fork.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #define DEBUG
  13. #include <linux/slab.h>
  14. #include <linux/init.h>
  15. #include <linux/unistd.h>
  16. #include <linux/module.h>
  17. #include <linux/vmalloc.h>
  18. #include <linux/completion.h>
  19. #include <linux/personality.h>
  20. #include <linux/mempolicy.h>
  21. #include <linux/sem.h>
  22. #include <linux/file.h>
  23. #include <linux/fdtable.h>
  24. #include <linux/iocontext.h>
  25. #include <linux/key.h>
  26. #include <linux/binfmts.h>
  27. #include <linux/mman.h>
  28. #include <linux/mmu_notifier.h>
  29. #include <linux/fs.h>
  30. #include <linux/mm.h>
  31. #include <linux/vmacache.h>
  32. #include <linux/nsproxy.h>
  33. #include <linux/capability.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cgroup.h>
  36. #include <linux/security.h>
  37. #include <linux/hugetlb.h>
  38. #include <linux/seccomp.h>
  39. #include <linux/swap.h>
  40. #include <linux/syscalls.h>
  41. #include <linux/jiffies.h>
  42. #include <linux/futex.h>
  43. #include <linux/compat.h>
  44. #include <linux/kthread.h>
  45. #include <linux/task_io_accounting_ops.h>
  46. #include <linux/rcupdate.h>
  47. #include <linux/ptrace.h>
  48. #include <linux/mount.h>
  49. #include <linux/audit.h>
  50. #include <linux/memcontrol.h>
  51. #include <linux/ftrace.h>
  52. #include <linux/proc_fs.h>
  53. #include <linux/profile.h>
  54. #include <linux/rmap.h>
  55. #include <linux/ksm.h>
  56. #include <linux/acct.h>
  57. #include <linux/tsacct_kern.h>
  58. #include <linux/cn_proc.h>
  59. #include <linux/freezer.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/taskstats_kern.h>
  62. #include <linux/random.h>
  63. #include <linux/tty.h>
  64. #include <linux/blkdev.h>
  65. #include <linux/fs_struct.h>
  66. #include <linux/magic.h>
  67. #include <linux/perf_event.h>
  68. #include <linux/posix-timers.h>
  69. #include <linux/user-return-notifier.h>
  70. #include <linux/oom.h>
  71. #include <linux/khugepaged.h>
  72. #include <linux/signalfd.h>
  73. #include <linux/uprobes.h>
  74. #include <linux/aio.h>
  75. #include <linux/compiler.h>
  76. #ifdef CONFIG_MTPROF
  77. #include "mt_sched_mon.h"
  78. #include "mt_cputime.h"
  79. #endif
  80. #include <asm/pgtable.h>
  81. #include <asm/pgalloc.h>
  82. #include <asm/uaccess.h>
  83. #include <asm/mmu_context.h>
  84. #include <asm/cacheflush.h>
  85. #include <asm/tlbflush.h>
  86. #include <trace/events/sched.h>
  87. #define CREATE_TRACE_POINTS
  88. #include <trace/events/task.h>
  89. #ifdef CONFIG_MTK_SCHED_CMP_TGS
  90. #include <linux/sched.h>
  91. #endif
  92. #define WARN_FORK_DUR 1000000000
  93. /*
  94. * Protected counters by write_lock_irq(&tasklist_lock)
  95. */
  96. unsigned long total_forks; /* Handle normal Linux uptimes. */
  97. int nr_threads; /* The idle threads do not count.. */
  98. int max_threads; /* tunable limit on nr_threads */
  99. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  100. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  101. #ifdef CONFIG_PROVE_RCU
  102. int lockdep_tasklist_lock_is_held(void)
  103. {
  104. return lockdep_is_held(&tasklist_lock);
  105. }
  106. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  107. #endif /* #ifdef CONFIG_PROVE_RCU */
  108. int nr_processes(void)
  109. {
  110. int cpu;
  111. int total = 0;
  112. for_each_possible_cpu(cpu)
  113. total += per_cpu(process_counts, cpu);
  114. return total;
  115. }
  116. void __weak arch_release_task_struct(struct task_struct *tsk)
  117. {
  118. }
  119. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  120. static struct kmem_cache *task_struct_cachep;
  121. static inline struct task_struct *alloc_task_struct_node(int node)
  122. {
  123. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  124. }
  125. static inline void free_task_struct(struct task_struct *tsk)
  126. {
  127. kmem_cache_free(task_struct_cachep, tsk);
  128. }
  129. #endif
  130. void __weak arch_release_thread_info(struct thread_info *ti)
  131. {
  132. }
  133. #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
  134. /*
  135. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  136. * kmemcache based allocator.
  137. */
  138. # if THREAD_SIZE >= PAGE_SIZE
  139. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  140. int node)
  141. {
  142. struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
  143. THREAD_SIZE_ORDER);
  144. return page ? page_address(page) : NULL;
  145. }
  146. static inline void free_thread_info(struct thread_info *ti)
  147. {
  148. free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  149. }
  150. # else
  151. static struct kmem_cache *thread_info_cache;
  152. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  153. int node)
  154. {
  155. return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
  156. }
  157. static void free_thread_info(struct thread_info *ti)
  158. {
  159. kmem_cache_free(thread_info_cache, ti);
  160. }
  161. void thread_info_cache_init(void)
  162. {
  163. thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
  164. THREAD_SIZE, 0, NULL);
  165. BUG_ON(thread_info_cache == NULL);
  166. }
  167. # endif
  168. #endif
  169. #ifdef CONFIG_MTK_SCHED_CMP_TGS
  170. /*
  171. current does not support NUMA, reserve node parameter for future usage.
  172. */
  173. static inline struct thread_group_info_t *alloc_thread_group_info_node(struct task_struct *tsk, int node)
  174. {
  175. int num_cluster;
  176. num_cluster = arch_get_nr_clusters();
  177. return kmalloc(sizeof(struct thread_group_info_t) * num_cluster, GFP_KERNEL);
  178. }
  179. static inline void free_thread_group_info(struct thread_group_info_t *tg)
  180. {
  181. kfree(tg);
  182. }
  183. #endif
  184. /* SLAB cache for signal_struct structures (tsk->signal) */
  185. static struct kmem_cache *signal_cachep;
  186. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  187. struct kmem_cache *sighand_cachep;
  188. /* SLAB cache for files_struct structures (tsk->files) */
  189. struct kmem_cache *files_cachep;
  190. /* SLAB cache for fs_struct structures (tsk->fs) */
  191. struct kmem_cache *fs_cachep;
  192. /* SLAB cache for vm_area_struct structures */
  193. struct kmem_cache *vm_area_cachep;
  194. /* SLAB cache for mm_struct structures (tsk->mm) */
  195. static struct kmem_cache *mm_cachep;
  196. /* Notifier list called when a task struct is freed */
  197. static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
  198. static void account_kernel_stack(struct thread_info *ti, int account)
  199. {
  200. struct zone *zone = page_zone(virt_to_page(ti));
  201. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  202. }
  203. void free_task(struct task_struct *tsk)
  204. {
  205. account_kernel_stack(tsk->stack, -1);
  206. arch_release_thread_info(tsk->stack);
  207. free_thread_info(tsk->stack);
  208. rt_mutex_debug_task_free(tsk);
  209. ftrace_graph_exit_task(tsk);
  210. put_seccomp_filter(tsk);
  211. arch_release_task_struct(tsk);
  212. #ifdef CONFIG_MTK_SCHED_CMP_TGS
  213. free_thread_group_info(tsk->thread_group_info);
  214. #endif
  215. free_task_struct(tsk);
  216. }
  217. EXPORT_SYMBOL(free_task);
  218. static inline void free_signal_struct(struct signal_struct *sig)
  219. {
  220. taskstats_tgid_free(sig);
  221. sched_autogroup_exit(sig);
  222. kmem_cache_free(signal_cachep, sig);
  223. }
  224. static inline void put_signal_struct(struct signal_struct *sig)
  225. {
  226. if (atomic_dec_and_test(&sig->sigcnt))
  227. free_signal_struct(sig);
  228. }
  229. int task_free_register(struct notifier_block *n)
  230. {
  231. return atomic_notifier_chain_register(&task_free_notifier, n);
  232. }
  233. EXPORT_SYMBOL(task_free_register);
  234. int task_free_unregister(struct notifier_block *n)
  235. {
  236. return atomic_notifier_chain_unregister(&task_free_notifier, n);
  237. }
  238. EXPORT_SYMBOL(task_free_unregister);
  239. void __put_task_struct(struct task_struct *tsk)
  240. {
  241. WARN_ON(!tsk->exit_state);
  242. WARN_ON(atomic_read(&tsk->usage));
  243. WARN_ON(tsk == current);
  244. task_numa_free(tsk);
  245. security_task_free(tsk);
  246. exit_creds(tsk);
  247. delayacct_tsk_free(tsk);
  248. put_signal_struct(tsk->signal);
  249. atomic_notifier_call_chain(&task_free_notifier, 0, tsk);
  250. if (!profile_handoff_task(tsk))
  251. free_task(tsk);
  252. }
  253. EXPORT_SYMBOL_GPL(__put_task_struct);
  254. void __init __weak arch_task_cache_init(void) { }
  255. void __init fork_init(unsigned long mempages)
  256. {
  257. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  258. #ifndef ARCH_MIN_TASKALIGN
  259. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  260. #endif
  261. /* create a slab on which task_structs can be allocated */
  262. task_struct_cachep =
  263. kmem_cache_create("task_struct", sizeof(struct task_struct),
  264. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  265. #endif
  266. /* do the arch specific task caches init */
  267. arch_task_cache_init();
  268. /*
  269. * The default maximum number of threads is set to a safe
  270. * value: the thread structures can take up at most half
  271. * of memory.
  272. */
  273. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  274. /*
  275. * we need to allow at least 20 threads to boot a system
  276. */
  277. if (max_threads < 20)
  278. max_threads = 20;
  279. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  280. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  281. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  282. init_task.signal->rlim[RLIMIT_NPROC];
  283. }
  284. int __weak arch_dup_task_struct(struct task_struct *dst,
  285. struct task_struct *src)
  286. {
  287. *dst = *src;
  288. return 0;
  289. }
  290. void set_task_stack_end_magic(struct task_struct *tsk)
  291. {
  292. unsigned long *stackend;
  293. stackend = end_of_stack(tsk);
  294. *stackend = STACK_END_MAGIC; /* for overflow detection */
  295. }
  296. static struct task_struct *dup_task_struct(struct task_struct *orig)
  297. {
  298. struct task_struct *tsk;
  299. struct thread_info *ti;
  300. int node = tsk_fork_get_node(orig);
  301. int err;
  302. #ifdef CONFIG_MTK_SCHED_CMP_TGS
  303. struct thread_group_info_t *tg;
  304. #endif
  305. tsk = alloc_task_struct_node(node);
  306. if (!tsk) {
  307. pr_err("[%d:%s] fork fail at alloc_tsk_node, please check kmem_cache_alloc_node()\n",
  308. current->pid, current->comm);
  309. return NULL;
  310. }
  311. ti = alloc_thread_info_node(tsk, node);
  312. if (!ti) {
  313. pr_err("[%d:%s] fork fail at alloc_t_info_node, please check alloc_pages_node()\n",
  314. current->pid, current->comm);
  315. goto free_tsk;
  316. }
  317. err = arch_dup_task_struct(tsk, orig);
  318. if (err) {
  319. pr_err("[%d:%s] fork fail at arch_dup_task_struct, err:%d\n",
  320. current->pid, current->comm, err);
  321. goto free_ti;
  322. }
  323. tsk->stack = ti;
  324. #ifdef CONFIG_MTK_SCHED_CMP_TGS
  325. tg = alloc_thread_group_info_node(tsk, node);
  326. if (!tg) {
  327. pr_err("[%d:%s] fork fail at alloc_thread_group_info_node, please check kmalloc\n",
  328. current->pid, current->comm);
  329. goto free_tg;
  330. }
  331. tsk->thread_group_info = tg;
  332. #endif
  333. #ifdef CONFIG_SECCOMP
  334. /*
  335. * We must handle setting up seccomp filters once we're under
  336. * the sighand lock in case orig has changed between now and
  337. * then. Until then, filter must be NULL to avoid messing up
  338. * the usage counts on the error path calling free_task.
  339. */
  340. tsk->seccomp.filter = NULL;
  341. #endif
  342. setup_thread_stack(tsk, orig);
  343. clear_user_return_notifier(tsk);
  344. clear_tsk_need_resched(tsk);
  345. set_task_stack_end_magic(tsk);
  346. #ifdef CONFIG_CC_STACKPROTECTOR
  347. tsk->stack_canary = get_random_int();
  348. #endif
  349. /*
  350. * One for us, one for whoever does the "release_task()" (usually
  351. * parent)
  352. */
  353. atomic_set(&tsk->usage, 2);
  354. #ifdef CONFIG_BLK_DEV_IO_TRACE
  355. tsk->btrace_seq = 0;
  356. #endif
  357. tsk->splice_pipe = NULL;
  358. tsk->task_frag.page = NULL;
  359. account_kernel_stack(ti, 1);
  360. return tsk;
  361. #ifdef CONFIG_MTK_SCHED_CMP_TGS
  362. free_tg:
  363. free_thread_group_info(tg);
  364. #endif
  365. free_ti:
  366. free_thread_info(ti);
  367. free_tsk:
  368. free_task_struct(tsk);
  369. return NULL;
  370. }
  371. #ifdef CONFIG_MMU
  372. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  373. {
  374. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  375. struct rb_node **rb_link, *rb_parent;
  376. int retval;
  377. unsigned long charge;
  378. uprobe_start_dup_mmap();
  379. down_write(&oldmm->mmap_sem);
  380. flush_cache_dup_mm(oldmm);
  381. uprobe_dup_mmap(oldmm, mm);
  382. /*
  383. * Not linked in yet - no deadlock potential:
  384. */
  385. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  386. mm->total_vm = oldmm->total_vm;
  387. mm->shared_vm = oldmm->shared_vm;
  388. mm->exec_vm = oldmm->exec_vm;
  389. mm->stack_vm = oldmm->stack_vm;
  390. rb_link = &mm->mm_rb.rb_node;
  391. rb_parent = NULL;
  392. pprev = &mm->mmap;
  393. retval = ksm_fork(mm, oldmm);
  394. if (retval)
  395. goto out;
  396. retval = khugepaged_fork(mm, oldmm);
  397. if (retval)
  398. goto out;
  399. prev = NULL;
  400. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  401. struct file *file;
  402. if (mpnt->vm_flags & VM_DONTCOPY) {
  403. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  404. -vma_pages(mpnt));
  405. continue;
  406. }
  407. charge = 0;
  408. if (mpnt->vm_flags & VM_ACCOUNT) {
  409. unsigned long len = vma_pages(mpnt);
  410. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  411. goto fail_nomem;
  412. charge = len;
  413. }
  414. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  415. if (!tmp)
  416. goto fail_nomem;
  417. *tmp = *mpnt;
  418. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  419. retval = vma_dup_policy(mpnt, tmp);
  420. if (retval)
  421. goto fail_nomem_policy;
  422. tmp->vm_mm = mm;
  423. if (anon_vma_fork(tmp, mpnt))
  424. goto fail_nomem_anon_vma_fork;
  425. tmp->vm_flags &= ~VM_LOCKED;
  426. tmp->vm_next = tmp->vm_prev = NULL;
  427. file = tmp->vm_file;
  428. if (file) {
  429. struct inode *inode = file_inode(file);
  430. struct address_space *mapping = file->f_mapping;
  431. get_file(file);
  432. if (tmp->vm_flags & VM_DENYWRITE)
  433. atomic_dec(&inode->i_writecount);
  434. mutex_lock(&mapping->i_mmap_mutex);
  435. if (tmp->vm_flags & VM_SHARED)
  436. atomic_inc(&mapping->i_mmap_writable);
  437. flush_dcache_mmap_lock(mapping);
  438. /* insert tmp into the share list, just after mpnt */
  439. if (unlikely(tmp->vm_flags & VM_NONLINEAR))
  440. vma_nonlinear_insert(tmp,
  441. &mapping->i_mmap_nonlinear);
  442. else
  443. vma_interval_tree_insert_after(tmp, mpnt,
  444. &mapping->i_mmap);
  445. flush_dcache_mmap_unlock(mapping);
  446. mutex_unlock(&mapping->i_mmap_mutex);
  447. }
  448. /*
  449. * Clear hugetlb-related page reserves for children. This only
  450. * affects MAP_PRIVATE mappings. Faults generated by the child
  451. * are not guaranteed to succeed, even if read-only
  452. */
  453. if (is_vm_hugetlb_page(tmp))
  454. reset_vma_resv_huge_pages(tmp);
  455. /*
  456. * Link in the new vma and copy the page table entries.
  457. */
  458. *pprev = tmp;
  459. pprev = &tmp->vm_next;
  460. tmp->vm_prev = prev;
  461. prev = tmp;
  462. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  463. rb_link = &tmp->vm_rb.rb_right;
  464. rb_parent = &tmp->vm_rb;
  465. mm->map_count++;
  466. retval = copy_page_range(mm, oldmm, mpnt);
  467. if (tmp->vm_ops && tmp->vm_ops->open)
  468. tmp->vm_ops->open(tmp);
  469. if (retval)
  470. goto out;
  471. }
  472. /* a new mm has just been created */
  473. arch_dup_mmap(oldmm, mm);
  474. retval = 0;
  475. out:
  476. up_write(&mm->mmap_sem);
  477. flush_tlb_mm(oldmm);
  478. up_write(&oldmm->mmap_sem);
  479. uprobe_end_dup_mmap();
  480. return retval;
  481. fail_nomem_anon_vma_fork:
  482. mpol_put(vma_policy(tmp));
  483. fail_nomem_policy:
  484. kmem_cache_free(vm_area_cachep, tmp);
  485. fail_nomem:
  486. retval = -ENOMEM;
  487. vm_unacct_memory(charge);
  488. goto out;
  489. }
  490. static inline int mm_alloc_pgd(struct mm_struct *mm)
  491. {
  492. mm->pgd = pgd_alloc(mm);
  493. if (unlikely(!mm->pgd))
  494. return -ENOMEM;
  495. return 0;
  496. }
  497. static inline void mm_free_pgd(struct mm_struct *mm)
  498. {
  499. pgd_free(mm, mm->pgd);
  500. }
  501. #else
  502. #define dup_mmap(mm, oldmm) (0)
  503. #define mm_alloc_pgd(mm) (0)
  504. #define mm_free_pgd(mm)
  505. #endif /* CONFIG_MMU */
  506. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  507. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  508. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  509. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  510. static int __init coredump_filter_setup(char *s)
  511. {
  512. default_dump_filter =
  513. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  514. MMF_DUMP_FILTER_MASK;
  515. return 1;
  516. }
  517. __setup("coredump_filter=", coredump_filter_setup);
  518. #include <linux/init_task.h>
  519. static void mm_init_aio(struct mm_struct *mm)
  520. {
  521. #ifdef CONFIG_AIO
  522. spin_lock_init(&mm->ioctx_lock);
  523. mm->ioctx_table = NULL;
  524. #endif
  525. }
  526. static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  527. {
  528. #ifdef CONFIG_MEMCG
  529. mm->owner = p;
  530. #endif
  531. }
  532. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  533. {
  534. mm->mmap = NULL;
  535. mm->mm_rb = RB_ROOT;
  536. mm->vmacache_seqnum = 0;
  537. atomic_set(&mm->mm_users, 1);
  538. atomic_set(&mm->mm_count, 1);
  539. init_rwsem(&mm->mmap_sem);
  540. INIT_LIST_HEAD(&mm->mmlist);
  541. mm->core_state = NULL;
  542. atomic_long_set(&mm->nr_ptes, 0);
  543. mm->map_count = 0;
  544. mm->locked_vm = 0;
  545. mm->pinned_vm = 0;
  546. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  547. spin_lock_init(&mm->page_table_lock);
  548. mm_init_cpumask(mm);
  549. mm_init_aio(mm);
  550. mm_init_owner(mm, p);
  551. mmu_notifier_mm_init(mm);
  552. clear_tlb_flush_pending(mm);
  553. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  554. mm->pmd_huge_pte = NULL;
  555. #endif
  556. if (current->mm) {
  557. mm->flags = current->mm->flags & MMF_INIT_MASK;
  558. mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
  559. } else {
  560. mm->flags = default_dump_filter;
  561. mm->def_flags = 0;
  562. }
  563. if (mm_alloc_pgd(mm))
  564. goto fail_nopgd;
  565. if (init_new_context(p, mm))
  566. goto fail_nocontext;
  567. return mm;
  568. fail_nocontext:
  569. mm_free_pgd(mm);
  570. fail_nopgd:
  571. free_mm(mm);
  572. return NULL;
  573. }
  574. static void check_mm(struct mm_struct *mm)
  575. {
  576. int i;
  577. for (i = 0; i < NR_MM_COUNTERS; i++) {
  578. long x = atomic_long_read(&mm->rss_stat.count[i]);
  579. if (unlikely(x))
  580. printk(KERN_ALERT "BUG: Bad rss-counter state "
  581. "mm:%p idx:%d val:%ld\n", mm, i, x);
  582. }
  583. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  584. VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
  585. #endif
  586. }
  587. /*
  588. * Allocate and initialize an mm_struct.
  589. */
  590. struct mm_struct *mm_alloc(void)
  591. {
  592. struct mm_struct *mm;
  593. mm = allocate_mm();
  594. if (!mm)
  595. return NULL;
  596. memset(mm, 0, sizeof(*mm));
  597. return mm_init(mm, current);
  598. }
  599. /*
  600. * Called when the last reference to the mm
  601. * is dropped: either by a lazy thread or by
  602. * mmput. Free the page directory and the mm.
  603. */
  604. void __mmdrop(struct mm_struct *mm)
  605. {
  606. BUG_ON(mm == &init_mm);
  607. mm_free_pgd(mm);
  608. destroy_context(mm);
  609. mmu_notifier_mm_destroy(mm);
  610. check_mm(mm);
  611. free_mm(mm);
  612. }
  613. EXPORT_SYMBOL_GPL(__mmdrop);
  614. /*
  615. * Decrement the use count and release all resources for an mm.
  616. */
  617. void mmput(struct mm_struct *mm)
  618. {
  619. might_sleep();
  620. if (atomic_dec_and_test(&mm->mm_users)) {
  621. uprobe_clear_state(mm);
  622. exit_aio(mm);
  623. ksm_exit(mm);
  624. khugepaged_exit(mm); /* must run before exit_mmap */
  625. exit_mmap(mm);
  626. set_mm_exe_file(mm, NULL);
  627. if (!list_empty(&mm->mmlist)) {
  628. spin_lock(&mmlist_lock);
  629. list_del(&mm->mmlist);
  630. spin_unlock(&mmlist_lock);
  631. }
  632. if (mm->binfmt)
  633. module_put(mm->binfmt->module);
  634. mmdrop(mm);
  635. }
  636. }
  637. EXPORT_SYMBOL_GPL(mmput);
  638. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  639. {
  640. if (new_exe_file)
  641. get_file(new_exe_file);
  642. if (mm->exe_file)
  643. fput(mm->exe_file);
  644. mm->exe_file = new_exe_file;
  645. }
  646. struct file *get_mm_exe_file(struct mm_struct *mm)
  647. {
  648. struct file *exe_file;
  649. /* We need mmap_sem to protect against races with removal of exe_file */
  650. down_read(&mm->mmap_sem);
  651. exe_file = mm->exe_file;
  652. if (exe_file)
  653. get_file(exe_file);
  654. up_read(&mm->mmap_sem);
  655. return exe_file;
  656. }
  657. static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
  658. {
  659. /* It's safe to write the exe_file pointer without exe_file_lock because
  660. * this is called during fork when the task is not yet in /proc */
  661. newmm->exe_file = get_mm_exe_file(oldmm);
  662. }
  663. /**
  664. * get_task_mm - acquire a reference to the task's mm
  665. *
  666. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  667. * this kernel workthread has transiently adopted a user mm with use_mm,
  668. * to do its AIO) is not set and if so returns a reference to it, after
  669. * bumping up the use count. User must release the mm via mmput()
  670. * after use. Typically used by /proc and ptrace.
  671. */
  672. struct mm_struct *get_task_mm(struct task_struct *task)
  673. {
  674. struct mm_struct *mm;
  675. task_lock(task);
  676. mm = task->mm;
  677. if (mm) {
  678. if (task->flags & PF_KTHREAD)
  679. mm = NULL;
  680. else
  681. atomic_inc(&mm->mm_users);
  682. }
  683. task_unlock(task);
  684. return mm;
  685. }
  686. EXPORT_SYMBOL_GPL(get_task_mm);
  687. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  688. {
  689. struct mm_struct *mm;
  690. int err;
  691. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  692. if (err)
  693. return ERR_PTR(err);
  694. mm = get_task_mm(task);
  695. if (mm && mm != current->mm &&
  696. !ptrace_may_access(task, mode) &&
  697. !capable(CAP_SYS_RESOURCE)) {
  698. mmput(mm);
  699. mm = ERR_PTR(-EACCES);
  700. }
  701. mutex_unlock(&task->signal->cred_guard_mutex);
  702. return mm;
  703. }
  704. static void complete_vfork_done(struct task_struct *tsk)
  705. {
  706. struct completion *vfork;
  707. task_lock(tsk);
  708. vfork = tsk->vfork_done;
  709. if (likely(vfork)) {
  710. tsk->vfork_done = NULL;
  711. complete(vfork);
  712. }
  713. task_unlock(tsk);
  714. }
  715. static int wait_for_vfork_done(struct task_struct *child,
  716. struct completion *vfork)
  717. {
  718. int killed;
  719. freezer_do_not_count();
  720. killed = wait_for_completion_killable(vfork);
  721. freezer_count();
  722. if (killed) {
  723. task_lock(child);
  724. child->vfork_done = NULL;
  725. task_unlock(child);
  726. }
  727. put_task_struct(child);
  728. return killed;
  729. }
  730. /* Please note the differences between mmput and mm_release.
  731. * mmput is called whenever we stop holding onto a mm_struct,
  732. * error success whatever.
  733. *
  734. * mm_release is called after a mm_struct has been removed
  735. * from the current process.
  736. *
  737. * This difference is important for error handling, when we
  738. * only half set up a mm_struct for a new process and need to restore
  739. * the old one. Because we mmput the new mm_struct before
  740. * restoring the old one. . .
  741. * Eric Biederman 10 January 1998
  742. */
  743. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  744. {
  745. /* Get rid of any futexes when releasing the mm */
  746. #ifdef CONFIG_FUTEX
  747. if (unlikely(tsk->robust_list)) {
  748. exit_robust_list(tsk);
  749. tsk->robust_list = NULL;
  750. }
  751. #ifdef CONFIG_COMPAT
  752. if (unlikely(tsk->compat_robust_list)) {
  753. compat_exit_robust_list(tsk);
  754. tsk->compat_robust_list = NULL;
  755. }
  756. #endif
  757. if (unlikely(!list_empty(&tsk->pi_state_list)))
  758. exit_pi_state_list(tsk);
  759. #endif
  760. uprobe_free_utask(tsk);
  761. /* Get rid of any cached register state */
  762. deactivate_mm(tsk, mm);
  763. /*
  764. * If we're exiting normally, clear a user-space tid field if
  765. * requested. We leave this alone when dying by signal, to leave
  766. * the value intact in a core dump, and to save the unnecessary
  767. * trouble, say, a killed vfork parent shouldn't touch this mm.
  768. * Userland only wants this done for a sys_exit.
  769. */
  770. if (tsk->clear_child_tid) {
  771. if (!(tsk->flags & PF_SIGNALED) &&
  772. atomic_read(&mm->mm_users) > 1) {
  773. /*
  774. * We don't check the error code - if userspace has
  775. * not set up a proper pointer then tough luck.
  776. */
  777. put_user(0, tsk->clear_child_tid);
  778. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  779. 1, NULL, NULL, 0);
  780. }
  781. tsk->clear_child_tid = NULL;
  782. }
  783. /*
  784. * All done, finally we can wake up parent and return this mm to him.
  785. * Also kthread_stop() uses this completion for synchronization.
  786. */
  787. if (tsk->vfork_done)
  788. complete_vfork_done(tsk);
  789. }
  790. /*
  791. * Allocate a new mm structure and copy contents from the
  792. * mm structure of the passed in task structure.
  793. */
  794. static struct mm_struct *dup_mm(struct task_struct *tsk)
  795. {
  796. struct mm_struct *mm, *oldmm = current->mm;
  797. int err;
  798. mm = allocate_mm();
  799. if (!mm)
  800. goto fail_nomem;
  801. memcpy(mm, oldmm, sizeof(*mm));
  802. if (!mm_init(mm, tsk))
  803. goto fail_nomem;
  804. dup_mm_exe_file(oldmm, mm);
  805. err = dup_mmap(mm, oldmm);
  806. if (err)
  807. goto free_pt;
  808. mm->hiwater_rss = get_mm_rss(mm);
  809. mm->hiwater_vm = mm->total_vm;
  810. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  811. goto free_pt;
  812. return mm;
  813. free_pt:
  814. /* don't put binfmt in mmput, we haven't got module yet */
  815. mm->binfmt = NULL;
  816. mmput(mm);
  817. fail_nomem:
  818. return NULL;
  819. }
  820. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  821. {
  822. struct mm_struct *mm, *oldmm;
  823. int retval;
  824. tsk->min_flt = tsk->maj_flt = 0;
  825. tsk->fm_flt = 0;
  826. #ifdef CONFIG_SWAP
  827. tsk->swap_in = tsk->swap_out = 0;
  828. #endif
  829. tsk->nvcsw = tsk->nivcsw = 0;
  830. #ifdef CONFIG_DETECT_HUNG_TASK
  831. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  832. #endif
  833. tsk->mm = NULL;
  834. tsk->active_mm = NULL;
  835. /*
  836. * Are we cloning a kernel thread?
  837. *
  838. * We need to steal a active VM for that..
  839. */
  840. oldmm = current->mm;
  841. if (!oldmm)
  842. return 0;
  843. /* initialize the new vmacache entries */
  844. vmacache_flush(tsk);
  845. if (clone_flags & CLONE_VM) {
  846. atomic_inc(&oldmm->mm_users);
  847. mm = oldmm;
  848. goto good_mm;
  849. }
  850. retval = -ENOMEM;
  851. mm = dup_mm(tsk);
  852. if (!mm)
  853. goto fail_nomem;
  854. good_mm:
  855. tsk->mm = mm;
  856. tsk->active_mm = mm;
  857. return 0;
  858. fail_nomem:
  859. return retval;
  860. }
  861. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  862. {
  863. struct fs_struct *fs = current->fs;
  864. if (clone_flags & CLONE_FS) {
  865. /* tsk->fs is already what we want */
  866. spin_lock(&fs->lock);
  867. if (fs->in_exec) {
  868. spin_unlock(&fs->lock);
  869. return -EAGAIN;
  870. }
  871. fs->users++;
  872. spin_unlock(&fs->lock);
  873. return 0;
  874. }
  875. tsk->fs = copy_fs_struct(fs);
  876. if (!tsk->fs)
  877. return -ENOMEM;
  878. return 0;
  879. }
  880. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  881. {
  882. struct files_struct *oldf, *newf;
  883. int error = 0;
  884. /*
  885. * A background process may not have any files ...
  886. */
  887. oldf = current->files;
  888. if (!oldf)
  889. goto out;
  890. if (clone_flags & CLONE_FILES) {
  891. atomic_inc(&oldf->count);
  892. goto out;
  893. }
  894. newf = dup_fd(oldf, &error);
  895. if (!newf)
  896. goto out;
  897. tsk->files = newf;
  898. error = 0;
  899. out:
  900. return error;
  901. }
  902. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  903. {
  904. #ifdef CONFIG_BLOCK
  905. struct io_context *ioc = current->io_context;
  906. struct io_context *new_ioc;
  907. if (!ioc)
  908. return 0;
  909. /*
  910. * Share io context with parent, if CLONE_IO is set
  911. */
  912. if (clone_flags & CLONE_IO) {
  913. ioc_task_link(ioc);
  914. tsk->io_context = ioc;
  915. } else if (ioprio_valid(ioc->ioprio)) {
  916. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  917. if (unlikely(!new_ioc))
  918. return -ENOMEM;
  919. new_ioc->ioprio = ioc->ioprio;
  920. put_io_context(new_ioc);
  921. }
  922. #endif
  923. return 0;
  924. }
  925. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  926. {
  927. struct sighand_struct *sig;
  928. if (clone_flags & CLONE_SIGHAND) {
  929. atomic_inc(&current->sighand->count);
  930. return 0;
  931. }
  932. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  933. rcu_assign_pointer(tsk->sighand, sig);
  934. if (!sig)
  935. return -ENOMEM;
  936. atomic_set(&sig->count, 1);
  937. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  938. return 0;
  939. }
  940. void __cleanup_sighand(struct sighand_struct *sighand)
  941. {
  942. if (atomic_dec_and_test(&sighand->count)) {
  943. signalfd_cleanup(sighand);
  944. kmem_cache_free(sighand_cachep, sighand);
  945. }
  946. }
  947. /*
  948. * Initialize POSIX timer handling for a thread group.
  949. */
  950. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  951. {
  952. unsigned long cpu_limit;
  953. /* Thread group counters. */
  954. thread_group_cputime_init(sig);
  955. cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  956. if (cpu_limit != RLIM_INFINITY) {
  957. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  958. sig->cputimer.running = 1;
  959. }
  960. /* The timer lists. */
  961. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  962. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  963. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  964. }
  965. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  966. {
  967. struct signal_struct *sig;
  968. if (clone_flags & CLONE_THREAD)
  969. return 0;
  970. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  971. tsk->signal = sig;
  972. if (!sig)
  973. return -ENOMEM;
  974. sig->nr_threads = 1;
  975. atomic_set(&sig->live, 1);
  976. atomic_set(&sig->sigcnt, 1);
  977. /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
  978. sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
  979. tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
  980. init_waitqueue_head(&sig->wait_chldexit);
  981. sig->curr_target = tsk;
  982. init_sigpending(&sig->shared_pending);
  983. INIT_LIST_HEAD(&sig->posix_timers);
  984. seqlock_init(&sig->stats_lock);
  985. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  986. sig->real_timer.function = it_real_fn;
  987. task_lock(current->group_leader);
  988. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  989. task_unlock(current->group_leader);
  990. posix_cpu_timers_init_group(sig);
  991. tty_audit_fork(sig);
  992. sched_autogroup_fork(sig);
  993. #ifdef CONFIG_CGROUPS
  994. init_rwsem(&sig->group_rwsem);
  995. #endif
  996. sig->oom_score_adj = current->signal->oom_score_adj;
  997. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  998. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  999. current->signal->is_child_subreaper;
  1000. mutex_init(&sig->cred_guard_mutex);
  1001. return 0;
  1002. }
  1003. static void copy_seccomp(struct task_struct *p)
  1004. {
  1005. #ifdef CONFIG_SECCOMP
  1006. /*
  1007. * Must be called with sighand->lock held, which is common to
  1008. * all threads in the group. Holding cred_guard_mutex is not
  1009. * needed because this new task is not yet running and cannot
  1010. * be racing exec.
  1011. */
  1012. assert_spin_locked(&current->sighand->siglock);
  1013. /* Ref-count the new filter user, and assign it. */
  1014. get_seccomp_filter(current);
  1015. p->seccomp = current->seccomp;
  1016. /*
  1017. * Explicitly enable no_new_privs here in case it got set
  1018. * between the task_struct being duplicated and holding the
  1019. * sighand lock. The seccomp state and nnp must be in sync.
  1020. */
  1021. if (task_no_new_privs(current))
  1022. task_set_no_new_privs(p);
  1023. /*
  1024. * If the parent gained a seccomp mode after copying thread
  1025. * flags and between before we held the sighand lock, we have
  1026. * to manually enable the seccomp thread flag here.
  1027. */
  1028. if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
  1029. set_tsk_thread_flag(p, TIF_SECCOMP);
  1030. #endif
  1031. }
  1032. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  1033. {
  1034. current->clear_child_tid = tidptr;
  1035. return task_pid_vnr(current);
  1036. }
  1037. static void rt_mutex_init_task(struct task_struct *p)
  1038. {
  1039. raw_spin_lock_init(&p->pi_lock);
  1040. #ifdef CONFIG_RT_MUTEXES
  1041. p->pi_waiters = RB_ROOT;
  1042. p->pi_waiters_leftmost = NULL;
  1043. p->pi_blocked_on = NULL;
  1044. #endif
  1045. }
  1046. /*
  1047. * Initialize POSIX timer handling for a single task.
  1048. */
  1049. static void posix_cpu_timers_init(struct task_struct *tsk)
  1050. {
  1051. tsk->cputime_expires.prof_exp = 0;
  1052. tsk->cputime_expires.virt_exp = 0;
  1053. tsk->cputime_expires.sched_exp = 0;
  1054. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  1055. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  1056. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  1057. }
  1058. static inline void
  1059. init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
  1060. {
  1061. task->pids[type].pid = pid;
  1062. }
  1063. #ifdef CONFIG_MTK_SCHED_CMP_TGS
  1064. static void mt_init_thread_group(struct task_struct *p)
  1065. {
  1066. int i, num_cluster;
  1067. raw_spin_lock_init(&p->thread_group_info_lock);
  1068. num_cluster = arch_get_nr_clusters();
  1069. for (i = 0; i < num_cluster; i++) {
  1070. p->thread_group_info[i].cfs_nr_running = 0;
  1071. p->thread_group_info[i].nr_running = 0;
  1072. p->thread_group_info[i].loadwop_avg_contrib = 0;
  1073. }
  1074. }
  1075. #endif
  1076. /*
  1077. * This creates a new process as a copy of the old one,
  1078. * but does not actually start it yet.
  1079. *
  1080. * It copies the registers, and all the appropriate
  1081. * parts of the process environment (as per the clone
  1082. * flags). The actual kick-off is left to the caller.
  1083. */
  1084. static struct task_struct *copy_process(unsigned long clone_flags,
  1085. unsigned long stack_start,
  1086. unsigned long stack_size,
  1087. int __user *child_tidptr,
  1088. struct pid *pid,
  1089. int trace)
  1090. {
  1091. int retval;
  1092. struct task_struct *p;
  1093. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) {
  1094. pr_err("[%d:%s] fork fail at cpp 1, clone_flags:0x%x\n",
  1095. current->pid, current->comm, (unsigned int)clone_flags);
  1096. return ERR_PTR(-EINVAL);
  1097. }
  1098. if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
  1099. return ERR_PTR(-EINVAL);
  1100. /*
  1101. * Thread groups must share signals as well, and detached threads
  1102. * can only be started up within the thread group.
  1103. */
  1104. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) {
  1105. pr_err("[%d:%s] fork fail at cpp 2, clone_flags:0x%x\n",
  1106. current->pid, current->comm, (unsigned int)clone_flags);
  1107. return ERR_PTR(-EINVAL);
  1108. }
  1109. /*
  1110. * Shared signal handlers imply shared VM. By way of the above,
  1111. * thread groups also imply shared VM. Blocking this case allows
  1112. * for various simplifications in other code.
  1113. */
  1114. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) {
  1115. pr_err("[%d:%s] fork fail at cpp 3, clone_flags:0x%x\n",
  1116. current->pid, current->comm, (unsigned int)clone_flags);
  1117. return ERR_PTR(-EINVAL);
  1118. }
  1119. /*
  1120. * Siblings of global init remain as zombies on exit since they are
  1121. * not reaped by their parent (swapper). To solve this and to avoid
  1122. * multi-rooted process trees, prevent global and container-inits
  1123. * from creating siblings.
  1124. */
  1125. if ((clone_flags & CLONE_PARENT) &&
  1126. current->signal->flags & SIGNAL_UNKILLABLE) {
  1127. pr_err("[%d:%s] fork fail at cpp 4, clone_flags:0x%x\n",
  1128. current->pid, current->comm, (unsigned int)clone_flags);
  1129. return ERR_PTR(-EINVAL);
  1130. }
  1131. /*
  1132. * If the new process will be in a different pid or user namespace
  1133. * do not allow it to share a thread group or signal handlers or
  1134. * parent with the forking task.
  1135. */
  1136. if (clone_flags & CLONE_SIGHAND) {
  1137. if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
  1138. (task_active_pid_ns(current) !=
  1139. current->nsproxy->pid_ns_for_children))
  1140. return ERR_PTR(-EINVAL);
  1141. }
  1142. retval = security_task_create(clone_flags);
  1143. if (retval)
  1144. goto fork_out;
  1145. retval = -ENOMEM;
  1146. p = dup_task_struct(current);
  1147. if (!p) {
  1148. pr_err("[%d:%s] fork fail at dup_task_struct, p=%p\n",
  1149. current->pid, current->comm, p);
  1150. goto fork_out;
  1151. }
  1152. ftrace_graph_init_task(p);
  1153. rt_mutex_init_task(p);
  1154. #ifdef CONFIG_PROVE_LOCKING
  1155. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1156. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1157. #endif
  1158. retval = -EAGAIN;
  1159. if (atomic_read(&p->real_cred->user->processes) >=
  1160. task_rlimit(p, RLIMIT_NPROC)) {
  1161. if (p->real_cred->user != INIT_USER &&
  1162. !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
  1163. goto bad_fork_free;
  1164. }
  1165. current->flags &= ~PF_NPROC_EXCEEDED;
  1166. retval = copy_creds(p, clone_flags);
  1167. if (retval < 0)
  1168. goto bad_fork_free;
  1169. /*
  1170. * If multiple threads are within copy_process(), then this check
  1171. * triggers too late. This doesn't hurt, the check is only there
  1172. * to stop root fork bombs.
  1173. */
  1174. retval = -EAGAIN;
  1175. if (nr_threads >= max_threads)
  1176. goto bad_fork_cleanup_count;
  1177. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  1178. goto bad_fork_cleanup_count;
  1179. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1180. p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  1181. p->flags |= PF_FORKNOEXEC;
  1182. INIT_LIST_HEAD(&p->children);
  1183. INIT_LIST_HEAD(&p->sibling);
  1184. rcu_copy_process(p);
  1185. p->vfork_done = NULL;
  1186. spin_lock_init(&p->alloc_lock);
  1187. init_sigpending(&p->pending);
  1188. p->utime = p->stime = p->gtime = 0;
  1189. p->utimescaled = p->stimescaled = 0;
  1190. p->cpu_power = 0;
  1191. #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  1192. p->prev_cputime.utime = p->prev_cputime.stime = 0;
  1193. #endif
  1194. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  1195. seqlock_init(&p->vtime_seqlock);
  1196. p->vtime_snap = 0;
  1197. p->vtime_snap_whence = VTIME_SLEEPING;
  1198. #endif
  1199. #if defined(SPLIT_RSS_COUNTING)
  1200. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1201. #endif
  1202. p->default_timer_slack_ns = current->timer_slack_ns;
  1203. task_io_accounting_init(&p->ioac);
  1204. acct_clear_integrals(p);
  1205. posix_cpu_timers_init(p);
  1206. p->start_time = ktime_get_ns();
  1207. p->real_start_time = ktime_get_boot_ns();
  1208. p->io_context = NULL;
  1209. p->audit_context = NULL;
  1210. if (clone_flags & CLONE_THREAD)
  1211. threadgroup_change_begin(current);
  1212. cgroup_fork(p);
  1213. #ifdef CONFIG_NUMA
  1214. p->mempolicy = mpol_dup(p->mempolicy);
  1215. if (IS_ERR(p->mempolicy)) {
  1216. retval = PTR_ERR(p->mempolicy);
  1217. p->mempolicy = NULL;
  1218. goto bad_fork_cleanup_threadgroup_lock;
  1219. }
  1220. #endif
  1221. #ifdef CONFIG_CPUSETS
  1222. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1223. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1224. seqcount_init(&p->mems_allowed_seq);
  1225. #endif
  1226. #ifdef CONFIG_TRACE_IRQFLAGS
  1227. p->irq_events = 0;
  1228. p->hardirqs_enabled = 0;
  1229. p->hardirq_enable_ip = 0;
  1230. p->hardirq_enable_event = 0;
  1231. p->hardirq_disable_ip = _THIS_IP_;
  1232. p->hardirq_disable_event = 0;
  1233. p->softirqs_enabled = 1;
  1234. p->softirq_enable_ip = _THIS_IP_;
  1235. p->softirq_enable_event = 0;
  1236. p->softirq_disable_ip = 0;
  1237. p->softirq_disable_event = 0;
  1238. p->hardirq_context = 0;
  1239. p->softirq_context = 0;
  1240. #endif
  1241. #ifdef CONFIG_LOCKDEP
  1242. p->lockdep_depth = 0; /* no locks held yet */
  1243. p->curr_chain_key = 0;
  1244. p->lockdep_recursion = 0;
  1245. #endif
  1246. #ifdef CONFIG_DEBUG_MUTEXES
  1247. p->blocked_on = NULL; /* not blocked yet */
  1248. #endif
  1249. #ifdef CONFIG_BCACHE
  1250. p->sequential_io = 0;
  1251. p->sequential_io_avg = 0;
  1252. #endif
  1253. /* Perform scheduler related setup. Assign this task to a CPU. */
  1254. retval = sched_fork(clone_flags, p);
  1255. if (retval)
  1256. goto bad_fork_cleanup_policy;
  1257. retval = perf_event_init_task(p);
  1258. if (retval)
  1259. goto bad_fork_cleanup_policy;
  1260. retval = audit_alloc(p);
  1261. if (retval)
  1262. goto bad_fork_cleanup_perf;
  1263. /* copy all the process information */
  1264. shm_init_task(p);
  1265. retval = copy_semundo(clone_flags, p);
  1266. if (retval)
  1267. goto bad_fork_cleanup_audit;
  1268. retval = copy_files(clone_flags, p);
  1269. if (retval)
  1270. goto bad_fork_cleanup_semundo;
  1271. retval = copy_fs(clone_flags, p);
  1272. if (retval)
  1273. goto bad_fork_cleanup_files;
  1274. retval = copy_sighand(clone_flags, p);
  1275. if (retval)
  1276. goto bad_fork_cleanup_fs;
  1277. retval = copy_signal(clone_flags, p);
  1278. if (retval)
  1279. goto bad_fork_cleanup_sighand;
  1280. retval = copy_mm(clone_flags, p);
  1281. if (retval)
  1282. goto bad_fork_cleanup_signal;
  1283. retval = copy_namespaces(clone_flags, p);
  1284. if (retval)
  1285. goto bad_fork_cleanup_mm;
  1286. retval = copy_io(clone_flags, p);
  1287. if (retval)
  1288. goto bad_fork_cleanup_namespaces;
  1289. retval = copy_thread(clone_flags, stack_start, stack_size, p);
  1290. if (retval)
  1291. goto bad_fork_cleanup_io;
  1292. if (pid != &init_struct_pid) {
  1293. retval = -ENOMEM;
  1294. pid = alloc_pid(p->nsproxy->pid_ns_for_children);
  1295. if (!pid)
  1296. goto bad_fork_cleanup_io;
  1297. }
  1298. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1299. /*
  1300. * Clear TID on mm_release()?
  1301. */
  1302. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1303. #ifdef CONFIG_BLOCK
  1304. p->plug = NULL;
  1305. #endif
  1306. #ifdef CONFIG_FUTEX
  1307. p->robust_list = NULL;
  1308. #ifdef CONFIG_COMPAT
  1309. p->compat_robust_list = NULL;
  1310. #endif
  1311. INIT_LIST_HEAD(&p->pi_state_list);
  1312. p->pi_state_cache = NULL;
  1313. #endif
  1314. /*
  1315. * sigaltstack should be cleared when sharing the same VM
  1316. */
  1317. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1318. p->sas_ss_sp = p->sas_ss_size = 0;
  1319. /*
  1320. * Syscall tracing and stepping should be turned off in the
  1321. * child regardless of CLONE_PTRACE.
  1322. */
  1323. user_disable_single_step(p);
  1324. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1325. #ifdef TIF_SYSCALL_EMU
  1326. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1327. #endif
  1328. clear_all_latency_tracing(p);
  1329. /* ok, now we should be set up.. */
  1330. p->pid = pid_nr(pid);
  1331. if (clone_flags & CLONE_THREAD) {
  1332. p->exit_signal = -1;
  1333. p->group_leader = current->group_leader;
  1334. p->tgid = current->tgid;
  1335. } else {
  1336. if (clone_flags & CLONE_PARENT)
  1337. p->exit_signal = current->group_leader->exit_signal;
  1338. else
  1339. p->exit_signal = (clone_flags & CSIGNAL);
  1340. p->group_leader = p;
  1341. p->tgid = p->pid;
  1342. }
  1343. p->nr_dirtied = 0;
  1344. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1345. p->dirty_paused_when = 0;
  1346. p->pdeath_signal = 0;
  1347. INIT_LIST_HEAD(&p->thread_group);
  1348. #ifdef CONFIG_MTK_SCHED_CMP_TGS
  1349. mt_init_thread_group(p);
  1350. #endif
  1351. p->task_works = NULL;
  1352. /*
  1353. * Make it visible to the rest of the system, but dont wake it up yet.
  1354. * Need tasklist lock for parent etc handling!
  1355. */
  1356. write_lock_irq(&tasklist_lock);
  1357. /* CLONE_PARENT re-uses the old parent */
  1358. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1359. p->real_parent = current->real_parent;
  1360. p->parent_exec_id = current->parent_exec_id;
  1361. } else {
  1362. p->real_parent = current;
  1363. p->parent_exec_id = current->self_exec_id;
  1364. }
  1365. spin_lock(&current->sighand->siglock);
  1366. /*
  1367. * Copy seccomp details explicitly here, in case they were changed
  1368. * before holding sighand lock.
  1369. */
  1370. copy_seccomp(p);
  1371. /*
  1372. * Process group and session signals need to be delivered to just the
  1373. * parent before the fork or both the parent and the child after the
  1374. * fork. Restart if a signal comes in before we add the new process to
  1375. * it's process group.
  1376. * A fatal signal pending means that current will exit, so the new
  1377. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1378. */
  1379. recalc_sigpending();
  1380. if (signal_pending(current)) {
  1381. spin_unlock(&current->sighand->siglock);
  1382. write_unlock_irq(&tasklist_lock);
  1383. retval = -ERESTARTNOINTR;
  1384. goto bad_fork_free_pid;
  1385. }
  1386. if (likely(p->pid)) {
  1387. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1388. init_task_pid(p, PIDTYPE_PID, pid);
  1389. if (thread_group_leader(p)) {
  1390. init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1391. init_task_pid(p, PIDTYPE_SID, task_session(current));
  1392. if (is_child_reaper(pid)) {
  1393. ns_of_pid(pid)->child_reaper = p;
  1394. p->signal->flags |= SIGNAL_UNKILLABLE;
  1395. }
  1396. p->signal->leader_pid = pid;
  1397. p->signal->tty = tty_kref_get(current->signal->tty);
  1398. list_add_tail(&p->sibling, &p->real_parent->children);
  1399. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1400. attach_pid(p, PIDTYPE_PGID);
  1401. attach_pid(p, PIDTYPE_SID);
  1402. __this_cpu_inc(process_counts);
  1403. } else {
  1404. current->signal->nr_threads++;
  1405. atomic_inc(&current->signal->live);
  1406. atomic_inc(&current->signal->sigcnt);
  1407. list_add_tail_rcu(&p->thread_group,
  1408. &p->group_leader->thread_group);
  1409. list_add_tail_rcu(&p->thread_node,
  1410. &p->signal->thread_head);
  1411. }
  1412. attach_pid(p, PIDTYPE_PID);
  1413. nr_threads++;
  1414. }
  1415. total_forks++;
  1416. spin_unlock(&current->sighand->siglock);
  1417. syscall_tracepoint_update(p);
  1418. write_unlock_irq(&tasklist_lock);
  1419. proc_fork_connector(p);
  1420. cgroup_post_fork(p);
  1421. if (clone_flags & CLONE_THREAD)
  1422. threadgroup_change_end(current);
  1423. perf_event_fork(p);
  1424. trace_task_newtask(p, clone_flags);
  1425. uprobe_copy_process(p, clone_flags);
  1426. return p;
  1427. bad_fork_free_pid:
  1428. if (pid != &init_struct_pid)
  1429. free_pid(pid);
  1430. bad_fork_cleanup_io:
  1431. if (p->io_context)
  1432. exit_io_context(p);
  1433. bad_fork_cleanup_namespaces:
  1434. exit_task_namespaces(p);
  1435. bad_fork_cleanup_mm:
  1436. if (p->mm)
  1437. mmput(p->mm);
  1438. bad_fork_cleanup_signal:
  1439. if (!(clone_flags & CLONE_THREAD))
  1440. free_signal_struct(p->signal);
  1441. bad_fork_cleanup_sighand:
  1442. __cleanup_sighand(p->sighand);
  1443. bad_fork_cleanup_fs:
  1444. exit_fs(p); /* blocking */
  1445. bad_fork_cleanup_files:
  1446. exit_files(p); /* blocking */
  1447. bad_fork_cleanup_semundo:
  1448. exit_sem(p);
  1449. bad_fork_cleanup_audit:
  1450. audit_free(p);
  1451. bad_fork_cleanup_perf:
  1452. perf_event_free_task(p);
  1453. bad_fork_cleanup_policy:
  1454. #ifdef CONFIG_NUMA
  1455. mpol_put(p->mempolicy);
  1456. bad_fork_cleanup_threadgroup_lock:
  1457. #endif
  1458. if (clone_flags & CLONE_THREAD)
  1459. threadgroup_change_end(current);
  1460. delayacct_tsk_free(p);
  1461. module_put(task_thread_info(p)->exec_domain->module);
  1462. bad_fork_cleanup_count:
  1463. atomic_dec(&p->cred->user->processes);
  1464. exit_creds(p);
  1465. bad_fork_free:
  1466. free_task(p);
  1467. fork_out:
  1468. pr_err("[%d:%s] fork fail retval:0x%x\n", current->pid, current->comm, retval);
  1469. return ERR_PTR(retval);
  1470. }
  1471. static inline void init_idle_pids(struct pid_link *links)
  1472. {
  1473. enum pid_type type;
  1474. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1475. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1476. links[type].pid = &init_struct_pid;
  1477. }
  1478. }
  1479. struct task_struct *fork_idle(int cpu)
  1480. {
  1481. struct task_struct *task;
  1482. task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
  1483. if (!IS_ERR(task)) {
  1484. init_idle_pids(task->pids);
  1485. init_idle(task, cpu);
  1486. }
  1487. return task;
  1488. }
  1489. /*
  1490. * Ok, this is the main fork-routine.
  1491. *
  1492. * It copies the process, and if successful kick-starts
  1493. * it and waits for it to finish using the VM if required.
  1494. */
  1495. long do_fork(unsigned long clone_flags,
  1496. unsigned long stack_start,
  1497. unsigned long stack_size,
  1498. int __user *parent_tidptr,
  1499. int __user *child_tidptr)
  1500. {
  1501. struct task_struct *p;
  1502. int trace = 0;
  1503. long nr;
  1504. unsigned long long start, end, dur;
  1505. start = sched_clock();
  1506. /*
  1507. * Determine whether and which event to report to ptracer. When
  1508. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1509. * requested, no event is reported; otherwise, report if the event
  1510. * for the type of forking is enabled.
  1511. */
  1512. if (!(clone_flags & CLONE_UNTRACED)) {
  1513. if (clone_flags & CLONE_VFORK)
  1514. trace = PTRACE_EVENT_VFORK;
  1515. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1516. trace = PTRACE_EVENT_CLONE;
  1517. else
  1518. trace = PTRACE_EVENT_FORK;
  1519. if (likely(!ptrace_event_enabled(current, trace)))
  1520. trace = 0;
  1521. }
  1522. p = copy_process(clone_flags, stack_start, stack_size,
  1523. child_tidptr, NULL, trace);
  1524. /*
  1525. * Do this prior waking up the new thread - the thread pointer
  1526. * might get invalid after that point, if the thread exits quickly.
  1527. */
  1528. if (!IS_ERR(p)) {
  1529. struct completion vfork;
  1530. struct pid *pid;
  1531. trace_sched_process_fork(current, p);
  1532. pid = get_task_pid(p, PIDTYPE_PID);
  1533. nr = pid_vnr(pid);
  1534. if (clone_flags & CLONE_PARENT_SETTID)
  1535. put_user(nr, parent_tidptr);
  1536. if (clone_flags & CLONE_VFORK) {
  1537. p->vfork_done = &vfork;
  1538. init_completion(&vfork);
  1539. get_task_struct(p);
  1540. }
  1541. end = sched_clock();
  1542. dur = end - start;
  1543. if (dur > WARN_FORK_DUR) {
  1544. pr_err("[%d:%s] fork [%d:%s] total fork time[%llu us] > 1s\n",
  1545. current->pid, current->comm, p->pid, p->comm, dur);
  1546. }
  1547. #ifdef CONFIG_MTPROF
  1548. #ifdef CONFIG_MTPROF_CPUTIME
  1549. /* mt shceduler profiling*/
  1550. save_mtproc_info(p, sched_clock());
  1551. #endif
  1552. /* mt throttle monitor */
  1553. save_mt_rt_mon_info(p, sched_clock());
  1554. #endif
  1555. wake_up_new_task(p);
  1556. /* forking complete and child started to run, tell ptracer */
  1557. if (unlikely(trace))
  1558. ptrace_event_pid(trace, pid);
  1559. if (clone_flags & CLONE_VFORK) {
  1560. if (!wait_for_vfork_done(p, &vfork))
  1561. ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
  1562. }
  1563. put_pid(pid);
  1564. } else {
  1565. nr = PTR_ERR(p);
  1566. pr_err("[%d:%s] fork fail:[%p, %d]\n", current->pid, current->comm, p, (int) nr);
  1567. }
  1568. return nr;
  1569. }
  1570. /*
  1571. * Create a kernel thread.
  1572. */
  1573. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  1574. {
  1575. return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
  1576. (unsigned long)arg, NULL, NULL);
  1577. }
  1578. #ifdef __ARCH_WANT_SYS_FORK
  1579. SYSCALL_DEFINE0(fork)
  1580. {
  1581. #ifdef CONFIG_MMU
  1582. return do_fork(SIGCHLD, 0, 0, NULL, NULL);
  1583. #else
  1584. /* can not support in nommu mode */
  1585. return -EINVAL;
  1586. #endif
  1587. }
  1588. #endif
  1589. #ifdef __ARCH_WANT_SYS_VFORK
  1590. SYSCALL_DEFINE0(vfork)
  1591. {
  1592. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
  1593. 0, NULL, NULL);
  1594. }
  1595. #endif
  1596. #ifdef __ARCH_WANT_SYS_CLONE
  1597. #ifdef CONFIG_CLONE_BACKWARDS
  1598. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1599. int __user *, parent_tidptr,
  1600. int, tls_val,
  1601. int __user *, child_tidptr)
  1602. #elif defined(CONFIG_CLONE_BACKWARDS2)
  1603. SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
  1604. int __user *, parent_tidptr,
  1605. int __user *, child_tidptr,
  1606. int, tls_val)
  1607. #elif defined(CONFIG_CLONE_BACKWARDS3)
  1608. SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
  1609. int, stack_size,
  1610. int __user *, parent_tidptr,
  1611. int __user *, child_tidptr,
  1612. int, tls_val)
  1613. #else
  1614. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1615. int __user *, parent_tidptr,
  1616. int __user *, child_tidptr,
  1617. int, tls_val)
  1618. #endif
  1619. {
  1620. return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
  1621. }
  1622. #endif
  1623. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1624. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1625. #endif
  1626. static void sighand_ctor(void *data)
  1627. {
  1628. struct sighand_struct *sighand = data;
  1629. spin_lock_init(&sighand->siglock);
  1630. init_waitqueue_head(&sighand->signalfd_wqh);
  1631. }
  1632. void __init proc_caches_init(void)
  1633. {
  1634. sighand_cachep = kmem_cache_create("sighand_cache",
  1635. sizeof(struct sighand_struct), 0,
  1636. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1637. SLAB_NOTRACK, sighand_ctor);
  1638. signal_cachep = kmem_cache_create("signal_cache",
  1639. sizeof(struct signal_struct), 0,
  1640. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1641. files_cachep = kmem_cache_create("files_cache",
  1642. sizeof(struct files_struct), 0,
  1643. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1644. fs_cachep = kmem_cache_create("fs_cache",
  1645. sizeof(struct fs_struct), 0,
  1646. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1647. /*
  1648. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1649. * whole struct cpumask for the OFFSTACK case. We could change
  1650. * this to *only* allocate as much of it as required by the
  1651. * maximum number of CPU's we can ever have. The cpumask_allocation
  1652. * is at the end of the structure, exactly for that reason.
  1653. */
  1654. mm_cachep = kmem_cache_create("mm_struct",
  1655. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1656. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1657. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1658. mmap_init();
  1659. nsproxy_cache_init();
  1660. }
  1661. /*
  1662. * Check constraints on flags passed to the unshare system call.
  1663. */
  1664. static int check_unshare_flags(unsigned long unshare_flags)
  1665. {
  1666. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1667. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1668. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
  1669. CLONE_NEWUSER|CLONE_NEWPID))
  1670. return -EINVAL;
  1671. /*
  1672. * Not implemented, but pretend it works if there is nothing to
  1673. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1674. * needs to unshare vm.
  1675. */
  1676. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1677. /* FIXME: get_task_mm() increments ->mm_users */
  1678. if (atomic_read(&current->mm->mm_users) > 1)
  1679. return -EINVAL;
  1680. }
  1681. return 0;
  1682. }
  1683. /*
  1684. * Unshare the filesystem structure if it is being shared
  1685. */
  1686. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1687. {
  1688. struct fs_struct *fs = current->fs;
  1689. if (!(unshare_flags & CLONE_FS) || !fs)
  1690. return 0;
  1691. /* don't need lock here; in the worst case we'll do useless copy */
  1692. if (fs->users == 1)
  1693. return 0;
  1694. *new_fsp = copy_fs_struct(fs);
  1695. if (!*new_fsp)
  1696. return -ENOMEM;
  1697. return 0;
  1698. }
  1699. /*
  1700. * Unshare file descriptor table if it is being shared
  1701. */
  1702. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1703. {
  1704. struct files_struct *fd = current->files;
  1705. int error = 0;
  1706. if ((unshare_flags & CLONE_FILES) &&
  1707. (fd && atomic_read(&fd->count) > 1)) {
  1708. *new_fdp = dup_fd(fd, &error);
  1709. if (!*new_fdp)
  1710. return error;
  1711. }
  1712. return 0;
  1713. }
  1714. /*
  1715. * unshare allows a process to 'unshare' part of the process
  1716. * context which was originally shared using clone. copy_*
  1717. * functions used by do_fork() cannot be used here directly
  1718. * because they modify an inactive task_struct that is being
  1719. * constructed. Here we are modifying the current, active,
  1720. * task_struct.
  1721. */
  1722. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1723. {
  1724. struct fs_struct *fs, *new_fs = NULL;
  1725. struct files_struct *fd, *new_fd = NULL;
  1726. struct cred *new_cred = NULL;
  1727. struct nsproxy *new_nsproxy = NULL;
  1728. int do_sysvsem = 0;
  1729. int err;
  1730. /*
  1731. * If unsharing a user namespace must also unshare the thread.
  1732. */
  1733. if (unshare_flags & CLONE_NEWUSER)
  1734. unshare_flags |= CLONE_THREAD | CLONE_FS;
  1735. /*
  1736. * If unsharing a thread from a thread group, must also unshare vm.
  1737. */
  1738. if (unshare_flags & CLONE_THREAD)
  1739. unshare_flags |= CLONE_VM;
  1740. /*
  1741. * If unsharing vm, must also unshare signal handlers.
  1742. */
  1743. if (unshare_flags & CLONE_VM)
  1744. unshare_flags |= CLONE_SIGHAND;
  1745. /*
  1746. * If unsharing namespace, must also unshare filesystem information.
  1747. */
  1748. if (unshare_flags & CLONE_NEWNS)
  1749. unshare_flags |= CLONE_FS;
  1750. err = check_unshare_flags(unshare_flags);
  1751. if (err)
  1752. goto bad_unshare_out;
  1753. /*
  1754. * CLONE_NEWIPC must also detach from the undolist: after switching
  1755. * to a new ipc namespace, the semaphore arrays from the old
  1756. * namespace are unreachable.
  1757. */
  1758. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1759. do_sysvsem = 1;
  1760. err = unshare_fs(unshare_flags, &new_fs);
  1761. if (err)
  1762. goto bad_unshare_out;
  1763. err = unshare_fd(unshare_flags, &new_fd);
  1764. if (err)
  1765. goto bad_unshare_cleanup_fs;
  1766. err = unshare_userns(unshare_flags, &new_cred);
  1767. if (err)
  1768. goto bad_unshare_cleanup_fd;
  1769. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1770. new_cred, new_fs);
  1771. if (err)
  1772. goto bad_unshare_cleanup_cred;
  1773. if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
  1774. if (do_sysvsem) {
  1775. /*
  1776. * CLONE_SYSVSEM is equivalent to sys_exit().
  1777. */
  1778. exit_sem(current);
  1779. }
  1780. if (unshare_flags & CLONE_NEWIPC) {
  1781. /* Orphan segments in old ns (see sem above). */
  1782. exit_shm(current);
  1783. shm_init_task(current);
  1784. }
  1785. if (new_nsproxy)
  1786. switch_task_namespaces(current, new_nsproxy);
  1787. task_lock(current);
  1788. if (new_fs) {
  1789. fs = current->fs;
  1790. spin_lock(&fs->lock);
  1791. current->fs = new_fs;
  1792. if (--fs->users)
  1793. new_fs = NULL;
  1794. else
  1795. new_fs = fs;
  1796. spin_unlock(&fs->lock);
  1797. }
  1798. if (new_fd) {
  1799. fd = current->files;
  1800. current->files = new_fd;
  1801. new_fd = fd;
  1802. }
  1803. task_unlock(current);
  1804. if (new_cred) {
  1805. /* Install the new user namespace */
  1806. commit_creds(new_cred);
  1807. new_cred = NULL;
  1808. }
  1809. }
  1810. bad_unshare_cleanup_cred:
  1811. if (new_cred)
  1812. put_cred(new_cred);
  1813. bad_unshare_cleanup_fd:
  1814. if (new_fd)
  1815. put_files_struct(new_fd);
  1816. bad_unshare_cleanup_fs:
  1817. if (new_fs)
  1818. free_fs_struct(new_fs);
  1819. bad_unshare_out:
  1820. return err;
  1821. }
  1822. /*
  1823. * Helper to unshare the files of the current task.
  1824. * We don't want to expose copy_files internals to
  1825. * the exec layer of the kernel.
  1826. */
  1827. int unshare_files(struct files_struct **displaced)
  1828. {
  1829. struct task_struct *task = current;
  1830. struct files_struct *copy = NULL;
  1831. int error;
  1832. error = unshare_fd(CLONE_FILES, &copy);
  1833. if (error || !copy) {
  1834. *displaced = NULL;
  1835. return error;
  1836. }
  1837. *displaced = task->files;
  1838. task_lock(task);
  1839. task->files = copy;
  1840. task_unlock(task);
  1841. return 0;
  1842. }