direct.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003
  1. /*
  2. * linux/fs/nfs/direct.c
  3. *
  4. * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5. *
  6. * High-performance uncached I/O for the Linux NFS client
  7. *
  8. * There are important applications whose performance or correctness
  9. * depends on uncached access to file data. Database clusters
  10. * (multiple copies of the same instance running on separate hosts)
  11. * implement their own cache coherency protocol that subsumes file
  12. * system cache protocols. Applications that process datasets
  13. * considerably larger than the client's memory do not always benefit
  14. * from a local cache. A streaming video server, for instance, has no
  15. * need to cache the contents of a file.
  16. *
  17. * When an application requests uncached I/O, all read and write requests
  18. * are made directly to the server; data stored or fetched via these
  19. * requests is not cached in the Linux page cache. The client does not
  20. * correct unaligned requests from applications. All requested bytes are
  21. * held on permanent storage before a direct write system call returns to
  22. * an application.
  23. *
  24. * Solaris implements an uncached I/O facility called directio() that
  25. * is used for backups and sequential I/O to very large files. Solaris
  26. * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27. * an undocumented mount option.
  28. *
  29. * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30. * help from Andrew Morton.
  31. *
  32. * 18 Dec 2001 Initial implementation for 2.4 --cel
  33. * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
  34. * 08 Jun 2003 Port to 2.5 APIs --cel
  35. * 31 Mar 2004 Handle direct I/O without VFS support --cel
  36. * 15 Sep 2004 Parallel async reads --cel
  37. * 04 May 2005 support O_DIRECT with aio --cel
  38. *
  39. */
  40. #include <linux/errno.h>
  41. #include <linux/sched.h>
  42. #include <linux/kernel.h>
  43. #include <linux/file.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/kref.h>
  46. #include <linux/slab.h>
  47. #include <linux/task_io_accounting_ops.h>
  48. #include <linux/module.h>
  49. #include <linux/nfs_fs.h>
  50. #include <linux/nfs_page.h>
  51. #include <linux/sunrpc/clnt.h>
  52. #include <asm/uaccess.h>
  53. #include <linux/atomic.h>
  54. #include "internal.h"
  55. #include "iostat.h"
  56. #include "pnfs.h"
  57. #define NFSDBG_FACILITY NFSDBG_VFS
  58. static struct kmem_cache *nfs_direct_cachep;
  59. /*
  60. * This represents a set of asynchronous requests that we're waiting on
  61. */
  62. struct nfs_direct_req {
  63. struct kref kref; /* release manager */
  64. /* I/O parameters */
  65. struct nfs_open_context *ctx; /* file open context info */
  66. struct nfs_lock_context *l_ctx; /* Lock context info */
  67. struct kiocb * iocb; /* controlling i/o request */
  68. struct inode * inode; /* target file of i/o */
  69. /* completion state */
  70. atomic_t io_count; /* i/os we're waiting for */
  71. spinlock_t lock; /* protect completion state */
  72. ssize_t count, /* bytes actually processed */
  73. bytes_left, /* bytes left to be sent */
  74. error; /* any reported error */
  75. struct completion completion; /* wait for i/o completion */
  76. /* commit state */
  77. struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
  78. struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
  79. struct work_struct work;
  80. int flags;
  81. #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
  82. #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
  83. struct nfs_writeverf verf; /* unstable write verifier */
  84. };
  85. static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
  86. static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
  87. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  88. static void nfs_direct_write_schedule_work(struct work_struct *work);
  89. static inline void get_dreq(struct nfs_direct_req *dreq)
  90. {
  91. atomic_inc(&dreq->io_count);
  92. }
  93. static inline int put_dreq(struct nfs_direct_req *dreq)
  94. {
  95. return atomic_dec_and_test(&dreq->io_count);
  96. }
  97. /*
  98. * nfs_direct_select_verf - select the right verifier
  99. * @dreq - direct request possibly spanning multiple servers
  100. * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
  101. * @ds_idx - index of data server in data server list, only valid if ds_clp set
  102. *
  103. * returns the correct verifier to use given the role of the server
  104. */
  105. static struct nfs_writeverf *
  106. nfs_direct_select_verf(struct nfs_direct_req *dreq,
  107. struct nfs_client *ds_clp,
  108. int ds_idx)
  109. {
  110. struct nfs_writeverf *verfp = &dreq->verf;
  111. #ifdef CONFIG_NFS_V4_1
  112. if (ds_clp) {
  113. /* pNFS is in use, use the DS verf */
  114. if (ds_idx >= 0 && ds_idx < dreq->ds_cinfo.nbuckets)
  115. verfp = &dreq->ds_cinfo.buckets[ds_idx].direct_verf;
  116. else
  117. WARN_ON_ONCE(1);
  118. }
  119. #endif
  120. return verfp;
  121. }
  122. /*
  123. * nfs_direct_set_hdr_verf - set the write/commit verifier
  124. * @dreq - direct request possibly spanning multiple servers
  125. * @hdr - pageio header to validate against previously seen verfs
  126. *
  127. * Set the server's (MDS or DS) "seen" verifier
  128. */
  129. static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
  130. struct nfs_pgio_header *hdr)
  131. {
  132. struct nfs_writeverf *verfp;
  133. verfp = nfs_direct_select_verf(dreq, hdr->ds_clp,
  134. hdr->ds_idx);
  135. WARN_ON_ONCE(verfp->committed >= 0);
  136. memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
  137. WARN_ON_ONCE(verfp->committed < 0);
  138. }
  139. /*
  140. * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
  141. * @dreq - direct request possibly spanning multiple servers
  142. * @hdr - pageio header to validate against previously seen verf
  143. *
  144. * set the server's "seen" verf if not initialized.
  145. * returns result of comparison between @hdr->verf and the "seen"
  146. * verf of the server used by @hdr (DS or MDS)
  147. */
  148. static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
  149. struct nfs_pgio_header *hdr)
  150. {
  151. struct nfs_writeverf *verfp;
  152. verfp = nfs_direct_select_verf(dreq, hdr->ds_clp,
  153. hdr->ds_idx);
  154. if (verfp->committed < 0) {
  155. nfs_direct_set_hdr_verf(dreq, hdr);
  156. return 0;
  157. }
  158. return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
  159. }
  160. /*
  161. * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
  162. * @dreq - direct request possibly spanning multiple servers
  163. * @data - commit data to validate against previously seen verf
  164. *
  165. * returns result of comparison between @data->verf and the verf of
  166. * the server used by @data (DS or MDS)
  167. */
  168. static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
  169. struct nfs_commit_data *data)
  170. {
  171. struct nfs_writeverf *verfp;
  172. verfp = nfs_direct_select_verf(dreq, data->ds_clp,
  173. data->ds_commit_index);
  174. WARN_ON_ONCE(verfp->committed < 0);
  175. return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf));
  176. }
  177. /**
  178. * nfs_direct_IO - NFS address space operation for direct I/O
  179. * @rw: direction (read or write)
  180. * @iocb: target I/O control block
  181. * @iov: array of vectors that define I/O buffer
  182. * @pos: offset in file to begin the operation
  183. * @nr_segs: size of iovec array
  184. *
  185. * The presence of this routine in the address space ops vector means
  186. * the NFS client supports direct I/O. However, for most direct IO, we
  187. * shunt off direct read and write requests before the VFS gets them,
  188. * so this method is only ever called for swap.
  189. */
  190. ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter, loff_t pos)
  191. {
  192. struct inode *inode = iocb->ki_filp->f_mapping->host;
  193. /* we only support swap file calling nfs_direct_IO */
  194. if (!IS_SWAPFILE(inode))
  195. return 0;
  196. #ifndef CONFIG_NFS_SWAP
  197. dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n",
  198. iocb->ki_filp, (long long) pos, iter->nr_segs);
  199. return -EINVAL;
  200. #else
  201. VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
  202. if (rw == READ)
  203. return nfs_file_direct_read(iocb, iter, pos);
  204. return nfs_file_direct_write(iocb, iter, pos);
  205. #endif /* CONFIG_NFS_SWAP */
  206. }
  207. static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
  208. {
  209. unsigned int i;
  210. for (i = 0; i < npages; i++)
  211. page_cache_release(pages[i]);
  212. }
  213. void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
  214. struct nfs_direct_req *dreq)
  215. {
  216. cinfo->lock = &dreq->inode->i_lock;
  217. cinfo->mds = &dreq->mds_cinfo;
  218. cinfo->ds = &dreq->ds_cinfo;
  219. cinfo->dreq = dreq;
  220. cinfo->completion_ops = &nfs_direct_commit_completion_ops;
  221. }
  222. static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
  223. {
  224. struct nfs_direct_req *dreq;
  225. dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
  226. if (!dreq)
  227. return NULL;
  228. kref_init(&dreq->kref);
  229. kref_get(&dreq->kref);
  230. init_completion(&dreq->completion);
  231. INIT_LIST_HEAD(&dreq->mds_cinfo.list);
  232. dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */
  233. INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
  234. spin_lock_init(&dreq->lock);
  235. return dreq;
  236. }
  237. static void nfs_direct_req_free(struct kref *kref)
  238. {
  239. struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
  240. nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
  241. if (dreq->l_ctx != NULL)
  242. nfs_put_lock_context(dreq->l_ctx);
  243. if (dreq->ctx != NULL)
  244. put_nfs_open_context(dreq->ctx);
  245. kmem_cache_free(nfs_direct_cachep, dreq);
  246. }
  247. static void nfs_direct_req_release(struct nfs_direct_req *dreq)
  248. {
  249. kref_put(&dreq->kref, nfs_direct_req_free);
  250. }
  251. ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
  252. {
  253. return dreq->bytes_left;
  254. }
  255. EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
  256. /*
  257. * Collects and returns the final error value/byte-count.
  258. */
  259. static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
  260. {
  261. ssize_t result = -EIOCBQUEUED;
  262. /* Async requests don't wait here */
  263. if (dreq->iocb)
  264. goto out;
  265. result = wait_for_completion_killable(&dreq->completion);
  266. if (!result)
  267. result = dreq->error;
  268. if (!result)
  269. result = dreq->count;
  270. out:
  271. return (ssize_t) result;
  272. }
  273. /*
  274. * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
  275. * the iocb is still valid here if this is a synchronous request.
  276. */
  277. static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
  278. {
  279. struct inode *inode = dreq->inode;
  280. if (dreq->iocb && write) {
  281. loff_t pos = dreq->iocb->ki_pos + dreq->count;
  282. spin_lock(&inode->i_lock);
  283. if (i_size_read(inode) < pos)
  284. i_size_write(inode, pos);
  285. spin_unlock(&inode->i_lock);
  286. }
  287. if (write)
  288. nfs_zap_mapping(inode, inode->i_mapping);
  289. inode_dio_done(inode);
  290. if (dreq->iocb) {
  291. long res = (long) dreq->error;
  292. if (!res)
  293. res = (long) dreq->count;
  294. aio_complete(dreq->iocb, res, 0);
  295. }
  296. complete_all(&dreq->completion);
  297. nfs_direct_req_release(dreq);
  298. }
  299. static void nfs_direct_readpage_release(struct nfs_page *req)
  300. {
  301. dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
  302. req->wb_context->dentry->d_inode->i_sb->s_id,
  303. (unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
  304. req->wb_bytes,
  305. (long long)req_offset(req));
  306. nfs_release_request(req);
  307. }
  308. static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
  309. {
  310. unsigned long bytes = 0;
  311. struct nfs_direct_req *dreq = hdr->dreq;
  312. if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
  313. goto out_put;
  314. spin_lock(&dreq->lock);
  315. if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
  316. dreq->error = hdr->error;
  317. else
  318. dreq->count += hdr->good_bytes;
  319. spin_unlock(&dreq->lock);
  320. while (!list_empty(&hdr->pages)) {
  321. struct nfs_page *req = nfs_list_entry(hdr->pages.next);
  322. struct page *page = req->wb_page;
  323. if (!PageCompound(page) && bytes < hdr->good_bytes)
  324. set_page_dirty(page);
  325. bytes += req->wb_bytes;
  326. nfs_list_remove_request(req);
  327. nfs_direct_readpage_release(req);
  328. }
  329. out_put:
  330. if (put_dreq(dreq))
  331. nfs_direct_complete(dreq, false);
  332. hdr->release(hdr);
  333. }
  334. static void nfs_read_sync_pgio_error(struct list_head *head)
  335. {
  336. struct nfs_page *req;
  337. while (!list_empty(head)) {
  338. req = nfs_list_entry(head->next);
  339. nfs_list_remove_request(req);
  340. nfs_release_request(req);
  341. }
  342. }
  343. static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
  344. {
  345. get_dreq(hdr->dreq);
  346. }
  347. static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
  348. .error_cleanup = nfs_read_sync_pgio_error,
  349. .init_hdr = nfs_direct_pgio_init,
  350. .completion = nfs_direct_read_completion,
  351. };
  352. /*
  353. * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
  354. * operation. If nfs_readdata_alloc() or get_user_pages() fails,
  355. * bail and stop sending more reads. Read length accounting is
  356. * handled automatically by nfs_direct_read_result(). Otherwise, if
  357. * no requests have been sent, just return an error.
  358. */
  359. static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
  360. struct iov_iter *iter,
  361. loff_t pos)
  362. {
  363. struct nfs_pageio_descriptor desc;
  364. struct inode *inode = dreq->inode;
  365. ssize_t result = -EINVAL;
  366. size_t requested_bytes = 0;
  367. size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
  368. nfs_pageio_init_read(&desc, dreq->inode, false,
  369. &nfs_direct_read_completion_ops);
  370. get_dreq(dreq);
  371. desc.pg_dreq = dreq;
  372. atomic_inc(&inode->i_dio_count);
  373. while (iov_iter_count(iter)) {
  374. struct page **pagevec;
  375. size_t bytes;
  376. size_t pgbase;
  377. unsigned npages, i;
  378. result = iov_iter_get_pages_alloc(iter, &pagevec,
  379. rsize, &pgbase);
  380. if (result < 0)
  381. break;
  382. bytes = result;
  383. iov_iter_advance(iter, bytes);
  384. npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
  385. for (i = 0; i < npages; i++) {
  386. struct nfs_page *req;
  387. unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
  388. /* XXX do we need to do the eof zeroing found in async_filler? */
  389. req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
  390. pgbase, req_len);
  391. if (IS_ERR(req)) {
  392. result = PTR_ERR(req);
  393. break;
  394. }
  395. req->wb_index = pos >> PAGE_SHIFT;
  396. req->wb_offset = pos & ~PAGE_MASK;
  397. if (!nfs_pageio_add_request(&desc, req)) {
  398. result = desc.pg_error;
  399. nfs_release_request(req);
  400. break;
  401. }
  402. pgbase = 0;
  403. bytes -= req_len;
  404. requested_bytes += req_len;
  405. pos += req_len;
  406. dreq->bytes_left -= req_len;
  407. }
  408. nfs_direct_release_pages(pagevec, npages);
  409. kvfree(pagevec);
  410. if (result < 0)
  411. break;
  412. }
  413. nfs_pageio_complete(&desc);
  414. /*
  415. * If no bytes were started, return the error, and let the
  416. * generic layer handle the completion.
  417. */
  418. if (requested_bytes == 0) {
  419. inode_dio_done(inode);
  420. nfs_direct_req_release(dreq);
  421. return result < 0 ? result : -EIO;
  422. }
  423. if (put_dreq(dreq))
  424. nfs_direct_complete(dreq, false);
  425. return 0;
  426. }
  427. /**
  428. * nfs_file_direct_read - file direct read operation for NFS files
  429. * @iocb: target I/O control block
  430. * @iter: vector of user buffers into which to read data
  431. * @pos: byte offset in file where reading starts
  432. *
  433. * We use this function for direct reads instead of calling
  434. * generic_file_aio_read() in order to avoid gfar's check to see if
  435. * the request starts before the end of the file. For that check
  436. * to work, we must generate a GETATTR before each direct read, and
  437. * even then there is a window between the GETATTR and the subsequent
  438. * READ where the file size could change. Our preference is simply
  439. * to do all reads the application wants, and the server will take
  440. * care of managing the end of file boundary.
  441. *
  442. * This function also eliminates unnecessarily updating the file's
  443. * atime locally, as the NFS server sets the file's atime, and this
  444. * client must read the updated atime from the server back into its
  445. * cache.
  446. */
  447. ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
  448. loff_t pos)
  449. {
  450. struct file *file = iocb->ki_filp;
  451. struct address_space *mapping = file->f_mapping;
  452. struct inode *inode = mapping->host;
  453. struct nfs_direct_req *dreq;
  454. struct nfs_lock_context *l_ctx;
  455. ssize_t result = -EINVAL;
  456. size_t count = iov_iter_count(iter);
  457. nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
  458. dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
  459. file, count, (long long) pos);
  460. result = 0;
  461. if (!count)
  462. goto out;
  463. mutex_lock(&inode->i_mutex);
  464. result = nfs_sync_mapping(mapping);
  465. if (result)
  466. goto out_unlock;
  467. task_io_account_read(count);
  468. result = -ENOMEM;
  469. dreq = nfs_direct_req_alloc();
  470. if (dreq == NULL)
  471. goto out_unlock;
  472. dreq->inode = inode;
  473. dreq->bytes_left = count;
  474. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  475. l_ctx = nfs_get_lock_context(dreq->ctx);
  476. if (IS_ERR(l_ctx)) {
  477. result = PTR_ERR(l_ctx);
  478. goto out_release;
  479. }
  480. dreq->l_ctx = l_ctx;
  481. if (!is_sync_kiocb(iocb))
  482. dreq->iocb = iocb;
  483. NFS_I(inode)->read_io += count;
  484. result = nfs_direct_read_schedule_iovec(dreq, iter, pos);
  485. mutex_unlock(&inode->i_mutex);
  486. if (!result) {
  487. result = nfs_direct_wait(dreq);
  488. if (result > 0)
  489. iocb->ki_pos = pos + result;
  490. }
  491. nfs_direct_req_release(dreq);
  492. return result;
  493. out_release:
  494. nfs_direct_req_release(dreq);
  495. out_unlock:
  496. mutex_unlock(&inode->i_mutex);
  497. out:
  498. return result;
  499. }
  500. static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
  501. {
  502. struct nfs_pageio_descriptor desc;
  503. struct nfs_page *req, *tmp;
  504. LIST_HEAD(reqs);
  505. struct nfs_commit_info cinfo;
  506. LIST_HEAD(failed);
  507. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  508. pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
  509. spin_lock(cinfo.lock);
  510. nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
  511. spin_unlock(cinfo.lock);
  512. dreq->count = 0;
  513. get_dreq(dreq);
  514. nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
  515. &nfs_direct_write_completion_ops);
  516. desc.pg_dreq = dreq;
  517. list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
  518. if (!nfs_pageio_add_request(&desc, req)) {
  519. nfs_list_remove_request(req);
  520. nfs_list_add_request(req, &failed);
  521. spin_lock(cinfo.lock);
  522. dreq->flags = 0;
  523. dreq->error = -EIO;
  524. spin_unlock(cinfo.lock);
  525. }
  526. nfs_release_request(req);
  527. }
  528. nfs_pageio_complete(&desc);
  529. while (!list_empty(&failed)) {
  530. req = nfs_list_entry(failed.next);
  531. nfs_list_remove_request(req);
  532. nfs_unlock_and_release_request(req);
  533. }
  534. if (put_dreq(dreq))
  535. nfs_direct_write_complete(dreq, dreq->inode);
  536. }
  537. static void nfs_direct_commit_complete(struct nfs_commit_data *data)
  538. {
  539. struct nfs_direct_req *dreq = data->dreq;
  540. struct nfs_commit_info cinfo;
  541. struct nfs_page *req;
  542. int status = data->task.tk_status;
  543. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  544. if (status < 0) {
  545. dprintk("NFS: %5u commit failed with error %d.\n",
  546. data->task.tk_pid, status);
  547. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  548. } else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
  549. dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
  550. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  551. }
  552. dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
  553. while (!list_empty(&data->pages)) {
  554. req = nfs_list_entry(data->pages.next);
  555. nfs_list_remove_request(req);
  556. if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
  557. /* Note the rewrite will go through mds */
  558. nfs_mark_request_commit(req, NULL, &cinfo);
  559. } else
  560. nfs_release_request(req);
  561. nfs_unlock_and_release_request(req);
  562. }
  563. if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
  564. nfs_direct_write_complete(dreq, data->inode);
  565. }
  566. static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
  567. {
  568. /* There is no lock to clear */
  569. }
  570. static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
  571. .completion = nfs_direct_commit_complete,
  572. .error_cleanup = nfs_direct_error_cleanup,
  573. };
  574. static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
  575. {
  576. int res;
  577. struct nfs_commit_info cinfo;
  578. LIST_HEAD(mds_list);
  579. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  580. nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
  581. res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
  582. if (res < 0) /* res == -ENOMEM */
  583. nfs_direct_write_reschedule(dreq);
  584. }
  585. static void nfs_direct_write_schedule_work(struct work_struct *work)
  586. {
  587. struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
  588. int flags = dreq->flags;
  589. dreq->flags = 0;
  590. switch (flags) {
  591. case NFS_ODIRECT_DO_COMMIT:
  592. nfs_direct_commit_schedule(dreq);
  593. break;
  594. case NFS_ODIRECT_RESCHED_WRITES:
  595. nfs_direct_write_reschedule(dreq);
  596. break;
  597. default:
  598. nfs_direct_complete(dreq, true);
  599. }
  600. }
  601. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  602. {
  603. schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
  604. }
  605. static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
  606. {
  607. struct nfs_direct_req *dreq = hdr->dreq;
  608. struct nfs_commit_info cinfo;
  609. bool request_commit = false;
  610. struct nfs_page *req = nfs_list_entry(hdr->pages.next);
  611. if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
  612. goto out_put;
  613. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  614. spin_lock(&dreq->lock);
  615. if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
  616. dreq->flags = 0;
  617. dreq->error = hdr->error;
  618. }
  619. if (dreq->error == 0) {
  620. dreq->count += hdr->good_bytes;
  621. if (nfs_write_need_commit(hdr)) {
  622. if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
  623. request_commit = true;
  624. else if (dreq->flags == 0) {
  625. nfs_direct_set_hdr_verf(dreq, hdr);
  626. request_commit = true;
  627. dreq->flags = NFS_ODIRECT_DO_COMMIT;
  628. } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
  629. request_commit = true;
  630. if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
  631. dreq->flags =
  632. NFS_ODIRECT_RESCHED_WRITES;
  633. }
  634. }
  635. }
  636. spin_unlock(&dreq->lock);
  637. while (!list_empty(&hdr->pages)) {
  638. req = nfs_list_entry(hdr->pages.next);
  639. nfs_list_remove_request(req);
  640. if (request_commit) {
  641. kref_get(&req->wb_kref);
  642. nfs_mark_request_commit(req, hdr->lseg, &cinfo);
  643. }
  644. nfs_unlock_and_release_request(req);
  645. }
  646. out_put:
  647. if (put_dreq(dreq))
  648. nfs_direct_write_complete(dreq, hdr->inode);
  649. hdr->release(hdr);
  650. }
  651. static void nfs_write_sync_pgio_error(struct list_head *head)
  652. {
  653. struct nfs_page *req;
  654. while (!list_empty(head)) {
  655. req = nfs_list_entry(head->next);
  656. nfs_list_remove_request(req);
  657. nfs_unlock_and_release_request(req);
  658. }
  659. }
  660. static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
  661. .error_cleanup = nfs_write_sync_pgio_error,
  662. .init_hdr = nfs_direct_pgio_init,
  663. .completion = nfs_direct_write_completion,
  664. };
  665. /*
  666. * NB: Return the value of the first error return code. Subsequent
  667. * errors after the first one are ignored.
  668. */
  669. /*
  670. * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
  671. * operation. If nfs_writedata_alloc() or get_user_pages() fails,
  672. * bail and stop sending more writes. Write length accounting is
  673. * handled automatically by nfs_direct_write_result(). Otherwise, if
  674. * no requests have been sent, just return an error.
  675. */
  676. static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
  677. struct iov_iter *iter,
  678. loff_t pos)
  679. {
  680. struct nfs_pageio_descriptor desc;
  681. struct inode *inode = dreq->inode;
  682. ssize_t result = 0;
  683. size_t requested_bytes = 0;
  684. size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
  685. nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
  686. &nfs_direct_write_completion_ops);
  687. desc.pg_dreq = dreq;
  688. get_dreq(dreq);
  689. atomic_inc(&inode->i_dio_count);
  690. NFS_I(inode)->write_io += iov_iter_count(iter);
  691. while (iov_iter_count(iter)) {
  692. struct page **pagevec;
  693. size_t bytes;
  694. size_t pgbase;
  695. unsigned npages, i;
  696. result = iov_iter_get_pages_alloc(iter, &pagevec,
  697. wsize, &pgbase);
  698. if (result < 0)
  699. break;
  700. bytes = result;
  701. iov_iter_advance(iter, bytes);
  702. npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
  703. for (i = 0; i < npages; i++) {
  704. struct nfs_page *req;
  705. unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
  706. req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
  707. pgbase, req_len);
  708. if (IS_ERR(req)) {
  709. result = PTR_ERR(req);
  710. break;
  711. }
  712. nfs_lock_request(req);
  713. req->wb_index = pos >> PAGE_SHIFT;
  714. req->wb_offset = pos & ~PAGE_MASK;
  715. if (!nfs_pageio_add_request(&desc, req)) {
  716. result = desc.pg_error;
  717. nfs_unlock_and_release_request(req);
  718. break;
  719. }
  720. pgbase = 0;
  721. bytes -= req_len;
  722. requested_bytes += req_len;
  723. pos += req_len;
  724. dreq->bytes_left -= req_len;
  725. }
  726. nfs_direct_release_pages(pagevec, npages);
  727. kvfree(pagevec);
  728. if (result < 0)
  729. break;
  730. }
  731. nfs_pageio_complete(&desc);
  732. /*
  733. * If no bytes were started, return the error, and let the
  734. * generic layer handle the completion.
  735. */
  736. if (requested_bytes == 0) {
  737. inode_dio_done(inode);
  738. nfs_direct_req_release(dreq);
  739. return result < 0 ? result : -EIO;
  740. }
  741. if (put_dreq(dreq))
  742. nfs_direct_write_complete(dreq, dreq->inode);
  743. return 0;
  744. }
  745. /**
  746. * nfs_file_direct_write - file direct write operation for NFS files
  747. * @iocb: target I/O control block
  748. * @iter: vector of user buffers from which to write data
  749. * @pos: byte offset in file where writing starts
  750. *
  751. * We use this function for direct writes instead of calling
  752. * generic_file_aio_write() in order to avoid taking the inode
  753. * semaphore and updating the i_size. The NFS server will set
  754. * the new i_size and this client must read the updated size
  755. * back into its cache. We let the server do generic write
  756. * parameter checking and report problems.
  757. *
  758. * We eliminate local atime updates, see direct read above.
  759. *
  760. * We avoid unnecessary page cache invalidations for normal cached
  761. * readers of this file.
  762. *
  763. * Note that O_APPEND is not supported for NFS direct writes, as there
  764. * is no atomic O_APPEND write facility in the NFS protocol.
  765. */
  766. ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
  767. loff_t pos)
  768. {
  769. ssize_t result = -EINVAL;
  770. struct file *file = iocb->ki_filp;
  771. struct address_space *mapping = file->f_mapping;
  772. struct inode *inode = mapping->host;
  773. struct nfs_direct_req *dreq;
  774. struct nfs_lock_context *l_ctx;
  775. loff_t end;
  776. size_t count = iov_iter_count(iter);
  777. end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
  778. nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
  779. dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
  780. file, count, (long long) pos);
  781. result = generic_write_checks(file, &pos, &count, 0);
  782. if (result)
  783. goto out;
  784. result = -EINVAL;
  785. if ((ssize_t) count < 0)
  786. goto out;
  787. result = 0;
  788. if (!count)
  789. goto out;
  790. mutex_lock(&inode->i_mutex);
  791. result = nfs_sync_mapping(mapping);
  792. if (result)
  793. goto out_unlock;
  794. if (mapping->nrpages) {
  795. result = invalidate_inode_pages2_range(mapping,
  796. pos >> PAGE_CACHE_SHIFT, end);
  797. if (result)
  798. goto out_unlock;
  799. }
  800. task_io_account_write(count);
  801. result = -ENOMEM;
  802. dreq = nfs_direct_req_alloc();
  803. if (!dreq)
  804. goto out_unlock;
  805. dreq->inode = inode;
  806. dreq->bytes_left = count;
  807. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  808. l_ctx = nfs_get_lock_context(dreq->ctx);
  809. if (IS_ERR(l_ctx)) {
  810. result = PTR_ERR(l_ctx);
  811. goto out_release;
  812. }
  813. dreq->l_ctx = l_ctx;
  814. if (!is_sync_kiocb(iocb))
  815. dreq->iocb = iocb;
  816. result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
  817. if (mapping->nrpages) {
  818. invalidate_inode_pages2_range(mapping,
  819. pos >> PAGE_CACHE_SHIFT, end);
  820. }
  821. mutex_unlock(&inode->i_mutex);
  822. if (!result) {
  823. result = nfs_direct_wait(dreq);
  824. if (result > 0) {
  825. struct inode *inode = mapping->host;
  826. iocb->ki_pos = pos + result;
  827. spin_lock(&inode->i_lock);
  828. if (i_size_read(inode) < iocb->ki_pos)
  829. i_size_write(inode, iocb->ki_pos);
  830. spin_unlock(&inode->i_lock);
  831. }
  832. }
  833. nfs_direct_req_release(dreq);
  834. return result;
  835. out_release:
  836. nfs_direct_req_release(dreq);
  837. out_unlock:
  838. mutex_unlock(&inode->i_mutex);
  839. out:
  840. return result;
  841. }
  842. /**
  843. * nfs_init_directcache - create a slab cache for nfs_direct_req structures
  844. *
  845. */
  846. int __init nfs_init_directcache(void)
  847. {
  848. nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
  849. sizeof(struct nfs_direct_req),
  850. 0, (SLAB_RECLAIM_ACCOUNT|
  851. SLAB_MEM_SPREAD),
  852. NULL);
  853. if (nfs_direct_cachep == NULL)
  854. return -ENOMEM;
  855. return 0;
  856. }
  857. /**
  858. * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
  859. *
  860. */
  861. void nfs_destroy_directcache(void)
  862. {
  863. kmem_cache_destroy(nfs_direct_cachep);
  864. }