modem_ccif_c2k.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664
  1. /*
  2. *this is a CCIF modem driver for 6595.
  3. *
  4. *V0.1: Xiao Wang <xiao.wang@mediatek.com>
  5. */
  6. #include <linux/list.h>
  7. #include <linux/device.h>
  8. #include <linux/module.h>
  9. #include <linux/kernel.h>
  10. #include <linux/err.h>
  11. #include <linux/kdev_t.h>
  12. #include <linux/slab.h>
  13. #include <linux/skbuff.h>
  14. #include <linux/wait.h>
  15. #include <linux/sched.h>
  16. #include <linux/kthread.h>
  17. #include <linux/delay.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/irq.h>
  20. #include <linux/timer.h>
  21. #include <linux/fs.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/random.h>
  24. #include <linux/platform_device.h>
  25. #include <mt-plat/mt_boot.h>
  26. #include "ccci_config.h"
  27. #include <mt-plat/mt_ccci_common.h>
  28. #ifdef CONFIG_OF
  29. #include <linux/of.h>
  30. #include <linux/of_fdt.h>
  31. #include <linux/of_irq.h>
  32. #include <linux/of_address.h>
  33. #endif
  34. #include "ccci_core.h"
  35. #include "ccci_bm.h"
  36. #include "ccci_platform.h"
  37. #include "modem_ccif.h"
  38. #include "ccif_c2k_platform.h"
  39. #if defined(ENABLE_32K_CLK_LESS)
  40. #include <mt-plat/mtk_rtc.h>
  41. #endif
  42. #include <mach/mt_pbm.h>
  43. #define TAG "cif"
  44. #define BOOT_TIMER_ON 10 /*10 */
  45. #define BOOT_TIMER_HS1 10 /*10 */
  46. #define NET_RX_QUEUE_MASK 0x4
  47. #define NAPI_QUEUE_MASK NET_RX_QUEUE_MASK /*Rx, only Rx-exclusive port can enable NAPI */
  48. #define IS_PASS_SKB(md, qno) \
  49. (!md->data_usb_bypass && (md->md_state != EXCEPTION || md->ex_stage != EX_INIT_DONE) \
  50. && ((1<<qno) & NET_RX_QUEUE_MASK))
  51. #define RX_BUGDET 16
  52. #define RINGQ_BASE (8)
  53. #define RINGQ_SRAM (7)
  54. #define RINGQ_EXP_BASE (0)
  55. #define CCIF_CH_NUM 16
  56. #define CCIF_MD_SMEM_RESERVE 0x200000 /*reserved for EE dump */
  57. /*AP to MD*/
  58. #define H2D_EXCEPTION_ACK (RINGQ_EXP_BASE+1)
  59. #define H2D_EXCEPTION_CLEARQ_ACK (RINGQ_EXP_BASE+2)
  60. #define H2D_FORCE_MD_ASSERT (RINGQ_EXP_BASE+3)
  61. #define H2D_SRAM (RINGQ_SRAM)
  62. #define H2D_RINGQ0 (RINGQ_BASE+0)
  63. #define H2D_RINGQ1 (RINGQ_BASE+1)
  64. #define H2D_RINGQ2 (RINGQ_BASE+2)
  65. #define H2D_RINGQ3 (RINGQ_BASE+3)
  66. #define H2D_RINGQ4 (RINGQ_BASE+4)
  67. #define H2D_RINGQ5 (RINGQ_BASE+5)
  68. #define H2D_RINGQ6 (RINGQ_BASE+6)
  69. #define H2D_RINGQ7 (RINGQ_BASE+7)
  70. /*MD to AP*/
  71. #define CCIF_HW_CH_RX_RESERVED ((1 << (RINGQ_EXP_BASE+0)) | (1 << (RINGQ_EXP_BASE+5)))
  72. #define D2H_EXCEPTION_INIT (RINGQ_EXP_BASE+1)
  73. #define D2H_EXCEPTION_INIT_DONE (RINGQ_EXP_BASE+2)
  74. #define D2H_EXCEPTION_CLEARQ_DONE (RINGQ_EXP_BASE+3)
  75. #define D2H_EXCEPTION_ALLQ_RESET (RINGQ_EXP_BASE+4)
  76. #define AP_MD_SEQ_ERROR (RINGQ_EXP_BASE+6)
  77. #define D2H_SRAM (RINGQ_SRAM)
  78. #define D2H_RINGQ0 (RINGQ_BASE+0)
  79. #define D2H_RINGQ1 (RINGQ_BASE+1)
  80. #define D2H_RINGQ2 (RINGQ_BASE+2)
  81. #define D2H_RINGQ3 (RINGQ_BASE+3)
  82. #define D2H_RINGQ4 (RINGQ_BASE+4)
  83. #define D2H_RINGQ5 (RINGQ_BASE+5)
  84. #define D2H_RINGQ6 (RINGQ_BASE+6)
  85. #define D2H_RINGQ7 (RINGQ_BASE+7)
  86. struct c2k_port {
  87. enum c2k_channel ch;
  88. enum c2k_channel excp_ch;
  89. CCCI_CH tx_ch_mapping;
  90. CCCI_CH rx_ch_mapping;
  91. };
  92. static struct c2k_port c2k_ports[] = {
  93. /*c2k control channel mapping to 2 pairs of CCCI channels,
  94. please mind the order in this array, make sure CCCI_CONTROL_TX/RX be first. */
  95. {CTRL_CH_C2K, CCCI_CONTROL_TX, CCCI_CONTROL_TX, CCCI_CONTROL_RX,}, /*control channel */
  96. {CTRL_CH_C2K, CTRL_CH_C2K, CCCI_STATUS_TX, CCCI_STATUS_RX,}, /*control channel */
  97. {AUDIO_CH_C2K, AUDIO_CH_C2K, CCCI_PCM_TX, CCCI_PCM_RX,}, /*audio channel */
  98. {NET1_CH_C2K, NET1_CH_C2K, CCCI_CCMNI1_TX, CCCI_CCMNI1_RX,}, /*network channel for CCMNI1 */
  99. {NET1_CH_C2K, NET1_CH_C2K, CCCI_CCMNI1_DL_ACK, CCCI_CCMNI1_DL_ACK,}, /*network channel for CCMNI1 */
  100. {NET2_CH_C2K, NET2_CH_C2K, CCCI_CCMNI2_TX, CCCI_CCMNI2_RX,}, /*network channel for CCMNI2 */
  101. {NET2_CH_C2K, NET2_CH_C2K, CCCI_CCMNI2_DL_ACK, CCCI_CCMNI2_DL_ACK,}, /*network channel for CCMNI2 */
  102. {NET3_CH_C2K, NET3_CH_C2K, CCCI_CCMNI3_TX, CCCI_CCMNI3_RX,}, /*network channel for CCMNI3 */
  103. {NET3_CH_C2K, NET3_CH_C2K, CCCI_CCMNI3_DL_ACK, CCCI_CCMNI3_DL_ACK,}, /*network channel for CCMNI3 */
  104. {MDLOG_CTRL_CH_C2K, MDLOG_CTRL_CH_C2K, CCCI_UART1_TX, CCCI_UART1_RX,}, /*mdlogger ctrl channel */
  105. {MDLOG_CH_C2K, MDLOG_CH_C2K, CCCI_MD_LOG_TX, CCCI_MD_LOG_RX,}, /*mdlogger data channel */
  106. {FS_CH_C2K, FS_CH_C2K, CCCI_FS_TX, CCCI_FS_RX,}, /*flashless channel, new */
  107. {DATA_PPP_CH_C2K, DATA_PPP_CH_C2K, CCCI_C2K_PPP_DATA, CCCI_C2K_PPP_DATA,}, /*ppp channel, for usb bypass*/
  108. {AT_CH_C2K, AT_CH_C2K, CCCI_C2K_AT, CCCI_C2K_AT,}, /*AT for rild, new */
  109. {AT2_CH_C2K, AT2_CH_C2K, CCCI_C2K_AT2, CCCI_C2K_AT2,}, /*AT2 for rild, new */
  110. {AT3_CH_C2K, AT3_CH_C2K, CCCI_C2K_AT3, CCCI_C2K_AT3,}, /*AT3 for rild, new */
  111. {AGPS_CH_C2K, AGPS_CH_C2K, CCCI_IPC_UART_TX, CCCI_IPC_UART_RX,}, /*agps channel */
  112. {MD2AP_LOOPBACK_C2K, MD2AP_LOOPBACK_C2K, CCCI_C2K_LB_DL, CCCI_C2K_LB_DL,},
  113. {LOOPBACK_C2K, LOOPBACK_C2K, CCCI_LB_IT_TX, CCCI_LB_IT_RX,},
  114. {STATUS_CH_C2K, STATUS_CH_C2K, CCCI_CONTROL_TX, CCCI_CONTROL_RX,},
  115. };
  116. /*always keep this in mind: what if there are more than 1 modems using CLDMA...*/
  117. /*ccif share memory setting*/
  118. /*need confirm with md. haow*/
  119. static int rx_queue_buffer_size[QUEUE_NUM] = { 10 * 1024, 100 * 1024,
  120. 100 * 1024, 150 * 1024, 50 * 1024, 10 * 1024, 10 * 1024, 10 * 1024,
  121. };
  122. static int tx_queue_buffer_size[QUEUE_NUM] = { 10 * 1024, 100 * 1024,
  123. 50 * 1024, 50 * 1024, 50 * 1024, 10 * 1024, 10 * 1024, 10 * 1024,
  124. };
  125. static void md_ccif_dump(unsigned char *title, struct ccci_modem *md)
  126. {
  127. int idx;
  128. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  129. CCCI_INF_MSG(md->index, TAG, "md_ccif_dump: %s\n", title);
  130. CCCI_INF_MSG(md->index, TAG, "AP_CON(%p)=%d\n",
  131. md_ctrl->ccif_ap_base + APCCIF_CON,
  132. ccif_read32(md_ctrl->ccif_ap_base, APCCIF_CON));
  133. CCCI_INF_MSG(md->index, TAG, "AP_BUSY(%p)=%d\n",
  134. md_ctrl->ccif_ap_base + APCCIF_BUSY,
  135. ccif_read32(md_ctrl->ccif_ap_base, APCCIF_BUSY));
  136. CCCI_INF_MSG(md->index, TAG, "AP_START(%p)=%d\n",
  137. md_ctrl->ccif_ap_base + APCCIF_START,
  138. ccif_read32(md_ctrl->ccif_ap_base, APCCIF_START));
  139. CCCI_INF_MSG(md->index, TAG, "AP_TCHNUM(%p)=%d\n",
  140. md_ctrl->ccif_ap_base + APCCIF_TCHNUM,
  141. ccif_read32(md_ctrl->ccif_ap_base, APCCIF_TCHNUM));
  142. CCCI_INF_MSG(md->index, TAG, "AP_RCHNUM(%p)=%d\n",
  143. md_ctrl->ccif_ap_base + APCCIF_RCHNUM,
  144. ccif_read32(md_ctrl->ccif_ap_base, APCCIF_RCHNUM));
  145. CCCI_INF_MSG(md->index, TAG, "AP_ACK(%p)=%d\n",
  146. md_ctrl->ccif_ap_base + APCCIF_ACK,
  147. ccif_read32(md_ctrl->ccif_ap_base, APCCIF_ACK));
  148. CCCI_INF_MSG(md->index, TAG, "MD_CON(%p)=%d\n",
  149. md_ctrl->ccif_md_base + APCCIF_CON,
  150. ccif_read32(md_ctrl->ccif_md_base, APCCIF_CON));
  151. CCCI_INF_MSG(md->index, TAG, "MD_BUSY(%p)=%d\n",
  152. md_ctrl->ccif_md_base + APCCIF_BUSY,
  153. ccif_read32(md_ctrl->ccif_md_base, APCCIF_BUSY));
  154. CCCI_INF_MSG(md->index, TAG, "MD_START(%p)=%d\n",
  155. md_ctrl->ccif_md_base + APCCIF_START,
  156. ccif_read32(md_ctrl->ccif_md_base, APCCIF_START));
  157. CCCI_INF_MSG(md->index, TAG, "MD_TCHNUM(%p)=%d\n",
  158. md_ctrl->ccif_md_base + APCCIF_TCHNUM,
  159. ccif_read32(md_ctrl->ccif_md_base, APCCIF_TCHNUM));
  160. CCCI_INF_MSG(md->index, TAG, "MD_RCHNUM(%p)=%d\n",
  161. md_ctrl->ccif_md_base + APCCIF_RCHNUM,
  162. ccif_read32(md_ctrl->ccif_md_base, APCCIF_RCHNUM));
  163. CCCI_INF_MSG(md->index, TAG, "MD_ACK(%p)=%d\n",
  164. md_ctrl->ccif_md_base + APCCIF_ACK,
  165. ccif_read32(md_ctrl->ccif_md_base, APCCIF_ACK));
  166. for (idx = 0; idx < md_ctrl->sram_size / sizeof(u32); idx += 4) {
  167. CCCI_INF_MSG(md->index, TAG,
  168. "CHDATA(%p): %08X %08X %08X %08X\n",
  169. md_ctrl->ccif_ap_base + APCCIF_CHDATA +
  170. idx * sizeof(u32),
  171. ccif_read32(md_ctrl->ccif_ap_base + APCCIF_CHDATA,
  172. (idx + 0) * sizeof(u32)),
  173. ccif_read32(md_ctrl->ccif_ap_base + APCCIF_CHDATA,
  174. (idx + 1) * sizeof(u32)),
  175. ccif_read32(md_ctrl->ccif_ap_base + APCCIF_CHDATA,
  176. (idx + 2) * sizeof(u32)),
  177. ccif_read32(md_ctrl->ccif_ap_base + APCCIF_CHDATA,
  178. (idx + 3) * sizeof(u32)));
  179. }
  180. }
  181. /*direction: 1: tx; 0: rx*/
  182. static int c2k_ch_to_ccci_ch(struct ccci_modem *md, int c2k_ch, int direction)
  183. {
  184. u16 c2k_channel_id;
  185. int i = 0;
  186. c2k_channel_id = (u16) c2k_ch;
  187. for (i = 0; i < (sizeof(c2k_ports) / sizeof(struct c2k_port)); i++) {
  188. if (c2k_channel_id == c2k_ports[i].ch) {
  189. CCCI_DBG_MSG(md->index, TAG,
  190. "%s:channel(%d)-->(T%d R%d)\n",
  191. (direction == OUT) ? "TX" : "RX", c2k_ch,
  192. c2k_ports[i].tx_ch_mapping,
  193. c2k_ports[i].rx_ch_mapping);
  194. return (direction ==
  195. OUT) ? c2k_ports[i].tx_ch_mapping :
  196. c2k_ports[i].rx_ch_mapping;
  197. }
  198. }
  199. CCCI_ERR_MSG(md->index, TAG,
  200. "%s:ERR cannot find mapped c2k ch ID(%d)\n",
  201. direction ? "TX" : "RX", c2k_ch);
  202. return -1;
  203. }
  204. static int ccci_ch_to_c2k_ch(struct ccci_modem *md, int ccci_ch, int direction)
  205. {
  206. u16 ccci_channel_id;
  207. u16 channel_map;
  208. int i = 0;
  209. ccci_channel_id = (u16) ccci_ch;
  210. for (i = 0; i < (sizeof(c2k_ports) / sizeof(struct c2k_port)); i++) {
  211. channel_map =
  212. (direction ==
  213. OUT) ? c2k_ports[i].
  214. tx_ch_mapping : c2k_ports[i].rx_ch_mapping;
  215. if (ccci_channel_id == channel_map) {
  216. CCCI_DBG_MSG(md->index, TAG, "%s:channel(%d)-->(%d)\n",
  217. (direction == OUT) ? "TX" : "RX",
  218. ccci_channel_id, c2k_ports[i].ch);
  219. return (md->md_state !=
  220. EXCEPTION) ? c2k_ports[i].
  221. ch : c2k_ports[i].excp_ch;
  222. }
  223. }
  224. CCCI_ERR_MSG(md->index, TAG,
  225. "%s:ERR cannot find mapped ccci ch ID(%d)\n",
  226. direction ? "TX" : "RX", ccci_ch);
  227. return -1;
  228. }
  229. static void md_ccif_sram_rx_work(struct work_struct *work)
  230. {
  231. struct md_ccif_ctrl *md_ctrl =
  232. container_of(work, struct md_ccif_ctrl, ccif_sram_work);
  233. struct ccci_modem *md = md_ctrl->rxq[0].modem;
  234. struct ccci_header *dl_pkg = &md_ctrl->ccif_sram_layout->dl_header;
  235. struct ccci_header *ccci_h;
  236. struct ccci_header ccci_hdr;
  237. struct ccci_request *new_req = NULL;
  238. struct ccci_request *req;
  239. int pkg_size, ret = 0, retry_cnt = 0;
  240. /*md_ccif_dump("md_ccif_sram_rx_work",md); */
  241. #ifdef AP_MD_HS_V2
  242. u32 i = 0;
  243. u8 *md_feature = (u8 *) (((u8 *) dl_pkg) + sizeof(struct ccci_header));
  244. CCCI_INF_MSG(md->index, TAG, "md_ccif_sram_rx_work:dk_pkg=%p, md_featrue=%p\n", dl_pkg, md_feature);
  245. pkg_size = sizeof(struct ccci_header) + sizeof(struct md_query_ap_feature);
  246. #else
  247. pkg_size = sizeof(struct ccci_header);
  248. #endif
  249. new_req = ccci_alloc_req(IN, pkg_size, 1, 0);
  250. INIT_LIST_HEAD(&new_req->entry); /*as port will run list_del */
  251. if (new_req->skb == NULL) {
  252. CCCI_ERR_MSG(md->index, TAG,
  253. "md_ccif_sram_rx_work:ccci_alloc_req pkg_size=%d failed\n",
  254. pkg_size);
  255. return;
  256. }
  257. skb_put(new_req->skb, pkg_size);
  258. ccci_h = (struct ccci_header *)new_req->skb->data;
  259. ccci_h->data[0] = ccif_read32(&dl_pkg->data[0], 0);
  260. ccci_h->data[1] = ccif_read32(&dl_pkg->data[1], 0);
  261. /*ccci_h->channel = ccif_read32(&dl_pkg->channel,0); */
  262. *(((u32 *) ccci_h) + 2) = ccif_read32((((u32 *) dl_pkg) + 2), 0);
  263. if (md->index == MD_SYS3)
  264. ccci_h->channel = c2k_ch_to_ccci_ch(md, ccci_h->channel, IN);
  265. ccci_h->reserved = ccif_read32(&dl_pkg->reserved, 0);
  266. #ifdef AP_MD_HS_V2
  267. /*warning: make sure struct md_query_ap_feature is 4 bypes align */
  268. while (i < sizeof(struct md_query_ap_feature)) {
  269. *((u32 *) (new_req->skb->data + sizeof(struct ccci_header) + i)) =
  270. ccif_read32((u32 *) (md_feature + i), 0);
  271. i += 4;
  272. }
  273. #endif
  274. if (atomic_cmpxchg(&md->wakeup_src, 1, 0) == 1)
  275. CCCI_INF_MSG(md->index, TAG,
  276. "CCIF_MD wakeup source:(SRX_IDX/%d)\n",
  277. *(((u32 *) ccci_h) + 2));
  278. ccci_hdr = *ccci_h;
  279. RETRY:
  280. ret = ccci_port_recv_request(md, new_req, NULL);
  281. CCCI_DBG_MSG(md->index, TAG, "Rx msg %x %x %x %x ret=%d\n",
  282. ccci_h->data[0], ccci_h->data[1], *(((u32 *) ccci_h) + 2),
  283. ccci_h->reserved, ret);
  284. if (ret >= 0 || ret == -CCCI_ERR_DROP_PACKET) {
  285. CCCI_INF_MSG(md->index, TAG,
  286. "md_ccif_sram_rx_work:ccci_port_recv_request ret=%d\n",
  287. ret);
  288. ccci_chk_rx_seq_num(md, &ccci_hdr, 0);
  289. /*step forward */
  290. req = list_entry(req->entry.next, struct ccci_request, entry);
  291. } else {
  292. if (retry_cnt > 20) {
  293. CCCI_ERR_MSG(md->index, TAG,
  294. "md_ccif_sram_rx_work:ccci_port_recv_request ret=%d,retry=%d\n",
  295. ret, retry_cnt);
  296. udelay(5);
  297. retry_cnt++;
  298. goto RETRY;
  299. }
  300. list_del(&new_req->entry);
  301. ccci_free_req(new_req);
  302. CCCI_INF_MSG(md->index, TAG,
  303. "md_ccif_sram_rx_work:ccci_port_recv_request ret=%d\n",
  304. ret);
  305. }
  306. }
  307. void c2k_mem_dump(void *start_addr, int len)
  308. {
  309. unsigned int *curr_p = (unsigned int *)start_addr;
  310. unsigned char *curr_ch_p;
  311. int _16_fix_num = len / 16;
  312. int tail_num = len % 16;
  313. char buf[16];
  314. int i, j;
  315. if (NULL == curr_p) {
  316. CCCI_ERR_MSG(MD_SYS3, TAG, "[C2K-DUMP]NULL point to dump!\n");
  317. return;
  318. }
  319. if (0 == len) {
  320. CCCI_ERR_MSG(MD_SYS3, TAG, "[C2K-DUMP]Not need to dump\n");
  321. return;
  322. }
  323. CCCI_DBG_MSG(MD_SYS3, TAG, "[C2K-DUMP]Base: 0x%lx, len: %d\n", (unsigned long)start_addr,
  324. len);
  325. /*Fix section */
  326. for (i = 0; i < _16_fix_num; i++) {
  327. CCCI_INF_MSG(MD_SYS3, TAG, "[C2K-DUMP]%03X: %08X %08X %08X %08X\n",
  328. i * 16, *curr_p, *(curr_p + 1), *(curr_p + 2),
  329. *(curr_p + 3));
  330. curr_p += 4;
  331. }
  332. /*Tail section */
  333. if (tail_num > 0) {
  334. curr_ch_p = (unsigned char *)curr_p;
  335. for (j = 0; j < tail_num; j++) {
  336. buf[j] = *curr_ch_p;
  337. curr_ch_p++;
  338. }
  339. for (; j < 16; j++)
  340. buf[j] = 0;
  341. curr_p = (unsigned int *)buf;
  342. CCCI_INF_MSG(MD_SYS3, TAG, "[C2K-DUMP]%03X: %08X %08X %08X %08X\n",
  343. i * 16, *curr_p, *(curr_p + 1), *(curr_p + 2),
  344. *(curr_p + 3));
  345. }
  346. }
  347. static inline void md_ccif_tx_rx_printk(struct ccci_modem *md, struct sk_buff *skb, u8 qno, u8 is_tx)
  348. {
  349. struct ccci_header *ccci_h = (struct ccci_header *)skb->data;
  350. unsigned int data_len = skb->len - sizeof(struct ccci_header);
  351. unsigned int dump_len = data_len > 16 ? 16 : data_len;
  352. switch (ccci_h->channel) {
  353. /*debug level*/
  354. case CCCI_C2K_AT:
  355. case CCCI_C2K_AT2:
  356. case CCCI_C2K_AT3:
  357. if (is_tx)
  358. CCCI_DBG_MSG(md->index, TAG, "TX:OK on Q%d: %x %x %x %x, seq(%d)\n", qno, ccci_h->data[0],
  359. ccci_h->data[1], *(((u32 *) ccci_h) + 2), ccci_h->reserved, ccci_h->seq_num);
  360. else
  361. CCCI_DBG_MSG(md->index, TAG, "Q%d Rx msg %x %x %x %x, seq(%d)\n", qno, ccci_h->data[0],
  362. ccci_h->data[1], *(((u32 *) ccci_h) + 2), ccci_h->reserved, ccci_h->seq_num);
  363. break;
  364. /*info level*/
  365. case CCCI_UART1_TX:
  366. case CCCI_UART1_RX:
  367. case CCCI_CONTROL_TX:
  368. case CCCI_CONTROL_RX:
  369. case CCCI_STATUS_TX:
  370. case CCCI_STATUS_RX:
  371. if (is_tx)
  372. CCCI_INF_MSG(md->index, TAG, "TX:OK on Q%d: %x %x %x %x, seq(%d)\n", qno, ccci_h->data[0],
  373. ccci_h->data[1], *(((u32 *) ccci_h) + 2), ccci_h->reserved, ccci_h->seq_num);
  374. else
  375. CCCI_INF_MSG(md->index, TAG, "Q%d Rx msg %x %x %x %x, seq(%d)\n", qno, ccci_h->data[0],
  376. ccci_h->data[1], *(((u32 *) ccci_h) + 2), ccci_h->reserved, ccci_h->seq_num);
  377. if (data_len > 0)
  378. c2k_mem_dump(skb->data + sizeof(struct ccci_header), dump_len);
  379. break;
  380. default:
  381. break;
  382. };
  383. }
  384. atomic_t lb_dl_q;
  385. /*this function may be called from both workqueue and softirq (NAPI)*/
  386. static unsigned long rx_data_cnt;
  387. static unsigned int pkg_num;
  388. static int ccif_rx_collect(struct md_ccif_queue *queue, int budget,
  389. int blocking, int *result)
  390. {
  391. struct ccci_modem *md = queue->modem;
  392. struct ccci_ringbuf *rx_buf = queue->ringbuf;
  393. struct ccci_request *new_req = NULL;
  394. struct ccci_request *req;
  395. unsigned char *data_ptr;
  396. int ret = 0, count = 0, pkg_size;
  397. unsigned long flags;
  398. int qno = queue->index;
  399. struct ccci_header *ccci_h = NULL;
  400. struct ccci_header ccci_hdr;
  401. struct sk_buff *skb;
  402. int c2k_to_ccci_ch = 0;
  403. if (atomic_read(&queue->rx_on_going)) {
  404. CCCI_DBG_MSG(md->index, TAG, "Q%d rx is on-going(%d)1\n",
  405. queue->index, atomic_read(&queue->rx_on_going));
  406. *result = 0;
  407. return -1;
  408. }
  409. atomic_set(&queue->rx_on_going, 1);
  410. while (1) {
  411. pkg_size = ccci_ringbuf_readable(md->index, rx_buf);
  412. if (pkg_size < 0) {
  413. CCCI_DBG_MSG(md->index, TAG,
  414. "Q%d Rx:rbf readable ret=%d\n",
  415. queue->index, pkg_size);
  416. /*BUG_ON(pkg_size!=-CCCI_RINGBUF_EMPTY); */
  417. ret = 0;
  418. goto OUT;
  419. }
  420. if (IS_PASS_SKB(md, qno)) {
  421. skb = ccci_alloc_skb(pkg_size, 0, blocking);
  422. if (skb == NULL) {
  423. ret = -ENOMEM;
  424. goto OUT;
  425. }
  426. } else {
  427. new_req = ccci_alloc_req(IN, pkg_size, blocking, 0);
  428. if (new_req == NULL || new_req->skb == NULL) {
  429. CCCI_ERR_MSG(md->index, TAG,
  430. "Q%d Rx:ccci_alloc_skb pkg_size=%d failed,count=%d\n",
  431. queue->index, pkg_size, count);
  432. ret = -ENOMEM;
  433. goto OUT;
  434. }
  435. INIT_LIST_HEAD(&new_req->entry); /*as port will run list_del */
  436. skb = new_req->skb;
  437. }
  438. data_ptr = (unsigned char *)skb_put(skb, pkg_size);
  439. /*copy data into skb */
  440. ret = ccci_ringbuf_read(md->index, rx_buf, data_ptr, pkg_size);
  441. BUG_ON(ret < 0);
  442. ccci_h = (struct ccci_header *)skb->data;
  443. if (md->index == MD_SYS3) {
  444. /*md3(c2k) logical channel number is not the same as other modems,
  445. so we need use mapping table to convert channel id here. */
  446. c2k_to_ccci_ch =
  447. c2k_ch_to_ccci_ch(md, ccci_h->channel, IN);
  448. if (c2k_to_ccci_ch >= 0)
  449. ccci_h->channel = (u16) c2k_to_ccci_ch;
  450. /*heart beat msg from c2k control channel, but handled by ECCCI status channel handler,
  451. we hack the channel ID here. */
  452. /*if((ccci_h->channel == CCCI_CONTROL_RX) && (ccci_h->data[1] == C2K_HB_MSG))
  453. {
  454. ccci_h->channel == CCCI_STATUS_RX;
  455. CCCI_INF_MSG(md->index, TAG, "heart beat msg received\n");
  456. } */
  457. if (ccci_h->channel == CCCI_C2K_LB_DL) {
  458. CCCI_DBG_MSG(md->index, TAG, "Q%d Rx lb_dl\n",
  459. queue->index);
  460. /*c2k_mem_dump(data_ptr, pkg_size); */
  461. }
  462. }
  463. if (atomic_cmpxchg(&md->wakeup_src, 1, 0) == 1)
  464. CCCI_INF_MSG(md->index, TAG, "CCIF_MD wakeup source:(%d/%d)\n",
  465. queue->index, *(((u32 *) ccci_h) + 2));
  466. md_ccif_tx_rx_printk(md, skb, queue->index, 0);
  467. if (ccci_h->channel == CCCI_C2K_LB_DL)
  468. atomic_set(&lb_dl_q, queue->index);
  469. ccci_hdr = *ccci_h;
  470. ret = ccci_port_recv_request(md, new_req, skb);
  471. if (ret >= 0 || ret == -CCCI_ERR_DROP_PACKET) {
  472. count++;
  473. ccci_chk_rx_seq_num(md, &ccci_hdr, queue->index);
  474. if (queue->debug_id) {
  475. CCCI_INF_MSG(md->index, TAG,
  476. "Q%d Rx recv req ret=%d\n",
  477. queue->index, ret);
  478. queue->debug_id = 0;
  479. }
  480. ccci_ringbuf_move_rpointer(md->index, rx_buf, pkg_size);
  481. if (ccci_h->channel == CCCI_MD_LOG_RX) {
  482. rx_data_cnt += pkg_size - 16;
  483. pkg_num++;
  484. CCCI_DBG_MSG(md->index, TAG,
  485. "Q%d Rx buf read=%d, write=%d, pkg_size=%d, log_cnt=%ld, pkg_num=%d\n",
  486. queue->index,
  487. rx_buf->rx_control.read,
  488. rx_buf->rx_control.write, pkg_size,
  489. rx_data_cnt, pkg_num);
  490. }
  491. ret = 0;
  492. /*step forward */
  493. req =
  494. list_entry(req->entry.next, struct ccci_request,
  495. entry);
  496. } else {
  497. /*leave package into share memory, and waiting ccci to receive */
  498. if (IS_PASS_SKB(md, qno)) {
  499. dev_kfree_skb_any(skb);
  500. } else {
  501. list_del(&new_req->entry);
  502. ccci_free_req(new_req);
  503. }
  504. if (queue->debug_id == 0) {
  505. queue->debug_id = 1;
  506. CCCI_ERR_MSG(md->index, TAG, "Q%d Rx err\n",
  507. queue->index);
  508. }
  509. ret = -EAGAIN;
  510. goto OUT;
  511. }
  512. if (count > budget) {
  513. CCCI_DBG_MSG(md->index, TAG,
  514. "Q%d count > budget, exit now\n",
  515. queue->index);
  516. goto OUT;
  517. }
  518. }
  519. OUT:
  520. atomic_set(&queue->rx_on_going, 0);
  521. *result = count;
  522. CCCI_DBG_MSG(md->index, TAG, "Q%d rx %d pkg,ret=%d\n", queue->index,
  523. count, ret);
  524. spin_lock_irqsave(&queue->rx_lock, flags);
  525. if (ret != -EAGAIN) {
  526. pkg_size = ccci_ringbuf_readable(md->index, rx_buf);
  527. if (pkg_size > 0)
  528. ret = -EAGAIN;
  529. }
  530. spin_unlock_irqrestore(&queue->rx_lock, flags);
  531. return ret;
  532. }
  533. static void ccif_rx_work(struct work_struct *work)
  534. {
  535. int result = 0, ret = 0;
  536. struct md_ccif_queue *queue =
  537. container_of(work, struct md_ccif_queue, qwork);
  538. ret = ccif_rx_collect(queue, queue->budget, 1, &result);
  539. if (ret == -EAGAIN) {
  540. CCCI_DBG_MSG(queue->modem->index, TAG, "queue again\n");
  541. queue_work(queue->worker, &queue->qwork);
  542. }
  543. }
  544. static irqreturn_t md_cd_wdt_isr(int irq, void *data)
  545. {
  546. struct ccci_modem *md = (struct ccci_modem *)data;
  547. #ifdef ENABLE_MD_WDT_DBG
  548. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  549. #endif
  550. int ret = 0;
  551. CCCI_INF_MSG(md->index, TAG, "MD WDT IRQ\n");
  552. /*1. disable MD WDT */
  553. #ifdef ENABLE_MD_WDT_DBG
  554. unsigned int state;
  555. state = ccif_read32(md_ctrl->md_rgu_base, WDT_MD_STA);
  556. ccif_write32(md_ctrl->md_rgu_base, WDT_MD_MODE, WDT_MD_MODE_KEY);
  557. CCCI_INF_MSG(md->index, TAG, "WDT IRQ disabled for debug, state=%X\n",
  558. state);
  559. #endif
  560. if (*((int *)(md->mem_layout.smem_region_vir + CCCI_SMEM_OFFSET_EPON))
  561. == 0xBAEBAE10) {
  562. /*3. reset */
  563. ret = md->ops->reset(md);
  564. CCCI_INF_MSG(md->index, TAG, "reset MD after WDT %d\n", ret);
  565. /*4. send message, only reset MD on non-eng load */
  566. ccci_send_virtual_md_msg(md, CCCI_MONITOR_CH, CCCI_MD_MSG_RESET,
  567. 0);
  568. /* #ifdef CONFIG_MTK_SVLTE_SUPPORT */
  569. #ifdef CONFIG_MTK_ECCCI_C2K
  570. if (md->index == MD_SYS3)
  571. exec_ccci_kern_func_by_md_id(MD_SYS1, ID_RESET_MD, NULL, 0);
  572. #endif
  573. /* #endif */
  574. } else {
  575. ccci_md_exception_notify(md, MD_WDT);
  576. }
  577. return IRQ_HANDLED;
  578. }
  579. static int md_ccif_send(struct ccci_modem *md, int channel_id)
  580. {
  581. int busy = 0;
  582. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  583. busy = ccif_read32(md_ctrl->ccif_ap_base, APCCIF_BUSY);
  584. if (busy & (1 << channel_id)) {
  585. CCCI_DBG_MSG(md->index, TAG, "CCIF channel %d busy\n",
  586. channel_id);
  587. } else {
  588. ccif_write32(md_ctrl->ccif_ap_base, APCCIF_BUSY,
  589. 1 << channel_id);
  590. ccif_write32(md_ctrl->ccif_ap_base, APCCIF_TCHNUM, channel_id);
  591. CCCI_DBG_MSG(md->index, TAG, "CCIF start=0x%x\n",
  592. ccif_read32(md_ctrl->ccif_ap_base, APCCIF_START));
  593. }
  594. return 0;
  595. }
  596. static void md_ccif_sram_reset(struct ccci_modem *md)
  597. {
  598. int idx = 0;
  599. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  600. CCCI_INF_MSG(md->index, TAG, "md_ccif_sram_reset\n");
  601. for (idx = 0; idx < md_ctrl->sram_size / sizeof(u32); idx += 1) {
  602. ccif_write32(md_ctrl->ccif_ap_base + APCCIF_CHDATA,
  603. idx * sizeof(u32), 0);
  604. }
  605. }
  606. static void md_ccif_queue_dump(struct ccci_modem *md)
  607. {
  608. int idx;
  609. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  610. CCCI_INF_MSG(md->index, TAG, "Dump CCIF Queue Control\n");
  611. for (idx = 0; idx < QUEUE_NUM; idx++) {
  612. CCCI_INF_MSG(md->index, TAG, "Q%d TX: w=%d, r=%d, len=%d\n",
  613. idx, md_ctrl->txq[idx].ringbuf->tx_control.write,
  614. md_ctrl->txq[idx].ringbuf->tx_control.read,
  615. md_ctrl->txq[idx].ringbuf->tx_control.length);
  616. CCCI_INF_MSG(md->index, TAG, "Q%d RX: w=%d, r=%d, len=%d\n",
  617. idx, md_ctrl->rxq[idx].ringbuf->rx_control.write,
  618. md_ctrl->rxq[idx].ringbuf->rx_control.read,
  619. md_ctrl->rxq[idx].ringbuf->rx_control.length);
  620. }
  621. }
  622. static void md_ccif_reset_queue(struct ccci_modem *md)
  623. {
  624. int i;
  625. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  626. CCCI_INF_MSG(md->index, TAG, "md_ccif_reset_queue\n");
  627. for (i = 0; i < QUEUE_NUM; ++i) {
  628. ccci_ringbuf_reset(md->index, md_ctrl->rxq[i].ringbuf, 0);
  629. ccci_ringbuf_reset(md->index, md_ctrl->txq[i].ringbuf, 1);
  630. }
  631. }
  632. static void md_ccif_exception(struct ccci_modem *md, HIF_EX_STAGE stage)
  633. {
  634. CCCI_INF_MSG(md->index, TAG, "MD exception HIF %d\n", stage);
  635. switch (stage) {
  636. case HIF_EX_INIT:
  637. ccci_md_exception_notify(md, EX_INIT);
  638. /*Rx dispatch does NOT depend on queue index in port structure, so it still can find right port. */
  639. md_ccif_send(md, H2D_EXCEPTION_ACK);
  640. break;
  641. case HIF_EX_INIT_DONE:
  642. ccci_md_exception_notify(md, EX_DHL_DL_RDY);
  643. break;
  644. case HIF_EX_CLEARQ_DONE:
  645. md_ccif_queue_dump(md);
  646. md_ccif_reset_queue(md);
  647. md_ccif_send(md, H2D_EXCEPTION_CLEARQ_ACK);
  648. break;
  649. case HIF_EX_ALLQ_RESET:
  650. ccci_md_exception_notify(md, EX_INIT_DONE);
  651. break;
  652. default:
  653. break;
  654. };
  655. }
  656. static void md_ccif_irq_tasklet(unsigned long data)
  657. {
  658. struct ccci_modem *md = (struct ccci_modem *)data;
  659. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  660. int i;
  661. CCCI_DBG_MSG(md->index, TAG, "ccif_irq_tasklet1: ch %ld\n",
  662. md_ctrl->channel_id);
  663. while (md_ctrl->channel_id != 0) {
  664. if (md_ctrl->channel_id & CCIF_HW_CH_RX_RESERVED) {
  665. CCCI_ERR_MSG(md->index, TAG,
  666. "Interrupt from reserved ccif ch(%ld)\n",
  667. md_ctrl->channel_id);
  668. md_ctrl->channel_id &= ~CCIF_HW_CH_RX_RESERVED;
  669. CCCI_ERR_MSG(md->index, TAG,
  670. "After cleared reserved ccif ch(%ld)\n",
  671. md_ctrl->channel_id);
  672. }
  673. if (md_ctrl->channel_id & (1 << D2H_EXCEPTION_INIT)) {
  674. clear_bit(D2H_EXCEPTION_INIT, &md_ctrl->channel_id);
  675. md_ccif_exception(md, HIF_EX_INIT);
  676. }
  677. if (md_ctrl->channel_id & (1 << D2H_EXCEPTION_INIT_DONE)) {
  678. clear_bit(D2H_EXCEPTION_INIT_DONE,
  679. &md_ctrl->channel_id);
  680. md_ccif_exception(md, HIF_EX_INIT_DONE);
  681. }
  682. if (md_ctrl->channel_id & (1 << D2H_EXCEPTION_CLEARQ_DONE)) {
  683. clear_bit(D2H_EXCEPTION_CLEARQ_DONE,
  684. &md_ctrl->channel_id);
  685. md_ccif_exception(md, HIF_EX_CLEARQ_DONE);
  686. }
  687. if (md_ctrl->channel_id & (1 << D2H_EXCEPTION_ALLQ_RESET)) {
  688. clear_bit(D2H_EXCEPTION_ALLQ_RESET,
  689. &md_ctrl->channel_id);
  690. md_ccif_exception(md, HIF_EX_ALLQ_RESET);
  691. }
  692. if (md_ctrl->channel_id & (1 << AP_MD_SEQ_ERROR)) {
  693. clear_bit(AP_MD_SEQ_ERROR, &md_ctrl->channel_id);
  694. CCCI_ERR_MSG(md->index, TAG, "MD check seq fail\n");
  695. md->ops->dump_info(md, DUMP_FLAG_CCIF, NULL, 0);
  696. }
  697. if (md_ctrl->channel_id & (1 << (D2H_SRAM))) {
  698. clear_bit(D2H_SRAM, &md_ctrl->channel_id);
  699. schedule_work(&md_ctrl->ccif_sram_work);
  700. }
  701. for (i = 0; i < QUEUE_NUM; i++) {
  702. if (md_ctrl->channel_id & (1 << (i + D2H_RINGQ0))) {
  703. clear_bit(i + D2H_RINGQ0, &md_ctrl->channel_id);
  704. if (atomic_read(&md_ctrl->rxq[i].rx_on_going)) {
  705. CCCI_DBG_MSG(md->index, TAG,
  706. "Q%d rx is on-going(%d)2\n",
  707. md_ctrl->rxq[i].index,
  708. atomic_read(&md_ctrl->rxq
  709. [i].rx_on_going));
  710. return;
  711. }
  712. if (md->md_state != EXCEPTION
  713. && (md->capability & MODEM_CAP_NAPI)
  714. && md_ctrl->rxq[i].napi_port
  715. &&
  716. ((1 << md_ctrl->rxq[i].
  717. napi_port->rxq_index) & NAPI_QUEUE_MASK)) {
  718. md_ctrl->rxq[i].napi_port->
  719. ops->md_state_notice(md_ctrl->
  720. rxq
  721. [i].napi_port,
  722. RX_IRQ);
  723. } else {
  724. queue_work(md_ctrl->rxq[i].worker,
  725. &md_ctrl->rxq[i].qwork);
  726. }
  727. }
  728. }
  729. CCCI_DBG_MSG(md->index, TAG, "ccif_irq_tasklet2: ch %ld\n",
  730. md_ctrl->channel_id);
  731. }
  732. }
  733. unsigned int ccif_irq_cnt = 0;
  734. static irqreturn_t md_ccif_isr(int irq, void *data)
  735. {
  736. struct ccci_modem *md = (struct ccci_modem *)data;
  737. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  738. unsigned int ch_id;
  739. /*disable_irq_nosync(md_ctrl->ccif_irq_id); */
  740. /*must ack first, otherwise IRQ will rush in */
  741. ch_id = ccif_read32(md_ctrl->ccif_ap_base, APCCIF_RCHNUM);
  742. md_ctrl->channel_id |= ch_id;
  743. ccif_write32(md_ctrl->ccif_ap_base, APCCIF_ACK, ch_id);
  744. /*enable_irq(md_ctrl->ccif_irq_id); */
  745. if (md_ctrl->channel_id == 0x800)
  746. CCCI_DBG_MSG(md->index, TAG, "MD CCIF IRQ %ld, %d\n",
  747. md_ctrl->channel_id, ccif_irq_cnt++);
  748. tasklet_hi_schedule(&md_ctrl->ccif_irq_task);
  749. return IRQ_HANDLED;
  750. }
  751. static int md_ccif_op_broadcast_state(struct ccci_modem *md, MD_STATE state)
  752. {
  753. int i;
  754. struct ccci_port *port;
  755. /*only for thoes states which are updated by port_kernel.c */
  756. switch (state) {
  757. case BOOT_FAIL:
  758. return 0;
  759. case RX_IRQ:
  760. CCCI_ERR_MSG(md->index, TAG, "%ps broadcast RX_IRQ to ports!\n",
  761. __builtin_return_address(0));
  762. return 0;
  763. default:
  764. break;
  765. };
  766. if (md->md_state == state) /*must have, due to we broadcast EXCEPTION both in MD_EX and EX_INIT */
  767. return 1;
  768. md->md_state = state;
  769. for (i = 0; i < md->port_number; i++) {
  770. port = md->ports + i;
  771. if (port->ops->md_state_notice)
  772. port->ops->md_state_notice(port, state);
  773. }
  774. return 0;
  775. }
  776. static inline void md_ccif_queue_struct_init(struct md_ccif_queue *queue,
  777. struct ccci_modem *md,
  778. DIRECTION dir, unsigned char index)
  779. {
  780. queue->dir = dir;
  781. queue->index = index;
  782. queue->modem = md;
  783. queue->napi_port = NULL;
  784. init_waitqueue_head(&queue->req_wq);
  785. spin_lock_init(&queue->rx_lock);
  786. spin_lock_init(&queue->tx_lock);
  787. atomic_set(&queue->rx_on_going, 0);
  788. queue->debug_id = 0;
  789. queue->budget = RX_BUGDET;
  790. }
  791. static int md_ccif_op_init(struct ccci_modem *md)
  792. {
  793. int i;
  794. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  795. struct ccci_port *port;
  796. CCCI_INF_MSG(md->index, TAG, "CCIF modem is initializing\n");
  797. /*init queue */
  798. for (i = 0; i < QUEUE_NUM; i++) {
  799. md_ccif_queue_struct_init(&md_ctrl->txq[i], md, OUT, i);
  800. md_ccif_queue_struct_init(&md_ctrl->rxq[i], md, IN, i);
  801. }
  802. /*init port */
  803. for (i = 0; i < md->port_number; i++) {
  804. port = md->ports + i;
  805. ccci_port_struct_init(port, md);
  806. port->ops->init(port);
  807. if ((port->flags & PORT_F_RX_EXCLUSIVE)
  808. && (md->capability & MODEM_CAP_NAPI)
  809. && ((1 << port->rxq_index) & NAPI_QUEUE_MASK)) {
  810. md_ctrl->rxq[port->rxq_index].napi_port = port;
  811. CCCI_INF_MSG(md->index, TAG,
  812. "queue%d add NAPI port %s\n",
  813. port->rxq_index, port->name);
  814. }
  815. }
  816. ccci_setup_channel_mapping(md);
  817. /*update state */
  818. md->md_state = GATED;
  819. return 0;
  820. }
  821. /*used for throttling feature - end*/
  822. static int md_ccif_op_start(struct ccci_modem *md)
  823. {
  824. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  825. char img_err_str[IMG_ERR_STR_LEN];
  826. int ret = 0;
  827. /*0. init security, as security depends on dummy_char, which is ready very late. */
  828. ccci_init_security();
  829. md_ccif_sram_reset(md);
  830. md_ccif_reset_queue(md);
  831. ccci_reset_seq_num(md);
  832. md->heart_beat_counter = 0;
  833. md->data_usb_bypass = 0;
  834. CCCI_INF_MSG(md->index, TAG, "CCIF modem is starting\n");
  835. /*1. load modem image */
  836. if (md->config.setting & MD_SETTING_FIRST_BOOT
  837. || md->config.setting & MD_SETTING_RELOAD) {
  838. ccci_clear_md_region_protection(md);
  839. ret =
  840. ccci_load_firmware(md->index, &md->img_info[IMG_MD],
  841. img_err_str, md->post_fix);
  842. if (ret < 0) {
  843. CCCI_ERR_MSG(md->index, TAG, "load firmware fail, %s\n",
  844. img_err_str);
  845. goto out;
  846. }
  847. ret = 0; /*load_std_firmware returns MD image size */
  848. md->config.setting &= ~MD_SETTING_RELOAD;
  849. }
  850. /*2. enable MPU */
  851. ccci_set_mem_access_protection(md);
  852. /*3. power on modem, do NOT touch MD register before this */
  853. ret = md_ccif_power_on(md);
  854. if (ret) {
  855. CCCI_ERR_MSG(md->index, TAG, "power on MD fail %d\n", ret);
  856. goto out;
  857. }
  858. /*4. update mutex */
  859. atomic_set(&md_ctrl->reset_on_going, 0);
  860. /*5. start timer */
  861. mod_timer(&md->bootup_timer, jiffies + BOOT_TIMER_ON * HZ);
  862. /*6. let modem go */
  863. md->ops->broadcast_state(md, BOOTING);
  864. md_ccif_let_md_go(md);
  865. enable_irq(md_ctrl->md_wdt_irq_id);
  866. md->is_forced_assert = 0;
  867. out:
  868. CCCI_INF_MSG(md->index, TAG, "ccif modem started %d\n", ret);
  869. /*used for throttling feature - start */
  870. ccci_modem_boot_count[md->index]++;
  871. /*used for throttling feature - end */
  872. return ret;
  873. }
  874. static int md_ccif_op_stop(struct ccci_modem *md, unsigned int timeout)
  875. {
  876. int ret = 0;
  877. int idx = 0;
  878. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  879. CCCI_INF_MSG(md->index, TAG, "ccif modem is power off, timeout=%d\n",
  880. timeout);
  881. ret = md_ccif_power_off(md, timeout);
  882. CCCI_INF_MSG(md->index, TAG, "ccif modem is power off done, %d\n", ret);
  883. for (idx = 0; idx < QUEUE_NUM; idx++)
  884. flush_work(&md_ctrl->rxq[idx].qwork);
  885. CCCI_INF_MSG(md->index, TAG, "ccif flush_work done, %d\n", ret);
  886. md_ccif_reset_queue(md);
  887. md->ops->broadcast_state(md, GATED);
  888. return 0;
  889. }
  890. static int md_ccif_op_reset(struct ccci_modem *md)
  891. {
  892. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  893. /*1. mutex check */
  894. if (atomic_inc_return(&md_ctrl->reset_on_going) > 1) {
  895. CCCI_INF_MSG(md->index, TAG, "One reset flow is on-going\n");
  896. return -CCCI_ERR_MD_IN_RESET;
  897. }
  898. CCCI_INF_MSG(md->index, TAG, "ccif modem is resetting\n");
  899. /*2. disable IRQ (use nosync) */
  900. disable_irq_nosync(md_ctrl->md_wdt_irq_id);
  901. md->ops->broadcast_state(md, RESET); /*to block char's write operation */
  902. del_timer(&md->bootup_timer);
  903. md->boot_stage = MD_BOOT_STAGE_0;
  904. return 0;
  905. }
  906. static int md_ccif_op_write_room(struct ccci_modem *md, unsigned char qno)
  907. {
  908. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  909. if (qno == 0xFF)
  910. return -CCCI_ERR_INVALID_QUEUE_INDEX;
  911. return ccci_ringbuf_writeable(md->index, md_ctrl->txq[qno].ringbuf, 0);
  912. }
  913. static int md_ccif_op_send_request(struct ccci_modem *md, unsigned char qno,
  914. struct ccci_request *req,
  915. struct sk_buff *skb)
  916. {
  917. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  918. struct md_ccif_queue *queue = NULL;
  919. /*struct ccci_header *ccci_h = (struct ccci_header *)req->skb->data; */
  920. int ret;
  921. static char lp_qno;
  922. /*struct ccci_header *ccci_h; */
  923. unsigned long flags;
  924. int ccci_to_c2k_ch = 0;
  925. struct ccci_header *ccci_h;
  926. if (qno == 0xFF)
  927. return -CCCI_ERR_INVALID_QUEUE_INDEX;
  928. queue = &md_ctrl->txq[qno];
  929. if (req)
  930. skb = req->skb;
  931. ccci_h = (struct ccci_header *)skb->data;
  932. if (ccci_h->channel == CCCI_LB_IT_TX) {
  933. qno = lp_qno++;
  934. if (lp_qno > 7)
  935. lp_qno = 0;
  936. }
  937. if (ccci_h->channel == CCCI_C2K_LB_DL)
  938. qno = atomic_read(&lb_dl_q);
  939. if (qno > 7)
  940. CCCI_ERR_MSG(md->index, TAG, "qno error (%d)\n", qno);
  941. queue = &md_ctrl->txq[qno];
  942. retry:
  943. /*we use irqsave as network require a lock in softirq, cause a potential deadlock */
  944. spin_lock_irqsave(&queue->tx_lock, flags);
  945. if (ccci_ringbuf_writeable(md->index, queue->ringbuf, skb->len) > 0) {
  946. if (ccci_h->channel == CCCI_C2K_LB_DL) {
  947. CCCI_DBG_MSG(md->index, TAG, "Q%d Tx lb_dl\n",
  948. queue->index);
  949. /*c2k_mem_dump(req->skb->data, req->skb->len); */
  950. }
  951. ccci_inc_tx_seq_num(md, ccci_h);
  952. md_ccif_tx_rx_printk(md, skb, qno, 1);
  953. if (md->index == MD_SYS3) {
  954. /*heart beat msg is sent from status channel in ECCCI,
  955. but from control channel in C2K, no status channel in C2K */
  956. if (ccci_h->channel == CCCI_STATUS_TX) {
  957. ccci_h->channel = CCCI_CONTROL_TX;
  958. ccci_h->data[1] = C2K_HB_MSG;
  959. ccci_h->reserved = md->heart_beat_counter;
  960. md->heart_beat_counter++;
  961. ccci_inc_tx_seq_num(md, ccci_h);
  962. }
  963. /*md3(c2k) logical channel number is not the same as other modems,
  964. so we need to use mapping table to convert channel id here. */
  965. ccci_to_c2k_ch =
  966. ccci_ch_to_c2k_ch(md, ccci_h->channel, OUT);
  967. if (ccci_to_c2k_ch >= 0)
  968. ccci_h->channel = (u16) ccci_to_c2k_ch;
  969. if (ccci_h->data[1] == C2K_HB_MSG)
  970. CCCI_INF_MSG(md->index, TAG, "hb: 0x%x\n",
  971. ccci_h->channel);
  972. }
  973. /*copy skb to ringbuf */
  974. ret =
  975. ccci_ringbuf_write(md->index, queue->ringbuf, skb->data,
  976. skb->len);
  977. if (ret != skb->len) {
  978. CCCI_ERR_MSG(md->index, TAG,
  979. "TX:ERR rbf write: ret(%d)!=req(%d)\n",
  980. ret, skb->len);
  981. }
  982. /*free request */
  983. if (IS_PASS_SKB(md, qno))
  984. dev_kfree_skb_any(skb);
  985. else
  986. ccci_free_req(req);
  987. /*send ccif request */
  988. md_ccif_send(md, queue->ccif_ch);
  989. spin_unlock_irqrestore(&queue->tx_lock, flags);
  990. if (queue->debug_id == 1) {
  991. CCCI_INF_MSG(md->index, TAG,
  992. "TX:OK on q%d,txw=%d,txr=%d,rxw=%d,rxr=%d\n",
  993. qno, queue->ringbuf->tx_control.write,
  994. queue->ringbuf->tx_control.read,
  995. queue->ringbuf->rx_control.write,
  996. queue->ringbuf->rx_control.read);
  997. queue->debug_id = 0;
  998. }
  999. } else {
  1000. spin_unlock_irqrestore(&queue->tx_lock, flags);
  1001. if (queue->debug_id == 0) {
  1002. CCCI_INF_MSG(md->index, TAG,
  1003. "TX:busy on q%d,txw=%d,txr=%d,rxw=%d,rxr=%d\n",
  1004. qno, queue->ringbuf->tx_control.write,
  1005. queue->ringbuf->tx_control.read,
  1006. queue->ringbuf->rx_control.write,
  1007. queue->ringbuf->rx_control.read);
  1008. queue->debug_id = 1;
  1009. }
  1010. if (IS_PASS_SKB(md, qno))
  1011. return -EBUSY;
  1012. else if (req->blocking) {
  1013. udelay(5);
  1014. /*TODO: add time out check */
  1015. CCCI_INF_MSG(md->index, TAG,
  1016. "TODO: add time out check busy on q%d\n",
  1017. qno);
  1018. goto retry;
  1019. } else
  1020. return -EBUSY;
  1021. }
  1022. return 0;
  1023. }
  1024. static int md_ccif_op_give_more(struct ccci_modem *md, unsigned char qno)
  1025. {
  1026. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  1027. if (qno == 0xFF)
  1028. return -CCCI_ERR_INVALID_QUEUE_INDEX;
  1029. queue_work(md_ctrl->rxq[qno].worker, &md_ctrl->rxq[qno].qwork);
  1030. return 0;
  1031. }
  1032. static int md_ccif_op_napi_poll(struct ccci_modem *md, unsigned char qno,
  1033. struct napi_struct *napi, int budget)
  1034. {
  1035. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  1036. int ret, result = 0;
  1037. if (qno == 0xFF)
  1038. return -CCCI_ERR_INVALID_QUEUE_INDEX;
  1039. if (atomic_read(&md_ctrl->rxq[qno].rx_on_going)) {
  1040. CCCI_DBG_MSG(md->index, TAG, "Q%d rx is on-going(%d)3\n",
  1041. md_ctrl->rxq[qno].index,
  1042. atomic_read(&md_ctrl->rxq[qno].rx_on_going));
  1043. return 0;
  1044. }
  1045. budget =
  1046. budget <
  1047. md_ctrl->rxq[qno].budget ? budget : md_ctrl->rxq[qno].budget;
  1048. ret = ccif_rx_collect(&md_ctrl->rxq[qno], budget, 0, &result);
  1049. if (ret == 0 && result == 0)
  1050. napi_complete(napi);
  1051. return ret;
  1052. }
  1053. static struct ccci_port *md_ccif_op_get_port_by_minor(struct ccci_modem *md,
  1054. int minor)
  1055. {
  1056. int i;
  1057. struct ccci_port *port;
  1058. for (i = 0; i < md->port_number; i++) {
  1059. port = md->ports + i;
  1060. if (port->minor == minor)
  1061. return port;
  1062. }
  1063. return NULL;
  1064. }
  1065. static struct ccci_port *md_ccif_op_get_port_by_channel(struct ccci_modem *md,
  1066. CCCI_CH ch)
  1067. {
  1068. int i;
  1069. struct ccci_port *port;
  1070. for (i = 0; i < md->port_number; i++) {
  1071. port = md->ports + i;
  1072. if (port->rx_ch == ch || port->tx_ch == ch)
  1073. return port;
  1074. }
  1075. return NULL;
  1076. }
  1077. static void dump_runtime_data(struct ccci_modem *md, struct ap_query_md_feature *ap_feature)
  1078. {
  1079. u8 i = 0;
  1080. CCCI_DBG_MSG(md->index, KERN, "head_pattern 0x%x\n", ap_feature->head_pattern);
  1081. for (i = BOOT_INFO; i < AP_RUNTIME_FEATURE_ID_MAX; i++) {
  1082. CCCI_DBG_MSG(md->index, KERN, "feature %u: mask %u, version %u\n",
  1083. i, ap_feature->feature_set[i].support_mask, ap_feature->feature_set[i].version);
  1084. }
  1085. CCCI_DBG_MSG(md->index, KERN, "share_memory_support 0x%x\n", ap_feature->share_memory_support);
  1086. CCCI_DBG_MSG(md->index, KERN, "ap_runtime_data_addr 0x%x\n", ap_feature->ap_runtime_data_addr);
  1087. CCCI_DBG_MSG(md->index, KERN, "ap_runtime_data_size 0x%x\n", ap_feature->ap_runtime_data_size);
  1088. CCCI_DBG_MSG(md->index, KERN, "md_runtime_data_addr 0x%x\n", ap_feature->md_runtime_data_addr);
  1089. CCCI_DBG_MSG(md->index, KERN, "md_runtime_data_size 0x%x\n", ap_feature->md_runtime_data_size);
  1090. CCCI_INF_MSG(md->index, KERN, "set_md_mpu_start_addr 0x%x\n", ap_feature->set_md_mpu_start_addr);
  1091. CCCI_INF_MSG(md->index, KERN, "set_md_mpu_total_size 0x%x\n", ap_feature->set_md_mpu_total_size);
  1092. CCCI_DBG_MSG(md->index, KERN, "tail_pattern 0x%x\n", ap_feature->tail_pattern);
  1093. }
  1094. #ifdef FEATURE_DBM_SUPPORT
  1095. static void eccci_c2k_smem_sub_region_init(struct ccci_modem *md)
  1096. {
  1097. volatile int __iomem *addr;
  1098. int i;
  1099. /* Region 0, dbm */
  1100. addr = (volatile int __iomem *)(md->mem_layout.smem_region_vir+CCCI_SMEM_MD3_DBM_OFFSET);
  1101. addr[0] = 0x44444444; /* Guard pattern 1 header */
  1102. addr[1] = 0x44444444; /* Guard pattern 2 header */
  1103. #ifdef DISABLE_PBM_FEATURE
  1104. for (i = 2; i < (10+2); i++)
  1105. addr[i] = 0xFFFFFFFF;
  1106. #else
  1107. for (i = 2; i < (10+2); i++)
  1108. addr[i] = 0x00000000;
  1109. #endif
  1110. addr[i++] = 0x44444444; /* Guard pattern 1 tail */
  1111. addr[i++] = 0x44444444; /* Guard pattern 2 tail */
  1112. /* Notify PBM */
  1113. #ifndef DISABLE_PBM_FEATURE
  1114. init_md_section_level(KR_MD3);
  1115. #endif
  1116. }
  1117. #endif
  1118. static void config_ap_runtime_data(struct ccci_modem *md, struct ap_query_md_feature *ap_rt_data)
  1119. {
  1120. ccif_write32(&ap_rt_data->head_pattern, 0, AP_FEATURE_QUERY_PATTERN);
  1121. ccif_write32(&ap_rt_data->share_memory_support, 0, 1);
  1122. ccif_write32(&ap_rt_data->ap_runtime_data_addr, 0, md->smem_layout.ccci_rt_smem_base_phy -
  1123. md->mem_layout.smem_offset_AP_to_MD);
  1124. ccif_write32(&ap_rt_data->ap_runtime_data_size, 0, CCCI_SMEM_SIZE_RUNTIME_AP);
  1125. ccif_write32(&ap_rt_data->md_runtime_data_addr, 0, md->smem_layout.ccci_rt_smem_base_phy +
  1126. CCCI_SMEM_SIZE_RUNTIME_AP - md->mem_layout.smem_offset_AP_to_MD);
  1127. ccif_write32(&ap_rt_data->md_runtime_data_size, 0, CCCI_SMEM_SIZE_RUNTIME_MD);
  1128. ccif_write32(&ap_rt_data->set_md_mpu_start_addr, 0, md->mem_layout.smem_region_phy -
  1129. md->mem_layout.smem_offset_AP_to_MD);
  1130. ccif_write32(&ap_rt_data->set_md_mpu_total_size, 0, md->mem_layout.smem_region_size);
  1131. ccif_write32(&ap_rt_data->tail_pattern, 0, AP_FEATURE_QUERY_PATTERN);
  1132. }
  1133. static int md_ccif_op_send_runtime_data(struct ccci_modem *md,
  1134. unsigned int sbp_code)
  1135. {
  1136. int packet_size = sizeof(struct ap_query_md_feature) + sizeof(struct ccci_header);
  1137. struct ccci_header *ccci_h;
  1138. struct ap_query_md_feature *ap_rt_data;
  1139. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  1140. int ret;
  1141. ccci_h = (struct ccci_header *)&md_ctrl->ccif_sram_layout->up_header;
  1142. ap_rt_data = (struct ap_query_md_feature *)&md_ctrl->ccif_sram_layout->ap_rt_data;
  1143. CCCI_NOTICE_MSG(md->index, KERN, "new api for sending rt data, sbp_code %u\n", sbp_code);
  1144. ccci_set_ap_region_protection(md);
  1145. /*header */
  1146. ccif_write32(&ccci_h->data[0], 0, 0x00);
  1147. ccif_write32(&ccci_h->data[1], 0, packet_size);
  1148. ccif_write32(&ccci_h->reserved, 0, MD_INIT_CHK_ID);
  1149. /*ccif_write32(&ccci_h->channel,0,CCCI_CONTROL_TX); */
  1150. /*as Runtime data always be the first packet we send on control channel */
  1151. ccif_write32((u32 *) ccci_h + 2, 0, CCCI_CONTROL_TX);
  1152. config_ap_runtime_data(md, ap_rt_data);
  1153. dump_runtime_data(md, ap_rt_data);
  1154. #ifdef FEATURE_DBM_SUPPORT
  1155. eccci_c2k_smem_sub_region_init(md);
  1156. #endif
  1157. ret = md_ccif_send(md, H2D_SRAM);
  1158. return ret;
  1159. }
  1160. static int md_ccif_op_force_assert(struct ccci_modem *md, MD_COMM_TYPE type)
  1161. {
  1162. struct ccci_request *req = NULL;
  1163. struct ccci_header *ccci_h;
  1164. if (md->is_forced_assert == 1) {
  1165. CCCI_ERR_MSG(md->index, TAG, "MD has been forced assert, no need again using %d\n", type);
  1166. return 0;
  1167. }
  1168. CCCI_INF_MSG(md->index, TAG, "force assert MD using %d\n", type);
  1169. switch (type) {
  1170. case CCCI_MESSAGE:
  1171. req = ccci_alloc_req(OUT, sizeof(struct ccci_header), 1, 1);
  1172. if (req) {
  1173. req->policy = RECYCLE;
  1174. ccci_h =
  1175. (struct ccci_header *)skb_put(req->skb,
  1176. sizeof(struct
  1177. ccci_header));
  1178. ccci_h->data[0] = 0xFFFFFFFF;
  1179. ccci_h->data[1] = 0x5A5A5A5A;
  1180. /*ccci_h->channel = CCCI_FORCE_ASSERT_CH; */
  1181. *(((u32 *) ccci_h) + 2) = CCCI_FORCE_ASSERT_CH;
  1182. ccci_h->reserved = 0xA5A5A5A5;
  1183. return md->ops->send_request(md, 0, req, NULL); /*hardcode to queue 0 */
  1184. }
  1185. return -CCCI_ERR_ALLOCATE_MEMORY_FAIL;
  1186. case CCIF_INTERRUPT:
  1187. md_ccif_send(md, H2D_FORCE_MD_ASSERT);
  1188. break;
  1189. case CCIF_INTR_SEQ:
  1190. md_ccif_send(md, AP_MD_SEQ_ERROR);
  1191. break;
  1192. };
  1193. md->is_forced_assert = 1;
  1194. return 0;
  1195. }
  1196. static int md_ccif_dump_info(struct ccci_modem *md, MODEM_DUMP_FLAG flag,
  1197. void *buff, int length)
  1198. {
  1199. if (flag & DUMP_FLAG_CCIF)
  1200. md_ccif_dump("Dump CCIF SRAM\n", md);
  1201. CCCI_INF_MSG(md->index, TAG, "dump MD1 exception memory start\n");
  1202. ccci_mem_dump(md->index, md1_excp_smem_vir, md1_excp_smem__size);
  1203. /*dump_c2k_boot_status(md);*/
  1204. return 0;
  1205. }
  1206. static int md_ccif_ee_callback(struct ccci_modem *md, MODEM_EE_FLAG flag)
  1207. {
  1208. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  1209. if (flag & EE_FLAG_ENABLE_WDT)
  1210. enable_irq(md_ctrl->md_wdt_irq_id);
  1211. if (flag & EE_FLAG_DISABLE_WDT)
  1212. disable_irq_nosync(md_ctrl->md_wdt_irq_id);
  1213. return 0;
  1214. }
  1215. static struct ccci_modem_ops md_ccif_ops = {
  1216. .init = &md_ccif_op_init,
  1217. .start = &md_ccif_op_start,
  1218. .stop = &md_ccif_op_stop,
  1219. .reset = &md_ccif_op_reset,
  1220. .send_request = &md_ccif_op_send_request,
  1221. .give_more = &md_ccif_op_give_more,
  1222. .napi_poll = &md_ccif_op_napi_poll,
  1223. .send_runtime_data = &md_ccif_op_send_runtime_data,
  1224. .broadcast_state = &md_ccif_op_broadcast_state,
  1225. .force_assert = &md_ccif_op_force_assert,
  1226. .dump_info = &md_ccif_dump_info,
  1227. .write_room = &md_ccif_op_write_room,
  1228. .get_port_by_minor = &md_ccif_op_get_port_by_minor,
  1229. .get_port_by_channel = &md_ccif_op_get_port_by_channel,
  1230. .ee_callback = &md_ccif_ee_callback,
  1231. };
  1232. static void md_ccif_hw_init(struct ccci_modem *md)
  1233. {
  1234. int idx, ret;
  1235. struct md_ccif_ctrl *md_ctrl;
  1236. struct md_hw_info *hw_info;
  1237. md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  1238. hw_info = md_ctrl->hw_info;
  1239. /*Copy HW info */
  1240. md_ctrl->ccif_ap_base = (void __iomem *)hw_info->ap_ccif_base;
  1241. md_ctrl->ccif_md_base = (void __iomem *)hw_info->md_ccif_base;
  1242. md_ctrl->ccif_irq_id = hw_info->ap_ccif_irq_id;
  1243. md_ctrl->md_wdt_irq_id = hw_info->md_wdt_irq_id;
  1244. md_ctrl->sram_size = hw_info->sram_size;
  1245. md_ccif_io_remap_md_side_register(md);
  1246. md_ctrl->ccif_sram_layout =
  1247. (struct ccif_sram_layout *)(md_ctrl->ccif_ap_base + APCCIF_CHDATA);
  1248. /*request IRQ */
  1249. ret =
  1250. request_irq(md_ctrl->md_wdt_irq_id, md_cd_wdt_isr,
  1251. hw_info->md_wdt_irq_flags, "MD2_WDT", md);
  1252. if (ret) {
  1253. CCCI_ERR_MSG(md->index, TAG,
  1254. "request MD_WDT IRQ(%d) error %d\n",
  1255. md_ctrl->md_wdt_irq_id, ret);
  1256. return;
  1257. }
  1258. disable_irq_nosync(md_ctrl->md_wdt_irq_id); /*to balance the first start */
  1259. ret =
  1260. request_irq(md_ctrl->ccif_irq_id, md_ccif_isr,
  1261. hw_info->md_wdt_irq_flags, "CCIF1_AP", md);
  1262. if (ret) {
  1263. CCCI_ERR_MSG(md->index, TAG,
  1264. "request CCIF1_AP IRQ(%d) error %d\n",
  1265. md_ctrl->ccif_irq_id, ret);
  1266. return;
  1267. }
  1268. /*init CCIF */
  1269. ccif_write32(md_ctrl->ccif_ap_base, APCCIF_CON, 0x01); /*arbitration */
  1270. ccif_write32(md_ctrl->ccif_ap_base, APCCIF_ACK, 0xFFFF);
  1271. for (idx = 0; idx < md_ctrl->sram_size / sizeof(u32); idx++) {
  1272. ccif_write32(md_ctrl->ccif_ap_base,
  1273. APCCIF_CHDATA + idx * sizeof(u32), 0);
  1274. }
  1275. }
  1276. static int md_ccif_ring_buf_init(struct ccci_modem *md)
  1277. {
  1278. int i = 0;
  1279. unsigned char *buf;
  1280. int bufsize = 0;
  1281. struct md_ccif_ctrl *md_ctrl;
  1282. struct ccci_ringbuf *ringbuf;
  1283. md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  1284. md_ctrl->total_smem_size = 0;
  1285. /*CCIF_MD_SMEM_RESERVE; */
  1286. buf =
  1287. ((unsigned char *)md->mem_layout.smem_region_vir) +
  1288. CCCI_SMEM_SIZE_EXCEPTION + md->smem_layout.ccci_rt_smem_size;
  1289. for (i = 0; i < QUEUE_NUM; i++) {
  1290. bufsize =
  1291. CCCI_RINGBUF_CTL_LEN + rx_queue_buffer_size[i] +
  1292. tx_queue_buffer_size[i];
  1293. if (md_ctrl->total_smem_size + bufsize >
  1294. md->mem_layout.smem_region_size -
  1295. md->smem_layout.ccci_exp_smem_size) {
  1296. CCCI_ERR_MSG(md->index, TAG,
  1297. "share memory too small,please check configure,smem_size=%d, exception_smem=%d\n",
  1298. md->mem_layout.smem_region_size,
  1299. md->smem_layout.ccci_exp_smem_size);
  1300. return -1;
  1301. }
  1302. ringbuf =
  1303. ccci_create_ringbuf(md->index, buf, bufsize,
  1304. rx_queue_buffer_size[i],
  1305. tx_queue_buffer_size[i]);
  1306. if (ringbuf == NULL) {
  1307. CCCI_ERR_MSG(md->index, TAG,
  1308. "ccci_create_ringbuf %d failed\n", i);
  1309. return -1;
  1310. }
  1311. /*rx */
  1312. md_ctrl->rxq[i].ringbuf = ringbuf;
  1313. md_ctrl->rxq[i].ccif_ch = D2H_RINGQ0 + i;
  1314. md_ctrl->rxq[i].worker =
  1315. alloc_workqueue("rx%d_worker",
  1316. WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_HIGHPRI, 1,
  1317. i);
  1318. INIT_WORK(&md_ctrl->rxq[i].qwork, ccif_rx_work);
  1319. /*tx */
  1320. md_ctrl->txq[i].ringbuf = ringbuf;
  1321. md_ctrl->txq[i].ccif_ch = H2D_RINGQ0 + i;
  1322. buf += bufsize;
  1323. md_ctrl->total_smem_size += bufsize;
  1324. }
  1325. md->smem_layout.ccci_ccif_smem_size = md_ctrl->total_smem_size;
  1326. return 0;
  1327. }
  1328. static int md_ccif_probe(struct platform_device *dev)
  1329. {
  1330. struct ccci_modem *md;
  1331. struct md_ccif_ctrl *md_ctrl;
  1332. int md_id;
  1333. struct ccci_dev_cfg dev_cfg;
  1334. int ret;
  1335. struct md_hw_info *md_hw;
  1336. /*Allocate modem hardware info structure memory */
  1337. md_hw = kzalloc(sizeof(struct md_hw_info), GFP_KERNEL);
  1338. if (md_hw == NULL) {
  1339. CCCI_INF_MSG(-1, TAG, "md_ccif_probe:alloc md hw mem fail\n");
  1340. return -1;
  1341. }
  1342. ret = md_ccif_get_modem_hw_info(dev, &dev_cfg, md_hw);
  1343. if (ret != 0) {
  1344. CCCI_INF_MSG(-1, TAG, "md_ccif_probe:get hw info fail(%d)\n",
  1345. ret);
  1346. kfree(md_hw);
  1347. md_hw = NULL;
  1348. return -1;
  1349. }
  1350. /*Allocate md ctrl memory and do initialize */
  1351. md = ccci_allocate_modem(sizeof(struct md_ccif_ctrl));
  1352. if (md == NULL) {
  1353. CCCI_INF_MSG(-1, TAG,
  1354. "md_ccif_probe:alloc modem ctrl mem fail\n");
  1355. kfree(md_hw);
  1356. md_hw = NULL;
  1357. return -1;
  1358. }
  1359. md->index = md_id = dev_cfg.index;
  1360. md->major = dev_cfg.major;
  1361. md->minor_base = dev_cfg.minor_base;
  1362. md->capability = dev_cfg.capability;
  1363. md->plat_dev = dev;
  1364. md->heart_beat_counter = 0;
  1365. md->data_usb_bypass = 0;
  1366. CCCI_INF_MSG(md_id, TAG, "modem ccif module probe...\n");
  1367. /*init modem structure */
  1368. md->ops = &md_ccif_ops;
  1369. CCCI_INF_MSG(md_id, TAG, "md_ccif_probe:md_ccif=%p,md_ctrl=%p\n", md,
  1370. md->private_data);
  1371. md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  1372. md_ctrl->hw_info = md_hw;
  1373. snprintf(md_ctrl->wakelock_name, sizeof(md_ctrl->wakelock_name),
  1374. "md%d_ccif_trm", md_id + 1);
  1375. wake_lock_init(&md_ctrl->trm_wake_lock, WAKE_LOCK_SUSPEND,
  1376. md_ctrl->wakelock_name);
  1377. tasklet_init(&md_ctrl->ccif_irq_task, md_ccif_irq_tasklet,
  1378. (unsigned long)md);
  1379. INIT_WORK(&md_ctrl->ccif_sram_work, md_ccif_sram_rx_work);
  1380. md_ctrl->channel_id = 0;
  1381. /*register modem */
  1382. ccci_register_modem(md);
  1383. md_ccif_hw_init(md);
  1384. md_ccif_ring_buf_init(md);
  1385. /*hoop up to device */
  1386. dev->dev.platform_data = md;
  1387. return 0;
  1388. }
  1389. int md_ccif_remove(struct platform_device *dev)
  1390. {
  1391. return 0;
  1392. }
  1393. void md_ccif_shutdown(struct platform_device *dev)
  1394. {
  1395. }
  1396. int md_ccif_suspend(struct platform_device *dev, pm_message_t state)
  1397. {
  1398. return 0;
  1399. }
  1400. int md_ccif_resume(struct platform_device *dev)
  1401. {
  1402. struct ccci_modem *md = (struct ccci_modem *)dev->dev.platform_data;
  1403. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  1404. CCCI_INF_MSG(-1, TAG, "md_ccif_resume,md=0x%p,md_ctrl=0x%p\n", md,
  1405. md_ctrl);
  1406. ccif_write32(md_ctrl->ccif_ap_base, APCCIF_CON, 0x01); /*arbitration */
  1407. return 0;
  1408. }
  1409. int md_ccif_pm_suspend(struct device *device)
  1410. {
  1411. struct platform_device *pdev = to_platform_device(device);
  1412. BUG_ON(pdev == NULL);
  1413. return md_ccif_suspend(pdev, PMSG_SUSPEND);
  1414. }
  1415. int md_ccif_pm_resume(struct device *device)
  1416. {
  1417. struct platform_device *pdev = to_platform_device(device);
  1418. BUG_ON(pdev == NULL);
  1419. return md_ccif_resume(pdev);
  1420. }
  1421. int md_ccif_pm_restore_noirq(struct device *device)
  1422. {
  1423. int ret = 0;
  1424. struct ccci_modem *md = (struct ccci_modem *)device->platform_data;
  1425. struct md_ccif_ctrl *md_ctrl = (struct md_ccif_ctrl *)md->private_data;
  1426. CCCI_INF_MSG(-1, TAG, "md_ccif_ipoh_restore,md=0x%p,md_ctrl=0x%p\n", md,
  1427. md_ctrl);
  1428. /*IPO-H */
  1429. /*restore IRQ */
  1430. #ifdef FEATURE_PM_IPO_H
  1431. irq_set_irq_type(md_ctrl->md_wdt_irq_id, IRQF_TRIGGER_FALLING);
  1432. #endif
  1433. /*set flag for next md_start */
  1434. md->config.setting |= MD_SETTING_RELOAD;
  1435. md->config.setting |= MD_SETTING_FIRST_BOOT;
  1436. return ret;
  1437. }
  1438. #ifdef CONFIG_PM
  1439. static const struct dev_pm_ops md_ccif_pm_ops = {
  1440. .suspend = md_ccif_pm_suspend,
  1441. .resume = md_ccif_pm_resume,
  1442. .freeze = md_ccif_pm_suspend,
  1443. .thaw = md_ccif_pm_resume,
  1444. .poweroff = md_ccif_pm_suspend,
  1445. .restore = md_ccif_pm_resume,
  1446. .restore_noirq = md_ccif_pm_restore_noirq,
  1447. };
  1448. #endif
  1449. static struct platform_driver modem_ccif_driver = {
  1450. .driver = {
  1451. .name = "ccif_modem",
  1452. #ifdef CONFIG_PM
  1453. .pm = &md_ccif_pm_ops,
  1454. #endif
  1455. },
  1456. .probe = md_ccif_probe,
  1457. .remove = md_ccif_remove,
  1458. .shutdown = md_ccif_shutdown,
  1459. .suspend = md_ccif_suspend,
  1460. .resume = md_ccif_resume,
  1461. };
  1462. #ifdef CONFIG_OF
  1463. static const struct of_device_id ccif_of_ids[] = {
  1464. /*{.compatible = "mediatek,AP_CCIF1",},*/
  1465. {.compatible = "mediatek,ap2c2k_ccif",},
  1466. {}
  1467. };
  1468. #endif
  1469. static int __init md_ccif_init(void)
  1470. {
  1471. int ret;
  1472. #ifdef CONFIG_OF
  1473. modem_ccif_driver.driver.of_match_table = ccif_of_ids;
  1474. #endif
  1475. ret = platform_driver_register(&modem_ccif_driver);
  1476. if (ret) {
  1477. CCCI_ERR_MSG(-1, TAG,
  1478. "CCIF modem platform driver register fail(%d)\n",
  1479. ret);
  1480. return ret;
  1481. }
  1482. CCCI_INF_MSG(-1, TAG, "CCIF C2K modem platform driver register success\n");
  1483. return 0;
  1484. }
  1485. module_init(md_ccif_init);
  1486. MODULE_AUTHOR("Yanbin Ren <Yanbin.Ren@mediatek.com>");
  1487. MODULE_DESCRIPTION("CCIF modem driver v0.1");
  1488. MODULE_LICENSE("GPL");