stop_machine.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633
  1. /*
  2. * kernel/stop_machine.c
  3. *
  4. * Copyright (C) 2008, 2005 IBM Corporation.
  5. * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au
  6. * Copyright (C) 2010 SUSE Linux Products GmbH
  7. * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
  8. *
  9. * This file is released under the GPLv2 and any later version.
  10. */
  11. #include <linux/completion.h>
  12. #include <linux/cpu.h>
  13. #include <linux/init.h>
  14. #include <linux/kthread.h>
  15. #include <linux/export.h>
  16. #include <linux/percpu.h>
  17. #include <linux/sched.h>
  18. #include <linux/stop_machine.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/kallsyms.h>
  21. #include <linux/smpboot.h>
  22. #include <linux/atomic.h>
  23. #include <linux/lglock.h>
  24. /*
  25. * Structure to determine completion condition and record errors. May
  26. * be shared by works on different cpus.
  27. */
  28. struct cpu_stop_done {
  29. atomic_t nr_todo; /* nr left to execute */
  30. bool executed; /* actually executed? */
  31. int ret; /* collected return value */
  32. struct completion completion; /* fired if nr_todo reaches 0 */
  33. };
  34. /* the actual stopper, one per every possible cpu, enabled on online cpus */
  35. struct cpu_stopper {
  36. spinlock_t lock;
  37. bool enabled; /* is this stopper enabled? */
  38. struct list_head works; /* list of pending works */
  39. };
  40. static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
  41. static DEFINE_PER_CPU(struct task_struct *, cpu_stopper_task);
  42. static bool stop_machine_initialized = false;
  43. /*
  44. * Avoids a race between stop_two_cpus and global stop_cpus, where
  45. * the stoppers could get queued up in reverse order, leading to
  46. * system deadlock. Using an lglock means stop_two_cpus remains
  47. * relatively cheap.
  48. */
  49. DEFINE_STATIC_LGLOCK(stop_cpus_lock);
  50. static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
  51. {
  52. memset(done, 0, sizeof(*done));
  53. atomic_set(&done->nr_todo, nr_todo);
  54. init_completion(&done->completion);
  55. }
  56. /* signal completion unless @done is NULL */
  57. static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
  58. {
  59. if (done) {
  60. if (executed)
  61. done->executed = true;
  62. if (atomic_dec_and_test(&done->nr_todo))
  63. complete(&done->completion);
  64. }
  65. }
  66. /* queue @work to @stopper. if offline, @work is completed immediately */
  67. static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
  68. {
  69. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  70. struct task_struct *p = per_cpu(cpu_stopper_task, cpu);
  71. unsigned long flags;
  72. spin_lock_irqsave(&stopper->lock, flags);
  73. if (stopper->enabled) {
  74. list_add_tail(&work->list, &stopper->works);
  75. wake_up_process(p);
  76. } else
  77. cpu_stop_signal_done(work->done, false);
  78. spin_unlock_irqrestore(&stopper->lock, flags);
  79. }
  80. /**
  81. * stop_one_cpu - stop a cpu
  82. * @cpu: cpu to stop
  83. * @fn: function to execute
  84. * @arg: argument to @fn
  85. *
  86. * Execute @fn(@arg) on @cpu. @fn is run in a process context with
  87. * the highest priority preempting any task on the cpu and
  88. * monopolizing it. This function returns after the execution is
  89. * complete.
  90. *
  91. * This function doesn't guarantee @cpu stays online till @fn
  92. * completes. If @cpu goes down in the middle, execution may happen
  93. * partially or fully on different cpus. @fn should either be ready
  94. * for that or the caller should ensure that @cpu stays online until
  95. * this function completes.
  96. *
  97. * CONTEXT:
  98. * Might sleep.
  99. *
  100. * RETURNS:
  101. * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
  102. * otherwise, the return value of @fn.
  103. */
  104. int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
  105. {
  106. struct cpu_stop_done done;
  107. struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
  108. cpu_stop_init_done(&done, 1);
  109. cpu_stop_queue_work(cpu, &work);
  110. wait_for_completion(&done.completion);
  111. return done.executed ? done.ret : -ENOENT;
  112. }
  113. /* This controls the threads on each CPU. */
  114. enum multi_stop_state {
  115. /* Dummy starting state for thread. */
  116. MULTI_STOP_NONE,
  117. /* Awaiting everyone to be scheduled. */
  118. MULTI_STOP_PREPARE,
  119. /* Disable interrupts. */
  120. MULTI_STOP_DISABLE_IRQ,
  121. /* Run the function */
  122. MULTI_STOP_RUN,
  123. /* Exit */
  124. MULTI_STOP_EXIT,
  125. };
  126. struct multi_stop_data {
  127. int (*fn)(void *);
  128. void *data;
  129. /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
  130. unsigned int num_threads;
  131. const struct cpumask *active_cpus;
  132. enum multi_stop_state state;
  133. atomic_t thread_ack;
  134. };
  135. static void set_state(struct multi_stop_data *msdata,
  136. enum multi_stop_state newstate)
  137. {
  138. /* Reset ack counter. */
  139. atomic_set(&msdata->thread_ack, msdata->num_threads);
  140. smp_wmb();
  141. msdata->state = newstate;
  142. }
  143. /* Last one to ack a state moves to the next state. */
  144. static void ack_state(struct multi_stop_data *msdata)
  145. {
  146. if (atomic_dec_and_test(&msdata->thread_ack))
  147. set_state(msdata, msdata->state + 1);
  148. }
  149. /* This is the cpu_stop function which stops the CPU. */
  150. static int multi_cpu_stop(void *data)
  151. {
  152. struct multi_stop_data *msdata = data;
  153. enum multi_stop_state curstate = MULTI_STOP_NONE;
  154. int cpu = smp_processor_id(), err = 0;
  155. unsigned long flags;
  156. bool is_active;
  157. /*
  158. * When called from stop_machine_from_inactive_cpu(), irq might
  159. * already be disabled. Save the state and restore it on exit.
  160. */
  161. local_save_flags(flags);
  162. if (!msdata->active_cpus)
  163. is_active = cpu == cpumask_first(cpu_online_mask);
  164. else
  165. is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
  166. /* Simple state machine */
  167. do {
  168. /* Chill out and ensure we re-read multi_stop_state. */
  169. cpu_relax();
  170. if (msdata->state != curstate) {
  171. curstate = msdata->state;
  172. switch (curstate) {
  173. case MULTI_STOP_DISABLE_IRQ:
  174. local_irq_disable();
  175. hard_irq_disable();
  176. break;
  177. case MULTI_STOP_RUN:
  178. if (is_active)
  179. err = msdata->fn(msdata->data);
  180. break;
  181. default:
  182. break;
  183. }
  184. ack_state(msdata);
  185. }
  186. } while (curstate != MULTI_STOP_EXIT);
  187. local_irq_restore(flags);
  188. return err;
  189. }
  190. struct irq_cpu_stop_queue_work_info {
  191. int cpu1;
  192. int cpu2;
  193. struct cpu_stop_work *work1;
  194. struct cpu_stop_work *work2;
  195. };
  196. /*
  197. * This function is always run with irqs and preemption disabled.
  198. * This guarantees that both work1 and work2 get queued, before
  199. * our local migrate thread gets the chance to preempt us.
  200. */
  201. static void irq_cpu_stop_queue_work(void *arg)
  202. {
  203. struct irq_cpu_stop_queue_work_info *info = arg;
  204. cpu_stop_queue_work(info->cpu1, info->work1);
  205. cpu_stop_queue_work(info->cpu2, info->work2);
  206. }
  207. /**
  208. * stop_two_cpus - stops two cpus
  209. * @cpu1: the cpu to stop
  210. * @cpu2: the other cpu to stop
  211. * @fn: function to execute
  212. * @arg: argument to @fn
  213. *
  214. * Stops both the current and specified CPU and runs @fn on one of them.
  215. *
  216. * returns when both are completed.
  217. */
  218. int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
  219. {
  220. int call_cpu;
  221. struct cpu_stop_done done;
  222. struct cpu_stop_work work1, work2;
  223. struct irq_cpu_stop_queue_work_info call_args;
  224. struct multi_stop_data msdata = {
  225. .fn = fn,
  226. .data = arg,
  227. .num_threads = 2,
  228. .active_cpus = cpumask_of(cpu1),
  229. };
  230. work1 = work2 = (struct cpu_stop_work){
  231. .fn = multi_cpu_stop,
  232. .arg = &msdata,
  233. .done = &done
  234. };
  235. call_args = (struct irq_cpu_stop_queue_work_info){
  236. .cpu1 = cpu1,
  237. .cpu2 = cpu2,
  238. .work1 = &work1,
  239. .work2 = &work2,
  240. };
  241. cpu_stop_init_done(&done, 2);
  242. set_state(&msdata, MULTI_STOP_PREPARE);
  243. lg_local_lock(&stop_cpus_lock);
  244. /*
  245. * Queuing needs to be done by the lowest numbered CPU, to ensure
  246. * that works are always queued in the same order on every CPU.
  247. * This prevents deadlocks.
  248. */
  249. call_cpu = min(cpu1, cpu2);
  250. smp_call_function_single(call_cpu, &irq_cpu_stop_queue_work,
  251. &call_args, 0);
  252. lg_local_unlock(&stop_cpus_lock);
  253. wait_for_completion(&done.completion);
  254. return done.executed ? done.ret : -ENOENT;
  255. }
  256. /**
  257. * stop_one_cpu_nowait - stop a cpu but don't wait for completion
  258. * @cpu: cpu to stop
  259. * @fn: function to execute
  260. * @arg: argument to @fn
  261. * @work_buf: pointer to cpu_stop_work structure
  262. *
  263. * Similar to stop_one_cpu() but doesn't wait for completion. The
  264. * caller is responsible for ensuring @work_buf is currently unused
  265. * and will remain untouched until stopper starts executing @fn.
  266. *
  267. * CONTEXT:
  268. * Don't care.
  269. */
  270. void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
  271. struct cpu_stop_work *work_buf)
  272. {
  273. *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
  274. cpu_stop_queue_work(cpu, work_buf);
  275. }
  276. /* static data for stop_cpus */
  277. static DEFINE_MUTEX(stop_cpus_mutex);
  278. static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
  279. static void queue_stop_cpus_work(const struct cpumask *cpumask,
  280. cpu_stop_fn_t fn, void *arg,
  281. struct cpu_stop_done *done)
  282. {
  283. struct cpu_stop_work *work;
  284. unsigned int cpu;
  285. /* initialize works and done */
  286. for_each_cpu(cpu, cpumask) {
  287. work = &per_cpu(stop_cpus_work, cpu);
  288. work->fn = fn;
  289. work->arg = arg;
  290. work->done = done;
  291. }
  292. /*
  293. * Disable preemption while queueing to avoid getting
  294. * preempted by a stopper which might wait for other stoppers
  295. * to enter @fn which can lead to deadlock.
  296. */
  297. lg_global_lock(&stop_cpus_lock);
  298. for_each_cpu(cpu, cpumask)
  299. cpu_stop_queue_work(cpu, &per_cpu(stop_cpus_work, cpu));
  300. lg_global_unlock(&stop_cpus_lock);
  301. }
  302. static int __stop_cpus(const struct cpumask *cpumask,
  303. cpu_stop_fn_t fn, void *arg)
  304. {
  305. struct cpu_stop_done done;
  306. cpu_stop_init_done(&done, cpumask_weight(cpumask));
  307. queue_stop_cpus_work(cpumask, fn, arg, &done);
  308. wait_for_completion(&done.completion);
  309. return done.executed ? done.ret : -ENOENT;
  310. }
  311. /**
  312. * stop_cpus - stop multiple cpus
  313. * @cpumask: cpus to stop
  314. * @fn: function to execute
  315. * @arg: argument to @fn
  316. *
  317. * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu,
  318. * @fn is run in a process context with the highest priority
  319. * preempting any task on the cpu and monopolizing it. This function
  320. * returns after all executions are complete.
  321. *
  322. * This function doesn't guarantee the cpus in @cpumask stay online
  323. * till @fn completes. If some cpus go down in the middle, execution
  324. * on the cpu may happen partially or fully on different cpus. @fn
  325. * should either be ready for that or the caller should ensure that
  326. * the cpus stay online until this function completes.
  327. *
  328. * All stop_cpus() calls are serialized making it safe for @fn to wait
  329. * for all cpus to start executing it.
  330. *
  331. * CONTEXT:
  332. * Might sleep.
  333. *
  334. * RETURNS:
  335. * -ENOENT if @fn(@arg) was not executed at all because all cpus in
  336. * @cpumask were offline; otherwise, 0 if all executions of @fn
  337. * returned 0, any non zero return value if any returned non zero.
  338. */
  339. int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
  340. {
  341. int ret;
  342. /* static works are used, process one request at a time */
  343. mutex_lock(&stop_cpus_mutex);
  344. ret = __stop_cpus(cpumask, fn, arg);
  345. mutex_unlock(&stop_cpus_mutex);
  346. return ret;
  347. }
  348. /**
  349. * try_stop_cpus - try to stop multiple cpus
  350. * @cpumask: cpus to stop
  351. * @fn: function to execute
  352. * @arg: argument to @fn
  353. *
  354. * Identical to stop_cpus() except that it fails with -EAGAIN if
  355. * someone else is already using the facility.
  356. *
  357. * CONTEXT:
  358. * Might sleep.
  359. *
  360. * RETURNS:
  361. * -EAGAIN if someone else is already stopping cpus, -ENOENT if
  362. * @fn(@arg) was not executed at all because all cpus in @cpumask were
  363. * offline; otherwise, 0 if all executions of @fn returned 0, any non
  364. * zero return value if any returned non zero.
  365. */
  366. int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
  367. {
  368. int ret;
  369. /* static works are used, process one request at a time */
  370. if (!mutex_trylock(&stop_cpus_mutex))
  371. return -EAGAIN;
  372. ret = __stop_cpus(cpumask, fn, arg);
  373. mutex_unlock(&stop_cpus_mutex);
  374. return ret;
  375. }
  376. static int cpu_stop_should_run(unsigned int cpu)
  377. {
  378. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  379. unsigned long flags;
  380. int run;
  381. spin_lock_irqsave(&stopper->lock, flags);
  382. run = !list_empty(&stopper->works);
  383. spin_unlock_irqrestore(&stopper->lock, flags);
  384. return run;
  385. }
  386. static void cpu_stopper_thread(unsigned int cpu)
  387. {
  388. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  389. struct cpu_stop_work *work;
  390. int ret;
  391. repeat:
  392. work = NULL;
  393. spin_lock_irq(&stopper->lock);
  394. if (!list_empty(&stopper->works)) {
  395. work = list_first_entry(&stopper->works,
  396. struct cpu_stop_work, list);
  397. list_del_init(&work->list);
  398. }
  399. spin_unlock_irq(&stopper->lock);
  400. if (work) {
  401. cpu_stop_fn_t fn = work->fn;
  402. void *arg = work->arg;
  403. struct cpu_stop_done *done = work->done;
  404. char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
  405. /* cpu stop callbacks are not allowed to sleep */
  406. preempt_disable();
  407. ret = fn(arg);
  408. if (ret)
  409. done->ret = ret;
  410. /* restore preemption and check it's still balanced */
  411. preempt_enable();
  412. WARN_ONCE(preempt_count(),
  413. "cpu_stop: %s(%p) leaked preempt count\n",
  414. kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
  415. ksym_buf), arg);
  416. cpu_stop_signal_done(done, true);
  417. goto repeat;
  418. }
  419. }
  420. extern void sched_set_stop_task(int cpu, struct task_struct *stop);
  421. static void cpu_stop_create(unsigned int cpu)
  422. {
  423. sched_set_stop_task(cpu, per_cpu(cpu_stopper_task, cpu));
  424. }
  425. static void cpu_stop_park(unsigned int cpu)
  426. {
  427. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  428. struct cpu_stop_work *work;
  429. unsigned long flags;
  430. /* drain remaining works */
  431. spin_lock_irqsave(&stopper->lock, flags);
  432. list_for_each_entry(work, &stopper->works, list)
  433. cpu_stop_signal_done(work->done, false);
  434. stopper->enabled = false;
  435. spin_unlock_irqrestore(&stopper->lock, flags);
  436. }
  437. static void cpu_stop_unpark(unsigned int cpu)
  438. {
  439. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  440. spin_lock_irq(&stopper->lock);
  441. stopper->enabled = true;
  442. spin_unlock_irq(&stopper->lock);
  443. }
  444. static struct smp_hotplug_thread cpu_stop_threads = {
  445. .store = &cpu_stopper_task,
  446. .thread_should_run = cpu_stop_should_run,
  447. .thread_fn = cpu_stopper_thread,
  448. .thread_comm = "migration/%u",
  449. .create = cpu_stop_create,
  450. .setup = cpu_stop_unpark,
  451. .park = cpu_stop_park,
  452. .pre_unpark = cpu_stop_unpark,
  453. .selfparking = true,
  454. };
  455. static int __init cpu_stop_init(void)
  456. {
  457. unsigned int cpu;
  458. for_each_possible_cpu(cpu) {
  459. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  460. spin_lock_init(&stopper->lock);
  461. INIT_LIST_HEAD(&stopper->works);
  462. }
  463. BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
  464. stop_machine_initialized = true;
  465. return 0;
  466. }
  467. early_initcall(cpu_stop_init);
  468. #ifdef CONFIG_STOP_MACHINE
  469. int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
  470. {
  471. struct multi_stop_data msdata = {
  472. .fn = fn,
  473. .data = data,
  474. .num_threads = num_online_cpus(),
  475. .active_cpus = cpus,
  476. };
  477. if (!stop_machine_initialized) {
  478. /*
  479. * Handle the case where stop_machine() is called
  480. * early in boot before stop_machine() has been
  481. * initialized.
  482. */
  483. unsigned long flags;
  484. int ret;
  485. WARN_ON_ONCE(msdata.num_threads != 1);
  486. local_irq_save(flags);
  487. hard_irq_disable();
  488. ret = (*fn)(data);
  489. local_irq_restore(flags);
  490. return ret;
  491. }
  492. /* Set the initial state and stop all online cpus. */
  493. set_state(&msdata, MULTI_STOP_PREPARE);
  494. return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
  495. }
  496. int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
  497. {
  498. int ret;
  499. /* No CPUs can come up or down during this. */
  500. get_online_cpus();
  501. ret = __stop_machine(fn, data, cpus);
  502. put_online_cpus();
  503. return ret;
  504. }
  505. EXPORT_SYMBOL_GPL(stop_machine);
  506. /**
  507. * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
  508. * @fn: the function to run
  509. * @data: the data ptr for the @fn()
  510. * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
  511. *
  512. * This is identical to stop_machine() but can be called from a CPU which
  513. * is not active. The local CPU is in the process of hotplug (so no other
  514. * CPU hotplug can start) and not marked active and doesn't have enough
  515. * context to sleep.
  516. *
  517. * This function provides stop_machine() functionality for such state by
  518. * using busy-wait for synchronization and executing @fn directly for local
  519. * CPU.
  520. *
  521. * CONTEXT:
  522. * Local CPU is inactive. Temporarily stops all active CPUs.
  523. *
  524. * RETURNS:
  525. * 0 if all executions of @fn returned 0, any non zero return value if any
  526. * returned non zero.
  527. */
  528. int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
  529. const struct cpumask *cpus)
  530. {
  531. struct multi_stop_data msdata = { .fn = fn, .data = data,
  532. .active_cpus = cpus };
  533. struct cpu_stop_done done;
  534. int ret;
  535. /* Local CPU must be inactive and CPU hotplug in progress. */
  536. BUG_ON(cpu_active(raw_smp_processor_id()));
  537. msdata.num_threads = num_active_cpus() + 1; /* +1 for local */
  538. /* No proper task established and can't sleep - busy wait for lock. */
  539. while (!mutex_trylock(&stop_cpus_mutex))
  540. cpu_relax();
  541. /* Schedule work on other CPUs and execute directly for local CPU */
  542. set_state(&msdata, MULTI_STOP_PREPARE);
  543. cpu_stop_init_done(&done, num_active_cpus());
  544. queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
  545. &done);
  546. ret = multi_cpu_stop(&msdata);
  547. /* Busy wait for completion. */
  548. while (!completion_done(&done.completion))
  549. cpu_relax();
  550. mutex_unlock(&stop_cpus_mutex);
  551. return ret ?: done.ret;
  552. }
  553. #endif /* CONFIG_STOP_MACHINE */