namespace.c 80 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/init.h> /* init_rootfs */
  19. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  20. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  21. #include <linux/uaccess.h>
  22. #include <linux/proc_ns.h>
  23. #include <linux/magic.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/task_work.h>
  26. #include "pnode.h"
  27. #include "internal.h"
  28. static unsigned int m_hash_mask __read_mostly;
  29. static unsigned int m_hash_shift __read_mostly;
  30. static unsigned int mp_hash_mask __read_mostly;
  31. static unsigned int mp_hash_shift __read_mostly;
  32. static __initdata unsigned long mhash_entries;
  33. static int __init set_mhash_entries(char *str)
  34. {
  35. if (!str)
  36. return 0;
  37. mhash_entries = simple_strtoul(str, &str, 0);
  38. return 1;
  39. }
  40. __setup("mhash_entries=", set_mhash_entries);
  41. static __initdata unsigned long mphash_entries;
  42. static int __init set_mphash_entries(char *str)
  43. {
  44. if (!str)
  45. return 0;
  46. mphash_entries = simple_strtoul(str, &str, 0);
  47. return 1;
  48. }
  49. __setup("mphash_entries=", set_mphash_entries);
  50. static u64 event;
  51. static DEFINE_IDA(mnt_id_ida);
  52. static DEFINE_IDA(mnt_group_ida);
  53. static DEFINE_SPINLOCK(mnt_id_lock);
  54. static int mnt_id_start = 0;
  55. static int mnt_group_start = 1;
  56. static struct hlist_head *mount_hashtable __read_mostly;
  57. static struct hlist_head *mountpoint_hashtable __read_mostly;
  58. static struct kmem_cache *mnt_cache __read_mostly;
  59. static DECLARE_RWSEM(namespace_sem);
  60. /* /sys/fs */
  61. struct kobject *fs_kobj;
  62. EXPORT_SYMBOL_GPL(fs_kobj);
  63. /*
  64. * vfsmount lock may be taken for read to prevent changes to the
  65. * vfsmount hash, ie. during mountpoint lookups or walking back
  66. * up the tree.
  67. *
  68. * It should be taken for write in all cases where the vfsmount
  69. * tree or hash is modified or when a vfsmount structure is modified.
  70. */
  71. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  72. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  73. {
  74. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  75. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  76. tmp = tmp + (tmp >> m_hash_shift);
  77. return &mount_hashtable[tmp & m_hash_mask];
  78. }
  79. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  80. {
  81. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  82. tmp = tmp + (tmp >> mp_hash_shift);
  83. return &mountpoint_hashtable[tmp & mp_hash_mask];
  84. }
  85. /*
  86. * allocation is serialized by namespace_sem, but we need the spinlock to
  87. * serialize with freeing.
  88. */
  89. static int mnt_alloc_id(struct mount *mnt)
  90. {
  91. int res;
  92. retry:
  93. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  94. spin_lock(&mnt_id_lock);
  95. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  96. if (!res)
  97. mnt_id_start = mnt->mnt_id + 1;
  98. spin_unlock(&mnt_id_lock);
  99. if (res == -EAGAIN)
  100. goto retry;
  101. return res;
  102. }
  103. static void mnt_free_id(struct mount *mnt)
  104. {
  105. int id = mnt->mnt_id;
  106. spin_lock(&mnt_id_lock);
  107. ida_remove(&mnt_id_ida, id);
  108. if (mnt_id_start > id)
  109. mnt_id_start = id;
  110. spin_unlock(&mnt_id_lock);
  111. }
  112. /*
  113. * Allocate a new peer group ID
  114. *
  115. * mnt_group_ida is protected by namespace_sem
  116. */
  117. static int mnt_alloc_group_id(struct mount *mnt)
  118. {
  119. int res;
  120. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  121. return -ENOMEM;
  122. res = ida_get_new_above(&mnt_group_ida,
  123. mnt_group_start,
  124. &mnt->mnt_group_id);
  125. if (!res)
  126. mnt_group_start = mnt->mnt_group_id + 1;
  127. return res;
  128. }
  129. /*
  130. * Release a peer group ID
  131. */
  132. void mnt_release_group_id(struct mount *mnt)
  133. {
  134. int id = mnt->mnt_group_id;
  135. ida_remove(&mnt_group_ida, id);
  136. if (mnt_group_start > id)
  137. mnt_group_start = id;
  138. mnt->mnt_group_id = 0;
  139. }
  140. /*
  141. * vfsmount lock must be held for read
  142. */
  143. static inline void mnt_add_count(struct mount *mnt, int n)
  144. {
  145. #ifdef CONFIG_SMP
  146. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  147. #else
  148. preempt_disable();
  149. mnt->mnt_count += n;
  150. preempt_enable();
  151. #endif
  152. }
  153. /*
  154. * vfsmount lock must be held for write
  155. */
  156. unsigned int mnt_get_count(struct mount *mnt)
  157. {
  158. #ifdef CONFIG_SMP
  159. unsigned int count = 0;
  160. int cpu;
  161. for_each_possible_cpu(cpu) {
  162. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  163. }
  164. return count;
  165. #else
  166. return mnt->mnt_count;
  167. #endif
  168. }
  169. static struct mount *alloc_vfsmnt(const char *name)
  170. {
  171. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  172. if (mnt) {
  173. int err;
  174. err = mnt_alloc_id(mnt);
  175. if (err)
  176. goto out_free_cache;
  177. if (name) {
  178. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  179. if (!mnt->mnt_devname)
  180. goto out_free_id;
  181. }
  182. #ifdef CONFIG_SMP
  183. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  184. if (!mnt->mnt_pcp)
  185. goto out_free_devname;
  186. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  187. #else
  188. mnt->mnt_count = 1;
  189. mnt->mnt_writers = 0;
  190. #endif
  191. INIT_HLIST_NODE(&mnt->mnt_hash);
  192. INIT_LIST_HEAD(&mnt->mnt_child);
  193. INIT_LIST_HEAD(&mnt->mnt_mounts);
  194. INIT_LIST_HEAD(&mnt->mnt_list);
  195. INIT_LIST_HEAD(&mnt->mnt_expire);
  196. INIT_LIST_HEAD(&mnt->mnt_share);
  197. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  198. INIT_LIST_HEAD(&mnt->mnt_slave);
  199. INIT_HLIST_NODE(&mnt->mnt_mp_list);
  200. #ifdef CONFIG_FSNOTIFY
  201. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  202. #endif
  203. }
  204. return mnt;
  205. #ifdef CONFIG_SMP
  206. out_free_devname:
  207. kfree(mnt->mnt_devname);
  208. #endif
  209. out_free_id:
  210. mnt_free_id(mnt);
  211. out_free_cache:
  212. kmem_cache_free(mnt_cache, mnt);
  213. return NULL;
  214. }
  215. /*
  216. * Most r/o checks on a fs are for operations that take
  217. * discrete amounts of time, like a write() or unlink().
  218. * We must keep track of when those operations start
  219. * (for permission checks) and when they end, so that
  220. * we can determine when writes are able to occur to
  221. * a filesystem.
  222. */
  223. /*
  224. * __mnt_is_readonly: check whether a mount is read-only
  225. * @mnt: the mount to check for its write status
  226. *
  227. * This shouldn't be used directly ouside of the VFS.
  228. * It does not guarantee that the filesystem will stay
  229. * r/w, just that it is right *now*. This can not and
  230. * should not be used in place of IS_RDONLY(inode).
  231. * mnt_want/drop_write() will _keep_ the filesystem
  232. * r/w.
  233. */
  234. int __mnt_is_readonly(struct vfsmount *mnt)
  235. {
  236. if (mnt->mnt_flags & MNT_READONLY)
  237. return 1;
  238. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  239. return 1;
  240. return 0;
  241. }
  242. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  243. static inline void mnt_inc_writers(struct mount *mnt)
  244. {
  245. #ifdef CONFIG_SMP
  246. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  247. #else
  248. mnt->mnt_writers++;
  249. #endif
  250. }
  251. static inline void mnt_dec_writers(struct mount *mnt)
  252. {
  253. #ifdef CONFIG_SMP
  254. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  255. #else
  256. mnt->mnt_writers--;
  257. #endif
  258. }
  259. static unsigned int mnt_get_writers(struct mount *mnt)
  260. {
  261. #ifdef CONFIG_SMP
  262. unsigned int count = 0;
  263. int cpu;
  264. for_each_possible_cpu(cpu) {
  265. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  266. }
  267. return count;
  268. #else
  269. return mnt->mnt_writers;
  270. #endif
  271. }
  272. static int mnt_is_readonly(struct vfsmount *mnt)
  273. {
  274. if (mnt->mnt_sb->s_readonly_remount)
  275. return 1;
  276. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  277. smp_rmb();
  278. return __mnt_is_readonly(mnt);
  279. }
  280. /*
  281. * Most r/o & frozen checks on a fs are for operations that take discrete
  282. * amounts of time, like a write() or unlink(). We must keep track of when
  283. * those operations start (for permission checks) and when they end, so that we
  284. * can determine when writes are able to occur to a filesystem.
  285. */
  286. /**
  287. * __mnt_want_write - get write access to a mount without freeze protection
  288. * @m: the mount on which to take a write
  289. *
  290. * This tells the low-level filesystem that a write is about to be performed to
  291. * it, and makes sure that writes are allowed (mnt it read-write) before
  292. * returning success. This operation does not protect against filesystem being
  293. * frozen. When the write operation is finished, __mnt_drop_write() must be
  294. * called. This is effectively a refcount.
  295. */
  296. int __mnt_want_write(struct vfsmount *m)
  297. {
  298. struct mount *mnt = real_mount(m);
  299. int ret = 0;
  300. preempt_disable();
  301. mnt_inc_writers(mnt);
  302. /*
  303. * The store to mnt_inc_writers must be visible before we pass
  304. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  305. * incremented count after it has set MNT_WRITE_HOLD.
  306. */
  307. smp_mb();
  308. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  309. cpu_relax();
  310. /*
  311. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  312. * be set to match its requirements. So we must not load that until
  313. * MNT_WRITE_HOLD is cleared.
  314. */
  315. smp_rmb();
  316. if (mnt_is_readonly(m)) {
  317. mnt_dec_writers(mnt);
  318. ret = -EROFS;
  319. }
  320. preempt_enable();
  321. return ret;
  322. }
  323. /**
  324. * mnt_want_write - get write access to a mount
  325. * @m: the mount on which to take a write
  326. *
  327. * This tells the low-level filesystem that a write is about to be performed to
  328. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  329. * is not frozen) before returning success. When the write operation is
  330. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  331. */
  332. int mnt_want_write(struct vfsmount *m)
  333. {
  334. int ret;
  335. sb_start_write(m->mnt_sb);
  336. ret = __mnt_want_write(m);
  337. if (ret)
  338. sb_end_write(m->mnt_sb);
  339. return ret;
  340. }
  341. EXPORT_SYMBOL_GPL(mnt_want_write);
  342. /**
  343. * mnt_clone_write - get write access to a mount
  344. * @mnt: the mount on which to take a write
  345. *
  346. * This is effectively like mnt_want_write, except
  347. * it must only be used to take an extra write reference
  348. * on a mountpoint that we already know has a write reference
  349. * on it. This allows some optimisation.
  350. *
  351. * After finished, mnt_drop_write must be called as usual to
  352. * drop the reference.
  353. */
  354. int mnt_clone_write(struct vfsmount *mnt)
  355. {
  356. /* superblock may be r/o */
  357. if (__mnt_is_readonly(mnt))
  358. return -EROFS;
  359. preempt_disable();
  360. mnt_inc_writers(real_mount(mnt));
  361. preempt_enable();
  362. return 0;
  363. }
  364. EXPORT_SYMBOL_GPL(mnt_clone_write);
  365. /**
  366. * __mnt_want_write_file - get write access to a file's mount
  367. * @file: the file who's mount on which to take a write
  368. *
  369. * This is like __mnt_want_write, but it takes a file and can
  370. * do some optimisations if the file is open for write already
  371. */
  372. int __mnt_want_write_file(struct file *file)
  373. {
  374. if (!(file->f_mode & FMODE_WRITER))
  375. return __mnt_want_write(file->f_path.mnt);
  376. else
  377. return mnt_clone_write(file->f_path.mnt);
  378. }
  379. /**
  380. * mnt_want_write_file - get write access to a file's mount
  381. * @file: the file who's mount on which to take a write
  382. *
  383. * This is like mnt_want_write, but it takes a file and can
  384. * do some optimisations if the file is open for write already
  385. */
  386. int mnt_want_write_file(struct file *file)
  387. {
  388. int ret;
  389. sb_start_write(file->f_path.mnt->mnt_sb);
  390. ret = __mnt_want_write_file(file);
  391. if (ret)
  392. sb_end_write(file->f_path.mnt->mnt_sb);
  393. return ret;
  394. }
  395. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  396. /**
  397. * __mnt_drop_write - give up write access to a mount
  398. * @mnt: the mount on which to give up write access
  399. *
  400. * Tells the low-level filesystem that we are done
  401. * performing writes to it. Must be matched with
  402. * __mnt_want_write() call above.
  403. */
  404. void __mnt_drop_write(struct vfsmount *mnt)
  405. {
  406. preempt_disable();
  407. mnt_dec_writers(real_mount(mnt));
  408. preempt_enable();
  409. }
  410. /**
  411. * mnt_drop_write - give up write access to a mount
  412. * @mnt: the mount on which to give up write access
  413. *
  414. * Tells the low-level filesystem that we are done performing writes to it and
  415. * also allows filesystem to be frozen again. Must be matched with
  416. * mnt_want_write() call above.
  417. */
  418. void mnt_drop_write(struct vfsmount *mnt)
  419. {
  420. __mnt_drop_write(mnt);
  421. sb_end_write(mnt->mnt_sb);
  422. }
  423. EXPORT_SYMBOL_GPL(mnt_drop_write);
  424. void __mnt_drop_write_file(struct file *file)
  425. {
  426. __mnt_drop_write(file->f_path.mnt);
  427. }
  428. void mnt_drop_write_file(struct file *file)
  429. {
  430. mnt_drop_write(file->f_path.mnt);
  431. }
  432. EXPORT_SYMBOL(mnt_drop_write_file);
  433. static int mnt_make_readonly(struct mount *mnt)
  434. {
  435. int ret = 0;
  436. lock_mount_hash();
  437. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  438. /*
  439. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  440. * should be visible before we do.
  441. */
  442. smp_mb();
  443. /*
  444. * With writers on hold, if this value is zero, then there are
  445. * definitely no active writers (although held writers may subsequently
  446. * increment the count, they'll have to wait, and decrement it after
  447. * seeing MNT_READONLY).
  448. *
  449. * It is OK to have counter incremented on one CPU and decremented on
  450. * another: the sum will add up correctly. The danger would be when we
  451. * sum up each counter, if we read a counter before it is incremented,
  452. * but then read another CPU's count which it has been subsequently
  453. * decremented from -- we would see more decrements than we should.
  454. * MNT_WRITE_HOLD protects against this scenario, because
  455. * mnt_want_write first increments count, then smp_mb, then spins on
  456. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  457. * we're counting up here.
  458. */
  459. if (mnt_get_writers(mnt) > 0)
  460. ret = -EBUSY;
  461. else
  462. mnt->mnt.mnt_flags |= MNT_READONLY;
  463. /*
  464. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  465. * that become unheld will see MNT_READONLY.
  466. */
  467. smp_wmb();
  468. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  469. unlock_mount_hash();
  470. return ret;
  471. }
  472. static void __mnt_unmake_readonly(struct mount *mnt)
  473. {
  474. lock_mount_hash();
  475. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  476. unlock_mount_hash();
  477. }
  478. int sb_prepare_remount_readonly(struct super_block *sb)
  479. {
  480. struct mount *mnt;
  481. int err = 0;
  482. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  483. if (atomic_long_read(&sb->s_remove_count))
  484. return -EBUSY;
  485. lock_mount_hash();
  486. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  487. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  488. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  489. smp_mb();
  490. if (mnt_get_writers(mnt) > 0) {
  491. err = -EBUSY;
  492. break;
  493. }
  494. }
  495. }
  496. if (!err && atomic_long_read(&sb->s_remove_count))
  497. err = -EBUSY;
  498. if (!err) {
  499. sb->s_readonly_remount = 1;
  500. smp_wmb();
  501. }
  502. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  503. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  504. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  505. }
  506. unlock_mount_hash();
  507. return err;
  508. }
  509. static void free_vfsmnt(struct mount *mnt)
  510. {
  511. kfree(mnt->mnt_devname);
  512. #ifdef CONFIG_SMP
  513. free_percpu(mnt->mnt_pcp);
  514. #endif
  515. kmem_cache_free(mnt_cache, mnt);
  516. }
  517. static void delayed_free_vfsmnt(struct rcu_head *head)
  518. {
  519. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  520. }
  521. /* call under rcu_read_lock */
  522. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  523. {
  524. struct mount *mnt;
  525. if (read_seqretry(&mount_lock, seq))
  526. return false;
  527. if (bastard == NULL)
  528. return true;
  529. mnt = real_mount(bastard);
  530. mnt_add_count(mnt, 1);
  531. if (likely(!read_seqretry(&mount_lock, seq)))
  532. return true;
  533. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  534. mnt_add_count(mnt, -1);
  535. return false;
  536. }
  537. rcu_read_unlock();
  538. mntput(bastard);
  539. rcu_read_lock();
  540. return false;
  541. }
  542. /*
  543. * find the first mount at @dentry on vfsmount @mnt.
  544. * call under rcu_read_lock()
  545. */
  546. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  547. {
  548. struct hlist_head *head = m_hash(mnt, dentry);
  549. struct mount *p;
  550. hlist_for_each_entry_rcu(p, head, mnt_hash)
  551. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  552. return p;
  553. return NULL;
  554. }
  555. /*
  556. * find the last mount at @dentry on vfsmount @mnt.
  557. * mount_lock must be held.
  558. */
  559. struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
  560. {
  561. struct mount *p, *res;
  562. res = p = __lookup_mnt(mnt, dentry);
  563. if (!p)
  564. goto out;
  565. hlist_for_each_entry_continue(p, mnt_hash) {
  566. if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
  567. break;
  568. res = p;
  569. }
  570. out:
  571. return res;
  572. }
  573. /*
  574. * lookup_mnt - Return the first child mount mounted at path
  575. *
  576. * "First" means first mounted chronologically. If you create the
  577. * following mounts:
  578. *
  579. * mount /dev/sda1 /mnt
  580. * mount /dev/sda2 /mnt
  581. * mount /dev/sda3 /mnt
  582. *
  583. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  584. * return successively the root dentry and vfsmount of /dev/sda1, then
  585. * /dev/sda2, then /dev/sda3, then NULL.
  586. *
  587. * lookup_mnt takes a reference to the found vfsmount.
  588. */
  589. struct vfsmount *lookup_mnt(struct path *path)
  590. {
  591. struct mount *child_mnt;
  592. struct vfsmount *m;
  593. unsigned seq;
  594. rcu_read_lock();
  595. do {
  596. seq = read_seqbegin(&mount_lock);
  597. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  598. m = child_mnt ? &child_mnt->mnt : NULL;
  599. } while (!legitimize_mnt(m, seq));
  600. rcu_read_unlock();
  601. return m;
  602. }
  603. /*
  604. * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
  605. * current mount namespace.
  606. *
  607. * The common case is dentries are not mountpoints at all and that
  608. * test is handled inline. For the slow case when we are actually
  609. * dealing with a mountpoint of some kind, walk through all of the
  610. * mounts in the current mount namespace and test to see if the dentry
  611. * is a mountpoint.
  612. *
  613. * The mount_hashtable is not usable in the context because we
  614. * need to identify all mounts that may be in the current mount
  615. * namespace not just a mount that happens to have some specified
  616. * parent mount.
  617. */
  618. bool __is_local_mountpoint(struct dentry *dentry)
  619. {
  620. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  621. struct mount *mnt;
  622. bool is_covered = false;
  623. if (!d_mountpoint(dentry))
  624. goto out;
  625. down_read(&namespace_sem);
  626. list_for_each_entry(mnt, &ns->list, mnt_list) {
  627. is_covered = (mnt->mnt_mountpoint == dentry);
  628. if (is_covered)
  629. break;
  630. }
  631. up_read(&namespace_sem);
  632. out:
  633. return is_covered;
  634. }
  635. static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
  636. {
  637. struct hlist_head *chain = mp_hash(dentry);
  638. struct mountpoint *mp;
  639. hlist_for_each_entry(mp, chain, m_hash) {
  640. if (mp->m_dentry == dentry) {
  641. /* might be worth a WARN_ON() */
  642. if (d_unlinked(dentry))
  643. return ERR_PTR(-ENOENT);
  644. mp->m_count++;
  645. return mp;
  646. }
  647. }
  648. return NULL;
  649. }
  650. static struct mountpoint *new_mountpoint(struct dentry *dentry)
  651. {
  652. struct hlist_head *chain = mp_hash(dentry);
  653. struct mountpoint *mp;
  654. int ret;
  655. /*
  656. * We are allocating as GFP_NOFS to appease lockdep:
  657. * since we are holding i_mutex we should not try to
  658. * recurse into filesystem code.
  659. */
  660. mp = kmalloc(sizeof(struct mountpoint), GFP_NOFS);
  661. if (!mp)
  662. return ERR_PTR(-ENOMEM);
  663. ret = d_set_mounted(dentry);
  664. if (ret) {
  665. kfree(mp);
  666. return ERR_PTR(ret);
  667. }
  668. mp->m_dentry = dentry;
  669. mp->m_count = 1;
  670. hlist_add_head(&mp->m_hash, chain);
  671. INIT_HLIST_HEAD(&mp->m_list);
  672. return mp;
  673. }
  674. static void put_mountpoint(struct mountpoint *mp)
  675. {
  676. if (!--mp->m_count) {
  677. struct dentry *dentry = mp->m_dentry;
  678. BUG_ON(!hlist_empty(&mp->m_list));
  679. spin_lock(&dentry->d_lock);
  680. dentry->d_flags &= ~DCACHE_MOUNTED;
  681. spin_unlock(&dentry->d_lock);
  682. hlist_del(&mp->m_hash);
  683. kfree(mp);
  684. }
  685. }
  686. static inline int check_mnt(struct mount *mnt)
  687. {
  688. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  689. }
  690. /*
  691. * vfsmount lock must be held for write
  692. */
  693. static void touch_mnt_namespace(struct mnt_namespace *ns)
  694. {
  695. if (ns) {
  696. ns->event = ++event;
  697. wake_up_interruptible(&ns->poll);
  698. }
  699. }
  700. /*
  701. * vfsmount lock must be held for write
  702. */
  703. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  704. {
  705. if (ns && ns->event != event) {
  706. ns->event = event;
  707. wake_up_interruptible(&ns->poll);
  708. }
  709. }
  710. /*
  711. * vfsmount lock must be held for write
  712. */
  713. static void detach_mnt(struct mount *mnt, struct path *old_path)
  714. {
  715. old_path->dentry = mnt->mnt_mountpoint;
  716. old_path->mnt = &mnt->mnt_parent->mnt;
  717. mnt->mnt_parent = mnt;
  718. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  719. list_del_init(&mnt->mnt_child);
  720. hlist_del_init_rcu(&mnt->mnt_hash);
  721. hlist_del_init(&mnt->mnt_mp_list);
  722. put_mountpoint(mnt->mnt_mp);
  723. mnt->mnt_mp = NULL;
  724. }
  725. /*
  726. * vfsmount lock must be held for write
  727. */
  728. void mnt_set_mountpoint(struct mount *mnt,
  729. struct mountpoint *mp,
  730. struct mount *child_mnt)
  731. {
  732. mp->m_count++;
  733. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  734. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  735. child_mnt->mnt_parent = mnt;
  736. child_mnt->mnt_mp = mp;
  737. hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
  738. }
  739. /*
  740. * vfsmount lock must be held for write
  741. */
  742. static void attach_mnt(struct mount *mnt,
  743. struct mount *parent,
  744. struct mountpoint *mp)
  745. {
  746. mnt_set_mountpoint(parent, mp, mnt);
  747. hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
  748. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  749. }
  750. static void attach_shadowed(struct mount *mnt,
  751. struct mount *parent,
  752. struct mount *shadows)
  753. {
  754. if (shadows) {
  755. hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
  756. list_add(&mnt->mnt_child, &shadows->mnt_child);
  757. } else {
  758. hlist_add_head_rcu(&mnt->mnt_hash,
  759. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  760. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  761. }
  762. }
  763. /*
  764. * vfsmount lock must be held for write
  765. */
  766. static void commit_tree(struct mount *mnt, struct mount *shadows)
  767. {
  768. struct mount *parent = mnt->mnt_parent;
  769. struct mount *m;
  770. LIST_HEAD(head);
  771. struct mnt_namespace *n = parent->mnt_ns;
  772. BUG_ON(parent == mnt);
  773. list_add_tail(&head, &mnt->mnt_list);
  774. list_for_each_entry(m, &head, mnt_list)
  775. m->mnt_ns = n;
  776. list_splice(&head, n->list.prev);
  777. attach_shadowed(mnt, parent, shadows);
  778. touch_mnt_namespace(n);
  779. }
  780. static struct mount *next_mnt(struct mount *p, struct mount *root)
  781. {
  782. struct list_head *next = p->mnt_mounts.next;
  783. if (next == &p->mnt_mounts) {
  784. while (1) {
  785. if (p == root)
  786. return NULL;
  787. next = p->mnt_child.next;
  788. if (next != &p->mnt_parent->mnt_mounts)
  789. break;
  790. p = p->mnt_parent;
  791. }
  792. }
  793. return list_entry(next, struct mount, mnt_child);
  794. }
  795. static struct mount *skip_mnt_tree(struct mount *p)
  796. {
  797. struct list_head *prev = p->mnt_mounts.prev;
  798. while (prev != &p->mnt_mounts) {
  799. p = list_entry(prev, struct mount, mnt_child);
  800. prev = p->mnt_mounts.prev;
  801. }
  802. return p;
  803. }
  804. struct vfsmount *
  805. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  806. {
  807. struct mount *mnt;
  808. struct dentry *root;
  809. if (!type)
  810. return ERR_PTR(-ENODEV);
  811. mnt = alloc_vfsmnt(name);
  812. if (!mnt)
  813. return ERR_PTR(-ENOMEM);
  814. if (flags & MS_KERNMOUNT)
  815. mnt->mnt.mnt_flags = MNT_INTERNAL;
  816. root = mount_fs(type, flags, name, data);
  817. if (IS_ERR(root)) {
  818. mnt_free_id(mnt);
  819. free_vfsmnt(mnt);
  820. return ERR_CAST(root);
  821. }
  822. mnt->mnt.mnt_root = root;
  823. mnt->mnt.mnt_sb = root->d_sb;
  824. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  825. mnt->mnt_parent = mnt;
  826. lock_mount_hash();
  827. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  828. unlock_mount_hash();
  829. return &mnt->mnt;
  830. }
  831. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  832. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  833. int flag)
  834. {
  835. struct super_block *sb = old->mnt.mnt_sb;
  836. struct mount *mnt;
  837. int err;
  838. mnt = alloc_vfsmnt(old->mnt_devname);
  839. if (!mnt)
  840. return ERR_PTR(-ENOMEM);
  841. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  842. mnt->mnt_group_id = 0; /* not a peer of original */
  843. else
  844. mnt->mnt_group_id = old->mnt_group_id;
  845. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  846. err = mnt_alloc_group_id(mnt);
  847. if (err)
  848. goto out_free;
  849. }
  850. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
  851. /* Don't allow unprivileged users to change mount flags */
  852. if (flag & CL_UNPRIVILEGED) {
  853. mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
  854. if (mnt->mnt.mnt_flags & MNT_READONLY)
  855. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  856. if (mnt->mnt.mnt_flags & MNT_NODEV)
  857. mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
  858. if (mnt->mnt.mnt_flags & MNT_NOSUID)
  859. mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
  860. if (mnt->mnt.mnt_flags & MNT_NOEXEC)
  861. mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
  862. }
  863. /* Don't allow unprivileged users to reveal what is under a mount */
  864. if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
  865. mnt->mnt.mnt_flags |= MNT_LOCKED;
  866. atomic_inc(&sb->s_active);
  867. mnt->mnt.mnt_sb = sb;
  868. mnt->mnt.mnt_root = dget(root);
  869. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  870. mnt->mnt_parent = mnt;
  871. lock_mount_hash();
  872. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  873. unlock_mount_hash();
  874. if ((flag & CL_SLAVE) ||
  875. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  876. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  877. mnt->mnt_master = old;
  878. CLEAR_MNT_SHARED(mnt);
  879. } else if (!(flag & CL_PRIVATE)) {
  880. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  881. list_add(&mnt->mnt_share, &old->mnt_share);
  882. if (IS_MNT_SLAVE(old))
  883. list_add(&mnt->mnt_slave, &old->mnt_slave);
  884. mnt->mnt_master = old->mnt_master;
  885. }
  886. if (flag & CL_MAKE_SHARED)
  887. set_mnt_shared(mnt);
  888. /* stick the duplicate mount on the same expiry list
  889. * as the original if that was on one */
  890. if (flag & CL_EXPIRE) {
  891. if (!list_empty(&old->mnt_expire))
  892. list_add(&mnt->mnt_expire, &old->mnt_expire);
  893. }
  894. return mnt;
  895. out_free:
  896. mnt_free_id(mnt);
  897. free_vfsmnt(mnt);
  898. return ERR_PTR(err);
  899. }
  900. static void cleanup_mnt(struct mount *mnt)
  901. {
  902. /*
  903. * This probably indicates that somebody messed
  904. * up a mnt_want/drop_write() pair. If this
  905. * happens, the filesystem was probably unable
  906. * to make r/w->r/o transitions.
  907. */
  908. /*
  909. * The locking used to deal with mnt_count decrement provides barriers,
  910. * so mnt_get_writers() below is safe.
  911. */
  912. WARN_ON(mnt_get_writers(mnt));
  913. if (unlikely(mnt->mnt_pins.first))
  914. mnt_pin_kill(mnt);
  915. fsnotify_vfsmount_delete(&mnt->mnt);
  916. dput(mnt->mnt.mnt_root);
  917. deactivate_super(mnt->mnt.mnt_sb);
  918. mnt_free_id(mnt);
  919. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  920. }
  921. static void __cleanup_mnt(struct rcu_head *head)
  922. {
  923. cleanup_mnt(container_of(head, struct mount, mnt_rcu));
  924. }
  925. static LLIST_HEAD(delayed_mntput_list);
  926. static void delayed_mntput(struct work_struct *unused)
  927. {
  928. struct llist_node *node = llist_del_all(&delayed_mntput_list);
  929. struct llist_node *next;
  930. for (; node; node = next) {
  931. next = llist_next(node);
  932. cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
  933. }
  934. }
  935. static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
  936. static void mntput_no_expire(struct mount *mnt)
  937. {
  938. rcu_read_lock();
  939. mnt_add_count(mnt, -1);
  940. if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
  941. rcu_read_unlock();
  942. return;
  943. }
  944. lock_mount_hash();
  945. if (mnt_get_count(mnt)) {
  946. rcu_read_unlock();
  947. unlock_mount_hash();
  948. return;
  949. }
  950. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  951. rcu_read_unlock();
  952. unlock_mount_hash();
  953. return;
  954. }
  955. mnt->mnt.mnt_flags |= MNT_DOOMED;
  956. rcu_read_unlock();
  957. list_del(&mnt->mnt_instance);
  958. unlock_mount_hash();
  959. if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
  960. struct task_struct *task = current;
  961. if (likely(!(task->flags & PF_KTHREAD))) {
  962. init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
  963. if (!task_work_add(task, &mnt->mnt_rcu, true))
  964. return;
  965. }
  966. if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
  967. schedule_delayed_work(&delayed_mntput_work, 1);
  968. return;
  969. }
  970. cleanup_mnt(mnt);
  971. }
  972. void mntput(struct vfsmount *mnt)
  973. {
  974. if (mnt) {
  975. struct mount *m = real_mount(mnt);
  976. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  977. if (unlikely(m->mnt_expiry_mark))
  978. m->mnt_expiry_mark = 0;
  979. mntput_no_expire(m);
  980. }
  981. }
  982. EXPORT_SYMBOL(mntput);
  983. struct vfsmount *mntget(struct vfsmount *mnt)
  984. {
  985. if (mnt)
  986. mnt_add_count(real_mount(mnt), 1);
  987. return mnt;
  988. }
  989. EXPORT_SYMBOL(mntget);
  990. struct vfsmount *mnt_clone_internal(struct path *path)
  991. {
  992. struct mount *p;
  993. p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
  994. if (IS_ERR(p))
  995. return ERR_CAST(p);
  996. p->mnt.mnt_flags |= MNT_INTERNAL;
  997. return &p->mnt;
  998. }
  999. static inline void mangle(struct seq_file *m, const char *s)
  1000. {
  1001. seq_escape(m, s, " \t\n\\");
  1002. }
  1003. /*
  1004. * Simple .show_options callback for filesystems which don't want to
  1005. * implement more complex mount option showing.
  1006. *
  1007. * See also save_mount_options().
  1008. */
  1009. int generic_show_options(struct seq_file *m, struct dentry *root)
  1010. {
  1011. const char *options;
  1012. rcu_read_lock();
  1013. options = rcu_dereference(root->d_sb->s_options);
  1014. if (options != NULL && options[0]) {
  1015. seq_putc(m, ',');
  1016. mangle(m, options);
  1017. }
  1018. rcu_read_unlock();
  1019. return 0;
  1020. }
  1021. EXPORT_SYMBOL(generic_show_options);
  1022. /*
  1023. * If filesystem uses generic_show_options(), this function should be
  1024. * called from the fill_super() callback.
  1025. *
  1026. * The .remount_fs callback usually needs to be handled in a special
  1027. * way, to make sure, that previous options are not overwritten if the
  1028. * remount fails.
  1029. *
  1030. * Also note, that if the filesystem's .remount_fs function doesn't
  1031. * reset all options to their default value, but changes only newly
  1032. * given options, then the displayed options will not reflect reality
  1033. * any more.
  1034. */
  1035. void save_mount_options(struct super_block *sb, char *options)
  1036. {
  1037. BUG_ON(sb->s_options);
  1038. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  1039. }
  1040. EXPORT_SYMBOL(save_mount_options);
  1041. void replace_mount_options(struct super_block *sb, char *options)
  1042. {
  1043. char *old = sb->s_options;
  1044. rcu_assign_pointer(sb->s_options, options);
  1045. if (old) {
  1046. synchronize_rcu();
  1047. kfree(old);
  1048. }
  1049. }
  1050. EXPORT_SYMBOL(replace_mount_options);
  1051. #ifdef CONFIG_PROC_FS
  1052. /* iterator; we want it to have access to namespace_sem, thus here... */
  1053. static void *m_start(struct seq_file *m, loff_t *pos)
  1054. {
  1055. struct proc_mounts *p = proc_mounts(m);
  1056. down_read(&namespace_sem);
  1057. if (p->cached_event == p->ns->event) {
  1058. void *v = p->cached_mount;
  1059. if (*pos == p->cached_index)
  1060. return v;
  1061. if (*pos == p->cached_index + 1) {
  1062. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  1063. return p->cached_mount = v;
  1064. }
  1065. }
  1066. p->cached_event = p->ns->event;
  1067. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  1068. p->cached_index = *pos;
  1069. return p->cached_mount;
  1070. }
  1071. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  1072. {
  1073. struct proc_mounts *p = proc_mounts(m);
  1074. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  1075. p->cached_index = *pos;
  1076. return p->cached_mount;
  1077. }
  1078. static void m_stop(struct seq_file *m, void *v)
  1079. {
  1080. up_read(&namespace_sem);
  1081. }
  1082. static int m_show(struct seq_file *m, void *v)
  1083. {
  1084. struct proc_mounts *p = proc_mounts(m);
  1085. struct mount *r = list_entry(v, struct mount, mnt_list);
  1086. return p->show(m, &r->mnt);
  1087. }
  1088. const struct seq_operations mounts_op = {
  1089. .start = m_start,
  1090. .next = m_next,
  1091. .stop = m_stop,
  1092. .show = m_show,
  1093. };
  1094. #endif /* CONFIG_PROC_FS */
  1095. /**
  1096. * may_umount_tree - check if a mount tree is busy
  1097. * @mnt: root of mount tree
  1098. *
  1099. * This is called to check if a tree of mounts has any
  1100. * open files, pwds, chroots or sub mounts that are
  1101. * busy.
  1102. */
  1103. int may_umount_tree(struct vfsmount *m)
  1104. {
  1105. struct mount *mnt = real_mount(m);
  1106. int actual_refs = 0;
  1107. int minimum_refs = 0;
  1108. struct mount *p;
  1109. BUG_ON(!m);
  1110. /* write lock needed for mnt_get_count */
  1111. lock_mount_hash();
  1112. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1113. actual_refs += mnt_get_count(p);
  1114. minimum_refs += 2;
  1115. }
  1116. unlock_mount_hash();
  1117. if (actual_refs > minimum_refs)
  1118. return 0;
  1119. return 1;
  1120. }
  1121. EXPORT_SYMBOL(may_umount_tree);
  1122. /**
  1123. * may_umount - check if a mount point is busy
  1124. * @mnt: root of mount
  1125. *
  1126. * This is called to check if a mount point has any
  1127. * open files, pwds, chroots or sub mounts. If the
  1128. * mount has sub mounts this will return busy
  1129. * regardless of whether the sub mounts are busy.
  1130. *
  1131. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1132. * give false negatives. The main reason why it's here is that we need
  1133. * a non-destructive way to look for easily umountable filesystems.
  1134. */
  1135. int may_umount(struct vfsmount *mnt)
  1136. {
  1137. int ret = 1;
  1138. down_read(&namespace_sem);
  1139. lock_mount_hash();
  1140. if (propagate_mount_busy(real_mount(mnt), 2))
  1141. ret = 0;
  1142. unlock_mount_hash();
  1143. up_read(&namespace_sem);
  1144. return ret;
  1145. }
  1146. EXPORT_SYMBOL(may_umount);
  1147. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1148. static void namespace_unlock(void)
  1149. {
  1150. struct mount *mnt;
  1151. struct hlist_head head = unmounted;
  1152. if (likely(hlist_empty(&head))) {
  1153. up_write(&namespace_sem);
  1154. return;
  1155. }
  1156. head.first->pprev = &head.first;
  1157. INIT_HLIST_HEAD(&unmounted);
  1158. /* undo decrements we'd done in umount_tree() */
  1159. hlist_for_each_entry(mnt, &head, mnt_hash)
  1160. if (mnt->mnt_ex_mountpoint.mnt)
  1161. mntget(mnt->mnt_ex_mountpoint.mnt);
  1162. up_write(&namespace_sem);
  1163. synchronize_rcu();
  1164. while (!hlist_empty(&head)) {
  1165. mnt = hlist_entry(head.first, struct mount, mnt_hash);
  1166. hlist_del_init(&mnt->mnt_hash);
  1167. if (mnt->mnt_ex_mountpoint.mnt)
  1168. path_put(&mnt->mnt_ex_mountpoint);
  1169. mntput(&mnt->mnt);
  1170. }
  1171. }
  1172. static inline void namespace_lock(void)
  1173. {
  1174. down_write(&namespace_sem);
  1175. }
  1176. enum umount_tree_flags {
  1177. UMOUNT_SYNC = 1,
  1178. UMOUNT_PROPAGATE = 2,
  1179. };
  1180. /*
  1181. * mount_lock must be held
  1182. * namespace_sem must be held for write
  1183. */
  1184. static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
  1185. {
  1186. HLIST_HEAD(tmp_list);
  1187. struct mount *p;
  1188. struct mount *last = NULL;
  1189. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1190. hlist_del_init_rcu(&p->mnt_hash);
  1191. hlist_add_head(&p->mnt_hash, &tmp_list);
  1192. }
  1193. hlist_for_each_entry(p, &tmp_list, mnt_hash)
  1194. list_del_init(&p->mnt_child);
  1195. if (how & UMOUNT_PROPAGATE)
  1196. propagate_umount(&tmp_list);
  1197. hlist_for_each_entry(p, &tmp_list, mnt_hash) {
  1198. list_del_init(&p->mnt_expire);
  1199. list_del_init(&p->mnt_list);
  1200. __touch_mnt_namespace(p->mnt_ns);
  1201. p->mnt_ns = NULL;
  1202. if (how & UMOUNT_SYNC)
  1203. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1204. if (mnt_has_parent(p)) {
  1205. hlist_del_init(&p->mnt_mp_list);
  1206. put_mountpoint(p->mnt_mp);
  1207. mnt_add_count(p->mnt_parent, -1);
  1208. /* move the reference to mountpoint into ->mnt_ex_mountpoint */
  1209. p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
  1210. p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
  1211. p->mnt_mountpoint = p->mnt.mnt_root;
  1212. p->mnt_parent = p;
  1213. p->mnt_mp = NULL;
  1214. }
  1215. change_mnt_propagation(p, MS_PRIVATE);
  1216. last = p;
  1217. }
  1218. if (last) {
  1219. last->mnt_hash.next = unmounted.first;
  1220. if (unmounted.first)
  1221. unmounted.first->pprev = &last->mnt_hash.next;
  1222. unmounted.first = tmp_list.first;
  1223. unmounted.first->pprev = &unmounted.first;
  1224. }
  1225. }
  1226. static void shrink_submounts(struct mount *mnt);
  1227. static int do_umount(struct mount *mnt, int flags)
  1228. {
  1229. struct super_block *sb = mnt->mnt.mnt_sb;
  1230. int retval;
  1231. retval = security_sb_umount(&mnt->mnt, flags);
  1232. if (retval)
  1233. return retval;
  1234. /*
  1235. * Allow userspace to request a mountpoint be expired rather than
  1236. * unmounting unconditionally. Unmount only happens if:
  1237. * (1) the mark is already set (the mark is cleared by mntput())
  1238. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1239. */
  1240. if (flags & MNT_EXPIRE) {
  1241. if (&mnt->mnt == current->fs->root.mnt ||
  1242. flags & (MNT_FORCE | MNT_DETACH))
  1243. return -EINVAL;
  1244. /*
  1245. * probably don't strictly need the lock here if we examined
  1246. * all race cases, but it's a slowpath.
  1247. */
  1248. lock_mount_hash();
  1249. if (mnt_get_count(mnt) != 2) {
  1250. unlock_mount_hash();
  1251. return -EBUSY;
  1252. }
  1253. unlock_mount_hash();
  1254. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1255. return -EAGAIN;
  1256. }
  1257. /*
  1258. * If we may have to abort operations to get out of this
  1259. * mount, and they will themselves hold resources we must
  1260. * allow the fs to do things. In the Unix tradition of
  1261. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1262. * might fail to complete on the first run through as other tasks
  1263. * must return, and the like. Thats for the mount program to worry
  1264. * about for the moment.
  1265. */
  1266. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1267. sb->s_op->umount_begin(sb);
  1268. }
  1269. /*
  1270. * No sense to grab the lock for this test, but test itself looks
  1271. * somewhat bogus. Suggestions for better replacement?
  1272. * Ho-hum... In principle, we might treat that as umount + switch
  1273. * to rootfs. GC would eventually take care of the old vfsmount.
  1274. * Actually it makes sense, especially if rootfs would contain a
  1275. * /reboot - static binary that would close all descriptors and
  1276. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1277. */
  1278. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1279. /*
  1280. * Special case for "unmounting" root ...
  1281. * we just try to remount it readonly.
  1282. */
  1283. if (!capable(CAP_SYS_ADMIN))
  1284. return -EPERM;
  1285. down_write(&sb->s_umount);
  1286. if (!(sb->s_flags & MS_RDONLY))
  1287. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1288. up_write(&sb->s_umount);
  1289. return retval;
  1290. }
  1291. namespace_lock();
  1292. lock_mount_hash();
  1293. event++;
  1294. if (flags & MNT_DETACH) {
  1295. if (!list_empty(&mnt->mnt_list))
  1296. umount_tree(mnt, UMOUNT_PROPAGATE);
  1297. retval = 0;
  1298. } else {
  1299. shrink_submounts(mnt);
  1300. retval = -EBUSY;
  1301. if (!propagate_mount_busy(mnt, 2)) {
  1302. if (!list_empty(&mnt->mnt_list))
  1303. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  1304. retval = 0;
  1305. }
  1306. }
  1307. unlock_mount_hash();
  1308. namespace_unlock();
  1309. return retval;
  1310. }
  1311. /*
  1312. * __detach_mounts - lazily unmount all mounts on the specified dentry
  1313. *
  1314. * During unlink, rmdir, and d_drop it is possible to loose the path
  1315. * to an existing mountpoint, and wind up leaking the mount.
  1316. * detach_mounts allows lazily unmounting those mounts instead of
  1317. * leaking them.
  1318. *
  1319. * The caller may hold dentry->d_inode->i_mutex.
  1320. */
  1321. void __detach_mounts(struct dentry *dentry)
  1322. {
  1323. struct mountpoint *mp;
  1324. struct mount *mnt;
  1325. namespace_lock();
  1326. mp = lookup_mountpoint(dentry);
  1327. if (IS_ERR_OR_NULL(mp))
  1328. goto out_unlock;
  1329. lock_mount_hash();
  1330. while (!hlist_empty(&mp->m_list)) {
  1331. mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
  1332. umount_tree(mnt, 0);
  1333. }
  1334. unlock_mount_hash();
  1335. put_mountpoint(mp);
  1336. out_unlock:
  1337. namespace_unlock();
  1338. }
  1339. /*
  1340. * Is the caller allowed to modify his namespace?
  1341. */
  1342. static inline bool may_mount(void)
  1343. {
  1344. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1345. }
  1346. /*
  1347. * Now umount can handle mount points as well as block devices.
  1348. * This is important for filesystems which use unnamed block devices.
  1349. *
  1350. * We now support a flag for forced unmount like the other 'big iron'
  1351. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1352. */
  1353. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1354. {
  1355. struct path path;
  1356. struct mount *mnt;
  1357. int retval;
  1358. int lookup_flags = 0;
  1359. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1360. return -EINVAL;
  1361. if (!may_mount())
  1362. return -EPERM;
  1363. if (!(flags & UMOUNT_NOFOLLOW))
  1364. lookup_flags |= LOOKUP_FOLLOW;
  1365. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1366. if (retval)
  1367. goto out;
  1368. mnt = real_mount(path.mnt);
  1369. retval = -EINVAL;
  1370. if (path.dentry != path.mnt->mnt_root)
  1371. goto dput_and_out;
  1372. if (!check_mnt(mnt))
  1373. goto dput_and_out;
  1374. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1375. goto dput_and_out;
  1376. retval = -EPERM;
  1377. if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
  1378. goto dput_and_out;
  1379. retval = do_umount(mnt, flags);
  1380. dput_and_out:
  1381. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1382. dput(path.dentry);
  1383. mntput_no_expire(mnt);
  1384. out:
  1385. return retval;
  1386. }
  1387. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1388. /*
  1389. * The 2.0 compatible umount. No flags.
  1390. */
  1391. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1392. {
  1393. return sys_umount(name, 0);
  1394. }
  1395. #endif
  1396. static bool is_mnt_ns_file(struct dentry *dentry)
  1397. {
  1398. /* Is this a proxy for a mount namespace? */
  1399. struct inode *inode = dentry->d_inode;
  1400. struct proc_ns *ei;
  1401. if (!proc_ns_inode(inode))
  1402. return false;
  1403. ei = get_proc_ns(inode);
  1404. if (ei->ns_ops != &mntns_operations)
  1405. return false;
  1406. return true;
  1407. }
  1408. static bool mnt_ns_loop(struct dentry *dentry)
  1409. {
  1410. /* Could bind mounting the mount namespace inode cause a
  1411. * mount namespace loop?
  1412. */
  1413. struct mnt_namespace *mnt_ns;
  1414. if (!is_mnt_ns_file(dentry))
  1415. return false;
  1416. mnt_ns = get_proc_ns(dentry->d_inode)->ns;
  1417. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1418. }
  1419. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1420. int flag)
  1421. {
  1422. struct mount *res, *p, *q, *r, *parent;
  1423. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1424. return ERR_PTR(-EINVAL);
  1425. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1426. return ERR_PTR(-EINVAL);
  1427. res = q = clone_mnt(mnt, dentry, flag);
  1428. if (IS_ERR(q))
  1429. return q;
  1430. q->mnt.mnt_flags &= ~MNT_LOCKED;
  1431. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1432. p = mnt;
  1433. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1434. struct mount *s;
  1435. if (!is_subdir(r->mnt_mountpoint, dentry))
  1436. continue;
  1437. for (s = r; s; s = next_mnt(s, r)) {
  1438. struct mount *t = NULL;
  1439. if (!(flag & CL_COPY_UNBINDABLE) &&
  1440. IS_MNT_UNBINDABLE(s)) {
  1441. s = skip_mnt_tree(s);
  1442. continue;
  1443. }
  1444. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1445. is_mnt_ns_file(s->mnt.mnt_root)) {
  1446. s = skip_mnt_tree(s);
  1447. continue;
  1448. }
  1449. while (p != s->mnt_parent) {
  1450. p = p->mnt_parent;
  1451. q = q->mnt_parent;
  1452. }
  1453. p = s;
  1454. parent = q;
  1455. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1456. if (IS_ERR(q))
  1457. goto out;
  1458. lock_mount_hash();
  1459. list_add_tail(&q->mnt_list, &res->mnt_list);
  1460. mnt_set_mountpoint(parent, p->mnt_mp, q);
  1461. if (!list_empty(&parent->mnt_mounts)) {
  1462. t = list_last_entry(&parent->mnt_mounts,
  1463. struct mount, mnt_child);
  1464. if (t->mnt_mp != p->mnt_mp)
  1465. t = NULL;
  1466. }
  1467. attach_shadowed(q, parent, t);
  1468. unlock_mount_hash();
  1469. }
  1470. }
  1471. return res;
  1472. out:
  1473. if (res) {
  1474. lock_mount_hash();
  1475. umount_tree(res, UMOUNT_SYNC);
  1476. unlock_mount_hash();
  1477. }
  1478. return q;
  1479. }
  1480. /* Caller should check returned pointer for errors */
  1481. struct vfsmount *collect_mounts(struct path *path)
  1482. {
  1483. struct mount *tree;
  1484. namespace_lock();
  1485. if (!check_mnt(real_mount(path->mnt)))
  1486. tree = ERR_PTR(-EINVAL);
  1487. else
  1488. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1489. CL_COPY_ALL | CL_PRIVATE);
  1490. namespace_unlock();
  1491. if (IS_ERR(tree))
  1492. return ERR_CAST(tree);
  1493. return &tree->mnt;
  1494. }
  1495. void drop_collected_mounts(struct vfsmount *mnt)
  1496. {
  1497. namespace_lock();
  1498. lock_mount_hash();
  1499. umount_tree(real_mount(mnt), UMOUNT_SYNC);
  1500. unlock_mount_hash();
  1501. namespace_unlock();
  1502. }
  1503. /**
  1504. * clone_private_mount - create a private clone of a path
  1505. *
  1506. * This creates a new vfsmount, which will be the clone of @path. The new will
  1507. * not be attached anywhere in the namespace and will be private (i.e. changes
  1508. * to the originating mount won't be propagated into this).
  1509. *
  1510. * Release with mntput().
  1511. */
  1512. struct vfsmount *clone_private_mount(struct path *path)
  1513. {
  1514. struct mount *old_mnt = real_mount(path->mnt);
  1515. struct mount *new_mnt;
  1516. if (IS_MNT_UNBINDABLE(old_mnt))
  1517. return ERR_PTR(-EINVAL);
  1518. down_read(&namespace_sem);
  1519. new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
  1520. up_read(&namespace_sem);
  1521. if (IS_ERR(new_mnt))
  1522. return ERR_CAST(new_mnt);
  1523. return &new_mnt->mnt;
  1524. }
  1525. EXPORT_SYMBOL_GPL(clone_private_mount);
  1526. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1527. struct vfsmount *root)
  1528. {
  1529. struct mount *mnt;
  1530. int res = f(root, arg);
  1531. if (res)
  1532. return res;
  1533. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1534. res = f(&mnt->mnt, arg);
  1535. if (res)
  1536. return res;
  1537. }
  1538. return 0;
  1539. }
  1540. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1541. {
  1542. struct mount *p;
  1543. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1544. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1545. mnt_release_group_id(p);
  1546. }
  1547. }
  1548. static int invent_group_ids(struct mount *mnt, bool recurse)
  1549. {
  1550. struct mount *p;
  1551. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1552. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1553. int err = mnt_alloc_group_id(p);
  1554. if (err) {
  1555. cleanup_group_ids(mnt, p);
  1556. return err;
  1557. }
  1558. }
  1559. }
  1560. return 0;
  1561. }
  1562. /*
  1563. * @source_mnt : mount tree to be attached
  1564. * @nd : place the mount tree @source_mnt is attached
  1565. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1566. * store the parent mount and mountpoint dentry.
  1567. * (done when source_mnt is moved)
  1568. *
  1569. * NOTE: in the table below explains the semantics when a source mount
  1570. * of a given type is attached to a destination mount of a given type.
  1571. * ---------------------------------------------------------------------------
  1572. * | BIND MOUNT OPERATION |
  1573. * |**************************************************************************
  1574. * | source-->| shared | private | slave | unbindable |
  1575. * | dest | | | | |
  1576. * | | | | | | |
  1577. * | v | | | | |
  1578. * |**************************************************************************
  1579. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1580. * | | | | | |
  1581. * |non-shared| shared (+) | private | slave (*) | invalid |
  1582. * ***************************************************************************
  1583. * A bind operation clones the source mount and mounts the clone on the
  1584. * destination mount.
  1585. *
  1586. * (++) the cloned mount is propagated to all the mounts in the propagation
  1587. * tree of the destination mount and the cloned mount is added to
  1588. * the peer group of the source mount.
  1589. * (+) the cloned mount is created under the destination mount and is marked
  1590. * as shared. The cloned mount is added to the peer group of the source
  1591. * mount.
  1592. * (+++) the mount is propagated to all the mounts in the propagation tree
  1593. * of the destination mount and the cloned mount is made slave
  1594. * of the same master as that of the source mount. The cloned mount
  1595. * is marked as 'shared and slave'.
  1596. * (*) the cloned mount is made a slave of the same master as that of the
  1597. * source mount.
  1598. *
  1599. * ---------------------------------------------------------------------------
  1600. * | MOVE MOUNT OPERATION |
  1601. * |**************************************************************************
  1602. * | source-->| shared | private | slave | unbindable |
  1603. * | dest | | | | |
  1604. * | | | | | | |
  1605. * | v | | | | |
  1606. * |**************************************************************************
  1607. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1608. * | | | | | |
  1609. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1610. * ***************************************************************************
  1611. *
  1612. * (+) the mount is moved to the destination. And is then propagated to
  1613. * all the mounts in the propagation tree of the destination mount.
  1614. * (+*) the mount is moved to the destination.
  1615. * (+++) the mount is moved to the destination and is then propagated to
  1616. * all the mounts belonging to the destination mount's propagation tree.
  1617. * the mount is marked as 'shared and slave'.
  1618. * (*) the mount continues to be a slave at the new location.
  1619. *
  1620. * if the source mount is a tree, the operations explained above is
  1621. * applied to each mount in the tree.
  1622. * Must be called without spinlocks held, since this function can sleep
  1623. * in allocations.
  1624. */
  1625. static int attach_recursive_mnt(struct mount *source_mnt,
  1626. struct mount *dest_mnt,
  1627. struct mountpoint *dest_mp,
  1628. struct path *parent_path)
  1629. {
  1630. HLIST_HEAD(tree_list);
  1631. struct mount *child, *p;
  1632. struct hlist_node *n;
  1633. int err;
  1634. if (IS_MNT_SHARED(dest_mnt)) {
  1635. err = invent_group_ids(source_mnt, true);
  1636. if (err)
  1637. goto out;
  1638. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1639. lock_mount_hash();
  1640. if (err)
  1641. goto out_cleanup_ids;
  1642. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1643. set_mnt_shared(p);
  1644. } else {
  1645. lock_mount_hash();
  1646. }
  1647. if (parent_path) {
  1648. detach_mnt(source_mnt, parent_path);
  1649. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1650. touch_mnt_namespace(source_mnt->mnt_ns);
  1651. } else {
  1652. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1653. commit_tree(source_mnt, NULL);
  1654. }
  1655. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1656. struct mount *q;
  1657. hlist_del_init(&child->mnt_hash);
  1658. q = __lookup_mnt_last(&child->mnt_parent->mnt,
  1659. child->mnt_mountpoint);
  1660. commit_tree(child, q);
  1661. }
  1662. unlock_mount_hash();
  1663. return 0;
  1664. out_cleanup_ids:
  1665. while (!hlist_empty(&tree_list)) {
  1666. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1667. umount_tree(child, UMOUNT_SYNC);
  1668. }
  1669. unlock_mount_hash();
  1670. cleanup_group_ids(source_mnt, NULL);
  1671. out:
  1672. return err;
  1673. }
  1674. static struct mountpoint *lock_mount(struct path *path)
  1675. {
  1676. struct vfsmount *mnt;
  1677. struct dentry *dentry = path->dentry;
  1678. retry:
  1679. mutex_lock(&dentry->d_inode->i_mutex);
  1680. if (unlikely(cant_mount(dentry))) {
  1681. mutex_unlock(&dentry->d_inode->i_mutex);
  1682. return ERR_PTR(-ENOENT);
  1683. }
  1684. namespace_lock();
  1685. mnt = lookup_mnt(path);
  1686. if (likely(!mnt)) {
  1687. struct mountpoint *mp = lookup_mountpoint(dentry);
  1688. if (!mp)
  1689. mp = new_mountpoint(dentry);
  1690. if (IS_ERR(mp)) {
  1691. namespace_unlock();
  1692. mutex_unlock(&dentry->d_inode->i_mutex);
  1693. return mp;
  1694. }
  1695. return mp;
  1696. }
  1697. namespace_unlock();
  1698. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1699. path_put(path);
  1700. path->mnt = mnt;
  1701. dentry = path->dentry = dget(mnt->mnt_root);
  1702. goto retry;
  1703. }
  1704. static void unlock_mount(struct mountpoint *where)
  1705. {
  1706. struct dentry *dentry = where->m_dentry;
  1707. put_mountpoint(where);
  1708. namespace_unlock();
  1709. mutex_unlock(&dentry->d_inode->i_mutex);
  1710. }
  1711. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1712. {
  1713. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1714. return -EINVAL;
  1715. if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
  1716. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1717. return -ENOTDIR;
  1718. return attach_recursive_mnt(mnt, p, mp, NULL);
  1719. }
  1720. /*
  1721. * Sanity check the flags to change_mnt_propagation.
  1722. */
  1723. static int flags_to_propagation_type(int flags)
  1724. {
  1725. int type = flags & ~(MS_REC | MS_SILENT);
  1726. /* Fail if any non-propagation flags are set */
  1727. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1728. return 0;
  1729. /* Only one propagation flag should be set */
  1730. if (!is_power_of_2(type))
  1731. return 0;
  1732. return type;
  1733. }
  1734. /*
  1735. * recursively change the type of the mountpoint.
  1736. */
  1737. static int do_change_type(struct path *path, int flag)
  1738. {
  1739. struct mount *m;
  1740. struct mount *mnt = real_mount(path->mnt);
  1741. int recurse = flag & MS_REC;
  1742. int type;
  1743. int err = 0;
  1744. if (path->dentry != path->mnt->mnt_root)
  1745. return -EINVAL;
  1746. type = flags_to_propagation_type(flag);
  1747. if (!type)
  1748. return -EINVAL;
  1749. namespace_lock();
  1750. if (type == MS_SHARED) {
  1751. err = invent_group_ids(mnt, recurse);
  1752. if (err)
  1753. goto out_unlock;
  1754. }
  1755. lock_mount_hash();
  1756. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1757. change_mnt_propagation(m, type);
  1758. unlock_mount_hash();
  1759. out_unlock:
  1760. namespace_unlock();
  1761. return err;
  1762. }
  1763. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1764. {
  1765. struct mount *child;
  1766. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1767. if (!is_subdir(child->mnt_mountpoint, dentry))
  1768. continue;
  1769. if (child->mnt.mnt_flags & MNT_LOCKED)
  1770. return true;
  1771. }
  1772. return false;
  1773. }
  1774. /*
  1775. * do loopback mount.
  1776. */
  1777. static int do_loopback(struct path *path, const char *old_name,
  1778. int recurse)
  1779. {
  1780. struct path old_path;
  1781. struct mount *mnt = NULL, *old, *parent;
  1782. struct mountpoint *mp;
  1783. int err;
  1784. if (!old_name || !*old_name)
  1785. return -EINVAL;
  1786. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1787. if (err)
  1788. return err;
  1789. err = -EINVAL;
  1790. if (mnt_ns_loop(old_path.dentry))
  1791. goto out;
  1792. mp = lock_mount(path);
  1793. err = PTR_ERR(mp);
  1794. if (IS_ERR(mp))
  1795. goto out;
  1796. old = real_mount(old_path.mnt);
  1797. parent = real_mount(path->mnt);
  1798. err = -EINVAL;
  1799. if (IS_MNT_UNBINDABLE(old))
  1800. goto out2;
  1801. if (!check_mnt(parent) || !check_mnt(old))
  1802. goto out2;
  1803. if (!recurse && has_locked_children(old, old_path.dentry))
  1804. goto out2;
  1805. if (recurse)
  1806. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1807. else
  1808. mnt = clone_mnt(old, old_path.dentry, 0);
  1809. if (IS_ERR(mnt)) {
  1810. err = PTR_ERR(mnt);
  1811. goto out2;
  1812. }
  1813. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1814. err = graft_tree(mnt, parent, mp);
  1815. if (err) {
  1816. lock_mount_hash();
  1817. umount_tree(mnt, UMOUNT_SYNC);
  1818. unlock_mount_hash();
  1819. }
  1820. out2:
  1821. unlock_mount(mp);
  1822. out:
  1823. path_put(&old_path);
  1824. return err;
  1825. }
  1826. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1827. {
  1828. int error = 0;
  1829. int readonly_request = 0;
  1830. if (ms_flags & MS_RDONLY)
  1831. readonly_request = 1;
  1832. if (readonly_request == __mnt_is_readonly(mnt))
  1833. return 0;
  1834. if (readonly_request)
  1835. error = mnt_make_readonly(real_mount(mnt));
  1836. else
  1837. __mnt_unmake_readonly(real_mount(mnt));
  1838. return error;
  1839. }
  1840. /*
  1841. * change filesystem flags. dir should be a physical root of filesystem.
  1842. * If you've mounted a non-root directory somewhere and want to do remount
  1843. * on it - tough luck.
  1844. */
  1845. static int do_remount(struct path *path, int flags, int mnt_flags,
  1846. void *data)
  1847. {
  1848. int err;
  1849. struct super_block *sb = path->mnt->mnt_sb;
  1850. struct mount *mnt = real_mount(path->mnt);
  1851. if (!check_mnt(mnt))
  1852. return -EINVAL;
  1853. if (path->dentry != path->mnt->mnt_root)
  1854. return -EINVAL;
  1855. /* Don't allow changing of locked mnt flags.
  1856. *
  1857. * No locks need to be held here while testing the various
  1858. * MNT_LOCK flags because those flags can never be cleared
  1859. * once they are set.
  1860. */
  1861. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  1862. !(mnt_flags & MNT_READONLY)) {
  1863. return -EPERM;
  1864. }
  1865. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  1866. !(mnt_flags & MNT_NODEV)) {
  1867. /* Was the nodev implicitly added in mount? */
  1868. if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
  1869. !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  1870. mnt_flags |= MNT_NODEV;
  1871. } else {
  1872. return -EPERM;
  1873. }
  1874. }
  1875. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
  1876. !(mnt_flags & MNT_NOSUID)) {
  1877. return -EPERM;
  1878. }
  1879. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
  1880. !(mnt_flags & MNT_NOEXEC)) {
  1881. return -EPERM;
  1882. }
  1883. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  1884. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
  1885. return -EPERM;
  1886. }
  1887. err = security_sb_remount(sb, data);
  1888. if (err)
  1889. return err;
  1890. down_write(&sb->s_umount);
  1891. if (flags & MS_BIND)
  1892. err = change_mount_flags(path->mnt, flags);
  1893. else if (!capable(CAP_SYS_ADMIN))
  1894. err = -EPERM;
  1895. else
  1896. err = do_remount_sb(sb, flags, data, 0);
  1897. if (!err) {
  1898. lock_mount_hash();
  1899. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  1900. mnt->mnt.mnt_flags = mnt_flags;
  1901. touch_mnt_namespace(mnt->mnt_ns);
  1902. unlock_mount_hash();
  1903. }
  1904. up_write(&sb->s_umount);
  1905. return err;
  1906. }
  1907. static inline int tree_contains_unbindable(struct mount *mnt)
  1908. {
  1909. struct mount *p;
  1910. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1911. if (IS_MNT_UNBINDABLE(p))
  1912. return 1;
  1913. }
  1914. return 0;
  1915. }
  1916. static int do_move_mount(struct path *path, const char *old_name)
  1917. {
  1918. struct path old_path, parent_path;
  1919. struct mount *p;
  1920. struct mount *old;
  1921. struct mountpoint *mp;
  1922. int err;
  1923. if (!old_name || !*old_name)
  1924. return -EINVAL;
  1925. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1926. if (err)
  1927. return err;
  1928. mp = lock_mount(path);
  1929. err = PTR_ERR(mp);
  1930. if (IS_ERR(mp))
  1931. goto out;
  1932. old = real_mount(old_path.mnt);
  1933. p = real_mount(path->mnt);
  1934. err = -EINVAL;
  1935. if (!check_mnt(p) || !check_mnt(old))
  1936. goto out1;
  1937. if (old->mnt.mnt_flags & MNT_LOCKED)
  1938. goto out1;
  1939. err = -EINVAL;
  1940. if (old_path.dentry != old_path.mnt->mnt_root)
  1941. goto out1;
  1942. if (!mnt_has_parent(old))
  1943. goto out1;
  1944. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1945. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1946. goto out1;
  1947. /*
  1948. * Don't move a mount residing in a shared parent.
  1949. */
  1950. if (IS_MNT_SHARED(old->mnt_parent))
  1951. goto out1;
  1952. /*
  1953. * Don't move a mount tree containing unbindable mounts to a destination
  1954. * mount which is shared.
  1955. */
  1956. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1957. goto out1;
  1958. err = -ELOOP;
  1959. for (; mnt_has_parent(p); p = p->mnt_parent)
  1960. if (p == old)
  1961. goto out1;
  1962. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  1963. if (err)
  1964. goto out1;
  1965. /* if the mount is moved, it should no longer be expire
  1966. * automatically */
  1967. list_del_init(&old->mnt_expire);
  1968. out1:
  1969. unlock_mount(mp);
  1970. out:
  1971. if (!err)
  1972. path_put(&parent_path);
  1973. path_put(&old_path);
  1974. return err;
  1975. }
  1976. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1977. {
  1978. int err;
  1979. const char *subtype = strchr(fstype, '.');
  1980. if (subtype) {
  1981. subtype++;
  1982. err = -EINVAL;
  1983. if (!subtype[0])
  1984. goto err;
  1985. } else
  1986. subtype = "";
  1987. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1988. err = -ENOMEM;
  1989. if (!mnt->mnt_sb->s_subtype)
  1990. goto err;
  1991. return mnt;
  1992. err:
  1993. mntput(mnt);
  1994. return ERR_PTR(err);
  1995. }
  1996. /*
  1997. * add a mount into a namespace's mount tree
  1998. */
  1999. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  2000. {
  2001. struct mountpoint *mp;
  2002. struct mount *parent;
  2003. int err;
  2004. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  2005. mp = lock_mount(path);
  2006. if (IS_ERR(mp))
  2007. return PTR_ERR(mp);
  2008. parent = real_mount(path->mnt);
  2009. err = -EINVAL;
  2010. if (unlikely(!check_mnt(parent))) {
  2011. /* that's acceptable only for automounts done in private ns */
  2012. if (!(mnt_flags & MNT_SHRINKABLE))
  2013. goto unlock;
  2014. /* ... and for those we'd better have mountpoint still alive */
  2015. if (!parent->mnt_ns)
  2016. goto unlock;
  2017. }
  2018. /* Refuse the same filesystem on the same mount point */
  2019. err = -EBUSY;
  2020. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  2021. path->mnt->mnt_root == path->dentry)
  2022. goto unlock;
  2023. err = -EINVAL;
  2024. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  2025. goto unlock;
  2026. newmnt->mnt.mnt_flags = mnt_flags;
  2027. err = graft_tree(newmnt, parent, mp);
  2028. unlock:
  2029. unlock_mount(mp);
  2030. return err;
  2031. }
  2032. static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
  2033. /*
  2034. * create a new mount for userspace and request it to be added into the
  2035. * namespace's tree
  2036. */
  2037. static int do_new_mount(struct path *path, const char *fstype, int flags,
  2038. int mnt_flags, const char *name, void *data)
  2039. {
  2040. struct file_system_type *type;
  2041. struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
  2042. struct vfsmount *mnt;
  2043. int err;
  2044. if (!fstype)
  2045. return -EINVAL;
  2046. type = get_fs_type(fstype);
  2047. if (!type)
  2048. return -ENODEV;
  2049. if (user_ns != &init_user_ns) {
  2050. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  2051. put_filesystem(type);
  2052. return -EPERM;
  2053. }
  2054. /* Only in special cases allow devices from mounts
  2055. * created outside the initial user namespace.
  2056. */
  2057. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  2058. flags |= MS_NODEV;
  2059. mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
  2060. }
  2061. if (type->fs_flags & FS_USERNS_VISIBLE) {
  2062. if (!fs_fully_visible(type, &mnt_flags))
  2063. return -EPERM;
  2064. }
  2065. }
  2066. mnt = vfs_kern_mount(type, flags, name, data);
  2067. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  2068. !mnt->mnt_sb->s_subtype)
  2069. mnt = fs_set_subtype(mnt, fstype);
  2070. put_filesystem(type);
  2071. if (IS_ERR(mnt))
  2072. return PTR_ERR(mnt);
  2073. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  2074. if (err)
  2075. mntput(mnt);
  2076. return err;
  2077. }
  2078. int finish_automount(struct vfsmount *m, struct path *path)
  2079. {
  2080. struct mount *mnt = real_mount(m);
  2081. int err;
  2082. /* The new mount record should have at least 2 refs to prevent it being
  2083. * expired before we get a chance to add it
  2084. */
  2085. BUG_ON(mnt_get_count(mnt) < 2);
  2086. if (m->mnt_sb == path->mnt->mnt_sb &&
  2087. m->mnt_root == path->dentry) {
  2088. err = -ELOOP;
  2089. goto fail;
  2090. }
  2091. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  2092. if (!err)
  2093. return 0;
  2094. fail:
  2095. /* remove m from any expiration list it may be on */
  2096. if (!list_empty(&mnt->mnt_expire)) {
  2097. namespace_lock();
  2098. list_del_init(&mnt->mnt_expire);
  2099. namespace_unlock();
  2100. }
  2101. mntput(m);
  2102. mntput(m);
  2103. return err;
  2104. }
  2105. /**
  2106. * mnt_set_expiry - Put a mount on an expiration list
  2107. * @mnt: The mount to list.
  2108. * @expiry_list: The list to add the mount to.
  2109. */
  2110. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  2111. {
  2112. namespace_lock();
  2113. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  2114. namespace_unlock();
  2115. }
  2116. EXPORT_SYMBOL(mnt_set_expiry);
  2117. /*
  2118. * process a list of expirable mountpoints with the intent of discarding any
  2119. * mountpoints that aren't in use and haven't been touched since last we came
  2120. * here
  2121. */
  2122. void mark_mounts_for_expiry(struct list_head *mounts)
  2123. {
  2124. struct mount *mnt, *next;
  2125. LIST_HEAD(graveyard);
  2126. if (list_empty(mounts))
  2127. return;
  2128. namespace_lock();
  2129. lock_mount_hash();
  2130. /* extract from the expiration list every vfsmount that matches the
  2131. * following criteria:
  2132. * - only referenced by its parent vfsmount
  2133. * - still marked for expiry (marked on the last call here; marks are
  2134. * cleared by mntput())
  2135. */
  2136. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  2137. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  2138. propagate_mount_busy(mnt, 1))
  2139. continue;
  2140. list_move(&mnt->mnt_expire, &graveyard);
  2141. }
  2142. while (!list_empty(&graveyard)) {
  2143. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  2144. touch_mnt_namespace(mnt->mnt_ns);
  2145. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2146. }
  2147. unlock_mount_hash();
  2148. namespace_unlock();
  2149. }
  2150. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  2151. /*
  2152. * Ripoff of 'select_parent()'
  2153. *
  2154. * search the list of submounts for a given mountpoint, and move any
  2155. * shrinkable submounts to the 'graveyard' list.
  2156. */
  2157. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  2158. {
  2159. struct mount *this_parent = parent;
  2160. struct list_head *next;
  2161. int found = 0;
  2162. repeat:
  2163. next = this_parent->mnt_mounts.next;
  2164. resume:
  2165. while (next != &this_parent->mnt_mounts) {
  2166. struct list_head *tmp = next;
  2167. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  2168. next = tmp->next;
  2169. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  2170. continue;
  2171. /*
  2172. * Descend a level if the d_mounts list is non-empty.
  2173. */
  2174. if (!list_empty(&mnt->mnt_mounts)) {
  2175. this_parent = mnt;
  2176. goto repeat;
  2177. }
  2178. if (!propagate_mount_busy(mnt, 1)) {
  2179. list_move_tail(&mnt->mnt_expire, graveyard);
  2180. found++;
  2181. }
  2182. }
  2183. /*
  2184. * All done at this level ... ascend and resume the search
  2185. */
  2186. if (this_parent != parent) {
  2187. next = this_parent->mnt_child.next;
  2188. this_parent = this_parent->mnt_parent;
  2189. goto resume;
  2190. }
  2191. return found;
  2192. }
  2193. /*
  2194. * process a list of expirable mountpoints with the intent of discarding any
  2195. * submounts of a specific parent mountpoint
  2196. *
  2197. * mount_lock must be held for write
  2198. */
  2199. static void shrink_submounts(struct mount *mnt)
  2200. {
  2201. LIST_HEAD(graveyard);
  2202. struct mount *m;
  2203. /* extract submounts of 'mountpoint' from the expiration list */
  2204. while (select_submounts(mnt, &graveyard)) {
  2205. while (!list_empty(&graveyard)) {
  2206. m = list_first_entry(&graveyard, struct mount,
  2207. mnt_expire);
  2208. touch_mnt_namespace(m->mnt_ns);
  2209. umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2210. }
  2211. }
  2212. }
  2213. /*
  2214. * Some copy_from_user() implementations do not return the exact number of
  2215. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2216. * Note that this function differs from copy_from_user() in that it will oops
  2217. * on bad values of `to', rather than returning a short copy.
  2218. */
  2219. static long exact_copy_from_user(void *to, const void __user * from,
  2220. unsigned long n)
  2221. {
  2222. char *t = to;
  2223. const char __user *f = from;
  2224. char c;
  2225. if (!access_ok(VERIFY_READ, from, n))
  2226. return n;
  2227. while (n) {
  2228. if (__get_user(c, f)) {
  2229. memset(t, 0, n);
  2230. break;
  2231. }
  2232. *t++ = c;
  2233. f++;
  2234. n--;
  2235. }
  2236. return n;
  2237. }
  2238. int copy_mount_options(const void __user * data, unsigned long *where)
  2239. {
  2240. int i;
  2241. unsigned long page;
  2242. unsigned long size;
  2243. *where = 0;
  2244. if (!data)
  2245. return 0;
  2246. if (!(page = __get_free_page(GFP_KERNEL)))
  2247. return -ENOMEM;
  2248. /* We only care that *some* data at the address the user
  2249. * gave us is valid. Just in case, we'll zero
  2250. * the remainder of the page.
  2251. */
  2252. /* copy_from_user cannot cross TASK_SIZE ! */
  2253. size = TASK_SIZE - (unsigned long)data;
  2254. if (size > PAGE_SIZE)
  2255. size = PAGE_SIZE;
  2256. i = size - exact_copy_from_user((void *)page, data, size);
  2257. if (!i) {
  2258. free_page(page);
  2259. return -EFAULT;
  2260. }
  2261. if (i != PAGE_SIZE)
  2262. memset((char *)page + i, 0, PAGE_SIZE - i);
  2263. *where = page;
  2264. return 0;
  2265. }
  2266. char *copy_mount_string(const void __user *data)
  2267. {
  2268. return data ? strndup_user(data, PAGE_SIZE) : NULL;
  2269. }
  2270. /*
  2271. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2272. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2273. *
  2274. * data is a (void *) that can point to any structure up to
  2275. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2276. * information (or be NULL).
  2277. *
  2278. * Pre-0.97 versions of mount() didn't have a flags word.
  2279. * When the flags word was introduced its top half was required
  2280. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2281. * Therefore, if this magic number is present, it carries no information
  2282. * and must be discarded.
  2283. */
  2284. long do_mount(const char *dev_name, const char __user *dir_name,
  2285. const char *type_page, unsigned long flags, void *data_page)
  2286. {
  2287. struct path path;
  2288. int retval = 0;
  2289. int mnt_flags = 0;
  2290. /* Discard magic */
  2291. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2292. flags &= ~MS_MGC_MSK;
  2293. /* Basic sanity checks */
  2294. if (data_page)
  2295. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2296. /* ... and get the mountpoint */
  2297. retval = user_path(dir_name, &path);
  2298. if (retval)
  2299. return retval;
  2300. retval = security_sb_mount(dev_name, &path,
  2301. type_page, flags, data_page);
  2302. if (!retval && !may_mount())
  2303. retval = -EPERM;
  2304. if (retval)
  2305. goto dput_out;
  2306. /* Default to relatime unless overriden */
  2307. if (!(flags & MS_NOATIME))
  2308. mnt_flags |= MNT_RELATIME;
  2309. /* Separate the per-mountpoint flags */
  2310. if (flags & MS_NOSUID)
  2311. mnt_flags |= MNT_NOSUID;
  2312. if (flags & MS_NODEV)
  2313. mnt_flags |= MNT_NODEV;
  2314. if (flags & MS_NOEXEC)
  2315. mnt_flags |= MNT_NOEXEC;
  2316. if (flags & MS_NOATIME)
  2317. mnt_flags |= MNT_NOATIME;
  2318. if (flags & MS_NODIRATIME)
  2319. mnt_flags |= MNT_NODIRATIME;
  2320. if (flags & MS_STRICTATIME)
  2321. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2322. if (flags & MS_RDONLY)
  2323. mnt_flags |= MNT_READONLY;
  2324. /* The default atime for remount is preservation */
  2325. if ((flags & MS_REMOUNT) &&
  2326. ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
  2327. MS_STRICTATIME)) == 0)) {
  2328. mnt_flags &= ~MNT_ATIME_MASK;
  2329. mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
  2330. }
  2331. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2332. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2333. MS_STRICTATIME);
  2334. if (flags & MS_REMOUNT)
  2335. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2336. data_page);
  2337. else if (flags & MS_BIND)
  2338. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2339. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2340. retval = do_change_type(&path, flags);
  2341. else if (flags & MS_MOVE)
  2342. retval = do_move_mount(&path, dev_name);
  2343. else
  2344. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2345. dev_name, data_page);
  2346. dput_out:
  2347. path_put(&path);
  2348. return retval;
  2349. }
  2350. static void free_mnt_ns(struct mnt_namespace *ns)
  2351. {
  2352. proc_free_inum(ns->proc_inum);
  2353. put_user_ns(ns->user_ns);
  2354. kfree(ns);
  2355. }
  2356. /*
  2357. * Assign a sequence number so we can detect when we attempt to bind
  2358. * mount a reference to an older mount namespace into the current
  2359. * mount namespace, preventing reference counting loops. A 64bit
  2360. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2361. * is effectively never, so we can ignore the possibility.
  2362. */
  2363. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2364. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2365. {
  2366. struct mnt_namespace *new_ns;
  2367. int ret;
  2368. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2369. if (!new_ns)
  2370. return ERR_PTR(-ENOMEM);
  2371. ret = proc_alloc_inum(&new_ns->proc_inum);
  2372. if (ret) {
  2373. kfree(new_ns);
  2374. return ERR_PTR(ret);
  2375. }
  2376. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2377. atomic_set(&new_ns->count, 1);
  2378. new_ns->root = NULL;
  2379. INIT_LIST_HEAD(&new_ns->list);
  2380. init_waitqueue_head(&new_ns->poll);
  2381. new_ns->event = 0;
  2382. new_ns->user_ns = get_user_ns(user_ns);
  2383. return new_ns;
  2384. }
  2385. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2386. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2387. {
  2388. struct mnt_namespace *new_ns;
  2389. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2390. struct mount *p, *q;
  2391. struct mount *old;
  2392. struct mount *new;
  2393. int copy_flags;
  2394. BUG_ON(!ns);
  2395. if (likely(!(flags & CLONE_NEWNS))) {
  2396. get_mnt_ns(ns);
  2397. return ns;
  2398. }
  2399. old = ns->root;
  2400. new_ns = alloc_mnt_ns(user_ns);
  2401. if (IS_ERR(new_ns))
  2402. return new_ns;
  2403. namespace_lock();
  2404. /* First pass: copy the tree topology */
  2405. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2406. if (user_ns != ns->user_ns)
  2407. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2408. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2409. if (IS_ERR(new)) {
  2410. namespace_unlock();
  2411. free_mnt_ns(new_ns);
  2412. return ERR_CAST(new);
  2413. }
  2414. new_ns->root = new;
  2415. list_add_tail(&new_ns->list, &new->mnt_list);
  2416. /*
  2417. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2418. * as belonging to new namespace. We have already acquired a private
  2419. * fs_struct, so tsk->fs->lock is not needed.
  2420. */
  2421. p = old;
  2422. q = new;
  2423. while (p) {
  2424. q->mnt_ns = new_ns;
  2425. if (new_fs) {
  2426. if (&p->mnt == new_fs->root.mnt) {
  2427. new_fs->root.mnt = mntget(&q->mnt);
  2428. rootmnt = &p->mnt;
  2429. }
  2430. if (&p->mnt == new_fs->pwd.mnt) {
  2431. new_fs->pwd.mnt = mntget(&q->mnt);
  2432. pwdmnt = &p->mnt;
  2433. }
  2434. }
  2435. p = next_mnt(p, old);
  2436. q = next_mnt(q, new);
  2437. if (!q)
  2438. break;
  2439. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2440. p = next_mnt(p, old);
  2441. }
  2442. namespace_unlock();
  2443. if (rootmnt)
  2444. mntput(rootmnt);
  2445. if (pwdmnt)
  2446. mntput(pwdmnt);
  2447. return new_ns;
  2448. }
  2449. /**
  2450. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2451. * @mnt: pointer to the new root filesystem mountpoint
  2452. */
  2453. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2454. {
  2455. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2456. if (!IS_ERR(new_ns)) {
  2457. struct mount *mnt = real_mount(m);
  2458. mnt->mnt_ns = new_ns;
  2459. new_ns->root = mnt;
  2460. list_add(&mnt->mnt_list, &new_ns->list);
  2461. } else {
  2462. mntput(m);
  2463. }
  2464. return new_ns;
  2465. }
  2466. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2467. {
  2468. struct mnt_namespace *ns;
  2469. struct super_block *s;
  2470. struct path path;
  2471. int err;
  2472. ns = create_mnt_ns(mnt);
  2473. if (IS_ERR(ns))
  2474. return ERR_CAST(ns);
  2475. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2476. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2477. put_mnt_ns(ns);
  2478. if (err)
  2479. return ERR_PTR(err);
  2480. /* trade a vfsmount reference for active sb one */
  2481. s = path.mnt->mnt_sb;
  2482. atomic_inc(&s->s_active);
  2483. mntput(path.mnt);
  2484. /* lock the sucker */
  2485. down_write(&s->s_umount);
  2486. /* ... and return the root of (sub)tree on it */
  2487. return path.dentry;
  2488. }
  2489. EXPORT_SYMBOL(mount_subtree);
  2490. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2491. char __user *, type, unsigned long, flags, void __user *, data)
  2492. {
  2493. int ret;
  2494. char *kernel_type;
  2495. char *kernel_dev;
  2496. unsigned long data_page;
  2497. kernel_type = copy_mount_string(type);
  2498. ret = PTR_ERR(kernel_type);
  2499. if (IS_ERR(kernel_type))
  2500. goto out_type;
  2501. kernel_dev = copy_mount_string(dev_name);
  2502. ret = PTR_ERR(kernel_dev);
  2503. if (IS_ERR(kernel_dev))
  2504. goto out_dev;
  2505. ret = copy_mount_options(data, &data_page);
  2506. if (ret < 0)
  2507. goto out_data;
  2508. ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
  2509. (void *) data_page);
  2510. free_page(data_page);
  2511. out_data:
  2512. kfree(kernel_dev);
  2513. out_dev:
  2514. kfree(kernel_type);
  2515. out_type:
  2516. return ret;
  2517. }
  2518. /*
  2519. * Return true if path is reachable from root
  2520. *
  2521. * namespace_sem or mount_lock is held
  2522. */
  2523. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2524. const struct path *root)
  2525. {
  2526. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2527. dentry = mnt->mnt_mountpoint;
  2528. mnt = mnt->mnt_parent;
  2529. }
  2530. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2531. }
  2532. int path_is_under(struct path *path1, struct path *path2)
  2533. {
  2534. int res;
  2535. read_seqlock_excl(&mount_lock);
  2536. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2537. read_sequnlock_excl(&mount_lock);
  2538. return res;
  2539. }
  2540. EXPORT_SYMBOL(path_is_under);
  2541. /*
  2542. * pivot_root Semantics:
  2543. * Moves the root file system of the current process to the directory put_old,
  2544. * makes new_root as the new root file system of the current process, and sets
  2545. * root/cwd of all processes which had them on the current root to new_root.
  2546. *
  2547. * Restrictions:
  2548. * The new_root and put_old must be directories, and must not be on the
  2549. * same file system as the current process root. The put_old must be
  2550. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2551. * pointed to by put_old must yield the same directory as new_root. No other
  2552. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2553. *
  2554. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2555. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2556. * in this situation.
  2557. *
  2558. * Notes:
  2559. * - we don't move root/cwd if they are not at the root (reason: if something
  2560. * cared enough to change them, it's probably wrong to force them elsewhere)
  2561. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2562. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2563. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2564. * first.
  2565. */
  2566. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2567. const char __user *, put_old)
  2568. {
  2569. struct path new, old, parent_path, root_parent, root;
  2570. struct mount *new_mnt, *root_mnt, *old_mnt;
  2571. struct mountpoint *old_mp, *root_mp;
  2572. int error;
  2573. if (!may_mount())
  2574. return -EPERM;
  2575. error = user_path_dir(new_root, &new);
  2576. if (error)
  2577. goto out0;
  2578. error = user_path_dir(put_old, &old);
  2579. if (error)
  2580. goto out1;
  2581. error = security_sb_pivotroot(&old, &new);
  2582. if (error)
  2583. goto out2;
  2584. get_fs_root(current->fs, &root);
  2585. old_mp = lock_mount(&old);
  2586. error = PTR_ERR(old_mp);
  2587. if (IS_ERR(old_mp))
  2588. goto out3;
  2589. error = -EINVAL;
  2590. new_mnt = real_mount(new.mnt);
  2591. root_mnt = real_mount(root.mnt);
  2592. old_mnt = real_mount(old.mnt);
  2593. if (IS_MNT_SHARED(old_mnt) ||
  2594. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2595. IS_MNT_SHARED(root_mnt->mnt_parent))
  2596. goto out4;
  2597. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2598. goto out4;
  2599. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2600. goto out4;
  2601. error = -ENOENT;
  2602. if (d_unlinked(new.dentry))
  2603. goto out4;
  2604. error = -EBUSY;
  2605. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2606. goto out4; /* loop, on the same file system */
  2607. error = -EINVAL;
  2608. if (root.mnt->mnt_root != root.dentry)
  2609. goto out4; /* not a mountpoint */
  2610. if (!mnt_has_parent(root_mnt))
  2611. goto out4; /* not attached */
  2612. root_mp = root_mnt->mnt_mp;
  2613. if (new.mnt->mnt_root != new.dentry)
  2614. goto out4; /* not a mountpoint */
  2615. if (!mnt_has_parent(new_mnt))
  2616. goto out4; /* not attached */
  2617. /* make sure we can reach put_old from new_root */
  2618. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2619. goto out4;
  2620. /* make certain new is below the root */
  2621. if (!is_path_reachable(new_mnt, new.dentry, &root))
  2622. goto out4;
  2623. root_mp->m_count++; /* pin it so it won't go away */
  2624. lock_mount_hash();
  2625. detach_mnt(new_mnt, &parent_path);
  2626. detach_mnt(root_mnt, &root_parent);
  2627. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2628. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2629. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2630. }
  2631. /* mount old root on put_old */
  2632. attach_mnt(root_mnt, old_mnt, old_mp);
  2633. /* mount new_root on / */
  2634. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2635. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2636. unlock_mount_hash();
  2637. chroot_fs_refs(&root, &new);
  2638. put_mountpoint(root_mp);
  2639. error = 0;
  2640. out4:
  2641. unlock_mount(old_mp);
  2642. if (!error) {
  2643. path_put(&root_parent);
  2644. path_put(&parent_path);
  2645. }
  2646. out3:
  2647. path_put(&root);
  2648. out2:
  2649. path_put(&old);
  2650. out1:
  2651. path_put(&new);
  2652. out0:
  2653. return error;
  2654. }
  2655. static void __init init_mount_tree(void)
  2656. {
  2657. struct vfsmount *mnt;
  2658. struct mnt_namespace *ns;
  2659. struct path root;
  2660. struct file_system_type *type;
  2661. type = get_fs_type("rootfs");
  2662. if (!type)
  2663. panic("Can't find rootfs type");
  2664. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2665. put_filesystem(type);
  2666. if (IS_ERR(mnt))
  2667. panic("Can't create rootfs");
  2668. ns = create_mnt_ns(mnt);
  2669. if (IS_ERR(ns))
  2670. panic("Can't allocate initial namespace");
  2671. init_task.nsproxy->mnt_ns = ns;
  2672. get_mnt_ns(ns);
  2673. root.mnt = mnt;
  2674. root.dentry = mnt->mnt_root;
  2675. set_fs_pwd(current->fs, &root);
  2676. set_fs_root(current->fs, &root);
  2677. }
  2678. void __init mnt_init(void)
  2679. {
  2680. unsigned u;
  2681. int err;
  2682. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2683. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2684. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2685. sizeof(struct hlist_head),
  2686. mhash_entries, 19,
  2687. 0,
  2688. &m_hash_shift, &m_hash_mask, 0, 0);
  2689. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2690. sizeof(struct hlist_head),
  2691. mphash_entries, 19,
  2692. 0,
  2693. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2694. if (!mount_hashtable || !mountpoint_hashtable)
  2695. panic("Failed to allocate mount hash table\n");
  2696. for (u = 0; u <= m_hash_mask; u++)
  2697. INIT_HLIST_HEAD(&mount_hashtable[u]);
  2698. for (u = 0; u <= mp_hash_mask; u++)
  2699. INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
  2700. kernfs_init();
  2701. err = sysfs_init();
  2702. if (err)
  2703. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2704. __func__, err);
  2705. fs_kobj = kobject_create_and_add("fs", NULL);
  2706. if (!fs_kobj)
  2707. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2708. init_rootfs();
  2709. init_mount_tree();
  2710. }
  2711. void put_mnt_ns(struct mnt_namespace *ns)
  2712. {
  2713. if (!atomic_dec_and_test(&ns->count))
  2714. return;
  2715. drop_collected_mounts(&ns->root->mnt);
  2716. free_mnt_ns(ns);
  2717. }
  2718. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2719. {
  2720. struct vfsmount *mnt;
  2721. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2722. if (!IS_ERR(mnt)) {
  2723. /*
  2724. * it is a longterm mount, don't release mnt until
  2725. * we unmount before file sys is unregistered
  2726. */
  2727. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2728. }
  2729. return mnt;
  2730. }
  2731. EXPORT_SYMBOL_GPL(kern_mount_data);
  2732. void kern_unmount(struct vfsmount *mnt)
  2733. {
  2734. /* release long term mount so mount point can be released */
  2735. if (!IS_ERR_OR_NULL(mnt)) {
  2736. real_mount(mnt)->mnt_ns = NULL;
  2737. synchronize_rcu(); /* yecchhh... */
  2738. mntput(mnt);
  2739. }
  2740. }
  2741. EXPORT_SYMBOL(kern_unmount);
  2742. bool our_mnt(struct vfsmount *mnt)
  2743. {
  2744. return check_mnt(real_mount(mnt));
  2745. }
  2746. bool current_chrooted(void)
  2747. {
  2748. /* Does the current process have a non-standard root */
  2749. struct path ns_root;
  2750. struct path fs_root;
  2751. bool chrooted;
  2752. /* Find the namespace root */
  2753. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2754. ns_root.dentry = ns_root.mnt->mnt_root;
  2755. path_get(&ns_root);
  2756. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2757. ;
  2758. get_fs_root(current->fs, &fs_root);
  2759. chrooted = !path_equal(&fs_root, &ns_root);
  2760. path_put(&fs_root);
  2761. path_put(&ns_root);
  2762. return chrooted;
  2763. }
  2764. static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
  2765. {
  2766. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2767. int new_flags = *new_mnt_flags;
  2768. struct mount *mnt;
  2769. bool visible = false;
  2770. if (unlikely(!ns))
  2771. return false;
  2772. down_read(&namespace_sem);
  2773. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2774. struct mount *child;
  2775. if (mnt->mnt.mnt_sb->s_type != type)
  2776. continue;
  2777. /* This mount is not fully visible if it's root directory
  2778. * is not the root directory of the filesystem.
  2779. */
  2780. if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
  2781. continue;
  2782. /* Verify the mount flags are equal to or more permissive
  2783. * than the proposed new mount.
  2784. */
  2785. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  2786. !(new_flags & MNT_READONLY))
  2787. continue;
  2788. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  2789. !(new_flags & MNT_NODEV))
  2790. continue;
  2791. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  2792. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
  2793. continue;
  2794. /* This mount is not fully visible if there are any
  2795. * locked child mounts that cover anything except for
  2796. * empty directories.
  2797. */
  2798. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2799. struct inode *inode = child->mnt_mountpoint->d_inode;
  2800. /* Only worry about locked mounts */
  2801. if (!(mnt->mnt.mnt_flags & MNT_LOCKED))
  2802. continue;
  2803. if (!S_ISDIR(inode->i_mode))
  2804. goto next;
  2805. if (inode->i_nlink > 2)
  2806. goto next;
  2807. }
  2808. /* Preserve the locked attributes */
  2809. *new_mnt_flags |= mnt->mnt.mnt_flags & (MNT_LOCK_READONLY | \
  2810. MNT_LOCK_NODEV | \
  2811. MNT_LOCK_ATIME);
  2812. visible = true;
  2813. goto found;
  2814. next: ;
  2815. }
  2816. found:
  2817. up_read(&namespace_sem);
  2818. return visible;
  2819. }
  2820. static void *mntns_get(struct task_struct *task)
  2821. {
  2822. struct mnt_namespace *ns = NULL;
  2823. struct nsproxy *nsproxy;
  2824. task_lock(task);
  2825. nsproxy = task->nsproxy;
  2826. if (nsproxy) {
  2827. ns = nsproxy->mnt_ns;
  2828. get_mnt_ns(ns);
  2829. }
  2830. task_unlock(task);
  2831. return ns;
  2832. }
  2833. static void mntns_put(void *ns)
  2834. {
  2835. put_mnt_ns(ns);
  2836. }
  2837. static int mntns_install(struct nsproxy *nsproxy, void *ns)
  2838. {
  2839. struct fs_struct *fs = current->fs;
  2840. struct mnt_namespace *mnt_ns = ns;
  2841. struct path root;
  2842. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2843. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  2844. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  2845. return -EPERM;
  2846. if (fs->users != 1)
  2847. return -EINVAL;
  2848. get_mnt_ns(mnt_ns);
  2849. put_mnt_ns(nsproxy->mnt_ns);
  2850. nsproxy->mnt_ns = mnt_ns;
  2851. /* Find the root */
  2852. root.mnt = &mnt_ns->root->mnt;
  2853. root.dentry = mnt_ns->root->mnt.mnt_root;
  2854. path_get(&root);
  2855. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2856. ;
  2857. /* Update the pwd and root */
  2858. set_fs_pwd(fs, &root);
  2859. set_fs_root(fs, &root);
  2860. path_put(&root);
  2861. return 0;
  2862. }
  2863. static unsigned int mntns_inum(void *ns)
  2864. {
  2865. struct mnt_namespace *mnt_ns = ns;
  2866. return mnt_ns->proc_inum;
  2867. }
  2868. const struct proc_ns_operations mntns_operations = {
  2869. .name = "mnt",
  2870. .type = CLONE_NEWNS,
  2871. .get = mntns_get,
  2872. .put = mntns_put,
  2873. .install = mntns_install,
  2874. .inum = mntns_inum,
  2875. };