mtk_timer.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276
  1. /*
  2. * Mediatek SoCs General-Purpose Timer handling.
  3. *
  4. * Copyright (C) 2014 Matthias Brugger
  5. *
  6. * Matthias Brugger <matthias.bgg@gmail.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. */
  18. #include <linux/clk.h>
  19. #include <linux/clockchips.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/irq.h>
  22. #include <linux/irqreturn.h>
  23. #include <linux/of.h>
  24. #include <linux/of_address.h>
  25. #include <linux/of_irq.h>
  26. #include <linux/sched_clock.h>
  27. #include <linux/slab.h>
  28. #define GPT_IRQ_EN_REG 0x00
  29. #define GPT_IRQ_ENABLE(val) BIT((val) - 1)
  30. #define GPT_IRQ_ACK_REG 0x08
  31. #define GPT_IRQ_ACK(val) BIT((val) - 1)
  32. #define TIMER_CTRL_REG(val) (0x10 * (val))
  33. #define TIMER_CTRL_OP(val) (((val) & 0x3) << 4)
  34. #define TIMER_CTRL_OP_ONESHOT (0)
  35. #define TIMER_CTRL_OP_REPEAT (1)
  36. #define TIMER_CTRL_OP_FREERUN (3)
  37. #define TIMER_CTRL_CLEAR (2)
  38. #define TIMER_CTRL_ENABLE (1)
  39. #define TIMER_CTRL_DISABLE (0)
  40. #define TIMER_CLK_REG(val) (0x04 + (0x10 * (val)))
  41. #define TIMER_CLK_SRC(val) (((val) & 0x1) << 4)
  42. #define TIMER_CLK_SRC_SYS13M (0)
  43. #define TIMER_CLK_SRC_RTC32K (1)
  44. #define TIMER_CLK_DIV1 (0x0)
  45. #define TIMER_CLK_DIV2 (0x1)
  46. #define TIMER_CNT_REG(val) (0x08 + (0x10 * (val)))
  47. #define TIMER_CMP_REG(val) (0x0C + (0x10 * (val)))
  48. #define GPT_CLK_EVT 1
  49. #define GPT_CLK_SRC 2
  50. struct mtk_clock_event_device {
  51. void __iomem *gpt_base;
  52. u32 ticks_per_jiffy;
  53. struct clock_event_device dev;
  54. };
  55. static void __iomem *gpt_sched_reg __read_mostly;
  56. static u64 notrace mtk_read_sched_clock(void)
  57. {
  58. return readl_relaxed(gpt_sched_reg);
  59. }
  60. static inline struct mtk_clock_event_device *to_mtk_clk(
  61. struct clock_event_device *c)
  62. {
  63. return container_of(c, struct mtk_clock_event_device, dev);
  64. }
  65. static void mtk_clkevt_time_stop(struct mtk_clock_event_device *evt, u8 timer)
  66. {
  67. u32 val;
  68. val = readl(evt->gpt_base + TIMER_CTRL_REG(timer));
  69. writel(val & ~TIMER_CTRL_ENABLE, evt->gpt_base +
  70. TIMER_CTRL_REG(timer));
  71. }
  72. static void mtk_clkevt_time_setup(struct mtk_clock_event_device *evt,
  73. unsigned long delay, u8 timer)
  74. {
  75. writel(delay, evt->gpt_base + TIMER_CMP_REG(timer));
  76. }
  77. static void mtk_clkevt_time_start(struct mtk_clock_event_device *evt,
  78. bool periodic, u8 timer)
  79. {
  80. u32 val;
  81. /* Acknowledge interrupt */
  82. writel(GPT_IRQ_ACK(timer), evt->gpt_base + GPT_IRQ_ACK_REG);
  83. val = readl(evt->gpt_base + TIMER_CTRL_REG(timer));
  84. /* Clear 2 bit timer operation mode field */
  85. val &= ~TIMER_CTRL_OP(0x3);
  86. if (periodic)
  87. val |= TIMER_CTRL_OP(TIMER_CTRL_OP_REPEAT);
  88. else
  89. val |= TIMER_CTRL_OP(TIMER_CTRL_OP_ONESHOT);
  90. writel(val | TIMER_CTRL_ENABLE | TIMER_CTRL_CLEAR,
  91. evt->gpt_base + TIMER_CTRL_REG(timer));
  92. }
  93. static void mtk_clkevt_mode(enum clock_event_mode mode,
  94. struct clock_event_device *clk)
  95. {
  96. struct mtk_clock_event_device *evt = to_mtk_clk(clk);
  97. mtk_clkevt_time_stop(evt, GPT_CLK_EVT);
  98. switch (mode) {
  99. case CLOCK_EVT_MODE_PERIODIC:
  100. mtk_clkevt_time_setup(evt, evt->ticks_per_jiffy, GPT_CLK_EVT);
  101. mtk_clkevt_time_start(evt, true, GPT_CLK_EVT);
  102. break;
  103. case CLOCK_EVT_MODE_ONESHOT:
  104. /* Timer is enabled in set_next_event */
  105. break;
  106. case CLOCK_EVT_MODE_UNUSED:
  107. case CLOCK_EVT_MODE_SHUTDOWN:
  108. default:
  109. /* No more interrupts will occur as source is disabled */
  110. break;
  111. }
  112. }
  113. static int mtk_clkevt_next_event(unsigned long event,
  114. struct clock_event_device *clk)
  115. {
  116. struct mtk_clock_event_device *evt = to_mtk_clk(clk);
  117. mtk_clkevt_time_stop(evt, GPT_CLK_EVT);
  118. mtk_clkevt_time_setup(evt, event, GPT_CLK_EVT);
  119. mtk_clkevt_time_start(evt, false, GPT_CLK_EVT);
  120. return 0;
  121. }
  122. static irqreturn_t mtk_timer_interrupt(int irq, void *dev_id)
  123. {
  124. struct mtk_clock_event_device *evt = dev_id;
  125. /* Acknowledge timer0 irq */
  126. writel(GPT_IRQ_ACK(GPT_CLK_EVT), evt->gpt_base + GPT_IRQ_ACK_REG);
  127. evt->dev.event_handler(&evt->dev);
  128. return IRQ_HANDLED;
  129. }
  130. static void mtk_timer_global_reset(struct mtk_clock_event_device *evt)
  131. {
  132. /* Disable all interrupts */
  133. writel(0x0, evt->gpt_base + GPT_IRQ_EN_REG);
  134. /* Acknowledge all interrupts */
  135. writel(0x3f, evt->gpt_base + GPT_IRQ_ACK_REG);
  136. }
  137. static void mtk_timer_setup(struct mtk_clock_event_device *evt, u8 timer,
  138. u8 option, bool enable)
  139. {
  140. u32 val;
  141. writel(TIMER_CTRL_CLEAR | TIMER_CTRL_DISABLE,
  142. evt->gpt_base + TIMER_CTRL_REG(timer));
  143. writel(TIMER_CLK_SRC(TIMER_CLK_SRC_SYS13M) | TIMER_CLK_DIV1,
  144. evt->gpt_base + TIMER_CLK_REG(timer));
  145. writel(0x0, evt->gpt_base + TIMER_CMP_REG(timer));
  146. val = TIMER_CTRL_OP(option);
  147. if (enable)
  148. val |= TIMER_CTRL_ENABLE;
  149. writel(val, evt->gpt_base + TIMER_CTRL_REG(timer));
  150. }
  151. static void mtk_timer_enable_irq(struct mtk_clock_event_device *evt, u8 timer)
  152. {
  153. u32 val;
  154. val = readl(evt->gpt_base + GPT_IRQ_EN_REG);
  155. writel(val | GPT_IRQ_ENABLE(timer),
  156. evt->gpt_base + GPT_IRQ_EN_REG);
  157. }
  158. static void __init mtk_timer_init(struct device_node *node)
  159. {
  160. struct mtk_clock_event_device *evt;
  161. struct resource res;
  162. unsigned long rate = 0;
  163. struct clk *clk;
  164. evt = kzalloc(sizeof(*evt), GFP_KERNEL);
  165. if (!evt) {
  166. pr_warn("Can't allocate mtk clock event driver struct");
  167. return;
  168. }
  169. evt->dev.name = "mtk_tick";
  170. evt->dev.rating = 300;
  171. evt->dev.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
  172. evt->dev.set_mode = mtk_clkevt_mode;
  173. evt->dev.set_next_event = mtk_clkevt_next_event;
  174. evt->dev.cpumask = cpu_possible_mask;
  175. evt->gpt_base = of_io_request_and_map(node, 0, "mtk-timer");
  176. if (IS_ERR(evt->gpt_base)) {
  177. pr_warn("Can't get resource\n");
  178. return;
  179. }
  180. evt->dev.irq = irq_of_parse_and_map(node, 0);
  181. if (evt->dev.irq <= 0) {
  182. pr_warn("Can't parse IRQ");
  183. goto err_mem;
  184. }
  185. clk = of_clk_get(node, 0);
  186. if (IS_ERR(clk)) {
  187. pr_warn("Can't get timer clock");
  188. goto err_irq;
  189. }
  190. if (clk_prepare_enable(clk)) {
  191. pr_warn("Can't prepare clock");
  192. goto err_clk_put;
  193. }
  194. rate = clk_get_rate(clk);
  195. mtk_timer_global_reset(evt);
  196. if (request_irq(evt->dev.irq, mtk_timer_interrupt,
  197. IRQF_TIMER | IRQF_IRQPOLL, "mtk_timer", evt)) {
  198. pr_warn("failed to setup irq %d\n", evt->dev.irq);
  199. goto err_clk_disable;
  200. }
  201. evt->ticks_per_jiffy = DIV_ROUND_UP(rate, HZ);
  202. /* Configure clock source */
  203. mtk_timer_setup(evt, GPT_CLK_SRC, TIMER_CTRL_OP_FREERUN, true);
  204. clocksource_mmio_init(evt->gpt_base + TIMER_CNT_REG(GPT_CLK_SRC),
  205. node->name, rate, 300, 32, clocksource_mmio_readl_up);
  206. gpt_sched_reg = evt->gpt_base + TIMER_CNT_REG(GPT_CLK_SRC);
  207. sched_clock_register(mtk_read_sched_clock, 32, rate);
  208. /* Configure clock event */
  209. mtk_timer_setup(evt, GPT_CLK_EVT, TIMER_CTRL_OP_REPEAT, false);
  210. clockevents_config_and_register(&evt->dev, rate, 0x3,
  211. 0xffffffff);
  212. mtk_timer_enable_irq(evt, GPT_CLK_EVT);
  213. return;
  214. err_clk_disable:
  215. clk_disable_unprepare(clk);
  216. err_clk_put:
  217. clk_put(clk);
  218. err_irq:
  219. irq_dispose_mapping(evt->dev.irq);
  220. err_mem:
  221. iounmap(evt->gpt_base);
  222. of_address_to_resource(node, 0, &res);
  223. release_mem_region(res.start, resource_size(&res));
  224. }
  225. CLOCKSOURCE_OF_DECLARE(mtk_mt6577, "mediatek,mt6577-timer", mtk_timer_init);