. em->len = end - start;
  5484. if (em->block_start < EXTENT_MAP_LAST_BYTE &&
  5485. !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
  5486. em->block_start += start_diff;
  5487. em->block_len -= start_diff;
  5488. }
  5489. return add_extent_mapping(em_tree, em, 0);
  5490. }
  5491. static noinline int uncompress_inline(struct btrfs_path *path,
  5492. struct inode *inode, struct page *page,
  5493. size_t pg_offset, u64 extent_offset,
  5494. struct btrfs_file_extent_item *item)
  5495. {
  5496. int ret;
  5497. struct extent_buffer *leaf = path->nodes[0];
  5498. char *tmp;
  5499. size_t max_size;
  5500. unsigned long inline_size;
  5501. unsigned long ptr;
  5502. int compress_type;
  5503. WARN_ON(pg_offset != 0);
  5504. compress_type = btrfs_file_extent_compression(leaf, item);
  5505. max_size = btrfs_file_extent_ram_bytes(leaf, item);
  5506. inline_size = btrfs_file_extent_inline_item_len(leaf,
  5507. btrfs_item_nr(path->slots[0]));
  5508. tmp = kmalloc(inline_size, GFP_NOFS);
  5509. if (!tmp)
  5510. return -ENOMEM;
  5511. ptr = btrfs_file_extent_inline_start(item);
  5512. read_extent_buffer(leaf, tmp, ptr, inline_size);
  5513. max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
  5514. ret = btrfs_decompress(compress_type, tmp, page,
  5515. extent_offset, inline_size, max_size);
  5516. kfree(tmp);
  5517. return ret;
  5518. }
  5519. /*
  5520. * a bit scary, this does extent mapping from logical file offset to the disk.
  5521. * the ugly parts come from merging extents from the disk with the in-ram
  5522. * representation. This gets more complex because of the data=ordered code,
  5523. * where the in-ram extents might be locked pending data=ordered completion.
  5524. *
  5525. * This also copies inline extents directly into the page.
  5526. */
  5527. struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
  5528. size_t pg_offset, u64 start, u64 len,
  5529. int create)
  5530. {
  5531. int ret;
  5532. int err = 0;
  5533. u64 extent_start = 0;
  5534. u64 extent_end = 0;
  5535. u64 objectid = btrfs_ino(inode);
  5536. u32 found_type;
  5537. struct btrfs_path *path = NULL;
  5538. struct btrfs_root *root = BTRFS_I(inode)->root;
  5539. struct btrfs_file_extent_item *item;
  5540. struct extent_buffer *leaf;
  5541. struct btrfs_key found_key;
  5542. struct extent_map *em = NULL;
  5543. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  5544. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  5545. struct btrfs_trans_handle *trans = NULL;
  5546. const bool new_inline = !page || create;
  5547. again:
  5548. read_lock(&em_tree->lock);
  5549. em = lookup_extent_mapping(em_tree, start, len);
  5550. if (em)
  5551. em->bdev = root->fs_info->fs_devices->latest_bdev;
  5552. read_unlock(&em_tree->lock);
  5553. if (em) {
  5554. if (em->start > start || em->start + em->len <= start)
  5555. free_extent_map(em);
  5556. else if (em->block_start == EXTENT_MAP_INLINE && page)
  5557. free_extent_map(em);
  5558. else
  5559. goto out;
  5560. }
  5561. em = alloc_extent_map();
  5562. if (!em) {
  5563. err = -ENOMEM;
  5564. goto out;
  5565. }
  5566. em->bdev = root->fs_info->fs_devices->latest_bdev;
  5567. em->start = EXTENT_MAP_HOLE;
  5568. em->orig_start = EXTENT_MAP_HOLE;
  5569. em->len = (u64)-1;
  5570. em->block_len = (u64)-1;
  5571. if (!path) {
  5572. path = btrfs_alloc_path();
  5573. if (!path) {
  5574. err = -ENOMEM;
  5575. goto out;
  5576. }
  5577. /*
  5578. * Chances are we'll be called again, so go ahead and do
  5579. * readahead
  5580. */
  5581. path->reada = 1;
  5582. }
  5583. ret = btrfs_lookup_file_extent(trans, root, path,
  5584. objectid, start, trans != NULL);
  5585. if (ret < 0) {
  5586. err = ret;
  5587. goto out;
  5588. }
  5589. if (ret != 0) {
  5590. if (path->slots[0] == 0)
  5591. goto not_found;
  5592. path->slots[0]--;
  5593. }
  5594. leaf = path->nodes[0];
  5595. item = btrfs_item_ptr(leaf, path->slots[0],
  5596. struct btrfs_file_extent_item);
  5597. /* are we inside the extent that was found? */
  5598. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  5599. found_type = found_key.type;
  5600. if (found_key.objectid != objectid ||
  5601. found_type != BTRFS_EXTENT_DATA_KEY) {
  5602. /*
  5603. * If we backup past the first extent we want to move forward
  5604. * and see if there is an extent in front of us, otherwise we'll
  5605. * say there is a hole for our whole search range which can
  5606. * cause problems.
  5607. */
  5608. extent_end = start;
  5609. goto next;
  5610. }
  5611. found_type = btrfs_file_extent_type(leaf, item);
  5612. extent_start = found_key.offset;
  5613. if (found_type == BTRFS_FILE_EXTENT_REG ||
  5614. found_type == BTRFS_FILE_EXTENT_PREALLOC) {
  5615. extent_end = extent_start +
  5616. btrfs_file_extent_num_bytes(leaf, item);
  5617. } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
  5618. size_t size;
  5619. size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
  5620. extent_end = ALIGN(extent_start + size, root->sectorsize);
  5621. }
  5622. next:
  5623. if (start >= extent_end) {
  5624. path->slots[0]++;
  5625. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  5626. ret = btrfs_next_leaf(root, path);
  5627. if (ret < 0) {
  5628. err = ret;
  5629. goto out;
  5630. }
  5631. if (ret > 0)
  5632. goto not_found;
  5633. leaf = path->nodes[0];
  5634. }
  5635. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  5636. if (found_key.objectid != objectid ||
  5637. found_key.type != BTRFS_EXTENT_DATA_KEY)
  5638. goto not_found;
  5639. if (start + len <= found_key.offset)
  5640. goto not_found;
  5641. if (start > found_key.offset)
  5642. goto next;
  5643. em->start = start;
  5644. em->orig_start = start;
  5645. em->len = found_key.offset - start;
  5646. goto not_found_em;
  5647. }
  5648. btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
  5649. if (found_type == BTRFS_FILE_EXTENT_REG ||
  5650. found_type == BTRFS_FILE_EXTENT_PREALLOC) {
  5651. goto insert;
  5652. } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
  5653. unsigned long ptr;
  5654. char *map;
  5655. size_t size;
  5656. size_t extent_offset;
  5657. size_t copy_size;
  5658. if (new_inline)
  5659. goto out;
  5660. size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
  5661. extent_offset = page_offset(page) + pg_offset - extent_start;
  5662. copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
  5663. size - extent_offset);
  5664. em->start = extent_start + extent_offset;
  5665. em->len = ALIGN(copy_size, root->sectorsize);
  5666. em->orig_block_len = em->len;
  5667. em->orig_start = em->start;
  5668. ptr = btrfs_file_extent_inline_start(item) + extent_offset;
  5669. if (create == 0 && !PageUptodate(page)) {
  5670. if (btrfs_file_extent_compression(leaf, item) !=
  5671. BTRFS_COMPRESS_NONE) {
  5672. ret = uncompress_inline(path, inode, page,
  5673. pg_offset,
  5674. extent_offset, item);
  5675. if (ret) {
  5676. err = ret;
  5677. goto out;
  5678. }
  5679. } else {
  5680. map = kmap(page);
  5681. read_extent_buffer(leaf, map + pg_offset, ptr,
  5682. copy_size);
  5683. if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
  5684. memset(map + pg_offset + copy_size, 0,
  5685. PAGE_CACHE_SIZE - pg_offset -
  5686. copy_size);
  5687. }
  5688. kunmap(page);
  5689. }
  5690. flush_dcache_page(page);
  5691. } else if (create && PageUptodate(page)) {
  5692. BUG();
  5693. if (!trans) {
  5694. kunmap(page);
  5695. free_extent_map(em);
  5696. em = NULL;
  5697. btrfs_release_path(path);
  5698. trans = btrfs_join_transaction(root);
  5699. if (IS_ERR(trans))
  5700. return ERR_CAST(trans);
  5701. goto again;
  5702. }
  5703. map = kmap(page);
  5704. write_extent_buffer(leaf, map + pg_offset, ptr,
  5705. copy_size);
  5706. kunmap(page);
  5707. btrfs_mark_buffer_dirty(leaf);
  5708. }
  5709. set_extent_uptodate(io_tree, em->start,
  5710. extent_map_end(em) - 1, NULL, GFP_NOFS);
  5711. goto insert;
  5712. }
  5713. not_found:
  5714. em->start = start;
  5715. em->orig_start = start;
  5716. em->len = len;
  5717. not_found_em:
  5718. em->block_start = EXTENT_MAP_HOLE;
  5719. set_bit(EXTENT_FLAG_VACANCY, &em->flags);
  5720. insert:
  5721. btrfs_release_path(path);
  5722. if (em->start > start || extent_map_end(em) <= start) {
  5723. btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
  5724. em->start, em->len, start, len);
  5725. err = -EIO;
  5726. goto out;
  5727. }
  5728. err = 0;
  5729. write_lock(&em_tree->lock);
  5730. ret = add_extent_mapping(em_tree, em, 0);
  5731. /* it is possible that someone inserted the extent into the tree
  5732. * while we had the lock dropped. It is also possible that
  5733. * an overlapping map exists in the tree
  5734. */
  5735. if (ret == -EEXIST) {
  5736. struct extent_map *existing;
  5737. ret = 0;
  5738. existing = search_extent_mapping(em_tree, start, len);
  5739. /*
  5740. * existing will always be non-NULL, since there must be
  5741. * extent causing the -EEXIST.
  5742. */
  5743. if (start >= extent_map_end(existing) ||
  5744. start <= existing->start) {
  5745. /*
  5746. * The existing extent map is the one nearest to
  5747. * the [start, start + len) range which overlaps
  5748. */
  5749. err = merge_extent_mapping(em_tree, existing,
  5750. em, start);
  5751. free_extent_map(existing);
  5752. if (err) {
  5753. free_extent_map(em);
  5754. em = NULL;
  5755. }
  5756. } else {
  5757. free_extent_map(em);
  5758. em = existing;
  5759. err = 0;
  5760. }
  5761. }
  5762. write_unlock(&em_tree->lock);
  5763. out:
  5764. trace_btrfs_get_extent(root, em);
  5765. if (path)
  5766. btrfs_free_path(path);
  5767. if (trans) {
  5768. ret = btrfs_end_transaction(trans, root);
  5769. if (!err)
  5770. err = ret;
  5771. }
  5772. if (err) {
  5773. free_extent_map(em);
  5774. return ERR_PTR(err);
  5775. }
  5776. BUG_ON(!em); /* Error is always set */
  5777. return em;
  5778. }
  5779. struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
  5780. size_t pg_offset, u64 start, u64 len,
  5781. int create)
  5782. {
  5783. struct extent_map *em;
  5784. struct extent_map *hole_em = NULL;
  5785. u64 range_start = start;
  5786. u64 end;
  5787. u64 found;
  5788. u64 found_end;
  5789. int err = 0;
  5790. em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
  5791. if (IS_ERR(em))
  5792. return em;
  5793. if (em) {
  5794. /*
  5795. * if our em maps to
  5796. * - a hole or
  5797. * - a pre-alloc extent,
  5798. * there might actually be delalloc bytes behind it.
  5799. */
  5800. if (em->block_start != EXTENT_MAP_HOLE &&
  5801. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
  5802. return em;
  5803. else
  5804. hole_em = em;
  5805. }
  5806. /* check to see if we've wrapped (len == -1 or similar) */
  5807. end = start + len;
  5808. if (end < start)
  5809. end = (u64)-1;
  5810. else
  5811. end -= 1;
  5812. em = NULL;
  5813. /* ok, we didn't find anything, lets look for delalloc */
  5814. found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
  5815. end, len, EXTENT_DELALLOC, 1);
  5816. found_end = range_start + found;
  5817. if (found_end < range_start)
  5818. found_end = (u64)-1;
  5819. /*
  5820. * we didn't find anything useful, return
  5821. * the original results from get_extent()
  5822. */
  5823. if (range_start > end || found_end <= start) {
  5824. em = hole_em;
  5825. hole_em = NULL;
  5826. goto out;
  5827. }
  5828. /* adjust the range_start to make sure it doesn't
  5829. * go backwards from the start they passed in
  5830. */
  5831. range_start = max(start, range_start);
  5832. found = found_end - range_start;
  5833. if (found > 0) {
  5834. u64 hole_start = start;
  5835. u64 hole_len = len;
  5836. em = alloc_extent_map();
  5837. if (!em) {
  5838. err = -ENOMEM;
  5839. goto out;
  5840. }
  5841. /*
  5842. * when btrfs_get_extent can't find anything it
  5843. * returns one huge hole
  5844. *
  5845. * make sure what it found really fits our range, and
  5846. * adjust to make sure it is based on the start from
  5847. * the caller
  5848. */
  5849. if (hole_em) {
  5850. u64 calc_end = extent_map_end(hole_em);
  5851. if (calc_end <= start || (hole_em->start > end)) {
  5852. free_extent_map(hole_em);
  5853. hole_em = NULL;
  5854. } else {
  5855. hole_start = max(hole_em->start, start);
  5856. hole_len = calc_end - hole_start;
  5857. }
  5858. }
  5859. em->bdev = NULL;
  5860. if (hole_em && range_start > hole_start) {
  5861. /* our hole starts before our delalloc, so we
  5862. * have to return just the parts of the hole
  5863. * that go until the delalloc starts
  5864. */
  5865. em->len = min(hole_len,
  5866. range_start - hole_start);
  5867. em->start = hole_start;
  5868. em->orig_start = hole_start;
  5869. /*
  5870. * don't adjust block start at all,
  5871. * it is fixed at EXTENT_MAP_HOLE
  5872. */
  5873. em->block_start = hole_em->block_start;
  5874. em->block_len = hole_len;
  5875. if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
  5876. set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
  5877. } else {
  5878. em->start = range_start;
  5879. em->len = found;
  5880. em->orig_start = range_start;
  5881. em->block_start = EXTENT_MAP_DELALLOC;
  5882. em->block_len = found;
  5883. }
  5884. } else if (hole_em) {
  5885. return hole_em;
  5886. }
  5887. out:
  5888. free_extent_map(hole_em);
  5889. if (err) {
  5890. free_extent_map(em);
  5891. return ERR_PTR(err);
  5892. }
  5893. return em;
  5894. }
  5895. static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
  5896. u64 start, u64 len)
  5897. {
  5898. struct btrfs_root *root = BTRFS_I(inode)->root;
  5899. struct extent_map *em;
  5900. struct btrfs_key ins;
  5901. u64 alloc_hint;
  5902. int ret;
  5903. alloc_hint = get_extent_allocation_hint(inode, start, len);
  5904. ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
  5905. alloc_hint, &ins, 1, 1);
  5906. if (ret)
  5907. return ERR_PTR(ret);
  5908. em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
  5909. ins.offset, ins.offset, ins.offset, 0);
  5910. if (IS_ERR(em)) {
  5911. btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
  5912. return em;
  5913. }
  5914. ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
  5915. ins.offset, ins.offset, 0);
  5916. if (ret) {
  5917. btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
  5918. free_extent_map(em);
  5919. return ERR_PTR(ret);
  5920. }
  5921. return em;
  5922. }
  5923. /*
  5924. * returns 1 when the nocow is safe, < 1 on error, 0 if the
  5925. * block must be cow'd
  5926. */
  5927. noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
  5928. u64 *orig_start, u64 *orig_block_len,
  5929. u64 *ram_bytes)
  5930. {
  5931. struct btrfs_trans_handle *trans;
  5932. struct btrfs_path *path;
  5933. int ret;
  5934. struct extent_buffer *leaf;
  5935. struct btrfs_root *root = BTRFS_I(inode)->root;
  5936. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  5937. struct btrfs_file_extent_item *fi;
  5938. struct btrfs_key key;
  5939. u64 disk_bytenr;
  5940. u64 backref_offset;
  5941. u64 extent_end;
  5942. u64 num_bytes;
  5943. int slot;
  5944. int found_type;
  5945. bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
  5946. path = btrfs_alloc_path();
  5947. if (!path)
  5948. return -ENOMEM;
  5949. ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
  5950. offset, 0);
  5951. if (ret < 0)
  5952. goto out;
  5953. slot = path->slots[0];
  5954. if (ret == 1) {
  5955. if (slot == 0) {
  5956. /* can't find the item, must cow */
  5957. ret = 0;
  5958. goto out;
  5959. }
  5960. slot--;
  5961. }
  5962. ret = 0;
  5963. leaf = path->nodes[0];
  5964. btrfs_item_key_to_cpu(leaf, &key, slot);
  5965. if (key.objectid != btrfs_ino(inode) ||
  5966. key.type != BTRFS_EXTENT_DATA_KEY) {
  5967. /* not our file or wrong item type, must cow */
  5968. goto out;
  5969. }
  5970. if (key.offset > offset) {
  5971. /* Wrong offset, must cow */
  5972. goto out;
  5973. }
  5974. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  5975. found_type = btrfs_file_extent_type(leaf, fi);
  5976. if (found_type != BTRFS_FILE_EXTENT_REG &&
  5977. found_type != BTRFS_FILE_EXTENT_PREALLOC) {
  5978. /* not a regular extent, must cow */
  5979. goto out;
  5980. }
  5981. if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
  5982. goto out;
  5983. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  5984. if (extent_end <= offset)
  5985. goto out;
  5986. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  5987. if (disk_bytenr == 0)
  5988. goto out;
  5989. if (btrfs_file_extent_compression(leaf, fi) ||
  5990. btrfs_file_extent_encryption(leaf, fi) ||
  5991. btrfs_file_extent_other_encoding(leaf, fi))
  5992. goto out;
  5993. backref_offset = btrfs_file_extent_offset(leaf, fi);
  5994. if (orig_start) {
  5995. *orig_start = key.offset - backref_offset;
  5996. *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
  5997. *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
  5998. }
  5999. if (btrfs_extent_readonly(root, disk_bytenr))
  6000. goto out;
  6001. num_bytes = min(offset + *len, extent_end) - offset;
  6002. if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
  6003. u64 range_end;
  6004. range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
  6005. ret = test_range_bit(io_tree, offset, range_end,
  6006. EXTENT_DELALLOC, 0, NULL);
  6007. if (ret) {
  6008. ret = -EAGAIN;
  6009. goto out;
  6010. }
  6011. }
  6012. btrfs_release_path(path);
  6013. /*
  6014. * look for other files referencing this extent, if we
  6015. * find any we must cow
  6016. */
  6017. trans = btrfs_join_transaction(root);
  6018. if (IS_ERR(trans)) {
  6019. ret = 0;
  6020. goto out;
  6021. }
  6022. ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
  6023. key.offset - backref_offset, disk_bytenr);
  6024. btrfs_end_transaction(trans, root);
  6025. if (ret) {
  6026. ret = 0;
  6027. goto out;
  6028. }
  6029. /*
  6030. * adjust disk_bytenr and num_bytes to cover just the bytes
  6031. * in this extent we are about to write. If there
  6032. * are any csums in that range we have to cow in order
  6033. * to keep the csums correct
  6034. */
  6035. disk_bytenr += backref_offset;
  6036. disk_bytenr += offset - key.offset;
  6037. if (csum_exist_in_range(root, disk_bytenr, num_bytes))
  6038. goto out;
  6039. /*
  6040. * all of the above have passed, it is safe to overwrite this extent
  6041. * without cow
  6042. */
  6043. *len = num_bytes;
  6044. ret = 1;
  6045. out:
  6046. btrfs_free_path(path);
  6047. return ret;
  6048. }
  6049. bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
  6050. {
  6051. struct radix_tree_root *root = &inode->i_mapping->page_tree;
  6052. int found = false;
  6053. void **pagep = NULL;
  6054. struct page *page = NULL;
  6055. int start_idx;
  6056. int end_idx;
  6057. start_idx = start >> PAGE_CACHE_SHIFT;
  6058. /*
  6059. * end is the last byte in the last page. end == start is legal
  6060. */
  6061. end_idx = end >> PAGE_CACHE_SHIFT;
  6062. rcu_read_lock();
  6063. /* Most of the code in this while loop is lifted from
  6064. * find_get_page. It's been modified to begin searching from a
  6065. * page and return just the first page found in that range. If the
  6066. * found idx is less than or equal to the end idx then we know that
  6067. * a page exists. If no pages are found or if those pages are
  6068. * outside of the range then we're fine (yay!) */
  6069. while (page == NULL &&
  6070. radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
  6071. page = radix_tree_deref_slot(pagep);
  6072. if (unlikely(!page))
  6073. break;
  6074. if (radix_tree_exception(page)) {
  6075. if (radix_tree_deref_retry(page)) {
  6076. page = NULL;
  6077. continue;
  6078. }
  6079. /*
  6080. * Otherwise, shmem/tmpfs must be storing a swap entry
  6081. * here as an exceptional entry: so return it without
  6082. * attempting to raise page count.
  6083. */
  6084. page = NULL;
  6085. break; /* TODO: Is this relevant for this use case? */
  6086. }
  6087. if (!page_cache_get_speculative(page)) {
  6088. page = NULL;
  6089. continue;
  6090. }
  6091. /*
  6092. * Has the page moved?
  6093. * This is part of the lockless pagecache protocol. See
  6094. * include/linux/pagemap.h for details.
  6095. */
  6096. if (unlikely(page != *pagep)) {
  6097. page_cache_release(page);
  6098. page = NULL;
  6099. }
  6100. }
  6101. if (page) {
  6102. if (page->index <= end_idx)
  6103. found = true;
  6104. page_cache_release(page);
  6105. }
  6106. rcu_read_unlock();
  6107. return found;
  6108. }
  6109. static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
  6110. struct extent_state **cached_state, int writing)
  6111. {
  6112. struct btrfs_ordered_extent *ordered;
  6113. int ret = 0;
  6114. while (1) {
  6115. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  6116. 0, cached_state);
  6117. /*
  6118. * We're concerned with the entire range that we're going to be
  6119. * doing DIO to, so we need to make sure theres no ordered
  6120. * extents in this range.
  6121. */
  6122. ordered = btrfs_lookup_ordered_range(inode, lockstart,
  6123. lockend - lockstart + 1);
  6124. /*
  6125. * We need to make sure there are no buffered pages in this
  6126. * range either, we could have raced between the invalidate in
  6127. * generic_file_direct_write and locking the extent. The
  6128. * invalidate needs to happen so that reads after a write do not
  6129. * get stale data.
  6130. */
  6131. if (!ordered &&
  6132. (!writing ||
  6133. !btrfs_page_exists_in_range(inode, lockstart, lockend)))
  6134. break;
  6135. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  6136. cached_state, GFP_NOFS);
  6137. if (ordered) {
  6138. btrfs_start_ordered_extent(inode, ordered, 1);
  6139. btrfs_put_ordered_extent(ordered);
  6140. } else {
  6141. /* Screw you mmap */
  6142. ret = filemap_write_and_wait_range(inode->i_mapping,
  6143. lockstart,
  6144. lockend);
  6145. if (ret)
  6146. break;
  6147. /*
  6148. * If we found a page that couldn't be invalidated just
  6149. * fall back to buffered.
  6150. */
  6151. ret = invalidate_inode_pages2_range(inode->i_mapping,
  6152. lockstart >> PAGE_CACHE_SHIFT,
  6153. lockend >> PAGE_CACHE_SHIFT);
  6154. if (ret)
  6155. break;
  6156. }
  6157. cond_resched();
  6158. }
  6159. return ret;
  6160. }
  6161. static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
  6162. u64 len, u64 orig_start,
  6163. u64 block_start, u64 block_len,
  6164. u64 orig_block_len, u64 ram_bytes,
  6165. int type)
  6166. {
  6167. struct extent_map_tree *em_tree;
  6168. struct extent_map *em;
  6169. struct btrfs_root *root = BTRFS_I(inode)->root;
  6170. int ret;
  6171. em_tree = &BTRFS_I(inode)->extent_tree;
  6172. em = alloc_extent_map();
  6173. if (!em)
  6174. return ERR_PTR(-ENOMEM);
  6175. em->start = start;
  6176. em->orig_start = orig_start;
  6177. em->mod_start = start;
  6178. em->mod_len = len;
  6179. em->len = len;
  6180. em->block_len = block_len;
  6181. em->block_start = block_start;
  6182. em->bdev = root->fs_info->fs_devices->latest_bdev;
  6183. em->orig_block_len = orig_block_len;
  6184. em->ram_bytes = ram_bytes;
  6185. em->generation = -1;
  6186. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  6187. if (type == BTRFS_ORDERED_PREALLOC)
  6188. set_bit(EXTENT_FLAG_FILLING, &em->flags);
  6189. do {
  6190. btrfs_drop_extent_cache(inode, em->start,
  6191. em->start + em->len - 1, 0);
  6192. write_lock(&em_tree->lock);
  6193. ret = add_extent_mapping(em_tree, em, 1);
  6194. write_unlock(&em_tree->lock);
  6195. } while (ret == -EEXIST);
  6196. if (ret) {
  6197. free_extent_map(em);
  6198. return ERR_PTR(ret);
  6199. }
  6200. return em;
  6201. }
  6202. static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
  6203. struct buffer_head *bh_result, int create)
  6204. {
  6205. struct extent_map *em;
  6206. struct btrfs_root *root = BTRFS_I(inode)->root;
  6207. struct extent_state *cached_state = NULL;
  6208. u64 start = iblock << inode->i_blkbits;
  6209. u64 lockstart, lockend;
  6210. u64 len = bh_result->b_size;
  6211. int unlock_bits = EXTENT_LOCKED;
  6212. int ret = 0;
  6213. if (create)
  6214. unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
  6215. else
  6216. len = min_t(u64, len, root->sectorsize);
  6217. lockstart = start;
  6218. lockend = start + len - 1;
  6219. /*
  6220. * If this errors out it's because we couldn't invalidate pagecache for
  6221. * this range and we need to fallback to buffered.
  6222. */
  6223. if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
  6224. return -ENOTBLK;
  6225. em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
  6226. if (IS_ERR(em)) {
  6227. ret = PTR_ERR(em);
  6228. goto unlock_err;
  6229. }
  6230. /*
  6231. * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
  6232. * io. INLINE is special, and we could probably kludge it in here, but
  6233. * it's still buffered so for safety lets just fall back to the generic
  6234. * buffered path.
  6235. *
  6236. * For COMPRESSED we _have_ to read the entire extent in so we can
  6237. * decompress it, so there will be buffering required no matter what we
  6238. * do, so go ahead and fallback to buffered.
  6239. *
  6240. * We return -ENOTBLK because thats what makes DIO go ahead and go back
  6241. * to buffered IO. Don't blame me, this is the price we pay for using
  6242. * the generic code.
  6243. */
  6244. if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
  6245. em->block_start == EXTENT_MAP_INLINE) {
  6246. free_extent_map(em);
  6247. ret = -ENOTBLK;
  6248. goto unlock_err;
  6249. }
  6250. /* Just a good old fashioned hole, return */
  6251. if (!create && (em->block_start == EXTENT_MAP_HOLE ||
  6252. test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  6253. free_extent_map(em);
  6254. goto unlock_err;
  6255. }
  6256. /*
  6257. * We don't allocate a new extent in the following cases
  6258. *
  6259. * 1) The inode is marked as NODATACOW. In this case we'll just use the
  6260. * existing extent.
  6261. * 2) The extent is marked as PREALLOC. We're good to go here and can
  6262. * just use the extent.
  6263. *
  6264. */
  6265. if (!create) {
  6266. len = min(len, em->len - (start - em->start));
  6267. lockstart = start + len;
  6268. goto unlock;
  6269. }
  6270. if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
  6271. ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
  6272. em->block_start != EXTENT_MAP_HOLE)) {
  6273. int type;
  6274. u64 block_start, orig_start, orig_block_len, ram_bytes;
  6275. if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
  6276. type = BTRFS_ORDERED_PREALLOC;
  6277. else
  6278. type = BTRFS_ORDERED_NOCOW;
  6279. len = min(len, em->len - (start - em->start));
  6280. block_start = em->block_start + (start - em->start);
  6281. if (can_nocow_extent(inode, start, &len, &orig_start,
  6282. &orig_block_len, &ram_bytes) == 1) {
  6283. if (type == BTRFS_ORDERED_PREALLOC) {
  6284. free_extent_map(em);
  6285. em = create_pinned_em(inode, start, len,
  6286. orig_start,
  6287. block_start, len,
  6288. orig_block_len,
  6289. ram_bytes, type);
  6290. if (IS_ERR(em)) {
  6291. ret = PTR_ERR(em);
  6292. goto unlock_err;
  6293. }
  6294. }
  6295. ret = btrfs_add_ordered_extent_dio(inode, start,
  6296. block_start, len, len, type);
  6297. if (ret) {
  6298. free_extent_map(em);
  6299. goto unlock_err;
  6300. }
  6301. goto unlock;
  6302. }
  6303. }
  6304. /*
  6305. * this will cow the extent, reset the len in case we changed
  6306. * it above
  6307. */
  6308. len = bh_result->b_size;
  6309. free_extent_map(em);
  6310. em = btrfs_new_extent_direct(inode, start, len);
  6311. if (IS_ERR(em)) {
  6312. ret = PTR_ERR(em);
  6313. goto unlock_err;
  6314. }
  6315. len = min(len, em->len - (start - em->start));
  6316. unlock:
  6317. bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
  6318. inode->i_blkbits;
  6319. bh_result->b_size = len;
  6320. bh_result->b_bdev = em->bdev;
  6321. set_buffer_mapped(bh_result);
  6322. if (create) {
  6323. if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
  6324. set_buffer_new(bh_result);
  6325. /*
  6326. * Need to update the i_size under the extent lock so buffered
  6327. * readers will get the updated i_size when we unlock.
  6328. */
  6329. if (start + len > i_size_read(inode))
  6330. i_size_write(inode, start + len);
  6331. spin_lock(&BTRFS_I(inode)->lock);
  6332. BTRFS_I(inode)->outstanding_extents++;
  6333. spin_unlock(&BTRFS_I(inode)->lock);
  6334. ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
  6335. lockstart + len - 1, EXTENT_DELALLOC, NULL,
  6336. &cached_state, GFP_NOFS);
  6337. BUG_ON(ret);
  6338. }
  6339. /*
  6340. * In the case of write we need to clear and unlock the entire range,
  6341. * in the case of read we need to unlock only the end area that we
  6342. * aren't using if there is any left over space.
  6343. */
  6344. if (lockstart < lockend) {
  6345. clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
  6346. lockend, unlock_bits, 1, 0,
  6347. &cached_state, GFP_NOFS);
  6348. } else {
  6349. free_extent_state(cached_state);
  6350. }
  6351. free_extent_map(em);
  6352. return 0;
  6353. unlock_err:
  6354. clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  6355. unlock_bits, 1, 0, &cached_state, GFP_NOFS);
  6356. return ret;
  6357. }
  6358. static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
  6359. int rw, int mirror_num)
  6360. {
  6361. struct btrfs_root *root = BTRFS_I(inode)->root;
  6362. int ret;
  6363. BUG_ON(rw & REQ_WRITE);
  6364. bio_get(bio);
  6365. ret = btrfs_bio_wq_end_io(root->fs_info, bio,
  6366. BTRFS_WQ_ENDIO_DIO_REPAIR);
  6367. if (ret)
  6368. goto err;
  6369. ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
  6370. err:
  6371. bio_put(bio);
  6372. return ret;
  6373. }
  6374. static int btrfs_check_dio_repairable(struct inode *inode,
  6375. struct bio *failed_bio,
  6376. struct io_failure_record *failrec,
  6377. int failed_mirror)
  6378. {
  6379. int num_copies;
  6380. num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
  6381. failrec->logical, failrec->len);
  6382. if (num_copies == 1) {
  6383. /*
  6384. * we only have a single copy of the data, so don't bother with
  6385. * all the retry and error correction code that follows. no
  6386. * matter what the error is, it is very likely to persist.
  6387. */
  6388. pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
  6389. num_copies, failrec->this_mirror, failed_mirror);
  6390. return 0;
  6391. }
  6392. failrec->failed_mirror = failed_mirror;
  6393. failrec->this_mirror++;
  6394. if (failrec->this_mirror == failed_mirror)
  6395. failrec->this_mirror++;
  6396. if (failrec->this_mirror > num_copies) {
  6397. pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
  6398. num_copies, failrec->this_mirror, failed_mirror);
  6399. return 0;
  6400. }
  6401. return 1;
  6402. }
  6403. static int dio_read_error(struct inode *inode, struct bio *failed_bio,
  6404. struct page *page, u64 start, u64 end,
  6405. int failed_mirror, bio_end_io_t *repair_endio,
  6406. void *repair_arg)
  6407. {
  6408. struct io_failure_record *failrec;
  6409. struct bio *bio;
  6410. int isector;
  6411. int read_mode;
  6412. int ret;
  6413. BUG_ON(failed_bio->bi_rw & REQ_WRITE);
  6414. ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
  6415. if (ret)
  6416. return ret;
  6417. ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
  6418. failed_mirror);
  6419. if (!ret) {
  6420. free_io_failure(inode, failrec);
  6421. return -EIO;
  6422. }
  6423. if (failed_bio->bi_vcnt > 1)
  6424. read_mode = READ_SYNC | REQ_FAILFAST_DEV;
  6425. else
  6426. read_mode = READ_SYNC;
  6427. isector = start - btrfs_io_bio(failed_bio)->logical;
  6428. isector >>= inode->i_sb->s_blocksize_bits;
  6429. bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
  6430. 0, isector, repair_endio, repair_arg);
  6431. if (!bio) {
  6432. free_io_failure(inode, failrec);
  6433. return -EIO;
  6434. }
  6435. btrfs_debug(BTRFS_I(inode)->root->fs_info,
  6436. "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
  6437. read_mode, failrec->this_mirror, failrec->in_validation);
  6438. ret = submit_dio_repair_bio(inode, bio, read_mode,
  6439. failrec->this_mirror);
  6440. if (ret) {
  6441. free_io_failure(inode, failrec);
  6442. bio_put(bio);
  6443. }
  6444. return ret;
  6445. }
  6446. struct btrfs_retry_complete {
  6447. struct completion done;
  6448. struct inode *inode;
  6449. u64 start;
  6450. int uptodate;
  6451. };
  6452. static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
  6453. {
  6454. struct btrfs_retry_complete *done = bio->bi_private;
  6455. struct bio_vec *bvec;
  6456. int i;
  6457. if (err)
  6458. goto end;
  6459. done->uptodate = 1;
  6460. bio_for_each_segment_all(bvec, bio, i)
  6461. clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
  6462. end:
  6463. complete(&done->done);
  6464. bio_put(bio);
  6465. }
  6466. static int __btrfs_correct_data_nocsum(struct inode *inode,
  6467. struct btrfs_io_bio *io_bio)
  6468. {
  6469. struct bio_vec *bvec;
  6470. struct btrfs_retry_complete done;
  6471. u64 start;
  6472. int i;
  6473. int ret;
  6474. start = io_bio->logical;
  6475. done.inode = inode;
  6476. bio_for_each_segment_all(bvec, &io_bio->bio, i) {
  6477. try_again:
  6478. done.uptodate = 0;
  6479. done.start = start;
  6480. init_completion(&done.done);
  6481. ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
  6482. start + bvec->bv_len - 1,
  6483. io_bio->mirror_num,
  6484. btrfs_retry_endio_nocsum, &done);
  6485. if (ret)
  6486. return ret;
  6487. wait_for_completion(&done.done);
  6488. if (!done.uptodate) {
  6489. /* We might have another mirror, so try again */
  6490. goto try_again;
  6491. }
  6492. start += bvec->bv_len;
  6493. }
  6494. return 0;
  6495. }
  6496. static void btrfs_retry_endio(struct bio *bio, int err)
  6497. {
  6498. struct btrfs_retry_complete *done = bio->bi_private;
  6499. struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
  6500. struct bio_vec *bvec;
  6501. int uptodate;
  6502. int ret;
  6503. int i;
  6504. if (err)
  6505. goto end;
  6506. uptodate = 1;
  6507. bio_for_each_segment_all(bvec, bio, i) {
  6508. ret = __readpage_endio_check(done->inode, io_bio, i,
  6509. bvec->bv_page, 0,
  6510. done->start, bvec->bv_len);
  6511. if (!ret)
  6512. clean_io_failure(done->inode, done->start,
  6513. bvec->bv_page, 0);
  6514. else
  6515. uptodate = 0;
  6516. }
  6517. done->uptodate = uptodate;
  6518. end:
  6519. complete(&done->done);
  6520. bio_put(bio);
  6521. }
  6522. static int __btrfs_subio_endio_read(struct inode *inode,
  6523. struct btrfs_io_bio *io_bio, int err)
  6524. {
  6525. struct bio_vec *bvec;
  6526. struct btrfs_retry_complete done;
  6527. u64 start;
  6528. u64 offset = 0;
  6529. int i;
  6530. int ret;
  6531. err = 0;
  6532. start = io_bio->logical;
  6533. done.inode = inode;
  6534. bio_for_each_segment_all(bvec, &io_bio->bio, i) {
  6535. ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
  6536. 0, start, bvec->bv_len);
  6537. if (likely(!ret))
  6538. goto next;
  6539. try_again:
  6540. done.uptodate = 0;
  6541. done.start = start;
  6542. init_completion(&done.done);
  6543. ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
  6544. start + bvec->bv_len - 1,
  6545. io_bio->mirror_num,
  6546. btrfs_retry_endio, &done);
  6547. if (ret) {
  6548. err = ret;
  6549. goto next;
  6550. }
  6551. wait_for_completion(&done.done);
  6552. if (!done.uptodate) {
  6553. /* We might have another mirror, so try again */
  6554. goto try_again;
  6555. }
  6556. next:
  6557. offset += bvec->bv_len;
  6558. start += bvec->bv_len;
  6559. }
  6560. return err;
  6561. }
  6562. static int btrfs_subio_endio_read(struct inode *inode,
  6563. struct btrfs_io_bio *io_bio, int err)
  6564. {
  6565. bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
  6566. if (skip_csum) {
  6567. if (unlikely(err))
  6568. return __btrfs_correct_data_nocsum(inode, io_bio);
  6569. else
  6570. return 0;
  6571. } else {
  6572. return __btrfs_subio_endio_read(inode, io_bio, err);
  6573. }
  6574. }
  6575. static void btrfs_endio_direct_read(struct bio *bio, int err)
  6576. {
  6577. struct btrfs_dio_private *dip = bio->bi_private;
  6578. struct inode *inode = dip->inode;
  6579. struct bio *dio_bio;
  6580. struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
  6581. if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
  6582. err = btrfs_subio_endio_read(inode, io_bio, err);
  6583. unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
  6584. dip->logical_offset + dip->bytes - 1);
  6585. dio_bio = dip->dio_bio;
  6586. kfree(dip);
  6587. /* If we had a csum failure make sure to clear the uptodate flag */
  6588. if (err)
  6589. clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
  6590. dio_end_io(dio_bio, err);
  6591. if (io_bio->end_io)
  6592. io_bio->end_io(io_bio, err);
  6593. bio_put(bio);
  6594. }
  6595. static void btrfs_endio_direct_write(struct bio *bio, int err)
  6596. {
  6597. struct btrfs_dio_private *dip = bio->bi_private;
  6598. struct inode *inode = dip->inode;
  6599. struct btrfs_root *root = BTRFS_I(inode)->root;
  6600. struct btrfs_ordered_extent *ordered = NULL;
  6601. u64 ordered_offset = dip->logical_offset;
  6602. u64 ordered_bytes = dip->bytes;
  6603. struct bio *dio_bio;
  6604. int ret;
  6605. if (err)
  6606. goto out_done;
  6607. again:
  6608. ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
  6609. &ordered_offset,
  6610. ordered_bytes, !err);
  6611. if (!ret)
  6612. goto out_test;
  6613. btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
  6614. finish_ordered_fn, NULL, NULL);
  6615. btrfs_queue_work(root->fs_info->endio_write_workers,
  6616. &ordered->work);
  6617. out_test:
  6618. /*
  6619. * our bio might span multiple ordered extents. If we haven't
  6620. * completed the accounting for the whole dio, go back and try again
  6621. */
  6622. if (ordered_offset < dip->logical_offset + dip->bytes) {
  6623. ordered_bytes = dip->logical_offset + dip->bytes -
  6624. ordered_offset;
  6625. ordered = NULL;
  6626. goto again;
  6627. }
  6628. out_done:
  6629. dio_bio = dip->dio_bio;
  6630. kfree(dip);
  6631. /* If we had an error make sure to clear the uptodate flag */
  6632. if (err)
  6633. clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
  6634. dio_end_io(dio_bio, err);
  6635. bio_put(bio);
  6636. }
  6637. static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
  6638. struct bio *bio, int mirror_num,
  6639. unsigned long bio_flags, u64 offset)
  6640. {
  6641. int ret;
  6642. struct btrfs_root *root = BTRFS_I(inode)->root;
  6643. ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
  6644. BUG_ON(ret); /* -ENOMEM */
  6645. return 0;
  6646. }
  6647. static void btrfs_end_dio_bio(struct bio *bio, int err)
  6648. {
  6649. struct btrfs_dio_private *dip = bio->bi_private;
  6650. if (err)
  6651. btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
  6652. "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
  6653. btrfs_ino(dip->inode), bio->bi_rw,
  6654. (unsigned long long)bio->bi_iter.bi_sector,
  6655. bio->bi_iter.bi_size, err);
  6656. if (dip->subio_endio)
  6657. err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
  6658. if (err) {
  6659. dip->errors = 1;
  6660. /*
  6661. * before atomic variable goto zero, we must make sure
  6662. * dip->errors is perceived to be set.
  6663. */
  6664. smp_mb__before_atomic();
  6665. }
  6666. /* if there are more bios still pending for this dio, just exit */
  6667. if (!atomic_dec_and_test(&dip->pending_bios))
  6668. goto out;
  6669. if (dip->errors) {
  6670. bio_io_error(dip->orig_bio);
  6671. } else {
  6672. set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
  6673. bio_endio(dip->orig_bio, 0);
  6674. }
  6675. out:
  6676. bio_put(bio);
  6677. }
  6678. static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
  6679. u64 first_sector, gfp_t gfp_flags)
  6680. {
  6681. int nr_vecs = bio_get_nr_vecs(bdev);
  6682. return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
  6683. }
  6684. static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
  6685. struct inode *inode,
  6686. struct btrfs_dio_private *dip,
  6687. struct bio *bio,
  6688. u64 file_offset)
  6689. {
  6690. struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
  6691. struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
  6692. int ret;
  6693. /*
  6694. * We load all the csum data we need when we submit
  6695. * the first bio to reduce the csum tree search and
  6696. * contention.
  6697. */
  6698. if (dip->logical_offset == file_offset) {
  6699. ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
  6700. file_offset);
  6701. if (ret)
  6702. return ret;
  6703. }
  6704. if (bio == dip->orig_bio)
  6705. return 0;
  6706. file_offset -= dip->logical_offset;
  6707. file_offset >>= inode->i_sb->s_blocksize_bits;
  6708. io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
  6709. return 0;
  6710. }
  6711. static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
  6712. int rw, u64 file_offset, int skip_sum,
  6713. int async_submit)
  6714. {
  6715. struct btrfs_dio_private *dip = bio->bi_private;
  6716. int write = rw & REQ_WRITE;
  6717. struct btrfs_root *root = BTRFS_I(inode)->root;
  6718. int ret;
  6719. if (async_submit)
  6720. async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
  6721. bio_get(bio);
  6722. if (!write) {
  6723. ret = btrfs_bio_wq_end_io(root->fs_info, bio,
  6724. BTRFS_WQ_ENDIO_DATA);
  6725. if (ret)
  6726. goto err;
  6727. }
  6728. if (skip_sum)
  6729. goto map;
  6730. if (write && async_submit) {
  6731. ret = btrfs_wq_submit_bio(root->fs_info,
  6732. inode, rw, bio, 0, 0,
  6733. file_offset,
  6734. __btrfs_submit_bio_start_direct_io,
  6735. __btrfs_submit_bio_done);
  6736. goto err;
  6737. } else if (write) {
  6738. /*
  6739. * If we aren't doing async submit, calculate the csum of the
  6740. * bio now.
  6741. */
  6742. ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
  6743. if (ret)
  6744. goto err;
  6745. } else {
  6746. ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
  6747. file_offset);
  6748. if (ret)
  6749. goto err;
  6750. }
  6751. map:
  6752. ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
  6753. err:
  6754. bio_put(bio);
  6755. return ret;
  6756. }
  6757. static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
  6758. int skip_sum)
  6759. {
  6760. struct inode *inode = dip->inode;
  6761. struct btrfs_root *root = BTRFS_I(inode)->root;
  6762. struct bio *bio;
  6763. struct bio *orig_bio = dip->orig_bio;
  6764. struct bio_vec *bvec = orig_bio->bi_io_vec;
  6765. u64 start_sector = orig_bio->bi_iter.bi_sector;
  6766. u64 file_offset = dip->logical_offset;
  6767. u64 submit_len = 0;
  6768. u64 map_length;
  6769. int nr_pages = 0;
  6770. int ret;
  6771. int async_submit = 0;
  6772. map_length = orig_bio->bi_iter.bi_size;
  6773. ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
  6774. &map_length, NULL, 0);
  6775. if (ret)
  6776. return -EIO;
  6777. if (map_length >= orig_bio->bi_iter.bi_size) {
  6778. bio = orig_bio;
  6779. dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
  6780. goto submit;
  6781. }
  6782. /* async crcs make it difficult to collect full stripe writes. */
  6783. if (btrfs_get_alloc_profile(root, 1) &
  6784. (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
  6785. async_submit = 0;
  6786. else
  6787. async_submit = 1;
  6788. bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
  6789. if (!bio)
  6790. return -ENOMEM;
  6791. bio->bi_private = dip;
  6792. bio->bi_end_io = btrfs_end_dio_bio;
  6793. btrfs_io_bio(bio)->logical = file_offset;
  6794. atomic_inc(&dip->pending_bios);
  6795. while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
  6796. if (map_length < submit_len + bvec->bv_len ||
  6797. bio_add_page(bio, bvec->bv_page, bvec->bv_len,
  6798. bvec->bv_offset) < bvec->bv_len) {
  6799. /*
  6800. * inc the count before we submit the bio so
  6801. * we know the end IO handler won't happen before
  6802. * we inc the count. Otherwise, the dip might get freed
  6803. * before we're done setting it up
  6804. */
  6805. atomic_inc(&dip->pending_bios);
  6806. ret = __btrfs_submit_dio_bio(bio, inode, rw,
  6807. file_offset, skip_sum,
  6808. async_submit);
  6809. if (ret) {
  6810. bio_put(bio);
  6811. atomic_dec(&dip->pending_bios);
  6812. goto out_err;
  6813. }
  6814. start_sector += submit_len >> 9;
  6815. file_offset += submit_len;
  6816. submit_len = 0;
  6817. nr_pages = 0;
  6818. bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
  6819. start_sector, GFP_NOFS);
  6820. if (!bio)
  6821. goto out_err;
  6822. bio->bi_private = dip;
  6823. bio->bi_end_io = btrfs_end_dio_bio;
  6824. btrfs_io_bio(bio)->logical = file_offset;
  6825. map_length = orig_bio->bi_iter.bi_size;
  6826. ret = btrfs_map_block(root->fs_info, rw,
  6827. start_sector << 9,
  6828. &map_length, NULL, 0);
  6829. if (ret) {
  6830. bio_put(bio);
  6831. goto out_err;
  6832. }
  6833. } else {
  6834. submit_len += bvec->bv_len;
  6835. nr_pages++;
  6836. bvec++;
  6837. }
  6838. }
  6839. submit:
  6840. ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
  6841. async_submit);
  6842. if (!ret)
  6843. return 0;
  6844. bio_put(bio);
  6845. out_err:
  6846. dip->errors = 1;
  6847. /*
  6848. * before atomic variable goto zero, we must
  6849. * make sure dip->errors is perceived to be set.
  6850. */
  6851. smp_mb__before_atomic();
  6852. if (atomic_dec_and_test(&dip->pending_bios))
  6853. bio_io_error(dip->orig_bio);
  6854. /* bio_end_io() will handle error, so we needn't return it */
  6855. return 0;
  6856. }
  6857. static void btrfs_submit_direct(int rw, struct bio *dio_bio,
  6858. struct inode *inode, loff_t file_offset)
  6859. {
  6860. struct btrfs_root *root = BTRFS_I(inode)->root;
  6861. struct btrfs_dio_private *dip;
  6862. struct bio *io_bio;
  6863. struct btrfs_io_bio *btrfs_bio;
  6864. int skip_sum;
  6865. int write = rw & REQ_WRITE;
  6866. int ret = 0;
  6867. skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
  6868. io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
  6869. if (!io_bio) {
  6870. ret = -ENOMEM;
  6871. goto free_ordered;
  6872. }
  6873. dip = kzalloc(sizeof(*dip), GFP_NOFS);
  6874. if (!dip) {
  6875. ret = -ENOMEM;
  6876. goto free_io_bio;
  6877. }
  6878. dip->private = dio_bio->bi_private;
  6879. dip->inode = inode;
  6880. dip->logical_offset = file_offset;
  6881. dip->bytes = dio_bio->bi_iter.bi_size;
  6882. dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
  6883. io_bio->bi_private = dip;
  6884. dip->orig_bio = io_bio;
  6885. dip->dio_bio = dio_bio;
  6886. atomic_set(&dip->pending_bios, 0);
  6887. btrfs_bio = btrfs_io_bio(io_bio);
  6888. btrfs_bio->logical = file_offset;
  6889. if (write) {
  6890. io_bio->bi_end_io = btrfs_endio_direct_write;
  6891. } else {
  6892. io_bio->bi_end_io = btrfs_endio_direct_read;
  6893. dip->subio_endio = btrfs_subio_endio_read;
  6894. }
  6895. ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
  6896. if (!ret)
  6897. return;
  6898. if (btrfs_bio->end_io)
  6899. btrfs_bio->end_io(btrfs_bio, ret);
  6900. free_io_bio:
  6901. bio_put(io_bio);
  6902. free_ordered:
  6903. /*
  6904. * If this is a write, we need to clean up the reserved space and kill
  6905. * the ordered extent.
  6906. */
  6907. if (write) {
  6908. struct btrfs_ordered_extent *ordered;
  6909. ordered = btrfs_lookup_ordered_extent(inode, file_offset);
  6910. if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
  6911. !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
  6912. btrfs_free_reserved_extent(root, ordered->start,
  6913. ordered->disk_len, 1);
  6914. btrfs_put_ordered_extent(ordered);
  6915. btrfs_put_ordered_extent(ordered);
  6916. }
  6917. bio_endio(dio_bio, ret);
  6918. }
  6919. static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
  6920. const struct iov_iter *iter, loff_t offset)
  6921. {
  6922. int seg;
  6923. int i;
  6924. unsigned blocksize_mask = root->sectorsize - 1;
  6925. ssize_t retval = -EINVAL;
  6926. if (offset & blocksize_mask)
  6927. goto out;
  6928. if (iov_iter_alignment(iter) & blocksize_mask)
  6929. goto out;
  6930. /* If this is a write we don't need to check anymore */
  6931. if (rw & WRITE)
  6932. return 0;
  6933. /*
  6934. * Check to make sure we don't have duplicate iov_base's in this
  6935. * iovec, if so return EINVAL, otherwise we'll get csum errors
  6936. * when reading back.
  6937. */
  6938. for (seg = 0; seg < iter->nr_segs; seg++) {
  6939. for (i = seg + 1; i < iter->nr_segs; i++) {
  6940. if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
  6941. goto out;
  6942. }
  6943. }
  6944. retval = 0;
  6945. out:
  6946. return retval;
  6947. }
  6948. static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
  6949. struct iov_iter *iter, loff_t offset)
  6950. {
  6951. struct file *file = iocb->ki_filp;
  6952. struct inode *inode = file->f_mapping->host;
  6953. size_t count = 0;
  6954. int flags = 0;
  6955. bool wakeup = true;
  6956. bool relock = false;
  6957. ssize_t ret;
  6958. if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
  6959. return 0;
  6960. atomic_inc(&inode->i_dio_count);
  6961. smp_mb__after_atomic();
  6962. /*
  6963. * The generic stuff only does filemap_write_and_wait_range, which
  6964. * isn't enough if we've written compressed pages to this area, so
  6965. * we need to flush the dirty pages again to make absolutely sure
  6966. * that any outstanding dirty pages are on disk.
  6967. */
  6968. count = iov_iter_count(iter);
  6969. if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  6970. &BTRFS_I(inode)->runtime_flags))
  6971. filemap_fdatawrite_range(inode->i_mapping, offset,
  6972. offset + count - 1);
  6973. if (rw & WRITE) {
  6974. /*
  6975. * If the write DIO is beyond the EOF, we need update
  6976. * the isize, but it is protected by i_mutex. So we can
  6977. * not unlock the i_mutex at this case.
  6978. */
  6979. if (offset + count <= inode->i_size) {
  6980. mutex_unlock(&inode->i_mutex);
  6981. relock = true;
  6982. }
  6983. ret = btrfs_delalloc_reserve_space(inode, count);
  6984. if (ret)
  6985. goto out;
  6986. } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
  6987. &BTRFS_I(inode)->runtime_flags)) {
  6988. inode_dio_done(inode);
  6989. flags = DIO_LOCKING | DIO_SKIP_HOLES;
  6990. wakeup = false;
  6991. }
  6992. ret = __blockdev_direct_IO(rw, iocb, inode,
  6993. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
  6994. iter, offset, btrfs_get_blocks_direct, NULL,
  6995. btrfs_submit_direct, flags);
  6996. if (rw & WRITE) {
  6997. if (ret < 0 && ret != -EIOCBQUEUED)
  6998. btrfs_delalloc_release_space(inode, count);
  6999. else if (ret >= 0 && (size_t)ret < count)
  7000. btrfs_delalloc_release_space(inode,
  7001. count - (size_t)ret);
  7002. else
  7003. btrfs_delalloc_release_metadata(inode, 0);
  7004. }
  7005. out:
  7006. if (wakeup)
  7007. inode_dio_done(inode);
  7008. if (relock)
  7009. mutex_lock(&inode->i_mutex);
  7010. return ret;
  7011. }
  7012. #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
  7013. static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  7014. __u64 start, __u64 len)
  7015. {
  7016. int ret;
  7017. ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
  7018. if (ret)
  7019. return ret;
  7020. return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
  7021. }
  7022. int btrfs_readpage(struct file *file, struct page *page)
  7023. {
  7024. struct extent_io_tree *tree;
  7025. tree = &BTRFS_I(page->mapping->host)->io_tree;
  7026. return extent_read_full_page(tree, page, btrfs_get_extent, 0);
  7027. }
  7028. static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
  7029. {
  7030. struct extent_io_tree *tree;
  7031. if (current->flags & PF_MEMALLOC) {
  7032. redirty_page_for_writepage(wbc, page);
  7033. unlock_page(page);
  7034. return 0;
  7035. }
  7036. tree = &BTRFS_I(page->mapping->host)->io_tree;
  7037. return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
  7038. }
  7039. static int btrfs_writepages(struct address_space *mapping,
  7040. struct writeback_control *wbc)
  7041. {
  7042. struct extent_io_tree *tree;
  7043. tree = &BTRFS_I(mapping->host)->io_tree;
  7044. return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
  7045. }
  7046. static int
  7047. btrfs_readpages(struct file *file, struct address_space *mapping,
  7048. struct list_head *pages, unsigned nr_pages)
  7049. {
  7050. struct extent_io_tree *tree;
  7051. tree = &BTRFS_I(mapping->host)->io_tree;
  7052. return extent_readpages(tree, mapping, pages, nr_pages,
  7053. btrfs_get_extent);
  7054. }
  7055. static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
  7056. {
  7057. struct extent_io_tree *tree;
  7058. struct extent_map_tree *map;
  7059. int ret;
  7060. tree = &BTRFS_I(page->mapping->host)->io_tree;
  7061. map = &BTRFS_I(page->mapping->host)->extent_tree;
  7062. ret = try_release_extent_mapping(map, tree, page, gfp_flags);
  7063. if (ret == 1) {
  7064. ClearPagePrivate(page);
  7065. set_page_private(page, 0);
  7066. page_cache_release(page);
  7067. }
  7068. return ret;
  7069. }
  7070. static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
  7071. {
  7072. if (PageWriteback(page) || PageDirty(page))
  7073. return 0;
  7074. return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
  7075. }
  7076. static void btrfs_invalidatepage(struct page *page, unsigned int offset,
  7077. unsigned int length)
  7078. {
  7079. struct inode *inode = page->mapping->host;
  7080. struct extent_io_tree *tree;
  7081. struct btrfs_ordered_extent *ordered;
  7082. struct extent_state *cached_state = NULL;
  7083. u64 page_start = page_offset(page);
  7084. u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
  7085. int inode_evicting = inode->i_state & I_FREEING;
  7086. /*
  7087. * we have the page locked, so new writeback can't start,
  7088. * and the dirty bit won't be cleared while we are here.
  7089. *
  7090. * Wait for IO on this page so that we can safely clear
  7091. * the PagePrivate2 bit and do ordered accounting
  7092. */
  7093. wait_on_page_writeback(page);
  7094. tree = &BTRFS_I(inode)->io_tree;
  7095. if (offset) {
  7096. btrfs_releasepage(page, GFP_NOFS);
  7097. return;
  7098. }
  7099. if (!inode_evicting)
  7100. lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
  7101. ordered = btrfs_lookup_ordered_extent(inode, page_start);
  7102. if (ordered) {
  7103. /*
  7104. * IO on this page will never be started, so we need
  7105. * to account for any ordered extents now
  7106. */
  7107. if (!inode_evicting)
  7108. clear_extent_bit(tree, page_start, page_end,
  7109. EXTENT_DIRTY | EXTENT_DELALLOC |
  7110. EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
  7111. EXTENT_DEFRAG, 1, 0, &cached_state,
  7112. GFP_NOFS);
  7113. /*
  7114. * whoever cleared the private bit is responsible
  7115. * for the finish_ordered_io
  7116. */
  7117. if (TestClearPagePrivate2(page)) {
  7118. struct btrfs_ordered_inode_tree *tree;
  7119. u64 new_len;
  7120. tree = &BTRFS_I(inode)->ordered_tree;
  7121. spin_lock_irq(&tree->lock);
  7122. set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
  7123. new_len = page_start - ordered->file_offset;
  7124. if (new_len < ordered->truncated_len)
  7125. ordered->truncated_len = new_len;
  7126. spin_unlock_irq(&tree->lock);
  7127. if (btrfs_dec_test_ordered_pending(inode, &ordered,
  7128. page_start,
  7129. PAGE_CACHE_SIZE, 1))
  7130. btrfs_finish_ordered_io(ordered);
  7131. }
  7132. btrfs_put_ordered_extent(ordered);
  7133. if (!inode_evicting) {
  7134. cached_state = NULL;
  7135. lock_extent_bits(tree, page_start, page_end, 0,
  7136. &cached_state);
  7137. }
  7138. }
  7139. if (!inode_evicting) {
  7140. clear_extent_bit(tree, page_start, page_end,
  7141. EXTENT_LOCKED | EXTENT_DIRTY |
  7142. EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
  7143. EXTENT_DEFRAG, 1, 1,
  7144. &cached_state, GFP_NOFS);
  7145. __btrfs_releasepage(page, GFP_NOFS);
  7146. }
  7147. ClearPageChecked(page);
  7148. if (PagePrivate(page)) {
  7149. ClearPagePrivate(page);
  7150. set_page_private(page, 0);
  7151. page_cache_release(page);
  7152. }
  7153. }
  7154. /*
  7155. * btrfs_page_mkwrite() is not allowed to change the file size as it gets
  7156. * called from a page fault handler when a page is first dirtied. Hence we must
  7157. * be careful to check for EOF conditions here. We set the page up correctly
  7158. * for a written page which means we get ENOSPC checking when writing into
  7159. * holes and correct delalloc and unwritten extent mapping on filesystems that
  7160. * support these features.
  7161. *
  7162. * We are not allowed to take the i_mutex here so we have to play games to
  7163. * protect against truncate races as the page could now be beyond EOF. Because
  7164. * vmtruncate() writes the inode size before removing pages, once we have the
  7165. * page lock we can determine safely if the page is beyond EOF. If it is not
  7166. * beyond EOF, then the page is guaranteed safe against truncation until we
  7167. * unlock the page.
  7168. */
  7169. int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
  7170. {
  7171. struct page *page = vmf->page;
  7172. struct inode *inode = file_inode(vma->vm_file);
  7173. struct btrfs_root *root = BTRFS_I(inode)->root;
  7174. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  7175. struct btrfs_ordered_extent *ordered;
  7176. struct extent_state *cached_state = NULL;
  7177. char *kaddr;
  7178. unsigned long zero_start;
  7179. loff_t size;
  7180. int ret;
  7181. int reserved = 0;
  7182. u64 page_start;
  7183. u64 page_end;
  7184. sb_start_pagefault(inode->i_sb);
  7185. ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
  7186. if (!ret) {
  7187. ret = file_update_time(vma->vm_file);
  7188. reserved = 1;
  7189. }
  7190. if (ret) {
  7191. if (ret == -ENOMEM)
  7192. ret = VM_FAULT_OOM;
  7193. else /* -ENOSPC, -EIO, etc */
  7194. ret = VM_FAULT_SIGBUS;
  7195. if (reserved)
  7196. goto out;
  7197. goto out_noreserve;
  7198. }
  7199. ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
  7200. again:
  7201. lock_page(page);
  7202. size = i_size_read(inode);
  7203. page_start = page_offset(page);
  7204. page_end = page_start + PAGE_CACHE_SIZE - 1;
  7205. if ((page->mapping != inode->i_mapping) ||
  7206. (page_start >= size)) {
  7207. /* page got truncated out from underneath us */
  7208. goto out_unlock;
  7209. }
  7210. wait_on_page_writeback(page);
  7211. lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
  7212. set_page_extent_mapped(page);
  7213. /*
  7214. * we can't set the delalloc bits if there are pending ordered
  7215. * extents. Drop our locks and wait for them to finish
  7216. */
  7217. ordered = btrfs_lookup_ordered_extent(inode, page_start);
  7218. if (ordered) {
  7219. unlock_extent_cached(io_tree, page_start, page_end,
  7220. &cached_state, GFP_NOFS);
  7221. unlock_page(page);
  7222. btrfs_start_ordered_extent(inode, ordered, 1);
  7223. btrfs_put_ordered_extent(ordered);
  7224. goto again;
  7225. }
  7226. /*
  7227. * XXX - page_mkwrite gets called every time the page is dirtied, even
  7228. * if it was already dirty, so for space accounting reasons we need to
  7229. * clear any delalloc bits for the range we are fixing to save. There
  7230. * is probably a better way to do this, but for now keep consistent with
  7231. * prepare_pages in the normal write path.
  7232. */
  7233. clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
  7234. EXTENT_DIRTY | EXTENT_DELALLOC |
  7235. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  7236. 0, 0, &cached_state, GFP_NOFS);
  7237. ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
  7238. &cached_state);
  7239. if (ret) {
  7240. unlock_extent_cached(io_tree, page_start, page_end,
  7241. &cached_state, GFP_NOFS);
  7242. ret = VM_FAULT_SIGBUS;
  7243. goto out_unlock;
  7244. }
  7245. ret = 0;
  7246. /* page is wholly or partially inside EOF */
  7247. if (page_start + PAGE_CACHE_SIZE > size)
  7248. zero_start = size & ~PAGE_CACHE_MASK;
  7249. else
  7250. zero_start = PAGE_CACHE_SIZE;
  7251. if (zero_start != PAGE_CACHE_SIZE) {
  7252. kaddr = kmap(page);
  7253. memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
  7254. flush_dcache_page(page);
  7255. kunmap(page);
  7256. }
  7257. ClearPageChecked(page);
  7258. set_page_dirty(page);
  7259. SetPageUptodate(page);
  7260. BTRFS_I(inode)->last_trans = root->fs_info->generation;
  7261. BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
  7262. BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
  7263. unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
  7264. out_unlock:
  7265. if (!ret) {
  7266. sb_end_pagefault(inode->i_sb);
  7267. return VM_FAULT_LOCKED;
  7268. }
  7269. unlock_page(page);
  7270. out:
  7271. btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
  7272. out_noreserve:
  7273. sb_end_pagefault(inode->i_sb);
  7274. return ret;
  7275. }
  7276. static int btrfs_truncate(struct inode *inode)
  7277. {
  7278. struct btrfs_root *root = BTRFS_I(inode)->root;
  7279. struct btrfs_block_rsv *rsv;
  7280. int ret = 0;
  7281. int err = 0;
  7282. struct btrfs_trans_handle *trans;
  7283. u64 mask = root->sectorsize - 1;
  7284. u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
  7285. ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
  7286. (u64)-1);
  7287. if (ret)
  7288. return ret;
  7289. /*
  7290. * Yes ladies and gentelment, this is indeed ugly. The fact is we have
  7291. * 3 things going on here
  7292. *
  7293. * 1) We need to reserve space for our orphan item and the space to
  7294. * delete our orphan item. Lord knows we don't want to have a dangling
  7295. * orphan item because we didn't reserve space to remove it.
  7296. *
  7297. * 2) We need to reserve space to update our inode.
  7298. *
  7299. * 3) We need to have something to cache all the space that is going to
  7300. * be free'd up by the truncate operation, but also have some slack
  7301. * space reserved in case it uses space during the truncate (thank you
  7302. * very much snapshotting).
  7303. *
  7304. * And we need these to all be seperate. The fact is we can use alot of
  7305. * space doing the truncate, and we have no earthly idea how much space
  7306. * we will use, so we need the truncate reservation to be seperate so it
  7307. * doesn't end up using space reserved for updating the inode or
  7308. * removing the orphan item. We also need to be able to stop the
  7309. * transaction and start a new one, which means we need to be able to
  7310. * update the inode several times, and we have no idea of knowing how
  7311. * many times that will be, so we can't just reserve 1 item for the
  7312. * entirety of the opration, so that has to be done seperately as well.
  7313. * Then there is the orphan item, which does indeed need to be held on
  7314. * to for the whole operation, and we need nobody to touch this reserved
  7315. * space except the orphan code.
  7316. *
  7317. * So that leaves us with
  7318. *
  7319. * 1) root->orphan_block_rsv - for the orphan deletion.
  7320. * 2) rsv - for the truncate reservation, which we will steal from the
  7321. * transaction reservation.
  7322. * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
  7323. * updating the inode.
  7324. */
  7325. rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
  7326. if (!rsv)
  7327. return -ENOMEM;
  7328. rsv->size = min_size;
  7329. rsv->failfast = 1;
  7330. /*
  7331. * 1 for the truncate slack space
  7332. * 1 for updating the inode.
  7333. */
  7334. trans = btrfs_start_transaction(root, 2);
  7335. if (IS_ERR(trans)) {
  7336. err = PTR_ERR(trans);
  7337. goto out;
  7338. }
  7339. /* Migrate the slack space for the truncate to our reserve */
  7340. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
  7341. min_size);
  7342. BUG_ON(ret);
  7343. /*
  7344. * So if we truncate and then write and fsync we normally would just
  7345. * write the extents that changed, which is a problem if we need to
  7346. * first truncate that entire inode. So set this flag so we write out
  7347. * all of the extents in the inode to the sync log so we're completely
  7348. * safe.
  7349. */
  7350. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
  7351. trans->block_rsv = rsv;
  7352. while (1) {
  7353. ret = btrfs_truncate_inode_items(trans, root, inode,
  7354. inode->i_size,
  7355. BTRFS_EXTENT_DATA_KEY);
  7356. if (ret != -ENOSPC) {
  7357. err = ret;
  7358. break;
  7359. }
  7360. trans->block_rsv = &root->fs_info->trans_block_rsv;
  7361. ret = btrfs_update_inode(trans, root, inode);
  7362. if (ret) {
  7363. err = ret;
  7364. break;
  7365. }
  7366. btrfs_end_transaction(trans, root);
  7367. btrfs_btree_balance_dirty(root);
  7368. trans = btrfs_start_transaction(root, 2);
  7369. if (IS_ERR(trans)) {
  7370. ret = err = PTR_ERR(trans);
  7371. trans = NULL;
  7372. break;
  7373. }
  7374. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
  7375. rsv, min_size);
  7376. BUG_ON(ret); /* shouldn't happen */
  7377. trans->block_rsv = rsv;
  7378. }
  7379. if (ret == 0 && inode->i_nlink > 0) {
  7380. trans->block_rsv = root->orphan_block_rsv;
  7381. ret = btrfs_orphan_del(trans, inode);
  7382. if (ret)
  7383. err = ret;
  7384. }
  7385. if (trans) {
  7386. trans->block_rsv = &root->fs_info->trans_block_rsv;
  7387. ret = btrfs_update_inode(trans, root, inode);
  7388. if (ret && !err)
  7389. err = ret;
  7390. ret = btrfs_end_transaction(trans, root);
  7391. btrfs_btree_balance_dirty(root);
  7392. }
  7393. out:
  7394. btrfs_free_block_rsv(root, rsv);
  7395. if (ret && !err)
  7396. err = ret;
  7397. return err;
  7398. }
  7399. /*
  7400. * create a new subvolume directory/inode (helper for the ioctl).
  7401. */
  7402. int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
  7403. struct btrfs_root *new_root,
  7404. struct btrfs_root *parent_root,
  7405. u64 new_dirid)
  7406. {
  7407. struct inode *inode;
  7408. int err;
  7409. u64 index = 0;
  7410. inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
  7411. new_dirid, new_dirid,
  7412. S_IFDIR | (~current_umask() & S_IRWXUGO),
  7413. &index);
  7414. if (IS_ERR(inode))
  7415. return PTR_ERR(inode);
  7416. inode->i_op = &btrfs_dir_inode_operations;
  7417. inode->i_fop = &btrfs_dir_file_operations;
  7418. set_nlink(inode, 1);
  7419. btrfs_i_size_write(inode, 0);
  7420. unlock_new_inode(inode);
  7421. err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
  7422. if (err)
  7423. btrfs_err(new_root->fs_info,
  7424. "error inheriting subvolume %llu properties: %d",
  7425. new_root->root_key.objectid, err);
  7426. err = btrfs_update_inode(trans, new_root, inode);
  7427. iput(inode);
  7428. return err;
  7429. }
  7430. struct inode *btrfs_alloc_inode(struct super_block *sb)
  7431. {
  7432. struct btrfs_inode *ei;
  7433. struct inode *inode;
  7434. ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
  7435. if (!ei)
  7436. return NULL;
  7437. ei->root = NULL;
  7438. ei->generation = 0;
  7439. ei->last_trans = 0;
  7440. ei->last_sub_trans = 0;
  7441. ei->logged_trans = 0;
  7442. ei->delalloc_bytes = 0;
  7443. ei->defrag_bytes = 0;
  7444. ei->disk_i_size = 0;
  7445. ei->flags = 0;
  7446. ei->csum_bytes = 0;
  7447. ei->index_cnt = (u64)-1;
  7448. ei->dir_index = 0;
  7449. ei->last_unlink_trans = 0;
  7450. ei->last_log_commit = 0;
  7451. spin_lock_init(&ei->lock);
  7452. ei->outstanding_extents = 0;
  7453. ei->reserved_extents = 0;
  7454. ei->runtime_flags = 0;
  7455. ei->force_compress = BTRFS_COMPRESS_NONE;
  7456. ei->delayed_node = NULL;
  7457. inode = &ei->vfs_inode;
  7458. extent_map_tree_init(&ei->extent_tree);
  7459. extent_io_tree_init(&ei->io_tree, &inode->i_data);
  7460. extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
  7461. ei->io_tree.track_uptodate = 1;
  7462. ei->io_failure_tree.track_uptodate = 1;
  7463. atomic_set(&ei->sync_writers, 0);
  7464. mutex_init(&ei->log_mutex);
  7465. mutex_init(&ei->delalloc_mutex);
  7466. btrfs_ordered_inode_tree_init(&ei->ordered_tree);
  7467. INIT_LIST_HEAD(&ei->delalloc_inodes);
  7468. RB_CLEAR_NODE(&ei->rb_node);
  7469. return inode;
  7470. }
  7471. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  7472. void btrfs_test_destroy_inode(struct inode *inode)
  7473. {
  7474. btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
  7475. kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
  7476. }
  7477. #endif
  7478. static void btrfs_i_callback(struct rcu_head *head)
  7479. {
  7480. struct inode *inode = container_of(head, struct inode, i_rcu);
  7481. kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
  7482. }
  7483. void btrfs_destroy_inode(struct inode *inode)
  7484. {
  7485. struct btrfs_ordered_extent *ordered;
  7486. struct btrfs_root *root = BTRFS_I(inode)->root;
  7487. WARN_ON(!hlist_empty(&inode->i_dentry));
  7488. WARN_ON(inode->i_data.nrpages);
  7489. WARN_ON(BTRFS_I(inode)->outstanding_extents);
  7490. WARN_ON(BTRFS_I(inode)->reserved_extents);
  7491. WARN_ON(BTRFS_I(inode)->delalloc_bytes);
  7492. WARN_ON(BTRFS_I(inode)->csum_bytes);
  7493. WARN_ON(BTRFS_I(inode)->defrag_bytes);
  7494. /*
  7495. * This can happen where we create an inode, but somebody else also
  7496. * created the same inode and we need to destroy the one we already
  7497. * created.
  7498. */
  7499. if (!root)
  7500. goto free;
  7501. if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  7502. &BTRFS_I(inode)->runtime_flags)) {
  7503. btrfs_info(root->fs_info, "inode %llu still on the orphan list",
  7504. btrfs_ino(inode));
  7505. atomic_dec(&root->orphan_inodes);
  7506. }
  7507. while (1) {
  7508. ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
  7509. if (!ordered)
  7510. break;
  7511. else {
  7512. btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
  7513. ordered->file_offset, ordered->len);
  7514. btrfs_remove_ordered_extent(inode, ordered);
  7515. btrfs_put_ordered_extent(ordered);
  7516. btrfs_put_ordered_extent(ordered);
  7517. }
  7518. }
  7519. inode_tree_del(inode);
  7520. btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
  7521. free:
  7522. call_rcu(&inode->i_rcu, btrfs_i_callback);
  7523. }
  7524. int btrfs_drop_inode(struct inode *inode)
  7525. {
  7526. struct btrfs_root *root = BTRFS_I(inode)->root;
  7527. if (root == NULL)
  7528. return 1;
  7529. /* the snap/subvol tree is on deleting */
  7530. if (btrfs_root_refs(&root->root_item) == 0)
  7531. return 1;
  7532. else
  7533. return generic_drop_inode(inode);
  7534. }
  7535. static void init_once(void *foo)
  7536. {
  7537. struct btrfs_inode *ei = (struct btrfs_inode *) foo;
  7538. inode_init_once(&ei->vfs_inode);
  7539. }
  7540. void btrfs_destroy_cachep(void)
  7541. {
  7542. /*
  7543. * Make sure all delayed rcu free inodes are flushed before we
  7544. * destroy cache.
  7545. */
  7546. rcu_barrier();
  7547. if (btrfs_inode_cachep)
  7548. kmem_cache_destroy(btrfs_inode_cachep);
  7549. if (btrfs_trans_handle_cachep)
  7550. kmem_cache_destroy(btrfs_trans_handle_cachep);
  7551. if (btrfs_transaction_cachep)
  7552. kmem_cache_destroy(btrfs_transaction_cachep);
  7553. if (btrfs_path_cachep)
  7554. kmem_cache_destroy(btrfs_path_cachep);
  7555. if (btrfs_free_space_cachep)
  7556. kmem_cache_destroy(btrfs_free_space_cachep);
  7557. if (btrfs_delalloc_work_cachep)
  7558. kmem_cache_destroy(btrfs_delalloc_work_cachep);
  7559. }
  7560. int btrfs_init_cachep(void)
  7561. {
  7562. btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
  7563. sizeof(struct btrfs_inode), 0,
  7564. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
  7565. if (!btrfs_inode_cachep)
  7566. goto fail;
  7567. btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
  7568. sizeof(struct btrfs_trans_handle), 0,
  7569. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  7570. if (!btrfs_trans_handle_cachep)
  7571. goto fail;
  7572. btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
  7573. sizeof(struct btrfs_transaction), 0,
  7574. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  7575. if (!btrfs_transaction_cachep)
  7576. goto fail;
  7577. btrfs_path_cachep = kmem_cache_create("btrfs_path",
  7578. sizeof(struct btrfs_path), 0,
  7579. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  7580. if (!btrfs_path_cachep)
  7581. goto fail;
  7582. btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
  7583. sizeof(struct btrfs_free_space), 0,
  7584. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  7585. if (!btrfs_free_space_cachep)
  7586. goto fail;
  7587. btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
  7588. sizeof(struct btrfs_delalloc_work), 0,
  7589. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  7590. NULL);
  7591. if (!btrfs_delalloc_work_cachep)
  7592. goto fail;
  7593. return 0;
  7594. fail:
  7595. btrfs_destroy_cachep();
  7596. return -ENOMEM;
  7597. }
  7598. static int btrfs_getattr(struct vfsmount *mnt,
  7599. struct dentry *dentry, struct kstat *stat)
  7600. {
  7601. u64 delalloc_bytes;
  7602. struct inode *inode = dentry->d_inode;
  7603. u32 blocksize = inode->i_sb->s_blocksize;
  7604. generic_fillattr(inode, stat);
  7605. stat->dev = BTRFS_I(inode)->root->anon_dev;
  7606. stat->blksize = PAGE_CACHE_SIZE;
  7607. spin_lock(&BTRFS_I(inode)->lock);
  7608. delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
  7609. spin_unlock(&BTRFS_I(inode)->lock);
  7610. stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
  7611. ALIGN(delalloc_bytes, blocksize)) >> 9;
  7612. return 0;
  7613. }
  7614. static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
  7615. struct inode *new_dir, struct dentry *new_dentry)
  7616. {
  7617. struct btrfs_trans_handle *trans;
  7618. struct btrfs_root *root = BTRFS_I(old_dir)->root;
  7619. struct btrfs_root *dest = BTRFS_I(new_dir)->root;
  7620. struct inode *new_inode = new_dentry->d_inode;
  7621. struct inode *old_inode = old_dentry->d_inode;
  7622. struct timespec ctime = CURRENT_TIME;
  7623. u64 index = 0;
  7624. u64 root_objectid;
  7625. int ret;
  7626. u64 old_ino = btrfs_ino(old_inode);
  7627. if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
  7628. return -EPERM;
  7629. /* we only allow rename subvolume link between subvolumes */
  7630. if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
  7631. return -EXDEV;
  7632. if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
  7633. (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
  7634. return -ENOTEMPTY;
  7635. if (S_ISDIR(old_inode->i_mode) && new_inode &&
  7636. new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
  7637. return -ENOTEMPTY;
  7638. /* check for collisions, even if the name isn't there */
  7639. ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
  7640. new_dentry->d_name.name,
  7641. new_dentry->d_name.len);
  7642. if (ret) {
  7643. if (ret == -EEXIST) {
  7644. /* we shouldn't get
  7645. * eexist without a new_inode */
  7646. if (WARN_ON(!new_inode)) {
  7647. return ret;
  7648. }
  7649. } else {
  7650. /* maybe -EOVERFLOW */
  7651. return ret;
  7652. }
  7653. }
  7654. ret = 0;
  7655. /*
  7656. * we're using rename to replace one file with another. Start IO on it
  7657. * now so we don't add too much work to the end of the transaction
  7658. */
  7659. if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
  7660. filemap_flush(old_inode->i_mapping);
  7661. /* close the racy window with snapshot create/destroy ioctl */
  7662. if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
  7663. down_read(&root->fs_info->subvol_sem);
  7664. /*
  7665. * We want to reserve the absolute worst case amount of items. So if
  7666. * both inodes are subvols and we need to unlink them then that would
  7667. * require 4 item modifications, but if they are both normal inodes it
  7668. * would require 5 item modifications, so we'll assume their normal
  7669. * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
  7670. * should cover the worst case number of items we'll modify.
  7671. */
  7672. trans = btrfs_start_transaction(root, 11);
  7673. if (IS_ERR(trans)) {
  7674. ret = PTR_ERR(trans);
  7675. goto out_notrans;
  7676. }
  7677. if (dest != root)
  7678. btrfs_record_root_in_trans(trans, dest);
  7679. ret = btrfs_set_inode_index(new_dir, &index);
  7680. if (ret)
  7681. goto out_fail;
  7682. BTRFS_I(old_inode)->dir_index = 0ULL;
  7683. if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
  7684. /* force full log commit if subvolume involved. */
  7685. btrfs_set_log_full_commit(root->fs_info, trans);
  7686. } else {
  7687. ret = btrfs_insert_inode_ref(trans, dest,
  7688. new_dentry->d_name.name,
  7689. new_dentry->d_name.len,
  7690. old_ino,
  7691. btrfs_ino(new_dir), index);
  7692. if (ret)
  7693. goto out_fail;
  7694. /*
  7695. * this is an ugly little race, but the rename is required
  7696. * to make sure that if we crash, the inode is either at the
  7697. * old name or the new one. pinning the log transaction lets
  7698. * us make sure we don't allow a log commit to come in after
  7699. * we unlink the name but before we add the new name back in.
  7700. */
  7701. btrfs_pin_log_trans(root);
  7702. }
  7703. inode_inc_iversion(old_dir);
  7704. inode_inc_iversion(new_dir);
  7705. inode_inc_iversion(old_inode);
  7706. old_dir->i_ctime = old_dir->i_mtime = ctime;
  7707. new_dir->i_ctime = new_dir->i_mtime = ctime;
  7708. old_inode->i_ctime = ctime;
  7709. if (old_dentry->d_parent != new_dentry->d_parent)
  7710. btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
  7711. if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
  7712. root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
  7713. ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
  7714. old_dentry->d_name.name,
  7715. old_dentry->d_name.len);
  7716. } else {
  7717. ret = __btrfs_unlink_inode(trans, root, old_dir,
  7718. old_dentry->d_inode,
  7719. old_dentry->d_name.name,
  7720. old_dentry->d_name.len);
  7721. if (!ret)
  7722. ret = btrfs_update_inode(trans, root, old_inode);
  7723. }
  7724. if (ret) {
  7725. btrfs_abort_transaction(trans, root, ret);
  7726. goto out_fail;
  7727. }
  7728. if (new_inode) {
  7729. inode_inc_iversion(new_inode);
  7730. new_inode->i_ctime = CURRENT_TIME;
  7731. if (unlikely(btrfs_ino(new_inode) ==
  7732. BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
  7733. root_objectid = BTRFS_I(new_inode)->location.objectid;
  7734. ret = btrfs_unlink_subvol(trans, dest, new_dir,
  7735. root_objectid,
  7736. new_dentry->d_name.name,
  7737. new_dentry->d_name.len);
  7738. BUG_ON(new_inode->i_nlink == 0);
  7739. } else {
  7740. ret = btrfs_unlink_inode(trans, dest, new_dir,
  7741. new_dentry->d_inode,
  7742. new_dentry->d_name.name,
  7743. new_dentry->d_name.len);
  7744. }
  7745. if (!ret && new_inode->i_nlink == 0)
  7746. ret = btrfs_orphan_add(trans, new_dentry->d_inode);
  7747. if (ret) {
  7748. btrfs_abort_transaction(trans, root, ret);
  7749. goto out_fail;
  7750. }
  7751. }
  7752. ret = btrfs_add_link(trans, new_dir, old_inode,
  7753. new_dentry->d_name.name,
  7754. new_dentry->d_name.len, 0, index);
  7755. if (ret) {
  7756. btrfs_abort_transaction(trans, root, ret);
  7757. goto out_fail;
  7758. }
  7759. if (old_inode->i_nlink == 1)
  7760. BTRFS_I(old_inode)->dir_index = index;
  7761. if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
  7762. struct dentry *parent = new_dentry->d_parent;
  7763. btrfs_log_new_name(trans, old_inode, old_dir, parent);
  7764. btrfs_end_log_trans(root);
  7765. }
  7766. out_fail:
  7767. btrfs_end_transaction(trans, root);
  7768. out_notrans:
  7769. if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
  7770. up_read(&root->fs_info->subvol_sem);
  7771. return ret;
  7772. }
  7773. static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
  7774. struct inode *new_dir, struct dentry *new_dentry,
  7775. unsigned int flags)
  7776. {
  7777. if (flags & ~RENAME_NOREPLACE)
  7778. return -EINVAL;
  7779. return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
  7780. }
  7781. static void btrfs_run_delalloc_work(struct btrfs_work *work)
  7782. {
  7783. struct btrfs_delalloc_work *delalloc_work;
  7784. struct inode *inode;
  7785. delalloc_work = container_of(work, struct btrfs_delalloc_work,
  7786. work);
  7787. inode = delalloc_work->inode;
  7788. if (delalloc_work->wait) {
  7789. btrfs_wait_ordered_range(inode, 0, (u64)-1);
  7790. } else {
  7791. filemap_flush(inode->i_mapping);
  7792. if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  7793. &BTRFS_I(inode)->runtime_flags))
  7794. filemap_flush(inode->i_mapping);
  7795. }
  7796. if (delalloc_work->delay_iput)
  7797. btrfs_add_delayed_iput(inode);
  7798. else
  7799. iput(inode);
  7800. complete(&delalloc_work->completion);
  7801. }
  7802. struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
  7803. int wait, int delay_iput)
  7804. {
  7805. struct btrfs_delalloc_work *work;
  7806. work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
  7807. if (!work)
  7808. return NULL;
  7809. init_completion(&work->completion);
  7810. INIT_LIST_HEAD(&work->list);
  7811. work->inode = inode;
  7812. work->wait = wait;
  7813. work->delay_iput = delay_iput;
  7814. WARN_ON_ONCE(!inode);
  7815. btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
  7816. btrfs_run_delalloc_work, NULL, NULL);
  7817. return work;
  7818. }
  7819. void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
  7820. {
  7821. wait_for_completion(&work->completion);
  7822. kmem_cache_free(btrfs_delalloc_work_cachep, work);
  7823. }
  7824. /*
  7825. * some fairly slow code that needs optimization. This walks the list
  7826. * of all the inodes with pending delalloc and forces them to disk.
  7827. */
  7828. static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
  7829. int nr)
  7830. {
  7831. struct btrfs_inode *binode;
  7832. struct inode *inode;
  7833. struct btrfs_delalloc_work *work, *next;
  7834. struct list_head works;
  7835. struct list_head splice;
  7836. int ret = 0;
  7837. INIT_LIST_HEAD(&works);
  7838. INIT_LIST_HEAD(&splice);
  7839. mutex_lock(&root->delalloc_mutex);
  7840. spin_lock(&root->delalloc_lock);
  7841. list_splice_init(&root->delalloc_inodes, &splice);
  7842. while (!list_empty(&splice)) {
  7843. binode = list_entry(splice.next, struct btrfs_inode,
  7844. delalloc_inodes);
  7845. list_move_tail(&binode->delalloc_inodes,
  7846. &root->delalloc_inodes);
  7847. inode = igrab(&binode->vfs_inode);
  7848. if (!inode) {
  7849. cond_resched_lock(&root->delalloc_lock);
  7850. continue;
  7851. }
  7852. spin_unlock(&root->delalloc_lock);
  7853. work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
  7854. if (!work) {
  7855. if (delay_iput)
  7856. btrfs_add_delayed_iput(inode);
  7857. else
  7858. iput(inode);
  7859. ret = -ENOMEM;
  7860. goto out;
  7861. }
  7862. list_add_tail(&work->list, &works);
  7863. btrfs_queue_work(root->fs_info->flush_workers,
  7864. &work->work);
  7865. ret++;
  7866. if (nr != -1 && ret >= nr)
  7867. goto out;
  7868. cond_resched();
  7869. spin_lock(&root->delalloc_lock);
  7870. }
  7871. spin_unlock(&root->delalloc_lock);
  7872. out:
  7873. list_for_each_entry_safe(work, next, &works, list) {
  7874. list_del_init(&work->list);
  7875. btrfs_wait_and_free_delalloc_work(work);
  7876. }
  7877. if (!list_empty_careful(&splice)) {
  7878. spin_lock(&root->delalloc_lock);
  7879. list_splice_tail(&splice, &root->delalloc_inodes);
  7880. spin_unlock(&root->delalloc_lock);
  7881. }
  7882. mutex_unlock(&root->delalloc_mutex);
  7883. return ret;
  7884. }
  7885. int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
  7886. {
  7887. int ret;
  7888. if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
  7889. return -EROFS;
  7890. ret = __start_delalloc_inodes(root, delay_iput, -1);
  7891. if (ret > 0)
  7892. ret = 0;
  7893. /*
  7894. * the filemap_flush will queue IO into the worker threads, but
  7895. * we have to make sure the IO is actually started and that
  7896. * ordered extents get created before we return
  7897. */
  7898. atomic_inc(&root->fs_info->async_submit_draining);
  7899. while (atomic_read(&root->fs_info->nr_async_submits) ||
  7900. atomic_read(&root->fs_info->async_delalloc_pages)) {
  7901. wait_event(root->fs_info->async_submit_wait,
  7902. (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
  7903. atomic_read(&root->fs_info->async_delalloc_pages) == 0));
  7904. }
  7905. atomic_dec(&root->fs_info->async_submit_draining);
  7906. return ret;
  7907. }
  7908. int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
  7909. int nr)
  7910. {
  7911. struct btrfs_root *root;
  7912. struct list_head splice;
  7913. int ret;
  7914. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  7915. return -EROFS;
  7916. INIT_LIST_HEAD(&splice);
  7917. mutex_lock(&fs_info->delalloc_root_mutex);
  7918. spin_lock(&fs_info->delalloc_root_lock);
  7919. list_splice_init(&fs_info->delalloc_roots, &splice);
  7920. while (!list_empty(&splice) && nr) {
  7921. root = list_first_entry(&splice, struct btrfs_root,
  7922. delalloc_root);
  7923. root = btrfs_grab_fs_root(root);
  7924. BUG_ON(!root);
  7925. list_move_tail(&root->delalloc_root,
  7926. &fs_info->delalloc_roots);
  7927. spin_unlock(&fs_info->delalloc_root_lock);
  7928. ret = __start_delalloc_inodes(root, delay_iput, nr);
  7929. btrfs_put_fs_root(root);
  7930. if (ret < 0)
  7931. goto out;
  7932. if (nr != -1) {
  7933. nr -= ret;
  7934. WARN_ON(nr < 0);
  7935. }
  7936. spin_lock(&fs_info->delalloc_root_lock);
  7937. }
  7938. spin_unlock(&fs_info->delalloc_root_lock);
  7939. ret = 0;
  7940. atomic_inc(&fs_info->async_submit_draining);
  7941. while (atomic_read(&fs_info->nr_async_submits) ||
  7942. atomic_read(&fs_info->async_delalloc_pages)) {
  7943. wait_event(fs_info->async_submit_wait,
  7944. (atomic_read(&fs_info->nr_async_submits) == 0 &&
  7945. atomic_read(&fs_info->async_delalloc_pages) == 0));
  7946. }
  7947. atomic_dec(&fs_info->async_submit_draining);
  7948. out:
  7949. if (!list_empty_careful(&splice)) {
  7950. spin_lock(&fs_info->delalloc_root_lock);
  7951. list_splice_tail(&splice, &fs_info->delalloc_roots);
  7952. spin_unlock(&fs_info->delalloc_root_lock);
  7953. }
  7954. mutex_unlock(&fs_info->delalloc_root_mutex);
  7955. return ret;
  7956. }
  7957. static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
  7958. const char *symname)
  7959. {
  7960. struct btrfs_trans_handle *trans;
  7961. struct btrfs_root *root = BTRFS_I(dir)->root;
  7962. struct btrfs_path *path;
  7963. struct btrfs_key key;
  7964. struct inode *inode = NULL;
  7965. int err;
  7966. int drop_inode = 0;
  7967. u64 objectid;
  7968. u64 index = 0;
  7969. int name_len;
  7970. int datasize;
  7971. unsigned long ptr;
  7972. struct btrfs_file_extent_item *ei;
  7973. struct extent_buffer *leaf;
  7974. name_len = strlen(symname);
  7975. if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
  7976. return -ENAMETOOLONG;
  7977. /*
  7978. * 2 items for inode item and ref
  7979. * 2 items for dir items
  7980. * 1 item for xattr if selinux is on
  7981. */
  7982. trans = btrfs_start_transaction(root, 5);
  7983. if (IS_ERR(trans))
  7984. return PTR_ERR(trans);
  7985. err = btrfs_find_free_ino(root, &objectid);
  7986. if (err)
  7987. goto out_unlock;
  7988. inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
  7989. dentry->d_name.len, btrfs_ino(dir), objectid,
  7990. S_IFLNK|S_IRWXUGO, &index);
  7991. if (IS_ERR(inode)) {
  7992. err = PTR_ERR(inode);
  7993. goto out_unlock;
  7994. }
  7995. /*
  7996. * If the active LSM wants to access the inode during
  7997. * d_instantiate it needs these. Smack checks to see
  7998. * if the filesystem supports xattrs by looking at the
  7999. * ops vector.
  8000. */
  8001. inode->i_fop = &btrfs_file_operations;
  8002. inode->i_op = &btrfs_file_inode_operations;
  8003. inode->i_mapping->a_ops = &btrfs_aops;
  8004. inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
  8005. BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
  8006. err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
  8007. if (err)
  8008. goto out_unlock_inode;
  8009. err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
  8010. if (err)
  8011. goto out_unlock_inode;
  8012. path = btrfs_alloc_path();
  8013. if (!path) {
  8014. err = -ENOMEM;
  8015. goto out_unlock_inode;
  8016. }
  8017. key.objectid = btrfs_ino(inode);
  8018. key.offset = 0;
  8019. key.type = BTRFS_EXTENT_DATA_KEY;
  8020. datasize = btrfs_file_extent_calc_inline_size(name_len);
  8021. err = btrfs_insert_empty_item(trans, root, path, &key,
  8022. datasize);
  8023. if (err) {
  8024. btrfs_free_path(path);
  8025. goto out_unlock_inode;
  8026. }
  8027. leaf = path->nodes[0];
  8028. ei = btrfs_item_ptr(leaf, path->slots[0],
  8029. struct btrfs_file_extent_item);
  8030. btrfs_set_file_extent_generation(leaf, ei, trans->transid);
  8031. btrfs_set_file_extent_type(leaf, ei,
  8032. BTRFS_FILE_EXTENT_INLINE);
  8033. btrfs_set_file_extent_encryption(leaf, ei, 0);
  8034. btrfs_set_file_extent_compression(leaf, ei, 0);
  8035. btrfs_set_file_extent_other_encoding(leaf, ei, 0);
  8036. btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
  8037. ptr = btrfs_file_extent_inline_start(ei);
  8038. write_extent_buffer(leaf, symname, ptr, name_len);
  8039. btrfs_mark_buffer_dirty(leaf);
  8040. btrfs_free_path(path);
  8041. inode->i_op = &btrfs_symlink_inode_operations;
  8042. inode->i_mapping->a_ops = &btrfs_symlink_aops;
  8043. inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
  8044. inode_set_bytes(inode, name_len);
  8045. btrfs_i_size_write(inode, name_len);
  8046. err = btrfs_update_inode(trans, root, inode);
  8047. if (err) {
  8048. drop_inode = 1;
  8049. goto out_unlock_inode;
  8050. }
  8051. unlock_new_inode(inode);
  8052. d_instantiate(dentry, inode);
  8053. out_unlock:
  8054. btrfs_end_transaction(trans, root);
  8055. if (drop_inode) {
  8056. inode_dec_link_count(inode);
  8057. iput(inode);
  8058. }
  8059. btrfs_btree_balance_dirty(root);
  8060. return err;
  8061. out_unlock_inode:
  8062. drop_inode = 1;
  8063. unlock_new_inode(inode);
  8064. goto out_unlock;
  8065. }
  8066. static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
  8067. u64 start, u64 num_bytes, u64 min_size,
  8068. loff_t actual_len, u64 *alloc_hint,
  8069. struct btrfs_trans_handle *trans)
  8070. {
  8071. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  8072. struct extent_map *em;
  8073. struct btrfs_root *root = BTRFS_I(inode)->root;
  8074. struct btrfs_key ins;
  8075. u64 cur_offset = start;
  8076. u64 i_size;
  8077. u64 cur_bytes;
  8078. int ret = 0;
  8079. bool own_trans = true;
  8080. if (trans)
  8081. own_trans = false;
  8082. while (num_bytes > 0) {
  8083. if (own_trans) {
  8084. trans = btrfs_start_transaction(root, 3);
  8085. if (IS_ERR(trans)) {
  8086. ret = PTR_ERR(trans);
  8087. break;
  8088. }
  8089. }
  8090. cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
  8091. cur_bytes = max(cur_bytes, min_size);
  8092. ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
  8093. *alloc_hint, &ins, 1, 0);
  8094. if (ret) {
  8095. if (own_trans)
  8096. btrfs_end_transaction(trans, root);
  8097. break;
  8098. }
  8099. ret = insert_reserved_file_extent(trans, inode,
  8100. cur_offset, ins.objectid,
  8101. ins.offset, ins.offset,
  8102. ins.offset, 0, 0, 0,
  8103. BTRFS_FILE_EXTENT_PREALLOC);
  8104. if (ret) {
  8105. btrfs_free_reserved_extent(root, ins.objectid,
  8106. ins.offset, 0);
  8107. btrfs_abort_transaction(trans, root, ret);
  8108. if (own_trans)
  8109. btrfs_end_transaction(trans, root);
  8110. break;
  8111. }
  8112. btrfs_drop_extent_cache(inode, cur_offset,
  8113. cur_offset + ins.offset -1, 0);
  8114. em = alloc_extent_map();
  8115. if (!em) {
  8116. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  8117. &BTRFS_I(inode)->runtime_flags);
  8118. goto next;
  8119. }
  8120. em->start = cur_offset;
  8121. em->orig_start = cur_offset;
  8122. em->len = ins.offset;
  8123. em->block_start = ins.objectid;
  8124. em->block_len = ins.offset;
  8125. em->orig_block_len = ins.offset;
  8126. em->ram_bytes = ins.offset;
  8127. em->bdev = root->fs_info->fs_devices->latest_bdev;
  8128. set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
  8129. em->generation = trans->transid;
  8130. while (1) {
  8131. write_lock(&em_tree->lock);
  8132. ret = add_extent_mapping(em_tree, em, 1);
  8133. write_unlock(&em_tree->lock);
  8134. if (ret != -EEXIST)
  8135. break;
  8136. btrfs_drop_extent_cache(inode, cur_offset,
  8137. cur_offset + ins.offset - 1,
  8138. 0);
  8139. }
  8140. free_extent_map(em);
  8141. next:
  8142. num_bytes -= ins.offset;
  8143. cur_offset += ins.offset;
  8144. *alloc_hint = ins.objectid + ins.offset;
  8145. inode_inc_iversion(inode);
  8146. inode->i_ctime = CURRENT_TIME;
  8147. BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
  8148. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  8149. (actual_len > inode->i_size) &&
  8150. (cur_offset > inode->i_size)) {
  8151. if (cur_offset > actual_len)
  8152. i_size = actual_len;
  8153. else
  8154. i_size = cur_offset;
  8155. i_size_write(inode, i_size);
  8156. btrfs_ordered_update_i_size(inode, i_size, NULL);
  8157. }
  8158. ret = btrfs_update_inode(trans, root, inode);
  8159. if (ret) {
  8160. btrfs_abort_transaction(trans, root, ret);
  8161. if (own_trans)
  8162. btrfs_end_transaction(trans, root);
  8163. break;
  8164. }
  8165. if (own_trans)
  8166. btrfs_end_transaction(trans, root);
  8167. }
  8168. return ret;
  8169. }
  8170. int btrfs_prealloc_file_range(struct inode *inode, int mode,
  8171. u64 start, u64 num_bytes, u64 min_size,
  8172. loff_t actual_len, u64 *alloc_hint)
  8173. {
  8174. return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
  8175. min_size, actual_len, alloc_hint,
  8176. NULL);
  8177. }
  8178. int btrfs_prealloc_file_range_trans(struct inode *inode,
  8179. struct btrfs_trans_handle *trans, int mode,
  8180. u64 start, u64 num_bytes, u64 min_size,
  8181. loff_t actual_len, u64 *alloc_hint)
  8182. {
  8183. return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
  8184. min_size, actual_len, alloc_hint, trans);
  8185. }
  8186. static int btrfs_set_page_dirty(struct page *page)
  8187. {
  8188. return __set_page_dirty_nobuffers(page);
  8189. }
  8190. static int btrfs_permission(struct inode *inode, int mask)
  8191. {
  8192. struct btrfs_root *root = BTRFS_I(inode)->root;
  8193. umode_t mode = inode->i_mode;
  8194. if (mask & MAY_WRITE &&
  8195. (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
  8196. if (btrfs_root_readonly(root))
  8197. return -EROFS;
  8198. if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
  8199. return -EACCES;
  8200. }
  8201. return generic_permission(inode, mask);
  8202. }
  8203. static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
  8204. {
  8205. struct btrfs_trans_handle *trans;
  8206. struct btrfs_root *root = BTRFS_I(dir)->root;
  8207. struct inode *inode = NULL;
  8208. u64 objectid;
  8209. u64 index;
  8210. int ret = 0;
  8211. /*
  8212. * 5 units required for adding orphan entry
  8213. */
  8214. trans = btrfs_start_transaction(root, 5);
  8215. if (IS_ERR(trans))
  8216. return PTR_ERR(trans);
  8217. ret = btrfs_find_free_ino(root, &objectid);
  8218. if (ret)
  8219. goto out;
  8220. inode = btrfs_new_inode(trans, root, dir, NULL, 0,
  8221. btrfs_ino(dir), objectid, mode, &index);
  8222. if (IS_ERR(inode)) {
  8223. ret = PTR_ERR(inode);
  8224. inode = NULL;
  8225. goto out;
  8226. }
  8227. inode->i_fop = &btrfs_file_operations;
  8228. inode->i_op = &btrfs_file_inode_operations;
  8229. inode->i_mapping->a_ops = &btrfs_aops;
  8230. inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
  8231. BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
  8232. ret = btrfs_init_inode_security(trans, inode, dir, NULL);
  8233. if (ret)
  8234. goto out_inode;
  8235. ret = btrfs_update_inode(trans, root, inode);
  8236. if (ret)
  8237. goto out_inode;
  8238. ret = btrfs_orphan_add(trans, inode);
  8239. if (ret)
  8240. goto out_inode;
  8241. /*
  8242. * We set number of links to 0 in btrfs_new_inode(), and here we set
  8243. * it to 1 because d_tmpfile() will issue a warning if the count is 0,
  8244. * through:
  8245. *
  8246. * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
  8247. */
  8248. set_nlink(inode, 1);
  8249. unlock_new_inode(inode);
  8250. d_tmpfile(dentry, inode);
  8251. mark_inode_dirty(inode);
  8252. out:
  8253. btrfs_end_transaction(trans, root);
  8254. if (ret)
  8255. iput(inode);
  8256. btrfs_balance_delayed_items(root);
  8257. btrfs_btree_balance_dirty(root);
  8258. return ret;
  8259. out_inode:
  8260. unlock_new_inode(inode);
  8261. goto out;
  8262. }
  8263. static const struct inode_operations btrfs_dir_inode_operations = {
  8264. .getattr = btrfs_getattr,
  8265. .lookup = btrfs_lookup,
  8266. .create = btrfs_create,
  8267. .unlink = btrfs_unlink,
  8268. .link = btrfs_link,
  8269. .mkdir = btrfs_mkdir,
  8270. .rmdir = btrfs_rmdir,
  8271. .rename2 = btrfs_rename2,
  8272. .symlink = btrfs_symlink,
  8273. .setattr = btrfs_setattr,
  8274. .mknod = btrfs_mknod,
  8275. .setxattr = btrfs_setxattr,
  8276. .getxattr = btrfs_getxattr,
  8277. .listxattr = btrfs_listxattr,
  8278. .removexattr = btrfs_removexattr,
  8279. .permission = btrfs_permission,
  8280. .get_acl = btrfs_get_acl,
  8281. .set_acl = btrfs_set_acl,
  8282. .update_time = btrfs_update_time,
  8283. .tmpfile = btrfs_tmpfile,
  8284. };
  8285. static const struct inode_operations btrfs_dir_ro_inode_operations = {
  8286. .lookup = btrfs_lookup,
  8287. .permission = btrfs_permission,
  8288. .get_acl = btrfs_get_acl,
  8289. .set_acl = btrfs_set_acl,
  8290. .update_time = btrfs_update_time,
  8291. };
  8292. static const struct file_operations btrfs_dir_file_operations = {
  8293. .llseek = generic_file_llseek,
  8294. .read = generic_read_dir,
  8295. .iterate = btrfs_real_readdir,
  8296. .unlocked_ioctl = btrfs_ioctl,
  8297. #ifdef CONFIG_COMPAT
  8298. .compat_ioctl = btrfs_ioctl,
  8299. #endif
  8300. .release = btrfs_release_file,
  8301. .fsync = btrfs_sync_file,
  8302. };
  8303. static struct extent_io_ops btrfs_extent_io_ops = {
  8304. .fill_delalloc = run_delalloc_range,
  8305. .submit_bio_hook = btrfs_submit_bio_hook,
  8306. .merge_bio_hook = btrfs_merge_bio_hook,
  8307. .readpage_end_io_hook = btrfs_readpage_end_io_hook,
  8308. .writepage_end_io_hook = btrfs_writepage_end_io_hook,
  8309. .writepage_start_hook = btrfs_writepage_start_hook,
  8310. .set_bit_hook = btrfs_set_bit_hook,
  8311. .clear_bit_hook = btrfs_clear_bit_hook,
  8312. .merge_extent_hook = btrfs_merge_extent_hook,
  8313. .split_extent_hook = btrfs_split_extent_hook,
  8314. };
  8315. /*
  8316. * btrfs doesn't support the bmap operation because swapfiles
  8317. * use bmap to make a mapping of extents in the file. They assume
  8318. * these extents won't change over the life of the file and they
  8319. * use the bmap result to do IO directly to the drive.
  8320. *
  8321. * the btrfs bmap call would return logical addresses that aren't
  8322. * suitable for IO and they also will change frequently as COW
  8323. * operations happen. So, swapfile + btrfs == corruption.
  8324. *
  8325. * For now we're avoiding this by dropping bmap.
  8326. */
  8327. static const struct address_space_operations btrfs_aops = {
  8328. .readpage = btrfs_readpage,
  8329. .writepage = btrfs_writepage,
  8330. .writepages = btrfs_writepages,
  8331. .readpages = btrfs_readpages,
  8332. .direct_IO = btrfs_direct_IO,
  8333. .invalidatepage = btrfs_invalidatepage,
  8334. .releasepage = btrfs_releasepage,
  8335. .set_page_dirty = btrfs_set_page_dirty,
  8336. .error_remove_page = generic_error_remove_page,
  8337. };
  8338. static const struct address_space_operations btrfs_symlink_aops = {
  8339. .readpage = btrfs_readpage,
  8340. .writepage = btrfs_writepage,
  8341. .invalidatepage = btrfs_invalidatepage,
  8342. .releasepage = btrfs_releasepage,
  8343. };
  8344. static const struct inode_operations btrfs_file_inode_operations = {
  8345. .getattr = btrfs_getattr,
  8346. .setattr = btrfs_setattr,
  8347. .setxattr = btrfs_setxattr,
  8348. .getxattr = btrfs_getxattr,
  8349. .listxattr = btrfs_listxattr,
  8350. .removexattr = btrfs_removexattr,
  8351. .permission = btrfs_permission,
  8352. .fiemap = btrfs_fiemap,
  8353. .get_acl = btrfs_get_acl,
  8354. .set_acl = btrfs_set_acl,
  8355. .update_time = btrfs_update_time,
  8356. };
  8357. static const struct inode_operations btrfs_special_inode_operations = {
  8358. .getattr = btrfs_getattr,
  8359. .setattr = btrfs_setattr,
  8360. .permission = btrfs_permission,
  8361. .setxattr = btrfs_setxattr,
  8362. .getxattr = btrfs_getxattr,
  8363. .listxattr = btrfs_listxattr,
  8364. .removexattr = btrfs_removexattr,
  8365. .get_acl = btrfs_get_acl,
  8366. .set_acl = btrfs_set_acl,
  8367. .update_time = btrfs_update_time,
  8368. };
  8369. static const struct inode_operations btrfs_symlink_inode_operations = {
  8370. .readlink = generic_readlink,
  8371. .follow_link = page_follow_link_light,
  8372. .put_link = page_put_link,
  8373. .getattr = btrfs_getattr,
  8374. .setattr = btrfs_setattr,
  8375. .permission = btrfs_permission,
  8376. .setxattr = btrfs_setxattr,
  8377. .getxattr = btrfs_getxattr,
  8378. .listxattr = btrfs_listxattr,
  8379. .removexattr = btrfs_removexattr,
  8380. .update_time = btrfs_update_time,
  8381. };
  8382. const struct dentry_operations btrfs_dentry_operations = {
  8383. .d_delete = btrfs_dentry_delete,
  8384. .d_release = btrfs_dentry_release,
  8385. };