core.c 204 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #ifdef CONFIG_MTPROF
  87. #include "mt_sched_mon.h"
  88. #endif
  89. #define CREATE_TRACE_POINTS
  90. #include <trace/events/sched.h>
  91. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  92. {
  93. unsigned long delta;
  94. ktime_t soft, hard, now;
  95. for (;;) {
  96. if (hrtimer_active(period_timer))
  97. break;
  98. now = hrtimer_cb_get_time(period_timer);
  99. hrtimer_forward(period_timer, now, period);
  100. soft = hrtimer_get_softexpires(period_timer);
  101. hard = hrtimer_get_expires(period_timer);
  102. delta = ktime_to_ns(ktime_sub(hard, soft));
  103. __hrtimer_start_range_ns(period_timer, soft, delta,
  104. HRTIMER_MODE_ABS_PINNED, 0);
  105. }
  106. }
  107. DEFINE_MUTEX(sched_domains_mutex);
  108. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  109. static void update_rq_clock_task(struct rq *rq, s64 delta);
  110. void update_rq_clock(struct rq *rq)
  111. {
  112. s64 delta;
  113. if (rq->skip_clock_update > 0)
  114. return;
  115. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  116. if (delta < 0)
  117. return;
  118. rq->clock += delta;
  119. update_rq_clock_task(rq, delta);
  120. }
  121. /*
  122. * Debugging: various feature bits
  123. */
  124. #define SCHED_FEAT(name, enabled) \
  125. (1UL << __SCHED_FEAT_##name) * enabled |
  126. const_debug unsigned int sysctl_sched_features =
  127. #include "features.h"
  128. 0;
  129. #undef SCHED_FEAT
  130. #ifdef CONFIG_SCHED_DEBUG
  131. #define SCHED_FEAT(name, enabled) \
  132. #name ,
  133. static const char * const sched_feat_names[] = {
  134. #include "features.h"
  135. };
  136. #undef SCHED_FEAT
  137. static int sched_feat_show(struct seq_file *m, void *v)
  138. {
  139. int i;
  140. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  141. if (!(sysctl_sched_features & (1UL << i)))
  142. seq_puts(m, "NO_");
  143. seq_printf(m, "%s ", sched_feat_names[i]);
  144. }
  145. seq_puts(m, "\n");
  146. return 0;
  147. }
  148. #ifdef HAVE_JUMP_LABEL
  149. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  150. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  151. #define SCHED_FEAT(name, enabled) \
  152. jump_label_key__##enabled ,
  153. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  154. #include "features.h"
  155. };
  156. #undef SCHED_FEAT
  157. static void sched_feat_disable(int i)
  158. {
  159. if (static_key_enabled(&sched_feat_keys[i]))
  160. static_key_slow_dec(&sched_feat_keys[i]);
  161. }
  162. static void sched_feat_enable(int i)
  163. {
  164. if (!static_key_enabled(&sched_feat_keys[i]))
  165. static_key_slow_inc(&sched_feat_keys[i]);
  166. }
  167. #else
  168. static void sched_feat_disable(int i) { };
  169. static void sched_feat_enable(int i) { };
  170. #endif /* HAVE_JUMP_LABEL */
  171. static int sched_feat_set(char *cmp)
  172. {
  173. int i;
  174. int neg = 0;
  175. if (strncmp(cmp, "NO_", 3) == 0) {
  176. neg = 1;
  177. cmp += 3;
  178. }
  179. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  180. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  181. if (neg) {
  182. sysctl_sched_features &= ~(1UL << i);
  183. sched_feat_disable(i);
  184. } else {
  185. sysctl_sched_features |= (1UL << i);
  186. sched_feat_enable(i);
  187. }
  188. break;
  189. }
  190. }
  191. return i;
  192. }
  193. static ssize_t
  194. sched_feat_write(struct file *filp, const char __user *ubuf,
  195. size_t cnt, loff_t *ppos)
  196. {
  197. char buf[64];
  198. char *cmp;
  199. int i;
  200. struct inode *inode;
  201. if (cnt > 63)
  202. cnt = 63;
  203. if (copy_from_user(&buf, ubuf, cnt))
  204. return -EFAULT;
  205. buf[cnt] = 0;
  206. cmp = strstrip(buf);
  207. /* Ensure the static_key remains in a consistent state */
  208. inode = file_inode(filp);
  209. mutex_lock(&inode->i_mutex);
  210. i = sched_feat_set(cmp);
  211. mutex_unlock(&inode->i_mutex);
  212. if (i == __SCHED_FEAT_NR)
  213. return -EINVAL;
  214. *ppos += cnt;
  215. return cnt;
  216. }
  217. static int sched_feat_open(struct inode *inode, struct file *filp)
  218. {
  219. return single_open(filp, sched_feat_show, NULL);
  220. }
  221. static const struct file_operations sched_feat_fops = {
  222. .open = sched_feat_open,
  223. .write = sched_feat_write,
  224. .read = seq_read,
  225. .llseek = seq_lseek,
  226. .release = single_release,
  227. };
  228. static __init int sched_init_debug(void)
  229. {
  230. debugfs_create_file("sched_features", 0644, NULL, NULL,
  231. &sched_feat_fops);
  232. return 0;
  233. }
  234. late_initcall(sched_init_debug);
  235. #endif /* CONFIG_SCHED_DEBUG */
  236. /*
  237. * Number of tasks to iterate in a single balance run.
  238. * Limited because this is done with IRQs disabled.
  239. */
  240. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  241. /*
  242. * period over which we average the RT time consumption, measured
  243. * in ms.
  244. *
  245. * default: 1s
  246. */
  247. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  248. /*
  249. * period over which we measure -rt task cpu usage in us.
  250. * default: 1s
  251. */
  252. unsigned int sysctl_sched_rt_period = 1000000;
  253. __read_mostly int scheduler_running;
  254. /*
  255. * part of the period that we allow rt tasks to run in us.
  256. * default: 0.95s
  257. */
  258. int sysctl_sched_rt_runtime = 950000;
  259. /*
  260. * __task_rq_lock - lock the rq @p resides on.
  261. */
  262. static inline struct rq *__task_rq_lock(struct task_struct *p)
  263. __acquires(rq->lock)
  264. {
  265. struct rq *rq;
  266. lockdep_assert_held(&p->pi_lock);
  267. for (;;) {
  268. rq = task_rq(p);
  269. raw_spin_lock(&rq->lock);
  270. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
  271. return rq;
  272. raw_spin_unlock(&rq->lock);
  273. while (unlikely(task_on_rq_migrating(p)))
  274. cpu_relax();
  275. }
  276. }
  277. /*
  278. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  279. */
  280. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  281. __acquires(p->pi_lock)
  282. __acquires(rq->lock)
  283. {
  284. struct rq *rq;
  285. for (;;) {
  286. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  287. rq = task_rq(p);
  288. raw_spin_lock(&rq->lock);
  289. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
  290. return rq;
  291. raw_spin_unlock(&rq->lock);
  292. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  293. while (unlikely(task_on_rq_migrating(p)))
  294. cpu_relax();
  295. }
  296. }
  297. static void __task_rq_unlock(struct rq *rq)
  298. __releases(rq->lock)
  299. {
  300. raw_spin_unlock(&rq->lock);
  301. }
  302. static inline void
  303. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  304. __releases(rq->lock)
  305. __releases(p->pi_lock)
  306. {
  307. raw_spin_unlock(&rq->lock);
  308. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  309. }
  310. /*
  311. * this_rq_lock - lock this runqueue and disable interrupts.
  312. */
  313. static struct rq *this_rq_lock(void)
  314. __acquires(rq->lock)
  315. {
  316. struct rq *rq;
  317. local_irq_disable();
  318. rq = this_rq();
  319. raw_spin_lock(&rq->lock);
  320. return rq;
  321. }
  322. #ifdef CONFIG_SCHED_HRTICK
  323. /*
  324. * Use HR-timers to deliver accurate preemption points.
  325. */
  326. static void hrtick_clear(struct rq *rq)
  327. {
  328. if (hrtimer_active(&rq->hrtick_timer))
  329. hrtimer_cancel(&rq->hrtick_timer);
  330. }
  331. /*
  332. * High-resolution timer tick.
  333. * Runs from hardirq context with interrupts disabled.
  334. */
  335. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  336. {
  337. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  338. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  339. raw_spin_lock(&rq->lock);
  340. update_rq_clock(rq);
  341. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  342. raw_spin_unlock(&rq->lock);
  343. return HRTIMER_NORESTART;
  344. }
  345. #ifdef CONFIG_SMP
  346. static int __hrtick_restart(struct rq *rq)
  347. {
  348. struct hrtimer *timer = &rq->hrtick_timer;
  349. ktime_t time = hrtimer_get_softexpires(timer);
  350. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  351. }
  352. /*
  353. * called from hardirq (IPI) context
  354. */
  355. static void __hrtick_start(void *arg)
  356. {
  357. struct rq *rq = arg;
  358. raw_spin_lock(&rq->lock);
  359. __hrtick_restart(rq);
  360. rq->hrtick_csd_pending = 0;
  361. raw_spin_unlock(&rq->lock);
  362. }
  363. /*
  364. * Called to set the hrtick timer state.
  365. *
  366. * called with rq->lock held and irqs disabled
  367. */
  368. void hrtick_start(struct rq *rq, u64 delay)
  369. {
  370. struct hrtimer *timer = &rq->hrtick_timer;
  371. ktime_t time;
  372. s64 delta;
  373. /*
  374. * Don't schedule slices shorter than 10000ns, that just
  375. * doesn't make sense and can cause timer DoS.
  376. */
  377. delta = max_t(s64, delay, 10000LL);
  378. time = ktime_add_ns(timer->base->get_time(), delta);
  379. hrtimer_set_expires(timer, time);
  380. if (rq == this_rq()) {
  381. __hrtick_restart(rq);
  382. } else if (!rq->hrtick_csd_pending) {
  383. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  384. rq->hrtick_csd_pending = 1;
  385. }
  386. }
  387. static int
  388. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  389. {
  390. int cpu = (int)(long)hcpu;
  391. switch (action) {
  392. case CPU_UP_CANCELED:
  393. case CPU_UP_CANCELED_FROZEN:
  394. case CPU_DOWN_PREPARE:
  395. case CPU_DOWN_PREPARE_FROZEN:
  396. case CPU_DEAD:
  397. case CPU_DEAD_FROZEN:
  398. hrtick_clear(cpu_rq(cpu));
  399. return NOTIFY_OK;
  400. }
  401. return NOTIFY_DONE;
  402. }
  403. static __init void init_hrtick(void)
  404. {
  405. hotcpu_notifier(hotplug_hrtick, 0);
  406. }
  407. #else
  408. /*
  409. * Called to set the hrtick timer state.
  410. *
  411. * called with rq->lock held and irqs disabled
  412. */
  413. void hrtick_start(struct rq *rq, u64 delay)
  414. {
  415. /*
  416. * Don't schedule slices shorter than 10000ns, that just
  417. * doesn't make sense. Rely on vruntime for fairness.
  418. */
  419. delay = max_t(u64, delay, 10000LL);
  420. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  421. HRTIMER_MODE_REL_PINNED, 0);
  422. }
  423. static inline void init_hrtick(void)
  424. {
  425. }
  426. #endif /* CONFIG_SMP */
  427. static void init_rq_hrtick(struct rq *rq)
  428. {
  429. #ifdef CONFIG_SMP
  430. rq->hrtick_csd_pending = 0;
  431. rq->hrtick_csd.flags = 0;
  432. rq->hrtick_csd.func = __hrtick_start;
  433. rq->hrtick_csd.info = rq;
  434. #endif
  435. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  436. rq->hrtick_timer.function = hrtick;
  437. }
  438. #else /* CONFIG_SCHED_HRTICK */
  439. static inline void hrtick_clear(struct rq *rq)
  440. {
  441. }
  442. static inline void init_rq_hrtick(struct rq *rq)
  443. {
  444. }
  445. static inline void init_hrtick(void)
  446. {
  447. }
  448. #endif /* CONFIG_SCHED_HRTICK */
  449. /*
  450. * cmpxchg based fetch_or, macro so it works for different integer types
  451. */
  452. #define fetch_or(ptr, val) \
  453. ({ typeof(*(ptr)) __old, __val = *(ptr); \
  454. for (;;) { \
  455. __old = cmpxchg((ptr), __val, __val | (val)); \
  456. if (__old == __val) \
  457. break; \
  458. __val = __old; \
  459. } \
  460. __old; \
  461. })
  462. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  463. /*
  464. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  465. * this avoids any races wrt polling state changes and thereby avoids
  466. * spurious IPIs.
  467. */
  468. static bool set_nr_and_not_polling(struct task_struct *p)
  469. {
  470. struct thread_info *ti = task_thread_info(p);
  471. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  472. }
  473. /*
  474. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  475. *
  476. * If this returns true, then the idle task promises to call
  477. * sched_ttwu_pending() and reschedule soon.
  478. */
  479. static bool set_nr_if_polling(struct task_struct *p)
  480. {
  481. struct thread_info *ti = task_thread_info(p);
  482. typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
  483. for (;;) {
  484. if (!(val & _TIF_POLLING_NRFLAG))
  485. return false;
  486. if (val & _TIF_NEED_RESCHED)
  487. return true;
  488. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  489. if (old == val)
  490. break;
  491. val = old;
  492. }
  493. return true;
  494. }
  495. #else
  496. static bool set_nr_and_not_polling(struct task_struct *p)
  497. {
  498. set_tsk_need_resched(p);
  499. return true;
  500. }
  501. #ifdef CONFIG_SMP
  502. static bool set_nr_if_polling(struct task_struct *p)
  503. {
  504. return false;
  505. }
  506. #endif
  507. #endif
  508. /*
  509. * resched_curr - mark rq's current task 'to be rescheduled now'.
  510. *
  511. * On UP this means the setting of the need_resched flag, on SMP it
  512. * might also involve a cross-CPU call to trigger the scheduler on
  513. * the target CPU.
  514. */
  515. void resched_curr(struct rq *rq)
  516. {
  517. struct task_struct *curr = rq->curr;
  518. int cpu;
  519. lockdep_assert_held(&rq->lock);
  520. if (test_tsk_need_resched(curr))
  521. return;
  522. cpu = cpu_of(rq);
  523. if (cpu == smp_processor_id()) {
  524. set_tsk_need_resched(curr);
  525. set_preempt_need_resched();
  526. return;
  527. }
  528. if (set_nr_and_not_polling(curr))
  529. smp_send_reschedule(cpu);
  530. else
  531. trace_sched_wake_idle_without_ipi(cpu);
  532. }
  533. void resched_cpu(int cpu)
  534. {
  535. struct rq *rq = cpu_rq(cpu);
  536. unsigned long flags;
  537. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  538. return;
  539. resched_curr(rq);
  540. raw_spin_unlock_irqrestore(&rq->lock, flags);
  541. }
  542. #ifdef CONFIG_SMP
  543. #ifdef CONFIG_NO_HZ_COMMON
  544. /*
  545. * In the semi idle case, use the nearest busy cpu for migrating timers
  546. * from an idle cpu. This is good for power-savings.
  547. *
  548. * We don't do similar optimization for completely idle system, as
  549. * selecting an idle cpu will add more delays to the timers than intended
  550. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  551. */
  552. int get_nohz_timer_target(int pinned)
  553. {
  554. int cpu = smp_processor_id();
  555. int i;
  556. struct sched_domain *sd;
  557. if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
  558. return cpu;
  559. rcu_read_lock();
  560. for_each_domain(cpu, sd) {
  561. for_each_cpu(i, sched_domain_span(sd)) {
  562. if (!idle_cpu(i)) {
  563. cpu = i;
  564. goto unlock;
  565. }
  566. }
  567. }
  568. unlock:
  569. rcu_read_unlock();
  570. return cpu;
  571. }
  572. /*
  573. * When add_timer_on() enqueues a timer into the timer wheel of an
  574. * idle CPU then this timer might expire before the next timer event
  575. * which is scheduled to wake up that CPU. In case of a completely
  576. * idle system the next event might even be infinite time into the
  577. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  578. * leaves the inner idle loop so the newly added timer is taken into
  579. * account when the CPU goes back to idle and evaluates the timer
  580. * wheel for the next timer event.
  581. */
  582. static void wake_up_idle_cpu(int cpu)
  583. {
  584. struct rq *rq = cpu_rq(cpu);
  585. if (cpu == smp_processor_id())
  586. return;
  587. if (set_nr_and_not_polling(rq->idle))
  588. smp_send_reschedule(cpu);
  589. else
  590. trace_sched_wake_idle_without_ipi(cpu);
  591. }
  592. static bool wake_up_full_nohz_cpu(int cpu)
  593. {
  594. /*
  595. * We just need the target to call irq_exit() and re-evaluate
  596. * the next tick. The nohz full kick at least implies that.
  597. * If needed we can still optimize that later with an
  598. * empty IRQ.
  599. */
  600. if (tick_nohz_full_cpu(cpu)) {
  601. if (cpu != smp_processor_id() ||
  602. tick_nohz_tick_stopped())
  603. tick_nohz_full_kick_cpu(cpu);
  604. return true;
  605. }
  606. return false;
  607. }
  608. void wake_up_nohz_cpu(int cpu)
  609. {
  610. if (!wake_up_full_nohz_cpu(cpu))
  611. wake_up_idle_cpu(cpu);
  612. }
  613. static inline bool got_nohz_idle_kick(void)
  614. {
  615. int cpu = smp_processor_id();
  616. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  617. return false;
  618. if (idle_cpu(cpu) && !need_resched())
  619. return true;
  620. /*
  621. * We can't run Idle Load Balance on this CPU for this time so we
  622. * cancel it and clear NOHZ_BALANCE_KICK
  623. */
  624. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  625. return false;
  626. }
  627. #else /* CONFIG_NO_HZ_COMMON */
  628. static inline bool got_nohz_idle_kick(void)
  629. {
  630. return false;
  631. }
  632. #endif /* CONFIG_NO_HZ_COMMON */
  633. #ifdef CONFIG_NO_HZ_FULL
  634. bool sched_can_stop_tick(void)
  635. {
  636. /*
  637. * More than one running task need preemption.
  638. * nr_running update is assumed to be visible
  639. * after IPI is sent from wakers.
  640. */
  641. if (this_rq()->nr_running > 1)
  642. return false;
  643. return true;
  644. }
  645. #endif /* CONFIG_NO_HZ_FULL */
  646. void sched_avg_update(struct rq *rq)
  647. {
  648. s64 period = sched_avg_period();
  649. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  650. /*
  651. * Inline assembly required to prevent the compiler
  652. * optimising this loop into a divmod call.
  653. * See __iter_div_u64_rem() for another example of this.
  654. */
  655. asm("" : "+rm" (rq->age_stamp));
  656. rq->age_stamp += period;
  657. rq->rt_avg /= 2;
  658. }
  659. }
  660. #endif /* CONFIG_SMP */
  661. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  662. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  663. /*
  664. * Iterate task_group tree rooted at *from, calling @down when first entering a
  665. * node and @up when leaving it for the final time.
  666. *
  667. * Caller must hold rcu_lock or sufficient equivalent.
  668. */
  669. int walk_tg_tree_from(struct task_group *from,
  670. tg_visitor down, tg_visitor up, void *data)
  671. {
  672. struct task_group *parent, *child;
  673. int ret;
  674. parent = from;
  675. down:
  676. ret = (*down)(parent, data);
  677. if (ret)
  678. goto out;
  679. list_for_each_entry_rcu(child, &parent->children, siblings) {
  680. parent = child;
  681. goto down;
  682. up:
  683. continue;
  684. }
  685. ret = (*up)(parent, data);
  686. if (ret || parent == from)
  687. goto out;
  688. child = parent;
  689. parent = parent->parent;
  690. if (parent)
  691. goto up;
  692. out:
  693. return ret;
  694. }
  695. int tg_nop(struct task_group *tg, void *data)
  696. {
  697. return 0;
  698. }
  699. #endif
  700. static void set_load_weight(struct task_struct *p)
  701. {
  702. int prio = p->static_prio - MAX_RT_PRIO;
  703. struct load_weight *load = &p->se.load;
  704. /*
  705. * SCHED_IDLE tasks get minimal weight:
  706. */
  707. if (p->policy == SCHED_IDLE) {
  708. load->weight = scale_load(WEIGHT_IDLEPRIO);
  709. load->inv_weight = WMULT_IDLEPRIO;
  710. return;
  711. }
  712. load->weight = scale_load(prio_to_weight[prio]);
  713. load->inv_weight = prio_to_wmult[prio];
  714. }
  715. #ifdef CONFIG_MTK_SCHED_CMP_TGS
  716. #ifdef CONFIG_MT_SCHED_TRACE_DETAIL
  717. static void tgs_log(struct rq *rq, struct task_struct *p)
  718. {
  719. struct task_struct *tg = p->group_leader;
  720. int i, num_cluster;
  721. if (group_leader_is_empty(p))
  722. return;
  723. num_cluster = arch_get_nr_clusters();
  724. mt_sched_printf(sched_cmp, "%d:%s %d:%s ", tg->pid, tg->comm, p->pid, p->comm);
  725. for (i = 0; i < num_cluster; i++) {
  726. mt_sched_printf(sched_cmp, "cluster %d: %lu %lu %lu ",
  727. i,
  728. tg->thread_group_info[i].nr_running,
  729. tg->thread_group_info[i].cfs_nr_running,
  730. tg->thread_group_info[i].loadwop_avg_contrib);
  731. }
  732. }
  733. #endif /* CONFIG_MT_SCHED_TRACE_DETAIL */
  734. static void sched_tg_enqueue(struct rq *rq, struct task_struct *p)
  735. {
  736. int id;
  737. unsigned long flags;
  738. struct task_struct *tg = p->group_leader;
  739. if (group_leader_is_empty(p))
  740. return;
  741. id = arch_get_cluster_id(rq->cpu);
  742. if (unlikely(WARN_ON(id < 0)))
  743. return;
  744. raw_spin_lock_irqsave(&tg->thread_group_info_lock, flags);
  745. tg->thread_group_info[id].nr_running++;
  746. raw_spin_unlock_irqrestore(&tg->thread_group_info_lock, flags);
  747. #ifdef CONFIG_MT_SCHED_INFO
  748. tgs_log(rq, p);
  749. #endif
  750. }
  751. static void sched_tg_dequeue(struct rq *rq, struct task_struct *p)
  752. {
  753. int id;
  754. unsigned long flags;
  755. struct task_struct *tg = p->group_leader;
  756. if (group_leader_is_empty(p))
  757. return;
  758. id = arch_get_cluster_id(rq->cpu);
  759. if (unlikely(WARN_ON(id < 0)))
  760. return;
  761. raw_spin_lock_irqsave(&tg->thread_group_info_lock, flags);
  762. /* WARN_ON(!tg->thread_group_info[id].nr_running); */
  763. tg->thread_group_info[id].nr_running--;
  764. raw_spin_unlock_irqrestore(&tg->thread_group_info_lock, flags);
  765. #ifdef CONFIG_MT_SCHED_INFO
  766. tgs_log(rq, p);
  767. #endif
  768. }
  769. #endif
  770. #ifdef CONFIG_MTK_SCHED_CMP_TGS
  771. #ifdef CONFIG_MT_SCHED_INFO
  772. static void tgs_log(struct rq *rq, struct task_struct *p)
  773. {
  774. struct task_struct *tg = p->group_leader;
  775. int i, num_cluster;
  776. if (group_leader_is_empty(p))
  777. return;
  778. num_cluster = arch_get_nr_cluster();
  779. mt_sched_printf("%d:%s %d:%s ", tg->pid, tg->comm, p->pid, p->comm);
  780. for (i = 0; i < num_cluster; i++) {
  781. mt_sched_printf("cluster %d: %lu %lu %lu ",
  782. i,
  783. tg->thread_group_info[0].nr_running,
  784. tg->thread_group_info[0].cfs_nr_running,
  785. tg->thread_group_info[0].load_avg_ratio);
  786. }
  787. }
  788. #endif
  789. #endif
  790. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  791. {
  792. update_rq_clock(rq);
  793. sched_info_queued(rq, p);
  794. p->sched_class->enqueue_task(rq, p, flags);
  795. #ifdef CONFIG_MTK_SCHED_CMP_TGS
  796. sched_tg_enqueue(rq, p);
  797. #endif
  798. }
  799. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  800. {
  801. update_rq_clock(rq);
  802. sched_info_dequeued(rq, p);
  803. p->sched_class->dequeue_task(rq, p, flags);
  804. #ifdef CONFIG_MTK_SCHED_CMP_TGS
  805. sched_tg_dequeue(rq, p);
  806. #endif
  807. }
  808. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  809. {
  810. if (task_contributes_to_load(p))
  811. rq->nr_uninterruptible--;
  812. enqueue_task(rq, p, flags);
  813. }
  814. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  815. {
  816. if (task_contributes_to_load(p))
  817. rq->nr_uninterruptible++;
  818. dequeue_task(rq, p, flags);
  819. }
  820. static void update_rq_clock_task(struct rq *rq, s64 delta)
  821. {
  822. /*
  823. * In theory, the compile should just see 0 here, and optimize out the call
  824. * to sched_rt_avg_update. But I don't trust it...
  825. */
  826. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  827. s64 steal = 0, irq_delta = 0;
  828. #endif
  829. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  830. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  831. /*
  832. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  833. * this case when a previous update_rq_clock() happened inside a
  834. * {soft,}irq region.
  835. *
  836. * When this happens, we stop ->clock_task and only update the
  837. * prev_irq_time stamp to account for the part that fit, so that a next
  838. * update will consume the rest. This ensures ->clock_task is
  839. * monotonic.
  840. *
  841. * It does however cause some slight miss-attribution of {soft,}irq
  842. * time, a more accurate solution would be to update the irq_time using
  843. * the current rq->clock timestamp, except that would require using
  844. * atomic ops.
  845. */
  846. if (irq_delta > delta)
  847. irq_delta = delta;
  848. rq->prev_irq_time += irq_delta;
  849. delta -= irq_delta;
  850. #endif
  851. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  852. if (static_key_false((&paravirt_steal_rq_enabled))) {
  853. steal = paravirt_steal_clock(cpu_of(rq));
  854. steal -= rq->prev_steal_time_rq;
  855. if (unlikely(steal > delta))
  856. steal = delta;
  857. rq->prev_steal_time_rq += steal;
  858. delta -= steal;
  859. }
  860. #endif
  861. rq->clock_task += delta;
  862. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  863. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  864. sched_rt_avg_update(rq, irq_delta + steal);
  865. #endif
  866. }
  867. void sched_set_stop_task(int cpu, struct task_struct *stop)
  868. {
  869. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  870. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  871. if (stop) {
  872. /*
  873. * Make it appear like a SCHED_FIFO task, its something
  874. * userspace knows about and won't get confused about.
  875. *
  876. * Also, it will make PI more or less work without too
  877. * much confusion -- but then, stop work should not
  878. * rely on PI working anyway.
  879. */
  880. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  881. stop->sched_class = &stop_sched_class;
  882. }
  883. cpu_rq(cpu)->stop = stop;
  884. if (old_stop) {
  885. /*
  886. * Reset it back to a normal scheduling class so that
  887. * it can die in pieces.
  888. */
  889. old_stop->sched_class = &rt_sched_class;
  890. }
  891. }
  892. /*
  893. * __normal_prio - return the priority that is based on the static prio
  894. */
  895. static inline int __normal_prio(struct task_struct *p)
  896. {
  897. return p->static_prio;
  898. }
  899. /*
  900. * Calculate the expected normal priority: i.e. priority
  901. * without taking RT-inheritance into account. Might be
  902. * boosted by interactivity modifiers. Changes upon fork,
  903. * setprio syscalls, and whenever the interactivity
  904. * estimator recalculates.
  905. */
  906. static inline int normal_prio(struct task_struct *p)
  907. {
  908. int prio;
  909. if (task_has_dl_policy(p))
  910. prio = MAX_DL_PRIO-1;
  911. else if (task_has_rt_policy(p))
  912. prio = MAX_RT_PRIO-1 - p->rt_priority;
  913. else
  914. prio = __normal_prio(p);
  915. return prio;
  916. }
  917. /*
  918. * Calculate the current priority, i.e. the priority
  919. * taken into account by the scheduler. This value might
  920. * be boosted by RT tasks, or might be boosted by
  921. * interactivity modifiers. Will be RT if the task got
  922. * RT-boosted. If not then it returns p->normal_prio.
  923. */
  924. static int effective_prio(struct task_struct *p)
  925. {
  926. p->normal_prio = normal_prio(p);
  927. /*
  928. * If we are RT tasks or we were boosted to RT priority,
  929. * keep the priority unchanged. Otherwise, update priority
  930. * to the normal priority:
  931. */
  932. if (!rt_prio(p->prio))
  933. return p->normal_prio;
  934. return p->prio;
  935. }
  936. /**
  937. * task_curr - is this task currently executing on a CPU?
  938. * @p: the task in question.
  939. *
  940. * Return: 1 if the task is currently executing. 0 otherwise.
  941. */
  942. inline int task_curr(const struct task_struct *p)
  943. {
  944. return cpu_curr(task_cpu(p)) == p;
  945. }
  946. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  947. const struct sched_class *prev_class,
  948. int oldprio)
  949. {
  950. if (prev_class != p->sched_class) {
  951. if (prev_class->switched_from)
  952. prev_class->switched_from(rq, p);
  953. p->sched_class->switched_to(rq, p);
  954. #ifdef CONFIG_MT_SCHED_INTEROP
  955. if (p->on_rq) {
  956. mt_sched_printf(sched_interop, "priority pid=%d comm=%s cpu=%d prev_prio=%d next_prio=%d",
  957. p->pid, p->comm, task_cpu(p), oldprio, p->prio);
  958. }
  959. #endif
  960. } else if (oldprio != p->prio || dl_task(p))
  961. p->sched_class->prio_changed(rq, p, oldprio);
  962. }
  963. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  964. {
  965. const struct sched_class *class;
  966. if (p->sched_class == rq->curr->sched_class) {
  967. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  968. } else {
  969. for_each_class(class) {
  970. if (class == rq->curr->sched_class)
  971. break;
  972. if (class == p->sched_class) {
  973. resched_curr(rq);
  974. break;
  975. }
  976. }
  977. }
  978. /*
  979. * A queue event has occurred, and we're going to schedule. In
  980. * this case, we can save a useless back to back clock update.
  981. */
  982. if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
  983. rq->skip_clock_update = 1;
  984. }
  985. #ifdef CONFIG_SMP
  986. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  987. {
  988. #ifdef CONFIG_SCHED_DEBUG
  989. /*
  990. * We should never call set_task_cpu() on a blocked task,
  991. * ttwu() will sort out the placement.
  992. */
  993. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  994. !(task_preempt_count(p) & PREEMPT_ACTIVE));
  995. #ifdef CONFIG_LOCKDEP
  996. /*
  997. * The caller should hold either p->pi_lock or rq->lock, when changing
  998. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  999. *
  1000. * sched_move_task() holds both and thus holding either pins the cgroup,
  1001. * see task_group().
  1002. *
  1003. * Furthermore, all task_rq users should acquire both locks, see
  1004. * task_rq_lock().
  1005. */
  1006. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1007. lockdep_is_held(&task_rq(p)->lock)));
  1008. #endif
  1009. #endif
  1010. trace_sched_migrate_task(p, new_cpu);
  1011. if (task_cpu(p) != new_cpu) {
  1012. if (p->sched_class->migrate_task_rq)
  1013. p->sched_class->migrate_task_rq(p, new_cpu);
  1014. p->se.nr_migrations++;
  1015. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  1016. }
  1017. __set_task_cpu(p, new_cpu);
  1018. }
  1019. static void __migrate_swap_task(struct task_struct *p, int cpu)
  1020. {
  1021. if (task_on_rq_queued(p)) {
  1022. struct rq *src_rq, *dst_rq;
  1023. src_rq = task_rq(p);
  1024. dst_rq = cpu_rq(cpu);
  1025. deactivate_task(src_rq, p, 0);
  1026. set_task_cpu(p, cpu);
  1027. activate_task(dst_rq, p, 0);
  1028. check_preempt_curr(dst_rq, p, 0);
  1029. } else {
  1030. /*
  1031. * Task isn't running anymore; make it appear like we migrated
  1032. * it before it went to sleep. This means on wakeup we make the
  1033. * previous cpu our targer instead of where it really is.
  1034. */
  1035. p->wake_cpu = cpu;
  1036. }
  1037. }
  1038. struct migration_swap_arg {
  1039. struct task_struct *src_task, *dst_task;
  1040. int src_cpu, dst_cpu;
  1041. };
  1042. static int migrate_swap_stop(void *data)
  1043. {
  1044. struct migration_swap_arg *arg = data;
  1045. struct rq *src_rq, *dst_rq;
  1046. int ret = -EAGAIN;
  1047. src_rq = cpu_rq(arg->src_cpu);
  1048. dst_rq = cpu_rq(arg->dst_cpu);
  1049. double_raw_lock(&arg->src_task->pi_lock,
  1050. &arg->dst_task->pi_lock);
  1051. double_rq_lock(src_rq, dst_rq);
  1052. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  1053. goto unlock;
  1054. if (task_cpu(arg->src_task) != arg->src_cpu)
  1055. goto unlock;
  1056. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  1057. goto unlock;
  1058. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  1059. goto unlock;
  1060. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  1061. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  1062. ret = 0;
  1063. unlock:
  1064. double_rq_unlock(src_rq, dst_rq);
  1065. raw_spin_unlock(&arg->dst_task->pi_lock);
  1066. raw_spin_unlock(&arg->src_task->pi_lock);
  1067. return ret;
  1068. }
  1069. /*
  1070. * Cross migrate two tasks
  1071. */
  1072. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  1073. {
  1074. struct migration_swap_arg arg;
  1075. int ret = -EINVAL;
  1076. get_online_cpus();
  1077. arg = (struct migration_swap_arg){
  1078. .src_task = cur,
  1079. .src_cpu = task_cpu(cur),
  1080. .dst_task = p,
  1081. .dst_cpu = task_cpu(p),
  1082. };
  1083. if (arg.src_cpu == arg.dst_cpu)
  1084. goto out;
  1085. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  1086. goto out;
  1087. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  1088. goto out;
  1089. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  1090. goto out;
  1091. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  1092. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  1093. out:
  1094. put_online_cpus();
  1095. return ret;
  1096. }
  1097. struct migration_arg {
  1098. struct task_struct *task;
  1099. int dest_cpu;
  1100. };
  1101. static int migration_cpu_stop(void *data);
  1102. /*
  1103. * wait_task_inactive - wait for a thread to unschedule.
  1104. *
  1105. * If @match_state is nonzero, it's the @p->state value just checked and
  1106. * not expected to change. If it changes, i.e. @p might have woken up,
  1107. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1108. * we return a positive number (its total switch count). If a second call
  1109. * a short while later returns the same number, the caller can be sure that
  1110. * @p has remained unscheduled the whole time.
  1111. *
  1112. * The caller must ensure that the task *will* unschedule sometime soon,
  1113. * else this function might spin for a *long* time. This function can't
  1114. * be called with interrupts off, or it may introduce deadlock with
  1115. * smp_call_function() if an IPI is sent by the same process we are
  1116. * waiting to become inactive.
  1117. */
  1118. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1119. {
  1120. unsigned long flags;
  1121. int running, queued;
  1122. unsigned long ncsw;
  1123. struct rq *rq;
  1124. for (;;) {
  1125. /*
  1126. * We do the initial early heuristics without holding
  1127. * any task-queue locks at all. We'll only try to get
  1128. * the runqueue lock when things look like they will
  1129. * work out!
  1130. */
  1131. rq = task_rq(p);
  1132. /*
  1133. * If the task is actively running on another CPU
  1134. * still, just relax and busy-wait without holding
  1135. * any locks.
  1136. *
  1137. * NOTE! Since we don't hold any locks, it's not
  1138. * even sure that "rq" stays as the right runqueue!
  1139. * But we don't care, since "task_running()" will
  1140. * return false if the runqueue has changed and p
  1141. * is actually now running somewhere else!
  1142. */
  1143. while (task_running(rq, p)) {
  1144. if (match_state && unlikely(p->state != match_state))
  1145. return 0;
  1146. cpu_relax();
  1147. }
  1148. /*
  1149. * Ok, time to look more closely! We need the rq
  1150. * lock now, to be *sure*. If we're wrong, we'll
  1151. * just go back and repeat.
  1152. */
  1153. rq = task_rq_lock(p, &flags);
  1154. trace_sched_wait_task(p);
  1155. running = task_running(rq, p);
  1156. queued = task_on_rq_queued(p);
  1157. ncsw = 0;
  1158. if (!match_state || p->state == match_state)
  1159. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1160. task_rq_unlock(rq, p, &flags);
  1161. /*
  1162. * If it changed from the expected state, bail out now.
  1163. */
  1164. if (unlikely(!ncsw))
  1165. break;
  1166. /*
  1167. * Was it really running after all now that we
  1168. * checked with the proper locks actually held?
  1169. *
  1170. * Oops. Go back and try again..
  1171. */
  1172. if (unlikely(running)) {
  1173. cpu_relax();
  1174. continue;
  1175. }
  1176. /*
  1177. * It's not enough that it's not actively running,
  1178. * it must be off the runqueue _entirely_, and not
  1179. * preempted!
  1180. *
  1181. * So if it was still runnable (but just not actively
  1182. * running right now), it's preempted, and we should
  1183. * yield - it could be a while.
  1184. */
  1185. if (unlikely(queued)) {
  1186. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1187. set_current_state(TASK_UNINTERRUPTIBLE);
  1188. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1189. continue;
  1190. }
  1191. /*
  1192. * Ahh, all good. It wasn't running, and it wasn't
  1193. * runnable, which means that it will never become
  1194. * running in the future either. We're all done!
  1195. */
  1196. break;
  1197. }
  1198. return ncsw;
  1199. }
  1200. /***
  1201. * kick_process - kick a running thread to enter/exit the kernel
  1202. * @p: the to-be-kicked thread
  1203. *
  1204. * Cause a process which is running on another CPU to enter
  1205. * kernel-mode, without any delay. (to get signals handled.)
  1206. *
  1207. * NOTE: this function doesn't have to take the runqueue lock,
  1208. * because all it wants to ensure is that the remote task enters
  1209. * the kernel. If the IPI races and the task has been migrated
  1210. * to another CPU then no harm is done and the purpose has been
  1211. * achieved as well.
  1212. */
  1213. void kick_process(struct task_struct *p)
  1214. {
  1215. int cpu;
  1216. preempt_disable();
  1217. cpu = task_cpu(p);
  1218. if ((cpu != smp_processor_id()) && task_curr(p))
  1219. smp_send_reschedule(cpu);
  1220. preempt_enable();
  1221. }
  1222. EXPORT_SYMBOL_GPL(kick_process);
  1223. #endif /* CONFIG_SMP */
  1224. #ifdef CONFIG_SMP
  1225. /*
  1226. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1227. */
  1228. static int select_fallback_rq(int cpu, struct task_struct *p)
  1229. {
  1230. int nid = cpu_to_node(cpu);
  1231. const struct cpumask *nodemask = NULL;
  1232. enum { cpuset, possible, fail } state = cpuset;
  1233. int dest_cpu;
  1234. /*
  1235. * If the node that the cpu is on has been offlined, cpu_to_node()
  1236. * will return -1. There is no cpu on the node, and we should
  1237. * select the cpu on the other node.
  1238. */
  1239. if (nid != -1) {
  1240. nodemask = cpumask_of_node(nid);
  1241. /* Look for allowed, online CPU in same node. */
  1242. for_each_cpu(dest_cpu, nodemask) {
  1243. if (!cpu_online(dest_cpu))
  1244. continue;
  1245. if (!cpu_active(dest_cpu))
  1246. continue;
  1247. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1248. return dest_cpu;
  1249. }
  1250. }
  1251. for (;;) {
  1252. /* Any allowed, online CPU? */
  1253. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1254. if (!cpu_online(dest_cpu))
  1255. continue;
  1256. if (!cpu_active(dest_cpu))
  1257. continue;
  1258. goto out;
  1259. }
  1260. switch (state) {
  1261. case cpuset:
  1262. /* No more Mr. Nice Guy. */
  1263. cpuset_cpus_allowed_fallback(p);
  1264. state = possible;
  1265. break;
  1266. case possible:
  1267. do_set_cpus_allowed(p, cpu_possible_mask);
  1268. state = fail;
  1269. break;
  1270. case fail:
  1271. BUG();
  1272. break;
  1273. }
  1274. }
  1275. out:
  1276. if (state != cpuset) {
  1277. /*
  1278. * Don't tell them about moving exiting tasks or
  1279. * kernel threads (both mm NULL), since they never
  1280. * leave kernel.
  1281. */
  1282. if (p->mm && printk_ratelimit()) {
  1283. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1284. task_pid_nr(p), p->comm, cpu);
  1285. }
  1286. }
  1287. return dest_cpu;
  1288. }
  1289. /*
  1290. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1291. */
  1292. static inline
  1293. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1294. {
  1295. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1296. /*
  1297. * In order not to call set_task_cpu() on a blocking task we need
  1298. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1299. * cpu.
  1300. *
  1301. * Since this is common to all placement strategies, this lives here.
  1302. *
  1303. * [ this allows ->select_task() to simply return task_cpu(p) and
  1304. * not worry about this generic constraint ]
  1305. */
  1306. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1307. !cpu_online(cpu)))
  1308. cpu = select_fallback_rq(task_cpu(p), p);
  1309. return cpu;
  1310. }
  1311. static void update_avg(u64 *avg, u64 sample)
  1312. {
  1313. s64 diff = sample - *avg;
  1314. *avg += diff >> 3;
  1315. }
  1316. #endif
  1317. static void
  1318. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1319. {
  1320. #ifdef CONFIG_SCHEDSTATS
  1321. struct rq *rq = this_rq();
  1322. #ifdef CONFIG_SMP
  1323. int this_cpu = smp_processor_id();
  1324. if (cpu == this_cpu) {
  1325. schedstat_inc(rq, ttwu_local);
  1326. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1327. } else {
  1328. struct sched_domain *sd;
  1329. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1330. rcu_read_lock();
  1331. for_each_domain(this_cpu, sd) {
  1332. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1333. schedstat_inc(sd, ttwu_wake_remote);
  1334. break;
  1335. }
  1336. }
  1337. rcu_read_unlock();
  1338. }
  1339. if (wake_flags & WF_MIGRATED)
  1340. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1341. #endif /* CONFIG_SMP */
  1342. schedstat_inc(rq, ttwu_count);
  1343. schedstat_inc(p, se.statistics.nr_wakeups);
  1344. if (wake_flags & WF_SYNC)
  1345. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1346. #endif /* CONFIG_SCHEDSTATS */
  1347. }
  1348. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1349. {
  1350. activate_task(rq, p, en_flags);
  1351. p->on_rq = TASK_ON_RQ_QUEUED;
  1352. /* if a worker is waking up, notify workqueue */
  1353. if (p->flags & PF_WQ_WORKER)
  1354. wq_worker_waking_up(p, cpu_of(rq));
  1355. }
  1356. /*
  1357. * Mark the task runnable and perform wakeup-preemption.
  1358. */
  1359. static void
  1360. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1361. {
  1362. check_preempt_curr(rq, p, wake_flags);
  1363. trace_sched_wakeup(p, true);
  1364. p->state = TASK_RUNNING;
  1365. #ifdef CONFIG_SMP
  1366. if (p->sched_class->task_woken)
  1367. p->sched_class->task_woken(rq, p);
  1368. if (rq->idle_stamp) {
  1369. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1370. u64 max = 2*rq->max_idle_balance_cost;
  1371. update_avg(&rq->avg_idle, delta);
  1372. if (rq->avg_idle > max)
  1373. rq->avg_idle = max;
  1374. rq->idle_stamp = 0;
  1375. }
  1376. #endif
  1377. }
  1378. static void
  1379. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1380. {
  1381. #ifdef CONFIG_SMP
  1382. if (p->sched_contributes_to_load)
  1383. rq->nr_uninterruptible--;
  1384. #endif
  1385. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1386. ttwu_do_wakeup(rq, p, wake_flags);
  1387. }
  1388. /*
  1389. * Called in case the task @p isn't fully descheduled from its runqueue,
  1390. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1391. * since all we need to do is flip p->state to TASK_RUNNING, since
  1392. * the task is still ->on_rq.
  1393. */
  1394. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1395. {
  1396. struct rq *rq;
  1397. int ret = 0;
  1398. rq = __task_rq_lock(p);
  1399. if (task_on_rq_queued(p)) {
  1400. /* check_preempt_curr() may use rq clock */
  1401. update_rq_clock(rq);
  1402. ttwu_do_wakeup(rq, p, wake_flags);
  1403. ret = 1;
  1404. }
  1405. __task_rq_unlock(rq);
  1406. return ret;
  1407. }
  1408. #ifdef CONFIG_SMP
  1409. void sched_ttwu_pending(void)
  1410. {
  1411. struct rq *rq = this_rq();
  1412. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1413. struct task_struct *p;
  1414. unsigned long flags;
  1415. if (!llist)
  1416. return;
  1417. raw_spin_lock_irqsave(&rq->lock, flags);
  1418. while (llist) {
  1419. p = llist_entry(llist, struct task_struct, wake_entry);
  1420. llist = llist_next(llist);
  1421. ttwu_do_activate(rq, p, 0);
  1422. }
  1423. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1424. }
  1425. enum ipi_msg_type {
  1426. IPI_RESCHEDULE,
  1427. IPI_CALL_FUNC,
  1428. IPI_CALL_FUNC_SINGLE,
  1429. IPI_CPU_STOP,
  1430. IPI_TIMER,
  1431. IPI_IRQ_WORK,
  1432. };
  1433. void scheduler_ipi(void)
  1434. {
  1435. /*
  1436. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1437. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1438. * this IPI.
  1439. */
  1440. preempt_fold_need_resched();
  1441. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) {
  1442. #ifdef CONFIG_MTPROF
  1443. mt_trace_ISR_start(IPI_RESCHEDULE);
  1444. mt_trace_ISR_end(IPI_RESCHEDULE);
  1445. #endif
  1446. return;
  1447. }
  1448. /*
  1449. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1450. * traditionally all their work was done from the interrupt return
  1451. * path. Now that we actually do some work, we need to make sure
  1452. * we do call them.
  1453. *
  1454. * Some archs already do call them, luckily irq_enter/exit nest
  1455. * properly.
  1456. *
  1457. * Arguably we should visit all archs and update all handlers,
  1458. * however a fair share of IPIs are still resched only so this would
  1459. * somewhat pessimize the simple resched case.
  1460. */
  1461. irq_enter();
  1462. #ifdef CONFIG_MTPROF
  1463. mt_trace_ISR_start(IPI_RESCHEDULE);
  1464. #endif
  1465. sched_ttwu_pending();
  1466. /*
  1467. * Check if someone kicked us for doing the nohz idle load balance.
  1468. */
  1469. if (unlikely(got_nohz_idle_kick())) {
  1470. this_rq()->idle_balance = 1;
  1471. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1472. }
  1473. #ifdef CONFIG_MTPROF
  1474. mt_trace_ISR_end(IPI_RESCHEDULE);
  1475. #endif
  1476. irq_exit();
  1477. }
  1478. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1479. {
  1480. struct rq *rq = cpu_rq(cpu);
  1481. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1482. if (!set_nr_if_polling(rq->idle))
  1483. smp_send_reschedule(cpu);
  1484. else
  1485. trace_sched_wake_idle_without_ipi(cpu);
  1486. }
  1487. }
  1488. void wake_up_if_idle(int cpu)
  1489. {
  1490. struct rq *rq = cpu_rq(cpu);
  1491. unsigned long flags;
  1492. rcu_read_lock();
  1493. if (!is_idle_task(rcu_dereference(rq->curr)))
  1494. goto out;
  1495. if (set_nr_if_polling(rq->idle)) {
  1496. trace_sched_wake_idle_without_ipi(cpu);
  1497. } else {
  1498. raw_spin_lock_irqsave(&rq->lock, flags);
  1499. if (is_idle_task(rq->curr))
  1500. smp_send_reschedule(cpu);
  1501. /* Else cpu is not in idle, do nothing here */
  1502. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1503. }
  1504. out:
  1505. rcu_read_unlock();
  1506. }
  1507. bool cpus_share_cache(int this_cpu, int that_cpu)
  1508. {
  1509. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1510. }
  1511. #endif /* CONFIG_SMP */
  1512. static void ttwu_queue(struct task_struct *p, int cpu)
  1513. {
  1514. struct rq *rq = cpu_rq(cpu);
  1515. #if defined(CONFIG_SMP)
  1516. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1517. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1518. ttwu_queue_remote(p, cpu);
  1519. return;
  1520. }
  1521. #endif
  1522. raw_spin_lock(&rq->lock);
  1523. ttwu_do_activate(rq, p, 0);
  1524. raw_spin_unlock(&rq->lock);
  1525. }
  1526. /**
  1527. * try_to_wake_up - wake up a thread
  1528. * @p: the thread to be awakened
  1529. * @state: the mask of task states that can be woken
  1530. * @wake_flags: wake modifier flags (WF_*)
  1531. *
  1532. * Put it on the run-queue if it's not already there. The "current"
  1533. * thread is always on the run-queue (except when the actual
  1534. * re-schedule is in progress), and as such you're allowed to do
  1535. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1536. * runnable without the overhead of this.
  1537. *
  1538. * Return: %true if @p was woken up, %false if it was already running.
  1539. * or @state didn't match @p's state.
  1540. */
  1541. static int
  1542. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1543. {
  1544. unsigned long flags;
  1545. int cpu, success = 0;
  1546. /*
  1547. * If we are going to wake up a thread waiting for CONDITION we
  1548. * need to ensure that CONDITION=1 done by the caller can not be
  1549. * reordered with p->state check below. This pairs with mb() in
  1550. * set_current_state() the waiting thread does.
  1551. */
  1552. smp_mb__before_spinlock();
  1553. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1554. if (!(p->state & state))
  1555. goto out;
  1556. success = 1; /* we're going to change ->state */
  1557. cpu = task_cpu(p);
  1558. if (p->on_rq && ttwu_remote(p, wake_flags))
  1559. goto stat;
  1560. #ifdef CONFIG_SMP
  1561. /*
  1562. * If the owning (remote) cpu is still in the middle of schedule() with
  1563. * this task as prev, wait until its done referencing the task.
  1564. */
  1565. while (p->on_cpu)
  1566. cpu_relax();
  1567. /*
  1568. * Pairs with the smp_wmb() in finish_lock_switch().
  1569. */
  1570. smp_rmb();
  1571. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1572. p->state = TASK_WAKING;
  1573. if (p->sched_class->task_waking)
  1574. p->sched_class->task_waking(p);
  1575. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1576. if (task_cpu(p) != cpu) {
  1577. wake_flags |= WF_MIGRATED;
  1578. set_task_cpu(p, cpu);
  1579. }
  1580. #endif /* CONFIG_SMP */
  1581. ttwu_queue(p, cpu);
  1582. stat:
  1583. ttwu_stat(p, cpu, wake_flags);
  1584. out:
  1585. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1586. return success;
  1587. }
  1588. /**
  1589. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1590. * @p: the thread to be awakened
  1591. *
  1592. * Put @p on the run-queue if it's not already there. The caller must
  1593. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1594. * the current task.
  1595. */
  1596. static void try_to_wake_up_local(struct task_struct *p)
  1597. {
  1598. struct rq *rq = task_rq(p);
  1599. if (WARN_ON_ONCE(rq != this_rq()) ||
  1600. WARN_ON_ONCE(p == current))
  1601. return;
  1602. lockdep_assert_held(&rq->lock);
  1603. if (!raw_spin_trylock(&p->pi_lock)) {
  1604. raw_spin_unlock(&rq->lock);
  1605. raw_spin_lock(&p->pi_lock);
  1606. raw_spin_lock(&rq->lock);
  1607. }
  1608. if (!(p->state & TASK_NORMAL))
  1609. goto out;
  1610. if (!task_on_rq_queued(p))
  1611. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1612. ttwu_do_wakeup(rq, p, 0);
  1613. ttwu_stat(p, smp_processor_id(), 0);
  1614. out:
  1615. raw_spin_unlock(&p->pi_lock);
  1616. }
  1617. /**
  1618. * wake_up_process - Wake up a specific process
  1619. * @p: The process to be woken up.
  1620. *
  1621. * Attempt to wake up the nominated process and move it to the set of runnable
  1622. * processes.
  1623. *
  1624. * Return: 1 if the process was woken up, 0 if it was already running.
  1625. *
  1626. * It may be assumed that this function implies a write memory barrier before
  1627. * changing the task state if and only if any tasks are woken up.
  1628. */
  1629. int wake_up_process(struct task_struct *p)
  1630. {
  1631. WARN_ON(task_is_stopped_or_traced(p));
  1632. return try_to_wake_up(p, TASK_NORMAL, 0);
  1633. }
  1634. EXPORT_SYMBOL(wake_up_process);
  1635. int wake_up_state(struct task_struct *p, unsigned int state)
  1636. {
  1637. return try_to_wake_up(p, state, 0);
  1638. }
  1639. /*
  1640. * This function clears the sched_dl_entity static params.
  1641. */
  1642. void __dl_clear_params(struct task_struct *p)
  1643. {
  1644. struct sched_dl_entity *dl_se = &p->dl;
  1645. dl_se->dl_runtime = 0;
  1646. dl_se->dl_deadline = 0;
  1647. dl_se->dl_period = 0;
  1648. dl_se->flags = 0;
  1649. dl_se->dl_bw = 0;
  1650. }
  1651. /*
  1652. * Perform scheduler related setup for a newly forked process p.
  1653. * p is forked by current.
  1654. *
  1655. * __sched_fork() is basic setup used by init_idle() too:
  1656. */
  1657. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1658. {
  1659. p->on_rq = 0;
  1660. p->se.on_rq = 0;
  1661. p->se.exec_start = 0;
  1662. p->se.sum_exec_runtime = 0;
  1663. p->se.prev_sum_exec_runtime = 0;
  1664. p->se.nr_migrations = 0;
  1665. p->se.vruntime = 0;
  1666. INIT_LIST_HEAD(&p->se.group_node);
  1667. #ifdef CONFIG_SCHED_HMP
  1668. p->se.avg.hmp_last_up_migration = 0;
  1669. p->se.avg.hmp_last_down_migration = 0;
  1670. #endif /* CONFIG_SCHED_HMP */
  1671. #ifdef CONFIG_SCHEDSTATS
  1672. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1673. #endif
  1674. RB_CLEAR_NODE(&p->dl.rb_node);
  1675. hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1676. __dl_clear_params(p);
  1677. INIT_LIST_HEAD(&p->rt.run_list);
  1678. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1679. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1680. #endif
  1681. #ifdef CONFIG_NUMA_BALANCING
  1682. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1683. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1684. p->mm->numa_scan_seq = 0;
  1685. }
  1686. if (clone_flags & CLONE_VM)
  1687. p->numa_preferred_nid = current->numa_preferred_nid;
  1688. else
  1689. p->numa_preferred_nid = -1;
  1690. p->node_stamp = 0ULL;
  1691. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1692. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1693. p->numa_work.next = &p->numa_work;
  1694. p->numa_faults_memory = NULL;
  1695. p->numa_faults_buffer_memory = NULL;
  1696. p->last_task_numa_placement = 0;
  1697. p->last_sum_exec_runtime = 0;
  1698. INIT_LIST_HEAD(&p->numa_entry);
  1699. p->numa_group = NULL;
  1700. #endif /* CONFIG_NUMA_BALANCING */
  1701. }
  1702. #ifdef CONFIG_NUMA_BALANCING
  1703. #ifdef CONFIG_SCHED_DEBUG
  1704. void set_numabalancing_state(bool enabled)
  1705. {
  1706. if (enabled)
  1707. sched_feat_set("NUMA");
  1708. else
  1709. sched_feat_set("NO_NUMA");
  1710. }
  1711. #else
  1712. __read_mostly bool numabalancing_enabled;
  1713. void set_numabalancing_state(bool enabled)
  1714. {
  1715. numabalancing_enabled = enabled;
  1716. }
  1717. #endif /* CONFIG_SCHED_DEBUG */
  1718. #ifdef CONFIG_PROC_SYSCTL
  1719. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1720. void __user *buffer, size_t *lenp, loff_t *ppos)
  1721. {
  1722. struct ctl_table t;
  1723. int err;
  1724. int state = numabalancing_enabled;
  1725. if (write && !capable(CAP_SYS_ADMIN))
  1726. return -EPERM;
  1727. t = *table;
  1728. t.data = &state;
  1729. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1730. if (err < 0)
  1731. return err;
  1732. if (write)
  1733. set_numabalancing_state(state);
  1734. return err;
  1735. }
  1736. #endif
  1737. #endif
  1738. /*
  1739. * fork()/clone()-time setup:
  1740. */
  1741. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1742. {
  1743. unsigned long flags;
  1744. int cpu = get_cpu();
  1745. __sched_fork(clone_flags, p);
  1746. /*
  1747. * We mark the process as running here. This guarantees that
  1748. * nobody will actually run it, and a signal or other external
  1749. * event cannot wake it up and insert it on the runqueue either.
  1750. */
  1751. p->state = TASK_RUNNING;
  1752. /*
  1753. * Make sure we do not leak PI boosting priority to the child.
  1754. */
  1755. p->prio = current->normal_prio;
  1756. /*
  1757. * Revert to default priority/policy on fork if requested.
  1758. */
  1759. if (unlikely(p->sched_reset_on_fork)) {
  1760. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1761. p->policy = SCHED_NORMAL;
  1762. p->static_prio = NICE_TO_PRIO(0);
  1763. p->rt_priority = 0;
  1764. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1765. p->static_prio = NICE_TO_PRIO(0);
  1766. p->prio = p->normal_prio = __normal_prio(p);
  1767. set_load_weight(p);
  1768. /*
  1769. * We don't need the reset flag anymore after the fork. It has
  1770. * fulfilled its duty:
  1771. */
  1772. p->sched_reset_on_fork = 0;
  1773. }
  1774. if (dl_prio(p->prio)) {
  1775. put_cpu();
  1776. return -EAGAIN;
  1777. } else if (rt_prio(p->prio)) {
  1778. p->sched_class = &rt_sched_class;
  1779. } else {
  1780. p->sched_class = &fair_sched_class;
  1781. }
  1782. if (p->sched_class->task_fork)
  1783. p->sched_class->task_fork(p);
  1784. /*
  1785. * The child is not yet in the pid-hash so no cgroup attach races,
  1786. * and the cgroup is pinned to this child due to cgroup_fork()
  1787. * is ran before sched_fork().
  1788. *
  1789. * Silence PROVE_RCU.
  1790. */
  1791. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1792. set_task_cpu(p, cpu);
  1793. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1794. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1795. if (likely(sched_info_on()))
  1796. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1797. #endif
  1798. #if defined(CONFIG_SMP)
  1799. p->on_cpu = 0;
  1800. #endif
  1801. init_task_preempt_count(p);
  1802. #ifdef CONFIG_SMP
  1803. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1804. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1805. #endif
  1806. put_cpu();
  1807. return 0;
  1808. }
  1809. unsigned long to_ratio(u64 period, u64 runtime)
  1810. {
  1811. if (runtime == RUNTIME_INF)
  1812. return 1ULL << 20;
  1813. /*
  1814. * Doing this here saves a lot of checks in all
  1815. * the calling paths, and returning zero seems
  1816. * safe for them anyway.
  1817. */
  1818. if (period == 0)
  1819. return 0;
  1820. return div64_u64(runtime << 20, period);
  1821. }
  1822. #ifdef CONFIG_SMP
  1823. inline struct dl_bw *dl_bw_of(int i)
  1824. {
  1825. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1826. "sched RCU must be held");
  1827. return &cpu_rq(i)->rd->dl_bw;
  1828. }
  1829. static inline int dl_bw_cpus(int i)
  1830. {
  1831. struct root_domain *rd = cpu_rq(i)->rd;
  1832. int cpus = 0;
  1833. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1834. "sched RCU must be held");
  1835. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1836. cpus++;
  1837. return cpus;
  1838. }
  1839. #else
  1840. inline struct dl_bw *dl_bw_of(int i)
  1841. {
  1842. return &cpu_rq(i)->dl.dl_bw;
  1843. }
  1844. static inline int dl_bw_cpus(int i)
  1845. {
  1846. return 1;
  1847. }
  1848. #endif
  1849. static inline
  1850. void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
  1851. {
  1852. dl_b->total_bw -= tsk_bw;
  1853. }
  1854. static inline
  1855. void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
  1856. {
  1857. dl_b->total_bw += tsk_bw;
  1858. }
  1859. static inline
  1860. bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
  1861. {
  1862. return dl_b->bw != -1 &&
  1863. dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
  1864. }
  1865. /*
  1866. * We must be sure that accepting a new task (or allowing changing the
  1867. * parameters of an existing one) is consistent with the bandwidth
  1868. * constraints. If yes, this function also accordingly updates the currently
  1869. * allocated bandwidth to reflect the new situation.
  1870. *
  1871. * This function is called while holding p's rq->lock.
  1872. */
  1873. static int dl_overflow(struct task_struct *p, int policy,
  1874. const struct sched_attr *attr)
  1875. {
  1876. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1877. u64 period = attr->sched_period ?: attr->sched_deadline;
  1878. u64 runtime = attr->sched_runtime;
  1879. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1880. int cpus, err = -1;
  1881. if (new_bw == p->dl.dl_bw)
  1882. return 0;
  1883. /*
  1884. * Either if a task, enters, leave, or stays -deadline but changes
  1885. * its parameters, we may need to update accordingly the total
  1886. * allocated bandwidth of the container.
  1887. */
  1888. raw_spin_lock(&dl_b->lock);
  1889. cpus = dl_bw_cpus(task_cpu(p));
  1890. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1891. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1892. __dl_add(dl_b, new_bw);
  1893. err = 0;
  1894. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1895. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1896. __dl_clear(dl_b, p->dl.dl_bw);
  1897. __dl_add(dl_b, new_bw);
  1898. err = 0;
  1899. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1900. __dl_clear(dl_b, p->dl.dl_bw);
  1901. err = 0;
  1902. }
  1903. raw_spin_unlock(&dl_b->lock);
  1904. return err;
  1905. }
  1906. extern void init_dl_bw(struct dl_bw *dl_b);
  1907. /*
  1908. * wake_up_new_task - wake up a newly created task for the first time.
  1909. *
  1910. * This function will do some initial scheduler statistics housekeeping
  1911. * that must be done for every newly created context, then puts the task
  1912. * on the runqueue and wakes it.
  1913. */
  1914. void wake_up_new_task(struct task_struct *p)
  1915. {
  1916. unsigned long flags;
  1917. struct rq *rq;
  1918. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1919. #ifdef CONFIG_SMP
  1920. /*
  1921. * Fork balancing, do it here and not earlier because:
  1922. * - cpus_allowed can change in the fork path
  1923. * - any previously selected cpu might disappear through hotplug
  1924. */
  1925. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1926. #endif
  1927. /* Initialize new task's runnable average */
  1928. init_task_runnable_average(p);
  1929. rq = __task_rq_lock(p);
  1930. activate_task(rq, p, 0);
  1931. p->on_rq = TASK_ON_RQ_QUEUED;
  1932. trace_sched_wakeup_new(p, true);
  1933. check_preempt_curr(rq, p, WF_FORK);
  1934. #ifdef CONFIG_SMP
  1935. if (p->sched_class->task_woken)
  1936. p->sched_class->task_woken(rq, p);
  1937. #endif
  1938. task_rq_unlock(rq, p, &flags);
  1939. }
  1940. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1941. /**
  1942. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1943. * @notifier: notifier struct to register
  1944. */
  1945. void preempt_notifier_register(struct preempt_notifier *notifier)
  1946. {
  1947. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1948. }
  1949. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1950. /**
  1951. * preempt_notifier_unregister - no longer interested in preemption notifications
  1952. * @notifier: notifier struct to unregister
  1953. *
  1954. * This is safe to call from within a preemption notifier.
  1955. */
  1956. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1957. {
  1958. hlist_del(&notifier->link);
  1959. }
  1960. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1961. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1962. {
  1963. struct preempt_notifier *notifier;
  1964. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1965. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1966. }
  1967. static void
  1968. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1969. struct task_struct *next)
  1970. {
  1971. struct preempt_notifier *notifier;
  1972. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1973. notifier->ops->sched_out(notifier, next);
  1974. }
  1975. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1976. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1977. {
  1978. }
  1979. static void
  1980. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1981. struct task_struct *next)
  1982. {
  1983. }
  1984. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1985. /**
  1986. * prepare_task_switch - prepare to switch tasks
  1987. * @rq: the runqueue preparing to switch
  1988. * @prev: the current task that is being switched out
  1989. * @next: the task we are going to switch to.
  1990. *
  1991. * This is called with the rq lock held and interrupts off. It must
  1992. * be paired with a subsequent finish_task_switch after the context
  1993. * switch.
  1994. *
  1995. * prepare_task_switch sets up locking and calls architecture specific
  1996. * hooks.
  1997. */
  1998. static inline void
  1999. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2000. struct task_struct *next)
  2001. {
  2002. trace_sched_switch(prev, next);
  2003. sched_info_switch(rq, prev, next);
  2004. perf_event_task_sched_out(prev, next);
  2005. fire_sched_out_preempt_notifiers(prev, next);
  2006. prepare_lock_switch(rq, next);
  2007. prepare_arch_switch(next);
  2008. }
  2009. /**
  2010. * finish_task_switch - clean up after a task-switch
  2011. * @rq: runqueue associated with task-switch
  2012. * @prev: the thread we just switched away from.
  2013. *
  2014. * finish_task_switch must be called after the context switch, paired
  2015. * with a prepare_task_switch call before the context switch.
  2016. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2017. * and do any other architecture-specific cleanup actions.
  2018. *
  2019. * Note that we may have delayed dropping an mm in context_switch(). If
  2020. * so, we finish that here outside of the runqueue lock. (Doing it
  2021. * with the lock held can cause deadlocks; see schedule() for
  2022. * details.)
  2023. */
  2024. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2025. __releases(rq->lock)
  2026. {
  2027. struct mm_struct *mm = rq->prev_mm;
  2028. long prev_state;
  2029. rq->prev_mm = NULL;
  2030. /*
  2031. * A task struct has one reference for the use as "current".
  2032. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2033. * schedule one last time. The schedule call will never return, and
  2034. * the scheduled task must drop that reference.
  2035. * The test for TASK_DEAD must occur while the runqueue locks are
  2036. * still held, otherwise prev could be scheduled on another cpu, die
  2037. * there before we look at prev->state, and then the reference would
  2038. * be dropped twice.
  2039. * Manfred Spraul <manfred@colorfullife.com>
  2040. */
  2041. prev_state = prev->state;
  2042. vtime_task_switch(prev);
  2043. finish_arch_switch(prev);
  2044. perf_event_task_sched_in(prev, current);
  2045. finish_lock_switch(rq, prev);
  2046. finish_arch_post_lock_switch();
  2047. fire_sched_in_preempt_notifiers(current);
  2048. if (mm)
  2049. mmdrop(mm);
  2050. if (unlikely(prev_state == TASK_DEAD)) {
  2051. if (prev->sched_class->task_dead)
  2052. prev->sched_class->task_dead(prev);
  2053. /*
  2054. * Remove function-return probe instances associated with this
  2055. * task and put them back on the free list.
  2056. */
  2057. kprobe_flush_task(prev);
  2058. put_task_struct(prev);
  2059. }
  2060. tick_nohz_task_switch(current);
  2061. }
  2062. #ifdef CONFIG_SMP
  2063. /* rq->lock is NOT held, but preemption is disabled */
  2064. static inline void post_schedule(struct rq *rq)
  2065. {
  2066. if (rq->post_schedule) {
  2067. unsigned long flags;
  2068. raw_spin_lock_irqsave(&rq->lock, flags);
  2069. if (rq->curr->sched_class->post_schedule)
  2070. rq->curr->sched_class->post_schedule(rq);
  2071. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2072. rq->post_schedule = 0;
  2073. }
  2074. }
  2075. #else
  2076. static inline void post_schedule(struct rq *rq)
  2077. {
  2078. }
  2079. #endif
  2080. /**
  2081. * schedule_tail - first thing a freshly forked thread must call.
  2082. * @prev: the thread we just switched away from.
  2083. */
  2084. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  2085. __releases(rq->lock)
  2086. {
  2087. struct rq *rq = this_rq();
  2088. finish_task_switch(rq, prev);
  2089. /*
  2090. * FIXME: do we need to worry about rq being invalidated by the
  2091. * task_switch?
  2092. */
  2093. post_schedule(rq);
  2094. if (current->set_child_tid)
  2095. put_user(task_pid_vnr(current), current->set_child_tid);
  2096. }
  2097. /*
  2098. * context_switch - switch to the new MM and the new
  2099. * thread's register state.
  2100. */
  2101. static inline void
  2102. context_switch(struct rq *rq, struct task_struct *prev,
  2103. struct task_struct *next)
  2104. {
  2105. struct mm_struct *mm, *oldmm;
  2106. prepare_task_switch(rq, prev, next);
  2107. mm = next->mm;
  2108. oldmm = prev->active_mm;
  2109. /*
  2110. * For paravirt, this is coupled with an exit in switch_to to
  2111. * combine the page table reload and the switch backend into
  2112. * one hypercall.
  2113. */
  2114. arch_start_context_switch(prev);
  2115. if (!mm) {
  2116. next->active_mm = oldmm;
  2117. atomic_inc(&oldmm->mm_count);
  2118. enter_lazy_tlb(oldmm, next);
  2119. } else
  2120. switch_mm(oldmm, mm, next);
  2121. if (!prev->mm) {
  2122. prev->active_mm = NULL;
  2123. rq->prev_mm = oldmm;
  2124. }
  2125. /*
  2126. * Since the runqueue lock will be released by the next
  2127. * task (which is an invalid locking op but in the case
  2128. * of the scheduler it's an obvious special-case), so we
  2129. * do an early lockdep release here:
  2130. */
  2131. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2132. context_tracking_task_switch(prev, next);
  2133. /* Here we just switch the register state and the stack. */
  2134. switch_to(prev, next, prev);
  2135. barrier();
  2136. /*
  2137. * this_rq must be evaluated again because prev may have moved
  2138. * CPUs since it called schedule(), thus the 'rq' on its stack
  2139. * frame will be invalid.
  2140. */
  2141. finish_task_switch(this_rq(), prev);
  2142. }
  2143. /*
  2144. * nr_running and nr_context_switches:
  2145. *
  2146. * externally visible scheduler statistics: current number of runnable
  2147. * threads, total number of context switches performed since bootup.
  2148. */
  2149. unsigned long nr_running(void)
  2150. {
  2151. unsigned long i, sum = 0;
  2152. for_each_online_cpu(i)
  2153. sum += cpu_rq(i)->nr_running;
  2154. return sum;
  2155. }
  2156. /*
  2157. * Check if only the current task is running on the cpu.
  2158. */
  2159. bool single_task_running(void)
  2160. {
  2161. if (cpu_rq(smp_processor_id())->nr_running == 1)
  2162. return true;
  2163. else
  2164. return false;
  2165. }
  2166. EXPORT_SYMBOL(single_task_running);
  2167. unsigned long long nr_context_switches(void)
  2168. {
  2169. int i;
  2170. unsigned long long sum = 0;
  2171. for_each_possible_cpu(i)
  2172. sum += cpu_rq(i)->nr_switches;
  2173. return sum;
  2174. }
  2175. unsigned long nr_iowait(void)
  2176. {
  2177. unsigned long i, sum = 0;
  2178. for_each_possible_cpu(i)
  2179. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2180. return sum;
  2181. }
  2182. unsigned long nr_iowait_cpu(int cpu)
  2183. {
  2184. struct rq *this = cpu_rq(cpu);
  2185. return atomic_read(&this->nr_iowait);
  2186. }
  2187. void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
  2188. {
  2189. struct rq *this = this_rq();
  2190. *nr_waiters = atomic_read(&this->nr_iowait);
  2191. *load = this->cpu_load[0];
  2192. }
  2193. unsigned long get_cpu_load(int cpu)
  2194. {
  2195. struct rq *this = cpu_rq(cpu);
  2196. return this->cpu_load[0];
  2197. }
  2198. EXPORT_SYMBOL(get_cpu_load);
  2199. #ifdef CONFIG_SMP
  2200. /*
  2201. * sched_exec - execve() is a valuable balancing opportunity, because at
  2202. * this point the task has the smallest effective memory and cache footprint.
  2203. */
  2204. void sched_exec(void)
  2205. {
  2206. struct task_struct *p = current;
  2207. unsigned long flags;
  2208. int dest_cpu;
  2209. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2210. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2211. if (dest_cpu == smp_processor_id())
  2212. goto unlock;
  2213. if (likely(cpu_active(dest_cpu))) {
  2214. struct migration_arg arg = { p, dest_cpu };
  2215. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2216. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2217. return;
  2218. }
  2219. unlock:
  2220. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2221. }
  2222. #endif
  2223. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2224. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2225. EXPORT_PER_CPU_SYMBOL(kstat);
  2226. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2227. /*
  2228. * Return accounted runtime for the task.
  2229. * In case the task is currently running, return the runtime plus current's
  2230. * pending runtime that have not been accounted yet.
  2231. */
  2232. unsigned long long task_sched_runtime(struct task_struct *p)
  2233. {
  2234. unsigned long flags;
  2235. struct rq *rq;
  2236. u64 ns;
  2237. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2238. /*
  2239. * 64-bit doesn't need locks to atomically read a 64bit value.
  2240. * So we have a optimization chance when the task's delta_exec is 0.
  2241. * Reading ->on_cpu is racy, but this is ok.
  2242. *
  2243. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2244. * If we race with it entering cpu, unaccounted time is 0. This is
  2245. * indistinguishable from the read occurring a few cycles earlier.
  2246. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2247. * been accounted, so we're correct here as well.
  2248. */
  2249. if (!p->on_cpu || !task_on_rq_queued(p))
  2250. return p->se.sum_exec_runtime;
  2251. #endif
  2252. rq = task_rq_lock(p, &flags);
  2253. /*
  2254. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2255. * project cycles that may never be accounted to this
  2256. * thread, breaking clock_gettime().
  2257. */
  2258. if (task_current(rq, p) && task_on_rq_queued(p)) {
  2259. update_rq_clock(rq);
  2260. p->sched_class->update_curr(rq);
  2261. }
  2262. ns = p->se.sum_exec_runtime;
  2263. task_rq_unlock(rq, p, &flags);
  2264. return ns;
  2265. }
  2266. /*
  2267. * This function gets called by the timer code, with HZ frequency.
  2268. * We call it with interrupts disabled.
  2269. */
  2270. void scheduler_tick(void)
  2271. {
  2272. int cpu = smp_processor_id();
  2273. struct rq *rq = cpu_rq(cpu);
  2274. struct task_struct *curr = rq->curr;
  2275. sched_clock_tick();
  2276. raw_spin_lock(&rq->lock);
  2277. update_rq_clock(rq);
  2278. curr->sched_class->task_tick(rq, curr, 0);
  2279. update_cpu_load_active(rq);
  2280. #ifdef CONFIG_MT_SCHED_MONITOR
  2281. mt_trace_rqlock_start(&rq->lock);
  2282. #endif
  2283. raw_spin_unlock(&rq->lock);
  2284. #ifdef CONFIG_MT_SCHED_MONITOR
  2285. mt_trace_rqlock_end(&rq->lock);
  2286. #endif
  2287. perf_event_task_tick();
  2288. #ifdef CONFIG_MT_SCHED_MONITOR
  2289. mt_save_irq_counts(SCHED_TICK);
  2290. #endif
  2291. #ifdef CONFIG_SMP
  2292. rq->idle_balance = idle_cpu(cpu);
  2293. trigger_load_balance(rq);
  2294. #endif
  2295. rq_last_tick_reset(rq);
  2296. }
  2297. #ifdef CONFIG_NO_HZ_FULL
  2298. /**
  2299. * scheduler_tick_max_deferment
  2300. *
  2301. * Keep at least one tick per second when a single
  2302. * active task is running because the scheduler doesn't
  2303. * yet completely support full dynticks environment.
  2304. *
  2305. * This makes sure that uptime, CFS vruntime, load
  2306. * balancing, etc... continue to move forward, even
  2307. * with a very low granularity.
  2308. *
  2309. * Return: Maximum deferment in nanoseconds.
  2310. */
  2311. u64 scheduler_tick_max_deferment(void)
  2312. {
  2313. struct rq *rq = this_rq();
  2314. unsigned long next, now = ACCESS_ONCE(jiffies);
  2315. next = rq->last_sched_tick + HZ;
  2316. if (time_before_eq(next, now))
  2317. return 0;
  2318. return jiffies_to_nsecs(next - now);
  2319. }
  2320. #endif
  2321. notrace unsigned long get_parent_ip(unsigned long addr)
  2322. {
  2323. if (in_lock_functions(addr)) {
  2324. addr = CALLER_ADDR2;
  2325. if (in_lock_functions(addr))
  2326. addr = CALLER_ADDR3;
  2327. }
  2328. return addr;
  2329. }
  2330. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2331. defined(CONFIG_PREEMPT_TRACER))
  2332. #ifdef CONFIG_MT_DEBUG_PREEMPT
  2333. #define ADD_PREEMPT 0
  2334. #define SUB_PREEMPT 1
  2335. void preempt_dump_backtrace(int type)
  2336. {
  2337. int cpu = smp_processor_id();
  2338. struct rq *rq = cpu_rq(cpu);
  2339. struct task_struct *curr = rq->curr;
  2340. if (curr != NULL) {
  2341. if ((preempt_count() == 2) && (0 == strncmp(curr->comm, "swapper", 7))) {
  2342. unsigned long entries[12] = { 0 };
  2343. struct stack_trace trace;
  2344. trace.nr_entries = 0;
  2345. trace.max_entries = ARRAY_SIZE(entries);
  2346. trace.entries = entries;
  2347. trace.skip = 2;
  2348. save_stack_trace(&trace);
  2349. if (type == ADD_PREEMPT) {
  2350. mt_sched_printf(sched_preempt, "addpreempt0 %lx %lx %lx %lx %lx %lx",
  2351. entries[0], entries[1], entries[2], entries[3], entries[4], entries[5]);
  2352. mt_sched_printf(sched_preempt, "addpreempt1 %lx %lx %lx %lx %lx %lx",
  2353. entries[6], entries[7], entries[8], entries[9], entries[10], entries[11]);
  2354. } else if (type == SUB_PREEMPT) {
  2355. mt_sched_printf(sched_preempt, "subpreempt0 %lx %lx %lx %lx %lx %lx",
  2356. entries[0], entries[1], entries[2], entries[3], entries[4], entries[5]);
  2357. mt_sched_printf(sched_preempt, "subpreempt1 %lx %lx %lx %lx %lx %lx",
  2358. entries[6], entries[7], entries[8], entries[9], entries[10], entries[11]);
  2359. }
  2360. }
  2361. }
  2362. }
  2363. #endif
  2364. #ifdef CONFIG_DEBUG_PREEMPT
  2365. #define DEBUG_LOCKS_WARN_ON_PREEMPT(c) \
  2366. ({ \
  2367. \
  2368. if (!oops_in_progress && unlikely(c)) { \
  2369. if (!debug_locks_silent) \
  2370. WARN(1, "DEBUG_LOCKS_WARN_ON(%s, preempt_count=0x%08x)", #c, preempt_count()); \
  2371. } \
  2372. })
  2373. #endif
  2374. void preempt_count_add(int val)
  2375. {
  2376. #ifdef CONFIG_DEBUG_PREEMPT
  2377. /*
  2378. * Underflow?
  2379. */
  2380. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2381. return;
  2382. #endif
  2383. __preempt_count_add(val);
  2384. #ifdef CONFIG_MT_DEBUG_PREEMPT
  2385. preempt_dump_backtrace(ADD_PREEMPT);
  2386. #endif
  2387. #ifdef CONFIG_DEBUG_PREEMPT
  2388. /*
  2389. * Spinlock count overflowing soon?
  2390. */
  2391. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2392. PREEMPT_MASK - 10);
  2393. #endif
  2394. if (preempt_count() == val) {
  2395. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2396. #ifdef CONFIG_DEBUG_PREEMPT
  2397. current->preempt_disable_ip = ip;
  2398. #endif
  2399. trace_preempt_off(CALLER_ADDR0, ip);
  2400. #ifdef CONFIG_MTPROF
  2401. MT_trace_preempt_off();
  2402. #endif
  2403. }
  2404. }
  2405. EXPORT_SYMBOL(preempt_count_add);
  2406. NOKPROBE_SYMBOL(preempt_count_add);
  2407. void preempt_count_sub(int val)
  2408. {
  2409. #ifdef CONFIG_DEBUG_PREEMPT
  2410. /*
  2411. * Underflow?
  2412. */
  2413. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2414. return;
  2415. /*
  2416. * Is the spinlock portion underflowing?
  2417. */
  2418. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2419. !(preempt_count() & PREEMPT_MASK)))
  2420. return;
  2421. #endif
  2422. #ifdef CONFIG_MT_DEBUG_PREEMPT
  2423. preempt_dump_backtrace(SUB_PREEMPT);
  2424. #endif
  2425. if (preempt_count() == val) {
  2426. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2427. #ifdef CONFIG_MTPROF
  2428. MT_trace_preempt_on();
  2429. #endif
  2430. }
  2431. __preempt_count_sub(val);
  2432. #ifdef CONFIG_MTPROF
  2433. MT_trace_check_preempt_dur();
  2434. #endif
  2435. }
  2436. EXPORT_SYMBOL(preempt_count_sub);
  2437. NOKPROBE_SYMBOL(preempt_count_sub);
  2438. #endif
  2439. /*
  2440. * Print scheduling while atomic bug:
  2441. */
  2442. static noinline void __schedule_bug(struct task_struct *prev)
  2443. {
  2444. if (oops_in_progress)
  2445. return;
  2446. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2447. prev->comm, prev->pid, preempt_count());
  2448. debug_show_held_locks(prev);
  2449. print_modules();
  2450. if (irqs_disabled())
  2451. print_irqtrace_events(prev);
  2452. #ifdef CONFIG_DEBUG_PREEMPT
  2453. if (in_atomic_preempt_off()) {
  2454. pr_err("Preemption disabled at:");
  2455. print_ip_sym(current->preempt_disable_ip);
  2456. pr_cont("\n");
  2457. }
  2458. #endif
  2459. dump_stack();
  2460. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2461. BUG_ON(1);
  2462. }
  2463. /*
  2464. * Various schedule()-time debugging checks and statistics:
  2465. */
  2466. static inline void schedule_debug(struct task_struct *prev)
  2467. {
  2468. #ifdef CONFIG_SCHED_STACK_END_CHECK
  2469. BUG_ON(unlikely(task_stack_end_corrupted(prev)));
  2470. #endif
  2471. /*
  2472. * Test if we are atomic. Since do_exit() needs to call into
  2473. * schedule() atomically, we ignore that path. Otherwise whine
  2474. * if we are scheduling when we should not.
  2475. */
  2476. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2477. __schedule_bug(prev);
  2478. rcu_sleep_check();
  2479. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2480. schedstat_inc(this_rq(), sched_count);
  2481. }
  2482. /*
  2483. * Pick up the highest-prio task:
  2484. */
  2485. static inline struct task_struct *
  2486. pick_next_task(struct rq *rq, struct task_struct *prev)
  2487. {
  2488. const struct sched_class *class = &fair_sched_class;
  2489. struct task_struct *p;
  2490. /*
  2491. * Optimization: we know that if all tasks are in
  2492. * the fair class we can call that function directly:
  2493. */
  2494. if (likely(prev->sched_class == class &&
  2495. rq->nr_running == rq->cfs.h_nr_running)) {
  2496. p = fair_sched_class.pick_next_task(rq, prev);
  2497. if (unlikely(p == RETRY_TASK))
  2498. goto again;
  2499. /* assumes fair_sched_class->next == idle_sched_class */
  2500. if (unlikely(!p))
  2501. p = idle_sched_class.pick_next_task(rq, prev);
  2502. return p;
  2503. }
  2504. again:
  2505. for_each_class(class) {
  2506. p = class->pick_next_task(rq, prev);
  2507. if (p) {
  2508. if (unlikely(p == RETRY_TASK))
  2509. goto again;
  2510. return p;
  2511. }
  2512. }
  2513. BUG(); /* the idle class will always have a runnable task */
  2514. return 0;
  2515. }
  2516. /*
  2517. * __schedule() is the main scheduler function.
  2518. *
  2519. * The main means of driving the scheduler and thus entering this function are:
  2520. *
  2521. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2522. *
  2523. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2524. * paths. For example, see arch/x86/entry_64.S.
  2525. *
  2526. * To drive preemption between tasks, the scheduler sets the flag in timer
  2527. * interrupt handler scheduler_tick().
  2528. *
  2529. * 3. Wakeups don't really cause entry into schedule(). They add a
  2530. * task to the run-queue and that's it.
  2531. *
  2532. * Now, if the new task added to the run-queue preempts the current
  2533. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2534. * called on the nearest possible occasion:
  2535. *
  2536. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2537. *
  2538. * - in syscall or exception context, at the next outmost
  2539. * preempt_enable(). (this might be as soon as the wake_up()'s
  2540. * spin_unlock()!)
  2541. *
  2542. * - in IRQ context, return from interrupt-handler to
  2543. * preemptible context
  2544. *
  2545. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2546. * then at the next:
  2547. *
  2548. * - cond_resched() call
  2549. * - explicit schedule() call
  2550. * - return from syscall or exception to user-space
  2551. * - return from interrupt-handler to user-space
  2552. */
  2553. static void __sched __schedule(void)
  2554. {
  2555. struct task_struct *prev, *next;
  2556. unsigned long *switch_count;
  2557. struct rq *rq;
  2558. int cpu;
  2559. need_resched:
  2560. preempt_disable();
  2561. cpu = smp_processor_id();
  2562. rq = cpu_rq(cpu);
  2563. rcu_note_context_switch(cpu);
  2564. prev = rq->curr;
  2565. schedule_debug(prev);
  2566. if (sched_feat(HRTICK))
  2567. hrtick_clear(rq);
  2568. #if defined(CONFIG_MT_SCHED_MONITOR) && defined(CONFIG_MTPROF)
  2569. __raw_get_cpu_var(MT_trace_in_sched) = 1;
  2570. #endif
  2571. /*
  2572. * Make sure that signal_pending_state()->signal_pending() below
  2573. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2574. * done by the caller to avoid the race with signal_wake_up().
  2575. */
  2576. smp_mb__before_spinlock();
  2577. raw_spin_lock_irq(&rq->lock);
  2578. switch_count = &prev->nivcsw;
  2579. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2580. if (unlikely(signal_pending_state(prev->state, prev))) {
  2581. prev->state = TASK_RUNNING;
  2582. } else {
  2583. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2584. prev->on_rq = 0;
  2585. /*
  2586. * If a worker went to sleep, notify and ask workqueue
  2587. * whether it wants to wake up a task to maintain
  2588. * concurrency.
  2589. */
  2590. if (prev->flags & PF_WQ_WORKER) {
  2591. struct task_struct *to_wakeup;
  2592. to_wakeup = wq_worker_sleeping(prev, cpu);
  2593. if (to_wakeup)
  2594. try_to_wake_up_local(to_wakeup);
  2595. }
  2596. }
  2597. switch_count = &prev->nvcsw;
  2598. }
  2599. if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
  2600. update_rq_clock(rq);
  2601. next = pick_next_task(rq, prev);
  2602. clear_tsk_need_resched(prev);
  2603. clear_preempt_need_resched();
  2604. rq->skip_clock_update = 0;
  2605. if (likely(prev != next)) {
  2606. rq->nr_switches++;
  2607. rq->curr = next;
  2608. ++*switch_count;
  2609. context_switch(rq, prev, next); /* unlocks the rq */
  2610. /*
  2611. * The context switch have flipped the stack from under us
  2612. * and restored the local variables which were saved when
  2613. * this task called schedule() in the past. prev == current
  2614. * is still correct, but it can be moved to another cpu/rq.
  2615. */
  2616. cpu = smp_processor_id();
  2617. rq = cpu_rq(cpu);
  2618. } else
  2619. raw_spin_unlock_irq(&rq->lock);
  2620. #if defined(CONFIG_MT_SCHED_MONITOR) && defined(CONFIG_MTPROF)
  2621. __raw_get_cpu_var(MT_trace_in_sched) = 0;
  2622. #endif
  2623. post_schedule(rq);
  2624. sched_preempt_enable_no_resched();
  2625. if (need_resched())
  2626. goto need_resched;
  2627. }
  2628. static inline void sched_submit_work(struct task_struct *tsk)
  2629. {
  2630. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2631. return;
  2632. /*
  2633. * If we are going to sleep and we have plugged IO queued,
  2634. * make sure to submit it to avoid deadlocks.
  2635. */
  2636. if (blk_needs_flush_plug(tsk))
  2637. blk_schedule_flush_plug(tsk);
  2638. }
  2639. asmlinkage __visible void __sched schedule(void)
  2640. {
  2641. struct task_struct *tsk = current;
  2642. sched_submit_work(tsk);
  2643. __schedule();
  2644. }
  2645. EXPORT_SYMBOL(schedule);
  2646. #ifdef CONFIG_CONTEXT_TRACKING
  2647. asmlinkage __visible void __sched schedule_user(void)
  2648. {
  2649. /*
  2650. * If we come here after a random call to set_need_resched(),
  2651. * or we have been woken up remotely but the IPI has not yet arrived,
  2652. * we haven't yet exited the RCU idle mode. Do it here manually until
  2653. * we find a better solution.
  2654. *
  2655. * NB: There are buggy callers of this function. Ideally we
  2656. * should warn if prev_state != IN_USER, but that will trigger
  2657. * too frequently to make sense yet.
  2658. */
  2659. enum ctx_state prev_state = exception_enter();
  2660. schedule();
  2661. exception_exit(prev_state);
  2662. }
  2663. #endif
  2664. /**
  2665. * schedule_preempt_disabled - called with preemption disabled
  2666. *
  2667. * Returns with preemption disabled. Note: preempt_count must be 1
  2668. */
  2669. void __sched schedule_preempt_disabled(void)
  2670. {
  2671. sched_preempt_enable_no_resched();
  2672. schedule();
  2673. preempt_disable();
  2674. }
  2675. #ifdef CONFIG_PREEMPT
  2676. /*
  2677. * this is the entry point to schedule() from in-kernel preemption
  2678. * off of preempt_enable. Kernel preemptions off return from interrupt
  2679. * occur there and call schedule directly.
  2680. */
  2681. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2682. {
  2683. /*
  2684. * If there is a non-zero preempt_count or interrupts are disabled,
  2685. * we do not want to preempt the current task. Just return..
  2686. */
  2687. if (likely(!preemptible()))
  2688. return;
  2689. do {
  2690. __preempt_count_add(PREEMPT_ACTIVE);
  2691. __schedule();
  2692. __preempt_count_sub(PREEMPT_ACTIVE);
  2693. /*
  2694. * Check again in case we missed a preemption opportunity
  2695. * between schedule and now.
  2696. */
  2697. barrier();
  2698. } while (need_resched());
  2699. }
  2700. NOKPROBE_SYMBOL(preempt_schedule);
  2701. EXPORT_SYMBOL(preempt_schedule);
  2702. #ifdef CONFIG_CONTEXT_TRACKING
  2703. /**
  2704. * preempt_schedule_context - preempt_schedule called by tracing
  2705. *
  2706. * The tracing infrastructure uses preempt_enable_notrace to prevent
  2707. * recursion and tracing preempt enabling caused by the tracing
  2708. * infrastructure itself. But as tracing can happen in areas coming
  2709. * from userspace or just about to enter userspace, a preempt enable
  2710. * can occur before user_exit() is called. This will cause the scheduler
  2711. * to be called when the system is still in usermode.
  2712. *
  2713. * To prevent this, the preempt_enable_notrace will use this function
  2714. * instead of preempt_schedule() to exit user context if needed before
  2715. * calling the scheduler.
  2716. */
  2717. asmlinkage __visible void __sched notrace preempt_schedule_context(void)
  2718. {
  2719. enum ctx_state prev_ctx;
  2720. if (likely(!preemptible()))
  2721. return;
  2722. do {
  2723. __preempt_count_add(PREEMPT_ACTIVE);
  2724. /*
  2725. * Needs preempt disabled in case user_exit() is traced
  2726. * and the tracer calls preempt_enable_notrace() causing
  2727. * an infinite recursion.
  2728. */
  2729. prev_ctx = exception_enter();
  2730. __schedule();
  2731. exception_exit(prev_ctx);
  2732. __preempt_count_sub(PREEMPT_ACTIVE);
  2733. barrier();
  2734. } while (need_resched());
  2735. }
  2736. EXPORT_SYMBOL_GPL(preempt_schedule_context);
  2737. #endif /* CONFIG_CONTEXT_TRACKING */
  2738. #endif /* CONFIG_PREEMPT */
  2739. /*
  2740. * this is the entry point to schedule() from kernel preemption
  2741. * off of irq context.
  2742. * Note, that this is called and return with irqs disabled. This will
  2743. * protect us against recursive calling from irq.
  2744. */
  2745. asmlinkage __visible void __sched preempt_schedule_irq(void)
  2746. {
  2747. enum ctx_state prev_state;
  2748. /* Catch callers which need to be fixed */
  2749. BUG_ON(preempt_count() || !irqs_disabled());
  2750. prev_state = exception_enter();
  2751. do {
  2752. __preempt_count_add(PREEMPT_ACTIVE);
  2753. local_irq_enable();
  2754. __schedule();
  2755. local_irq_disable();
  2756. __preempt_count_sub(PREEMPT_ACTIVE);
  2757. /*
  2758. * Check again in case we missed a preemption opportunity
  2759. * between schedule and now.
  2760. */
  2761. barrier();
  2762. } while (need_resched());
  2763. exception_exit(prev_state);
  2764. }
  2765. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2766. void *key)
  2767. {
  2768. return try_to_wake_up(curr->private, mode, wake_flags);
  2769. }
  2770. EXPORT_SYMBOL(default_wake_function);
  2771. #ifdef CONFIG_RT_MUTEXES
  2772. /*
  2773. * rt_mutex_setprio - set the current priority of a task
  2774. * @p: task
  2775. * @prio: prio value (kernel-internal form)
  2776. *
  2777. * This function changes the 'effective' priority of a task. It does
  2778. * not touch ->normal_prio like __setscheduler().
  2779. *
  2780. * Used by the rt_mutex code to implement priority inheritance
  2781. * logic. Call site only calls if the priority of the task changed.
  2782. */
  2783. void rt_mutex_setprio(struct task_struct *p, int prio)
  2784. {
  2785. int oldprio, queued, running, enqueue_flag = 0;
  2786. struct rq *rq;
  2787. const struct sched_class *prev_class;
  2788. BUG_ON(prio > MAX_PRIO);
  2789. rq = __task_rq_lock(p);
  2790. /*
  2791. * Idle task boosting is a nono in general. There is one
  2792. * exception, when PREEMPT_RT and NOHZ is active:
  2793. *
  2794. * The idle task calls get_next_timer_interrupt() and holds
  2795. * the timer wheel base->lock on the CPU and another CPU wants
  2796. * to access the timer (probably to cancel it). We can safely
  2797. * ignore the boosting request, as the idle CPU runs this code
  2798. * with interrupts disabled and will complete the lock
  2799. * protected section without being interrupted. So there is no
  2800. * real need to boost.
  2801. */
  2802. if (unlikely(p == rq->idle)) {
  2803. WARN_ON(p != rq->curr);
  2804. WARN_ON(p->pi_blocked_on);
  2805. goto out_unlock;
  2806. }
  2807. trace_sched_pi_setprio(p, prio);
  2808. oldprio = p->prio;
  2809. prev_class = p->sched_class;
  2810. queued = task_on_rq_queued(p);
  2811. running = task_current(rq, p);
  2812. if (queued)
  2813. dequeue_task(rq, p, 0);
  2814. if (running)
  2815. put_prev_task(rq, p);
  2816. /*
  2817. * Boosting condition are:
  2818. * 1. -rt task is running and holds mutex A
  2819. * --> -dl task blocks on mutex A
  2820. *
  2821. * 2. -dl task is running and holds mutex A
  2822. * --> -dl task blocks on mutex A and could preempt the
  2823. * running task
  2824. */
  2825. if (dl_prio(prio)) {
  2826. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  2827. if (!dl_prio(p->normal_prio) ||
  2828. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  2829. p->dl.dl_boosted = 1;
  2830. p->dl.dl_throttled = 0;
  2831. enqueue_flag = ENQUEUE_REPLENISH;
  2832. } else
  2833. p->dl.dl_boosted = 0;
  2834. p->sched_class = &dl_sched_class;
  2835. } else if (rt_prio(prio)) {
  2836. if (dl_prio(oldprio))
  2837. p->dl.dl_boosted = 0;
  2838. if (oldprio < prio)
  2839. enqueue_flag = ENQUEUE_HEAD;
  2840. p->sched_class = &rt_sched_class;
  2841. } else {
  2842. if (dl_prio(oldprio))
  2843. p->dl.dl_boosted = 0;
  2844. if (rt_prio(oldprio))
  2845. p->rt.timeout = 0;
  2846. p->sched_class = &fair_sched_class;
  2847. }
  2848. p->prio = prio;
  2849. if (running)
  2850. p->sched_class->set_curr_task(rq);
  2851. if (queued)
  2852. enqueue_task(rq, p, enqueue_flag);
  2853. check_class_changed(rq, p, prev_class, oldprio);
  2854. out_unlock:
  2855. __task_rq_unlock(rq);
  2856. }
  2857. #endif
  2858. void set_user_nice(struct task_struct *p, long nice)
  2859. {
  2860. int old_prio, delta, queued;
  2861. unsigned long flags;
  2862. struct rq *rq;
  2863. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  2864. return;
  2865. /*
  2866. * We have to be careful, if called from sys_setpriority(),
  2867. * the task might be in the middle of scheduling on another CPU.
  2868. */
  2869. rq = task_rq_lock(p, &flags);
  2870. /*
  2871. * The RT priorities are set via sched_setscheduler(), but we still
  2872. * allow the 'normal' nice value to be set - but as expected
  2873. * it wont have any effect on scheduling until the task is
  2874. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2875. */
  2876. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2877. p->static_prio = NICE_TO_PRIO(nice);
  2878. goto out_unlock;
  2879. }
  2880. queued = task_on_rq_queued(p);
  2881. if (queued)
  2882. dequeue_task(rq, p, 0);
  2883. p->static_prio = NICE_TO_PRIO(nice);
  2884. set_load_weight(p);
  2885. old_prio = p->prio;
  2886. p->prio = effective_prio(p);
  2887. delta = p->prio - old_prio;
  2888. if (queued) {
  2889. enqueue_task(rq, p, 0);
  2890. /*
  2891. * If the task increased its priority or is running and
  2892. * lowered its priority, then reschedule its CPU:
  2893. */
  2894. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2895. resched_curr(rq);
  2896. }
  2897. out_unlock:
  2898. task_rq_unlock(rq, p, &flags);
  2899. }
  2900. EXPORT_SYMBOL(set_user_nice);
  2901. /*
  2902. * can_nice - check if a task can reduce its nice value
  2903. * @p: task
  2904. * @nice: nice value
  2905. */
  2906. int can_nice(const struct task_struct *p, const int nice)
  2907. {
  2908. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2909. int nice_rlim = nice_to_rlimit(nice);
  2910. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2911. capable(CAP_SYS_NICE));
  2912. }
  2913. #ifdef __ARCH_WANT_SYS_NICE
  2914. /*
  2915. * sys_nice - change the priority of the current process.
  2916. * @increment: priority increment
  2917. *
  2918. * sys_setpriority is a more generic, but much slower function that
  2919. * does similar things.
  2920. */
  2921. SYSCALL_DEFINE1(nice, int, increment)
  2922. {
  2923. long nice, retval;
  2924. /*
  2925. * Setpriority might change our priority at the same moment.
  2926. * We don't have to worry. Conceptually one call occurs first
  2927. * and we have a single winner.
  2928. */
  2929. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  2930. nice = task_nice(current) + increment;
  2931. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  2932. if (increment < 0 && !can_nice(current, nice))
  2933. return -EPERM;
  2934. retval = security_task_setnice(current, nice);
  2935. if (retval)
  2936. return retval;
  2937. set_user_nice(current, nice);
  2938. return 0;
  2939. }
  2940. #endif
  2941. /**
  2942. * task_prio - return the priority value of a given task.
  2943. * @p: the task in question.
  2944. *
  2945. * Return: The priority value as seen by users in /proc.
  2946. * RT tasks are offset by -200. Normal tasks are centered
  2947. * around 0, value goes from -16 to +15.
  2948. */
  2949. int task_prio(const struct task_struct *p)
  2950. {
  2951. return p->prio - MAX_RT_PRIO;
  2952. }
  2953. /**
  2954. * idle_cpu - is a given cpu idle currently?
  2955. * @cpu: the processor in question.
  2956. *
  2957. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2958. */
  2959. int idle_cpu(int cpu)
  2960. {
  2961. struct rq *rq = cpu_rq(cpu);
  2962. if (rq->curr != rq->idle)
  2963. return 0;
  2964. if (rq->nr_running)
  2965. return 0;
  2966. #ifdef CONFIG_SMP
  2967. if (!llist_empty(&rq->wake_list))
  2968. return 0;
  2969. #endif
  2970. return 1;
  2971. }
  2972. /**
  2973. * idle_task - return the idle task for a given cpu.
  2974. * @cpu: the processor in question.
  2975. *
  2976. * Return: The idle task for the cpu @cpu.
  2977. */
  2978. struct task_struct *idle_task(int cpu)
  2979. {
  2980. return cpu_rq(cpu)->idle;
  2981. }
  2982. /**
  2983. * find_process_by_pid - find a process with a matching PID value.
  2984. * @pid: the pid in question.
  2985. *
  2986. * The task of @pid, if found. %NULL otherwise.
  2987. */
  2988. static struct task_struct *find_process_by_pid(pid_t pid)
  2989. {
  2990. return pid ? find_task_by_vpid(pid) : current;
  2991. }
  2992. /*
  2993. * This function initializes the sched_dl_entity of a newly becoming
  2994. * SCHED_DEADLINE task.
  2995. *
  2996. * Only the static values are considered here, the actual runtime and the
  2997. * absolute deadline will be properly calculated when the task is enqueued
  2998. * for the first time with its new policy.
  2999. */
  3000. static void
  3001. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  3002. {
  3003. struct sched_dl_entity *dl_se = &p->dl;
  3004. init_dl_task_timer(dl_se);
  3005. dl_se->dl_runtime = attr->sched_runtime;
  3006. dl_se->dl_deadline = attr->sched_deadline;
  3007. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  3008. dl_se->flags = attr->sched_flags;
  3009. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  3010. dl_se->dl_throttled = 0;
  3011. dl_se->dl_new = 1;
  3012. dl_se->dl_yielded = 0;
  3013. }
  3014. /*
  3015. * sched_setparam() passes in -1 for its policy, to let the functions
  3016. * it calls know not to change it.
  3017. */
  3018. #define SETPARAM_POLICY -1
  3019. static void __setscheduler_params(struct task_struct *p,
  3020. const struct sched_attr *attr)
  3021. {
  3022. int policy = attr->sched_policy;
  3023. if (policy == SETPARAM_POLICY)
  3024. policy = p->policy;
  3025. p->policy = policy;
  3026. if (dl_policy(policy))
  3027. __setparam_dl(p, attr);
  3028. else if (fair_policy(policy))
  3029. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  3030. /*
  3031. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  3032. * !rt_policy. Always setting this ensures that things like
  3033. * getparam()/getattr() don't report silly values for !rt tasks.
  3034. */
  3035. p->rt_priority = attr->sched_priority;
  3036. p->normal_prio = normal_prio(p);
  3037. set_load_weight(p);
  3038. }
  3039. /* Actually do priority change: must hold pi & rq lock. */
  3040. static void __setscheduler(struct rq *rq, struct task_struct *p,
  3041. const struct sched_attr *attr, bool keep_boost)
  3042. {
  3043. __setscheduler_params(p, attr);
  3044. /*
  3045. * Keep a potential priority boosting if called from
  3046. * sched_setscheduler().
  3047. */
  3048. if (keep_boost)
  3049. p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
  3050. else
  3051. p->prio = normal_prio(p);
  3052. if (dl_prio(p->prio))
  3053. p->sched_class = &dl_sched_class;
  3054. else if (rt_prio(p->prio))
  3055. p->sched_class = &rt_sched_class;
  3056. else
  3057. p->sched_class = &fair_sched_class;
  3058. }
  3059. static void
  3060. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  3061. {
  3062. struct sched_dl_entity *dl_se = &p->dl;
  3063. attr->sched_priority = p->rt_priority;
  3064. attr->sched_runtime = dl_se->dl_runtime;
  3065. attr->sched_deadline = dl_se->dl_deadline;
  3066. attr->sched_period = dl_se->dl_period;
  3067. attr->sched_flags = dl_se->flags;
  3068. }
  3069. /*
  3070. * This function validates the new parameters of a -deadline task.
  3071. * We ask for the deadline not being zero, and greater or equal
  3072. * than the runtime, as well as the period of being zero or
  3073. * greater than deadline. Furthermore, we have to be sure that
  3074. * user parameters are above the internal resolution of 1us (we
  3075. * check sched_runtime only since it is always the smaller one) and
  3076. * below 2^63 ns (we have to check both sched_deadline and
  3077. * sched_period, as the latter can be zero).
  3078. */
  3079. static bool
  3080. __checkparam_dl(const struct sched_attr *attr)
  3081. {
  3082. /* deadline != 0 */
  3083. if (attr->sched_deadline == 0)
  3084. return false;
  3085. /*
  3086. * Since we truncate DL_SCALE bits, make sure we're at least
  3087. * that big.
  3088. */
  3089. if (attr->sched_runtime < (1ULL << DL_SCALE))
  3090. return false;
  3091. /*
  3092. * Since we use the MSB for wrap-around and sign issues, make
  3093. * sure it's not set (mind that period can be equal to zero).
  3094. */
  3095. if (attr->sched_deadline & (1ULL << 63) ||
  3096. attr->sched_period & (1ULL << 63))
  3097. return false;
  3098. /* runtime <= deadline <= period (if period != 0) */
  3099. if ((attr->sched_period != 0 &&
  3100. attr->sched_period < attr->sched_deadline) ||
  3101. attr->sched_deadline < attr->sched_runtime)
  3102. return false;
  3103. return true;
  3104. }
  3105. /*
  3106. * check the target process has a UID that matches the current process's
  3107. */
  3108. static bool check_same_owner(struct task_struct *p)
  3109. {
  3110. const struct cred *cred = current_cred(), *pcred;
  3111. bool match;
  3112. rcu_read_lock();
  3113. pcred = __task_cred(p);
  3114. match = (uid_eq(cred->euid, pcred->euid) ||
  3115. uid_eq(cred->euid, pcred->uid));
  3116. rcu_read_unlock();
  3117. return match;
  3118. }
  3119. static int __sched_setscheduler(struct task_struct *p,
  3120. const struct sched_attr *attr,
  3121. bool user)
  3122. {
  3123. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  3124. MAX_RT_PRIO - 1 - attr->sched_priority;
  3125. int retval, oldprio, oldpolicy = -1, queued, running;
  3126. int new_effective_prio, policy = attr->sched_policy;
  3127. unsigned long flags;
  3128. const struct sched_class *prev_class;
  3129. struct rq *rq;
  3130. int reset_on_fork;
  3131. /* may grab non-irq protected spin_locks */
  3132. BUG_ON(in_interrupt());
  3133. recheck:
  3134. /* double check policy once rq lock held */
  3135. if (policy < 0) {
  3136. reset_on_fork = p->sched_reset_on_fork;
  3137. policy = oldpolicy = p->policy;
  3138. } else {
  3139. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  3140. if (policy != SCHED_DEADLINE &&
  3141. policy != SCHED_FIFO && policy != SCHED_RR &&
  3142. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3143. policy != SCHED_IDLE){
  3144. pr_warn("%s %d:%s policy %d", __func__, p->pid, p->comm, policy);
  3145. return -EINVAL;
  3146. }
  3147. }
  3148. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) {
  3149. pr_warn("%s %d:%s sched_flags=%llu", __func__, p->pid, p->comm, attr->sched_flags);
  3150. return -EINVAL;
  3151. }
  3152. /*
  3153. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3154. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3155. * SCHED_BATCH and SCHED_IDLE is 0.
  3156. */
  3157. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  3158. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) {
  3159. pr_warn("%s %d:%s sched_priority=%d", __func__, p->pid, p->comm, attr->sched_priority);
  3160. return -EINVAL;
  3161. }
  3162. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  3163. (rt_policy(policy) != (attr->sched_priority != 0))) {
  3164. pr_warn("%s %d:%s dl, rt sched_priority=%d",
  3165. __func__, p->pid, p->comm, attr->sched_priority);
  3166. return -EINVAL;
  3167. }
  3168. /*
  3169. * Allow unprivileged RT tasks to decrease priority:
  3170. */
  3171. if (user && !capable(CAP_SYS_NICE)) {
  3172. if (fair_policy(policy)) {
  3173. if (attr->sched_nice < task_nice(p) &&
  3174. !can_nice(p, attr->sched_nice)) {
  3175. pr_warn("%s %d:%s sched_nice=%d",
  3176. __func__, p->pid, p->comm, attr->sched_nice);
  3177. return -EPERM;
  3178. }
  3179. }
  3180. if (rt_policy(policy)) {
  3181. unsigned long rlim_rtprio =
  3182. task_rlimit(p, RLIMIT_RTPRIO);
  3183. /* can't set/change the rt policy */
  3184. if (policy != p->policy && !rlim_rtprio) {
  3185. pr_warn("%s %d:%s policy=%d %d %lu",
  3186. __func__, p->pid, p->comm, policy, p->policy, rlim_rtprio);
  3187. return -EPERM;
  3188. }
  3189. /* can't increase priority */
  3190. if (attr->sched_priority > p->rt_priority &&
  3191. attr->sched_priority > rlim_rtprio){
  3192. pr_warn("%s %d:%s policy=%d %d %lu", __func__, p->pid, p->comm,
  3193. attr->sched_priority, p->rt_priority, rlim_rtprio);
  3194. return -EPERM;
  3195. }
  3196. }
  3197. /*
  3198. * Can't set/change SCHED_DEADLINE policy at all for now
  3199. * (safest behavior); in the future we would like to allow
  3200. * unprivileged DL tasks to increase their relative deadline
  3201. * or reduce their runtime (both ways reducing utilization)
  3202. */
  3203. if (dl_policy(policy)) {
  3204. pr_warn("%s %d:%s dl policy=%d", __func__, p->pid, p->comm, policy);
  3205. return -EPERM;
  3206. }
  3207. /*
  3208. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3209. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3210. */
  3211. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3212. if (!can_nice(p, task_nice(p))) {
  3213. pr_warn("%s %d:%s dl policy=%d", __func__, p->pid, p->comm, policy);
  3214. return -EPERM;
  3215. }
  3216. }
  3217. /* can't change other user's priorities */
  3218. if (!check_same_owner(p)) {
  3219. pr_warn("%s %d:%s check_same_owner", __func__, p->pid, p->comm);
  3220. return -EPERM;
  3221. }
  3222. /* Normal users shall not reset the sched_reset_on_fork flag */
  3223. if (p->sched_reset_on_fork && !reset_on_fork) {
  3224. pr_warn("%s %d:%s reset_on_fork=%d %d",
  3225. __func__, p->pid, p->comm, p->sched_reset_on_fork, reset_on_fork);
  3226. return -EPERM;
  3227. }
  3228. }
  3229. if (user) {
  3230. retval = security_task_setscheduler(p);
  3231. if (retval)
  3232. return retval;
  3233. }
  3234. /*
  3235. * make sure no PI-waiters arrive (or leave) while we are
  3236. * changing the priority of the task:
  3237. *
  3238. * To be able to change p->policy safely, the appropriate
  3239. * runqueue lock must be held.
  3240. */
  3241. rq = task_rq_lock(p, &flags);
  3242. /*
  3243. * Changing the policy of the stop threads its a very bad idea
  3244. */
  3245. if (p == rq->stop) {
  3246. task_rq_unlock(rq, p, &flags);
  3247. return -EINVAL;
  3248. }
  3249. /*
  3250. * If not changing anything there's no need to proceed further,
  3251. * but store a possible modification of reset_on_fork.
  3252. */
  3253. if (unlikely(policy == p->policy)) {
  3254. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  3255. goto change;
  3256. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  3257. goto change;
  3258. if (dl_policy(policy))
  3259. goto change;
  3260. p->sched_reset_on_fork = reset_on_fork;
  3261. task_rq_unlock(rq, p, &flags);
  3262. return 0;
  3263. }
  3264. change:
  3265. if (user) {
  3266. #ifdef CONFIG_RT_GROUP_SCHED
  3267. /*
  3268. * Do not allow realtime tasks into groups that have no runtime
  3269. * assigned.
  3270. */
  3271. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3272. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3273. !task_group_is_autogroup(task_group(p))) {
  3274. task_rq_unlock(rq, p, &flags);
  3275. pr_warn("%s rt_runtime", __func__);
  3276. return -EPERM;
  3277. }
  3278. #endif
  3279. #ifdef CONFIG_SMP
  3280. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  3281. cpumask_t *span = rq->rd->span;
  3282. /*
  3283. * Don't allow tasks with an affinity mask smaller than
  3284. * the entire root_domain to become SCHED_DEADLINE. We
  3285. * will also fail if there's no bandwidth available.
  3286. */
  3287. if (!cpumask_subset(span, &p->cpus_allowed) ||
  3288. rq->rd->dl_bw.bw == 0) {
  3289. task_rq_unlock(rq, p, &flags);
  3290. pr_warn("%s allowed", __func__);
  3291. return -EPERM;
  3292. }
  3293. }
  3294. #endif
  3295. }
  3296. /* recheck policy now with rq lock held */
  3297. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3298. policy = oldpolicy = -1;
  3299. task_rq_unlock(rq, p, &flags);
  3300. goto recheck;
  3301. }
  3302. /*
  3303. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3304. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3305. * is available.
  3306. */
  3307. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  3308. task_rq_unlock(rq, p, &flags);
  3309. pr_warn("%s deadline", __func__);
  3310. return -EBUSY;
  3311. }
  3312. p->sched_reset_on_fork = reset_on_fork;
  3313. oldprio = p->prio;
  3314. /*
  3315. * Take priority boosted tasks into account. If the new
  3316. * effective priority is unchanged, we just store the new
  3317. * normal parameters and do not touch the scheduler class and
  3318. * the runqueue. This will be done when the task deboost
  3319. * itself.
  3320. */
  3321. new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
  3322. if (new_effective_prio == oldprio) {
  3323. __setscheduler_params(p, attr);
  3324. task_rq_unlock(rq, p, &flags);
  3325. return 0;
  3326. }
  3327. queued = task_on_rq_queued(p);
  3328. running = task_current(rq, p);
  3329. if (queued)
  3330. dequeue_task(rq, p, 0);
  3331. if (running)
  3332. put_prev_task(rq, p);
  3333. prev_class = p->sched_class;
  3334. __setscheduler(rq, p, attr, true);
  3335. if (running)
  3336. p->sched_class->set_curr_task(rq);
  3337. if (queued) {
  3338. /*
  3339. * We enqueue to tail when the priority of a task is
  3340. * increased (user space view).
  3341. */
  3342. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  3343. }
  3344. check_class_changed(rq, p, prev_class, oldprio);
  3345. task_rq_unlock(rq, p, &flags);
  3346. rt_mutex_adjust_pi(p);
  3347. #ifdef CONFIG_MTPROF
  3348. check_mt_rt_mon_info(p);
  3349. #endif
  3350. return 0;
  3351. }
  3352. static int _sched_setscheduler(struct task_struct *p, int policy,
  3353. const struct sched_param *param, bool check)
  3354. {
  3355. struct sched_attr attr = {
  3356. .sched_policy = policy,
  3357. .sched_priority = param->sched_priority,
  3358. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3359. };
  3360. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3361. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3362. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3363. policy &= ~SCHED_RESET_ON_FORK;
  3364. attr.sched_policy = policy;
  3365. }
  3366. return __sched_setscheduler(p, &attr, check);
  3367. }
  3368. /**
  3369. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3370. * @p: the task in question.
  3371. * @policy: new policy.
  3372. * @param: structure containing the new RT priority.
  3373. *
  3374. * Return: 0 on success. An error code otherwise.
  3375. *
  3376. * NOTE that the task may be already dead.
  3377. */
  3378. int sched_setscheduler(struct task_struct *p, int policy,
  3379. const struct sched_param *param)
  3380. {
  3381. return _sched_setscheduler(p, policy, param, true);
  3382. }
  3383. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3384. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3385. {
  3386. return __sched_setscheduler(p, attr, true);
  3387. }
  3388. EXPORT_SYMBOL_GPL(sched_setattr);
  3389. /**
  3390. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3391. * @p: the task in question.
  3392. * @policy: new policy.
  3393. * @param: structure containing the new RT priority.
  3394. *
  3395. * Just like sched_setscheduler, only don't bother checking if the
  3396. * current context has permission. For example, this is needed in
  3397. * stop_machine(): we create temporary high priority worker threads,
  3398. * but our caller might not have that capability.
  3399. *
  3400. * Return: 0 on success. An error code otherwise.
  3401. */
  3402. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3403. const struct sched_param *param)
  3404. {
  3405. return _sched_setscheduler(p, policy, param, false);
  3406. }
  3407. static int
  3408. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3409. {
  3410. struct sched_param lparam;
  3411. struct task_struct *p;
  3412. int retval;
  3413. if (!param || pid < 0)
  3414. return -EINVAL;
  3415. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3416. return -EFAULT;
  3417. rcu_read_lock();
  3418. retval = -ESRCH;
  3419. p = find_process_by_pid(pid);
  3420. if (p != NULL)
  3421. retval = sched_setscheduler(p, policy, &lparam);
  3422. rcu_read_unlock();
  3423. return retval;
  3424. }
  3425. /*
  3426. * Mimics kernel/events/core.c perf_copy_attr().
  3427. */
  3428. static int sched_copy_attr(struct sched_attr __user *uattr,
  3429. struct sched_attr *attr)
  3430. {
  3431. u32 size;
  3432. int ret;
  3433. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3434. return -EFAULT;
  3435. /*
  3436. * zero the full structure, so that a short copy will be nice.
  3437. */
  3438. memset(attr, 0, sizeof(*attr));
  3439. ret = get_user(size, &uattr->size);
  3440. if (ret)
  3441. return ret;
  3442. if (size > PAGE_SIZE) /* silly large */
  3443. goto err_size;
  3444. if (!size) /* abi compat */
  3445. size = SCHED_ATTR_SIZE_VER0;
  3446. if (size < SCHED_ATTR_SIZE_VER0)
  3447. goto err_size;
  3448. /*
  3449. * If we're handed a bigger struct than we know of,
  3450. * ensure all the unknown bits are 0 - i.e. new
  3451. * user-space does not rely on any kernel feature
  3452. * extensions we dont know about yet.
  3453. */
  3454. if (size > sizeof(*attr)) {
  3455. unsigned char __user *addr;
  3456. unsigned char __user *end;
  3457. unsigned char val;
  3458. addr = (void __user *)uattr + sizeof(*attr);
  3459. end = (void __user *)uattr + size;
  3460. for (; addr < end; addr++) {
  3461. ret = get_user(val, addr);
  3462. if (ret)
  3463. return ret;
  3464. if (val)
  3465. goto err_size;
  3466. }
  3467. size = sizeof(*attr);
  3468. }
  3469. ret = copy_from_user(attr, uattr, size);
  3470. if (ret)
  3471. return -EFAULT;
  3472. /*
  3473. * XXX: do we want to be lenient like existing syscalls; or do we want
  3474. * to be strict and return an error on out-of-bounds values?
  3475. */
  3476. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3477. return 0;
  3478. err_size:
  3479. put_user(sizeof(*attr), &uattr->size);
  3480. return -E2BIG;
  3481. }
  3482. /**
  3483. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3484. * @pid: the pid in question.
  3485. * @policy: new policy.
  3486. * @param: structure containing the new RT priority.
  3487. *
  3488. * Return: 0 on success. An error code otherwise.
  3489. */
  3490. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3491. struct sched_param __user *, param)
  3492. {
  3493. /* negative values for policy are not valid */
  3494. if (policy < 0)
  3495. return -EINVAL;
  3496. return do_sched_setscheduler(pid, policy, param);
  3497. }
  3498. /**
  3499. * sys_sched_setparam - set/change the RT priority of a thread
  3500. * @pid: the pid in question.
  3501. * @param: structure containing the new RT priority.
  3502. *
  3503. * Return: 0 on success. An error code otherwise.
  3504. */
  3505. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3506. {
  3507. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3508. }
  3509. /**
  3510. * sys_sched_setattr - same as above, but with extended sched_attr
  3511. * @pid: the pid in question.
  3512. * @uattr: structure containing the extended parameters.
  3513. * @flags: for future extension.
  3514. */
  3515. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3516. unsigned int, flags)
  3517. {
  3518. struct sched_attr attr;
  3519. struct task_struct *p;
  3520. int retval;
  3521. if (!uattr || pid < 0 || flags)
  3522. return -EINVAL;
  3523. retval = sched_copy_attr(uattr, &attr);
  3524. if (retval)
  3525. return retval;
  3526. if ((int)attr.sched_policy < 0)
  3527. return -EINVAL;
  3528. rcu_read_lock();
  3529. retval = -ESRCH;
  3530. p = find_process_by_pid(pid);
  3531. if (p != NULL)
  3532. retval = sched_setattr(p, &attr);
  3533. rcu_read_unlock();
  3534. return retval;
  3535. }
  3536. /**
  3537. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3538. * @pid: the pid in question.
  3539. *
  3540. * Return: On success, the policy of the thread. Otherwise, a negative error
  3541. * code.
  3542. */
  3543. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3544. {
  3545. struct task_struct *p;
  3546. int retval;
  3547. if (pid < 0)
  3548. return -EINVAL;
  3549. retval = -ESRCH;
  3550. rcu_read_lock();
  3551. p = find_process_by_pid(pid);
  3552. if (p) {
  3553. retval = security_task_getscheduler(p);
  3554. if (!retval)
  3555. retval = p->policy
  3556. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3557. }
  3558. rcu_read_unlock();
  3559. return retval;
  3560. }
  3561. /**
  3562. * sys_sched_getparam - get the RT priority of a thread
  3563. * @pid: the pid in question.
  3564. * @param: structure containing the RT priority.
  3565. *
  3566. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3567. * code.
  3568. */
  3569. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3570. {
  3571. struct sched_param lp = { .sched_priority = 0 };
  3572. struct task_struct *p;
  3573. int retval;
  3574. if (!param || pid < 0)
  3575. return -EINVAL;
  3576. rcu_read_lock();
  3577. p = find_process_by_pid(pid);
  3578. retval = -ESRCH;
  3579. if (!p)
  3580. goto out_unlock;
  3581. retval = security_task_getscheduler(p);
  3582. if (retval)
  3583. goto out_unlock;
  3584. if (task_has_rt_policy(p))
  3585. lp.sched_priority = p->rt_priority;
  3586. rcu_read_unlock();
  3587. /*
  3588. * This one might sleep, we cannot do it with a spinlock held ...
  3589. */
  3590. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3591. return retval;
  3592. out_unlock:
  3593. rcu_read_unlock();
  3594. return retval;
  3595. }
  3596. static int sched_read_attr(struct sched_attr __user *uattr,
  3597. struct sched_attr *attr,
  3598. unsigned int usize)
  3599. {
  3600. int ret;
  3601. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3602. return -EFAULT;
  3603. /*
  3604. * If we're handed a smaller struct than we know of,
  3605. * ensure all the unknown bits are 0 - i.e. old
  3606. * user-space does not get uncomplete information.
  3607. */
  3608. if (usize < sizeof(*attr)) {
  3609. unsigned char *addr;
  3610. unsigned char *end;
  3611. addr = (void *)attr + usize;
  3612. end = (void *)attr + sizeof(*attr);
  3613. for (; addr < end; addr++) {
  3614. if (*addr)
  3615. return -EFBIG;
  3616. }
  3617. attr->size = usize;
  3618. }
  3619. ret = copy_to_user(uattr, attr, attr->size);
  3620. if (ret)
  3621. return -EFAULT;
  3622. return 0;
  3623. }
  3624. /**
  3625. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3626. * @pid: the pid in question.
  3627. * @uattr: structure containing the extended parameters.
  3628. * @size: sizeof(attr) for fwd/bwd comp.
  3629. * @flags: for future extension.
  3630. */
  3631. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3632. unsigned int, size, unsigned int, flags)
  3633. {
  3634. struct sched_attr attr = {
  3635. .size = sizeof(struct sched_attr),
  3636. };
  3637. struct task_struct *p;
  3638. int retval;
  3639. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3640. size < SCHED_ATTR_SIZE_VER0 || flags)
  3641. return -EINVAL;
  3642. rcu_read_lock();
  3643. p = find_process_by_pid(pid);
  3644. retval = -ESRCH;
  3645. if (!p)
  3646. goto out_unlock;
  3647. retval = security_task_getscheduler(p);
  3648. if (retval)
  3649. goto out_unlock;
  3650. attr.sched_policy = p->policy;
  3651. if (p->sched_reset_on_fork)
  3652. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3653. if (task_has_dl_policy(p))
  3654. __getparam_dl(p, &attr);
  3655. else if (task_has_rt_policy(p))
  3656. attr.sched_priority = p->rt_priority;
  3657. else
  3658. attr.sched_nice = task_nice(p);
  3659. rcu_read_unlock();
  3660. retval = sched_read_attr(uattr, &attr, size);
  3661. return retval;
  3662. out_unlock:
  3663. rcu_read_unlock();
  3664. return retval;
  3665. }
  3666. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3667. {
  3668. cpumask_var_t cpus_allowed, new_mask;
  3669. struct task_struct *p;
  3670. int retval;
  3671. get_online_cpus();
  3672. rcu_read_lock();
  3673. p = find_process_by_pid(pid);
  3674. if (!p) {
  3675. rcu_read_unlock();
  3676. put_online_cpus();
  3677. pr_debug("SCHED: setaffinity find process %d fail\n", pid);
  3678. return -ESRCH;
  3679. }
  3680. /* Prevent p going away */
  3681. get_task_struct(p);
  3682. rcu_read_unlock();
  3683. if (p->flags & PF_NO_SETAFFINITY) {
  3684. retval = -EINVAL;
  3685. pr_debug("SCHED: setaffinity flags PF_NO_SETAFFINITY fail\n");
  3686. goto out_put_task;
  3687. }
  3688. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3689. retval = -ENOMEM;
  3690. pr_debug("SCHED: setaffinity allo_cpumask_var for cpus_allowed fail\n");
  3691. goto out_put_task;
  3692. }
  3693. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3694. retval = -ENOMEM;
  3695. pr_debug("SCHED: setaffinity allo_cpumask_var for new_mask fail\n");
  3696. goto out_free_cpus_allowed;
  3697. }
  3698. retval = -EPERM;
  3699. if (!check_same_owner(p)) {
  3700. rcu_read_lock();
  3701. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3702. rcu_read_unlock();
  3703. pr_debug("SCHED: setaffinity check_same_owner and task_ns_capable fail\n");
  3704. goto out_free_new_mask;
  3705. }
  3706. rcu_read_unlock();
  3707. }
  3708. retval = security_task_setscheduler(p);
  3709. if (retval) {
  3710. pr_debug("SCHED: setaffinity security_task_setscheduler fail, status: %d\n", retval);
  3711. goto out_free_new_mask;
  3712. }
  3713. cpuset_cpus_allowed(p, cpus_allowed);
  3714. cpumask_and(new_mask, in_mask, cpus_allowed);
  3715. /*
  3716. * Since bandwidth control happens on root_domain basis,
  3717. * if admission test is enabled, we only admit -deadline
  3718. * tasks allowed to run on all the CPUs in the task's
  3719. * root_domain.
  3720. */
  3721. #ifdef CONFIG_SMP
  3722. if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
  3723. rcu_read_lock();
  3724. if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
  3725. retval = -EBUSY;
  3726. rcu_read_unlock();
  3727. goto out_free_new_mask;
  3728. }
  3729. rcu_read_unlock();
  3730. }
  3731. #endif
  3732. again:
  3733. retval = set_cpus_allowed_ptr(p, new_mask);
  3734. if (retval)
  3735. pr_debug("SCHED: set_cpus_allowed_ptr status %d\n", retval);
  3736. if (!retval) {
  3737. cpuset_cpus_allowed(p, cpus_allowed);
  3738. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3739. /*
  3740. * We must have raced with a concurrent cpuset
  3741. * update. Just reset the cpus_allowed to the
  3742. * cpuset's cpus_allowed
  3743. */
  3744. cpumask_copy(new_mask, cpus_allowed);
  3745. goto again;
  3746. }
  3747. }
  3748. out_free_new_mask:
  3749. free_cpumask_var(new_mask);
  3750. out_free_cpus_allowed:
  3751. free_cpumask_var(cpus_allowed);
  3752. out_put_task:
  3753. put_task_struct(p);
  3754. put_online_cpus();
  3755. if (retval)
  3756. pr_debug("SCHED: setaffinity status %d\n", retval);
  3757. #ifdef CONFIG_MT_SCHED_INTEROP
  3758. else
  3759. mt_sched_printf(sched_interop, "set affinity pid=%d comm=%s affinity=%ld",
  3760. p->pid, p->comm, p->cpus_allowed.bits[0]);
  3761. #endif
  3762. return retval;
  3763. }
  3764. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3765. struct cpumask *new_mask)
  3766. {
  3767. if (len < cpumask_size())
  3768. cpumask_clear(new_mask);
  3769. else if (len > cpumask_size())
  3770. len = cpumask_size();
  3771. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3772. }
  3773. /**
  3774. * sys_sched_setaffinity - set the cpu affinity of a process
  3775. * @pid: pid of the process
  3776. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3777. * @user_mask_ptr: user-space pointer to the new cpu mask
  3778. *
  3779. * Return: 0 on success. An error code otherwise.
  3780. */
  3781. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3782. unsigned long __user *, user_mask_ptr)
  3783. {
  3784. cpumask_var_t new_mask;
  3785. int retval;
  3786. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3787. return -ENOMEM;
  3788. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3789. if (retval == 0)
  3790. retval = sched_setaffinity(pid, new_mask);
  3791. free_cpumask_var(new_mask);
  3792. return retval;
  3793. }
  3794. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3795. {
  3796. struct task_struct *p;
  3797. unsigned long flags;
  3798. int retval;
  3799. get_online_cpus();
  3800. rcu_read_lock();
  3801. retval = -ESRCH;
  3802. p = find_process_by_pid(pid);
  3803. if (!p) {
  3804. pr_debug("SCHED: getaffinity find process %d fail\n", pid);
  3805. goto out_unlock;
  3806. }
  3807. retval = security_task_getscheduler(p);
  3808. if (retval) {
  3809. pr_debug("SCHED: getaffinity security_task_getscheduler fail, status: %d\n", retval);
  3810. goto out_unlock;
  3811. }
  3812. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3813. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3814. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3815. out_unlock:
  3816. rcu_read_unlock();
  3817. put_online_cpus();
  3818. if (retval)
  3819. pr_debug("SCHED: getaffinity status %d\n", retval);
  3820. return retval;
  3821. }
  3822. /**
  3823. * sys_sched_getaffinity - get the cpu affinity of a process
  3824. * @pid: pid of the process
  3825. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3826. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3827. *
  3828. * Return: 0 on success. An error code otherwise.
  3829. */
  3830. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3831. unsigned long __user *, user_mask_ptr)
  3832. {
  3833. int ret;
  3834. cpumask_var_t mask;
  3835. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3836. return -EINVAL;
  3837. if (len & (sizeof(unsigned long)-1))
  3838. return -EINVAL;
  3839. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3840. return -ENOMEM;
  3841. ret = sched_getaffinity(pid, mask);
  3842. if (ret == 0) {
  3843. size_t retlen = min_t(size_t, len, cpumask_size());
  3844. if (copy_to_user(user_mask_ptr, mask, retlen))
  3845. ret = -EFAULT;
  3846. else
  3847. ret = retlen;
  3848. }
  3849. free_cpumask_var(mask);
  3850. return ret;
  3851. }
  3852. /**
  3853. * sys_sched_yield - yield the current processor to other threads.
  3854. *
  3855. * This function yields the current CPU to other tasks. If there are no
  3856. * other threads running on this CPU then this function will return.
  3857. *
  3858. * Return: 0.
  3859. */
  3860. SYSCALL_DEFINE0(sched_yield)
  3861. {
  3862. struct rq *rq = this_rq_lock();
  3863. schedstat_inc(rq, yld_count);
  3864. current->sched_class->yield_task(rq);
  3865. /*
  3866. * Since we are going to call schedule() anyway, there's
  3867. * no need to preempt or enable interrupts:
  3868. */
  3869. __release(rq->lock);
  3870. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3871. do_raw_spin_unlock(&rq->lock);
  3872. sched_preempt_enable_no_resched();
  3873. schedule();
  3874. return 0;
  3875. }
  3876. static void __cond_resched(void)
  3877. {
  3878. __preempt_count_add(PREEMPT_ACTIVE);
  3879. __schedule();
  3880. __preempt_count_sub(PREEMPT_ACTIVE);
  3881. }
  3882. int __sched _cond_resched(void)
  3883. {
  3884. if (should_resched()) {
  3885. __cond_resched();
  3886. return 1;
  3887. }
  3888. return 0;
  3889. }
  3890. EXPORT_SYMBOL(_cond_resched);
  3891. /*
  3892. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3893. * call schedule, and on return reacquire the lock.
  3894. *
  3895. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3896. * operations here to prevent schedule() from being called twice (once via
  3897. * spin_unlock(), once by hand).
  3898. */
  3899. int __cond_resched_lock(spinlock_t *lock)
  3900. {
  3901. int resched = should_resched();
  3902. int ret = 0;
  3903. lockdep_assert_held(lock);
  3904. if (spin_needbreak(lock) || resched) {
  3905. spin_unlock(lock);
  3906. if (resched)
  3907. __cond_resched();
  3908. else
  3909. cpu_relax();
  3910. ret = 1;
  3911. spin_lock(lock);
  3912. }
  3913. return ret;
  3914. }
  3915. EXPORT_SYMBOL(__cond_resched_lock);
  3916. int __sched __cond_resched_softirq(void)
  3917. {
  3918. BUG_ON(!in_softirq());
  3919. if (should_resched()) {
  3920. local_bh_enable();
  3921. __cond_resched();
  3922. local_bh_disable();
  3923. return 1;
  3924. }
  3925. return 0;
  3926. }
  3927. EXPORT_SYMBOL(__cond_resched_softirq);
  3928. /**
  3929. * yield - yield the current processor to other threads.
  3930. *
  3931. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3932. *
  3933. * The scheduler is at all times free to pick the calling task as the most
  3934. * eligible task to run, if removing the yield() call from your code breaks
  3935. * it, its already broken.
  3936. *
  3937. * Typical broken usage is:
  3938. *
  3939. * while (!event)
  3940. * yield();
  3941. *
  3942. * where one assumes that yield() will let 'the other' process run that will
  3943. * make event true. If the current task is a SCHED_FIFO task that will never
  3944. * happen. Never use yield() as a progress guarantee!!
  3945. *
  3946. * If you want to use yield() to wait for something, use wait_event().
  3947. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3948. * If you still want to use yield(), do not!
  3949. */
  3950. void __sched yield(void)
  3951. {
  3952. set_current_state(TASK_RUNNING);
  3953. sys_sched_yield();
  3954. }
  3955. EXPORT_SYMBOL(yield);
  3956. /**
  3957. * yield_to - yield the current processor to another thread in
  3958. * your thread group, or accelerate that thread toward the
  3959. * processor it's on.
  3960. * @p: target task
  3961. * @preempt: whether task preemption is allowed or not
  3962. *
  3963. * It's the caller's job to ensure that the target task struct
  3964. * can't go away on us before we can do any checks.
  3965. *
  3966. * Return:
  3967. * true (>0) if we indeed boosted the target task.
  3968. * false (0) if we failed to boost the target.
  3969. * -ESRCH if there's no task to yield to.
  3970. */
  3971. int __sched yield_to(struct task_struct *p, bool preempt)
  3972. {
  3973. struct task_struct *curr = current;
  3974. struct rq *rq, *p_rq;
  3975. unsigned long flags;
  3976. int yielded = 0;
  3977. local_irq_save(flags);
  3978. rq = this_rq();
  3979. again:
  3980. p_rq = task_rq(p);
  3981. /*
  3982. * If we're the only runnable task on the rq and target rq also
  3983. * has only one task, there's absolutely no point in yielding.
  3984. */
  3985. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3986. yielded = -ESRCH;
  3987. goto out_irq;
  3988. }
  3989. double_rq_lock(rq, p_rq);
  3990. if (task_rq(p) != p_rq) {
  3991. double_rq_unlock(rq, p_rq);
  3992. goto again;
  3993. }
  3994. if (!curr->sched_class->yield_to_task)
  3995. goto out_unlock;
  3996. if (curr->sched_class != p->sched_class)
  3997. goto out_unlock;
  3998. if (task_running(p_rq, p) || p->state)
  3999. goto out_unlock;
  4000. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4001. if (yielded) {
  4002. schedstat_inc(rq, yld_count);
  4003. /*
  4004. * Make p's CPU reschedule; pick_next_entity takes care of
  4005. * fairness.
  4006. */
  4007. if (preempt && rq != p_rq)
  4008. resched_curr(p_rq);
  4009. }
  4010. out_unlock:
  4011. double_rq_unlock(rq, p_rq);
  4012. out_irq:
  4013. local_irq_restore(flags);
  4014. if (yielded > 0)
  4015. schedule();
  4016. return yielded;
  4017. }
  4018. EXPORT_SYMBOL_GPL(yield_to);
  4019. /*
  4020. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4021. * that process accounting knows that this is a task in IO wait state.
  4022. */
  4023. void __sched io_schedule(void)
  4024. {
  4025. struct rq *rq = raw_rq();
  4026. delayacct_blkio_start();
  4027. atomic_inc(&rq->nr_iowait);
  4028. blk_flush_plug(current);
  4029. current->in_iowait = 1;
  4030. schedule();
  4031. current->in_iowait = 0;
  4032. atomic_dec(&rq->nr_iowait);
  4033. delayacct_blkio_end();
  4034. }
  4035. EXPORT_SYMBOL(io_schedule);
  4036. long __sched io_schedule_timeout(long timeout)
  4037. {
  4038. struct rq *rq = raw_rq();
  4039. long ret;
  4040. delayacct_blkio_start();
  4041. atomic_inc(&rq->nr_iowait);
  4042. blk_flush_plug(current);
  4043. current->in_iowait = 1;
  4044. ret = schedule_timeout(timeout);
  4045. current->in_iowait = 0;
  4046. atomic_dec(&rq->nr_iowait);
  4047. delayacct_blkio_end();
  4048. return ret;
  4049. }
  4050. /**
  4051. * sys_sched_get_priority_max - return maximum RT priority.
  4052. * @policy: scheduling class.
  4053. *
  4054. * Return: On success, this syscall returns the maximum
  4055. * rt_priority that can be used by a given scheduling class.
  4056. * On failure, a negative error code is returned.
  4057. */
  4058. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4059. {
  4060. int ret = -EINVAL;
  4061. switch (policy) {
  4062. case SCHED_FIFO:
  4063. case SCHED_RR:
  4064. ret = MAX_USER_RT_PRIO-1;
  4065. break;
  4066. case SCHED_DEADLINE:
  4067. case SCHED_NORMAL:
  4068. case SCHED_BATCH:
  4069. case SCHED_IDLE:
  4070. ret = 0;
  4071. break;
  4072. }
  4073. return ret;
  4074. }
  4075. /**
  4076. * sys_sched_get_priority_min - return minimum RT priority.
  4077. * @policy: scheduling class.
  4078. *
  4079. * Return: On success, this syscall returns the minimum
  4080. * rt_priority that can be used by a given scheduling class.
  4081. * On failure, a negative error code is returned.
  4082. */
  4083. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4084. {
  4085. int ret = -EINVAL;
  4086. switch (policy) {
  4087. case SCHED_FIFO:
  4088. case SCHED_RR:
  4089. ret = 1;
  4090. break;
  4091. case SCHED_DEADLINE:
  4092. case SCHED_NORMAL:
  4093. case SCHED_BATCH:
  4094. case SCHED_IDLE:
  4095. ret = 0;
  4096. }
  4097. return ret;
  4098. }
  4099. /**
  4100. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4101. * @pid: pid of the process.
  4102. * @interval: userspace pointer to the timeslice value.
  4103. *
  4104. * this syscall writes the default timeslice value of a given process
  4105. * into the user-space timespec buffer. A value of '0' means infinity.
  4106. *
  4107. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  4108. * an error code.
  4109. */
  4110. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4111. struct timespec __user *, interval)
  4112. {
  4113. struct task_struct *p;
  4114. unsigned int time_slice;
  4115. unsigned long flags;
  4116. struct rq *rq;
  4117. int retval;
  4118. struct timespec t;
  4119. if (pid < 0)
  4120. return -EINVAL;
  4121. retval = -ESRCH;
  4122. rcu_read_lock();
  4123. p = find_process_by_pid(pid);
  4124. if (!p)
  4125. goto out_unlock;
  4126. retval = security_task_getscheduler(p);
  4127. if (retval)
  4128. goto out_unlock;
  4129. rq = task_rq_lock(p, &flags);
  4130. time_slice = 0;
  4131. if (p->sched_class->get_rr_interval)
  4132. time_slice = p->sched_class->get_rr_interval(rq, p);
  4133. task_rq_unlock(rq, p, &flags);
  4134. rcu_read_unlock();
  4135. jiffies_to_timespec(time_slice, &t);
  4136. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4137. return retval;
  4138. out_unlock:
  4139. rcu_read_unlock();
  4140. return retval;
  4141. }
  4142. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4143. void sched_show_task(struct task_struct *p)
  4144. {
  4145. unsigned long free = 0;
  4146. int ppid;
  4147. unsigned state;
  4148. state = p->state ? __ffs(p->state) + 1 : 0;
  4149. printk(KERN_INFO "%-15.15s %c", p->comm,
  4150. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4151. #if BITS_PER_LONG == 32
  4152. if (state == TASK_RUNNING)
  4153. printk(KERN_CONT " running ");
  4154. else
  4155. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4156. #else
  4157. if (state == TASK_RUNNING)
  4158. printk(KERN_CONT " running task ");
  4159. else
  4160. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4161. #endif
  4162. #ifdef CONFIG_DEBUG_STACK_USAGE
  4163. free = stack_not_used(p);
  4164. #endif
  4165. rcu_read_lock();
  4166. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  4167. rcu_read_unlock();
  4168. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4169. task_pid_nr(p), ppid,
  4170. (unsigned long)task_thread_info(p)->flags);
  4171. print_worker_info(KERN_INFO, p);
  4172. show_stack(p, NULL);
  4173. }
  4174. void show_state_filter(unsigned long state_filter)
  4175. {
  4176. struct task_struct *g, *p;
  4177. #if BITS_PER_LONG == 32
  4178. printk(KERN_INFO
  4179. " task PC stack pid father\n");
  4180. #else
  4181. printk(KERN_INFO
  4182. " task PC stack pid father\n");
  4183. #endif
  4184. rcu_read_lock();
  4185. for_each_process_thread(g, p) {
  4186. /*
  4187. * reset the NMI-timeout, listing all files on a slow
  4188. * console might take a lot of time:
  4189. */
  4190. touch_nmi_watchdog();
  4191. if (!state_filter || (p->state & state_filter))
  4192. sched_show_task(p);
  4193. }
  4194. touch_all_softlockup_watchdogs();
  4195. #ifdef CONFIG_SCHED_DEBUG
  4196. sysrq_sched_debug_show();
  4197. #endif
  4198. rcu_read_unlock();
  4199. /*
  4200. * Only show locks if all tasks are dumped:
  4201. */
  4202. if (!state_filter)
  4203. debug_show_all_locks();
  4204. }
  4205. void init_idle_bootup_task(struct task_struct *idle)
  4206. {
  4207. idle->sched_class = &idle_sched_class;
  4208. }
  4209. /**
  4210. * init_idle - set up an idle thread for a given CPU
  4211. * @idle: task in question
  4212. * @cpu: cpu the idle task belongs to
  4213. *
  4214. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4215. * flag, to make booting more robust.
  4216. */
  4217. void init_idle(struct task_struct *idle, int cpu)
  4218. {
  4219. struct rq *rq = cpu_rq(cpu);
  4220. unsigned long flags;
  4221. raw_spin_lock_irqsave(&rq->lock, flags);
  4222. __sched_fork(0, idle);
  4223. idle->state = TASK_RUNNING;
  4224. idle->se.exec_start = sched_clock();
  4225. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4226. /*
  4227. * We're having a chicken and egg problem, even though we are
  4228. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4229. * lockdep check in task_group() will fail.
  4230. *
  4231. * Similar case to sched_fork(). / Alternatively we could
  4232. * use task_rq_lock() here and obtain the other rq->lock.
  4233. *
  4234. * Silence PROVE_RCU
  4235. */
  4236. rcu_read_lock();
  4237. __set_task_cpu(idle, cpu);
  4238. rcu_read_unlock();
  4239. rq->curr = rq->idle = idle;
  4240. idle->on_rq = TASK_ON_RQ_QUEUED;
  4241. #if defined(CONFIG_SMP)
  4242. idle->on_cpu = 1;
  4243. #endif
  4244. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4245. /* Set the preempt count _outside_ the spinlocks! */
  4246. init_idle_preempt_count(idle, cpu);
  4247. /*
  4248. * The idle tasks have their own, simple scheduling class:
  4249. */
  4250. idle->sched_class = &idle_sched_class;
  4251. ftrace_graph_init_idle_task(idle, cpu);
  4252. vtime_init_idle(idle, cpu);
  4253. #if defined(CONFIG_SMP)
  4254. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4255. #endif
  4256. }
  4257. #ifdef CONFIG_SMP
  4258. /*
  4259. * move_queued_task - move a queued task to new rq.
  4260. *
  4261. * Returns (locked) new rq. Old rq's lock is released.
  4262. */
  4263. static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
  4264. {
  4265. struct rq *rq = task_rq(p);
  4266. lockdep_assert_held(&rq->lock);
  4267. dequeue_task(rq, p, 0);
  4268. p->on_rq = TASK_ON_RQ_MIGRATING;
  4269. set_task_cpu(p, new_cpu);
  4270. raw_spin_unlock(&rq->lock);
  4271. rq = cpu_rq(new_cpu);
  4272. raw_spin_lock(&rq->lock);
  4273. BUG_ON(task_cpu(p) != new_cpu);
  4274. p->on_rq = TASK_ON_RQ_QUEUED;
  4275. enqueue_task(rq, p, 0);
  4276. check_preempt_curr(rq, p, 0);
  4277. return rq;
  4278. }
  4279. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4280. {
  4281. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4282. p->sched_class->set_cpus_allowed(p, new_mask);
  4283. cpumask_copy(&p->cpus_allowed, new_mask);
  4284. p->nr_cpus_allowed = cpumask_weight(new_mask);
  4285. }
  4286. /*
  4287. * This is how migration works:
  4288. *
  4289. * 1) we invoke migration_cpu_stop() on the target CPU using
  4290. * stop_one_cpu().
  4291. * 2) stopper starts to run (implicitly forcing the migrated thread
  4292. * off the CPU)
  4293. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4294. * 4) if it's in the wrong runqueue then the migration thread removes
  4295. * it and puts it into the right queue.
  4296. * 5) stopper completes and stop_one_cpu() returns and the migration
  4297. * is done.
  4298. */
  4299. /*
  4300. * Change a given task's CPU affinity. Migrate the thread to a
  4301. * proper CPU and schedule it away if the CPU it's executing on
  4302. * is removed from the allowed bitmask.
  4303. *
  4304. * NOTE: the caller must have a valid reference to the task, the
  4305. * task must not exit() & deallocate itself prematurely. The
  4306. * call is not atomic; no spinlocks may be held.
  4307. */
  4308. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4309. {
  4310. unsigned long flags;
  4311. struct rq *rq;
  4312. unsigned int dest_cpu;
  4313. int ret = 0;
  4314. rq = task_rq_lock(p, &flags);
  4315. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4316. goto out;
  4317. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4318. ret = -EINVAL;
  4319. printk_deferred("SCHED: intersects new_mask: %lu, cpu_active_mask: %lu\n",
  4320. new_mask->bits[0], cpu_active_mask->bits[0]);
  4321. goto out;
  4322. }
  4323. do_set_cpus_allowed(p, new_mask);
  4324. /* Can the task run on the task's current CPU? If so, we're done */
  4325. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4326. goto out;
  4327. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4328. if (task_running(rq, p) || p->state == TASK_WAKING) {
  4329. struct migration_arg arg = { p, dest_cpu };
  4330. /* Need help from migration thread: drop lock and wait. */
  4331. task_rq_unlock(rq, p, &flags);
  4332. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4333. tlb_migrate_finish(p->mm);
  4334. return 0;
  4335. } else if (task_on_rq_queued(p))
  4336. rq = move_queued_task(p, dest_cpu);
  4337. out:
  4338. task_rq_unlock(rq, p, &flags);
  4339. return ret;
  4340. }
  4341. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4342. /*
  4343. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4344. * this because either it can't run here any more (set_cpus_allowed()
  4345. * away from this CPU, or CPU going down), or because we're
  4346. * attempting to rebalance this task on exec (sched_exec).
  4347. *
  4348. * So we race with normal scheduler movements, but that's OK, as long
  4349. * as the task is no longer on this CPU.
  4350. *
  4351. * Returns non-zero if task was successfully migrated.
  4352. */
  4353. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4354. {
  4355. struct rq *rq;
  4356. int ret = 0;
  4357. if (unlikely(!cpu_active(dest_cpu)))
  4358. return ret;
  4359. rq = cpu_rq(src_cpu);
  4360. raw_spin_lock(&p->pi_lock);
  4361. raw_spin_lock(&rq->lock);
  4362. /* Already moved. */
  4363. if (task_cpu(p) != src_cpu)
  4364. goto done;
  4365. /* Affinity changed (again). */
  4366. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4367. goto fail;
  4368. /*
  4369. * If we're not on a rq, the next wake-up will ensure we're
  4370. * placed properly.
  4371. */
  4372. if (task_on_rq_queued(p))
  4373. rq = move_queued_task(p, dest_cpu);
  4374. done:
  4375. ret = 1;
  4376. fail:
  4377. raw_spin_unlock(&rq->lock);
  4378. raw_spin_unlock(&p->pi_lock);
  4379. return ret;
  4380. }
  4381. #ifdef CONFIG_NUMA_BALANCING
  4382. /* Migrate current task p to target_cpu */
  4383. int migrate_task_to(struct task_struct *p, int target_cpu)
  4384. {
  4385. struct migration_arg arg = { p, target_cpu };
  4386. int curr_cpu = task_cpu(p);
  4387. if (curr_cpu == target_cpu)
  4388. return 0;
  4389. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  4390. return -EINVAL;
  4391. /* TODO: This is not properly updating schedstats */
  4392. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4393. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4394. }
  4395. /*
  4396. * Requeue a task on a given node and accurately track the number of NUMA
  4397. * tasks on the runqueues
  4398. */
  4399. void sched_setnuma(struct task_struct *p, int nid)
  4400. {
  4401. struct rq *rq;
  4402. unsigned long flags;
  4403. bool queued, running;
  4404. rq = task_rq_lock(p, &flags);
  4405. queued = task_on_rq_queued(p);
  4406. running = task_current(rq, p);
  4407. if (queued)
  4408. dequeue_task(rq, p, 0);
  4409. if (running)
  4410. put_prev_task(rq, p);
  4411. p->numa_preferred_nid = nid;
  4412. if (running)
  4413. p->sched_class->set_curr_task(rq);
  4414. if (queued)
  4415. enqueue_task(rq, p, 0);
  4416. task_rq_unlock(rq, p, &flags);
  4417. }
  4418. #endif
  4419. /*
  4420. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4421. * and performs thread migration by bumping thread off CPU then
  4422. * 'pushing' onto another runqueue.
  4423. */
  4424. static int migration_cpu_stop(void *data)
  4425. {
  4426. struct migration_arg *arg = data;
  4427. /*
  4428. * The original target cpu might have gone down and we might
  4429. * be on another cpu but it doesn't matter.
  4430. */
  4431. local_irq_disable();
  4432. /*
  4433. * We need to explicitly wake pending tasks before running
  4434. * __migrate_task() such that we will not miss enforcing cpus_allowed
  4435. * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
  4436. */
  4437. sched_ttwu_pending();
  4438. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4439. local_irq_enable();
  4440. return 0;
  4441. }
  4442. #ifdef CONFIG_HOTPLUG_CPU
  4443. /*
  4444. * Ensures that the idle task is using init_mm right before its cpu goes
  4445. * offline.
  4446. */
  4447. void idle_task_exit(void)
  4448. {
  4449. struct mm_struct *mm = current->active_mm;
  4450. BUG_ON(cpu_online(smp_processor_id()));
  4451. if (mm != &init_mm) {
  4452. switch_mm(mm, &init_mm, current);
  4453. finish_arch_post_lock_switch();
  4454. }
  4455. mmdrop(mm);
  4456. }
  4457. /*
  4458. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4459. * we might have. Assumes we're called after migrate_tasks() so that the
  4460. * nr_active count is stable.
  4461. *
  4462. * Also see the comment "Global load-average calculations".
  4463. */
  4464. static void calc_load_migrate(struct rq *rq)
  4465. {
  4466. long delta = calc_load_fold_active(rq);
  4467. if (delta)
  4468. atomic_long_add(delta, &calc_load_tasks);
  4469. }
  4470. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4471. {
  4472. }
  4473. static const struct sched_class fake_sched_class = {
  4474. .put_prev_task = put_prev_task_fake,
  4475. };
  4476. static struct task_struct fake_task = {
  4477. /*
  4478. * Avoid pull_{rt,dl}_task()
  4479. */
  4480. .prio = MAX_PRIO + 1,
  4481. .sched_class = &fake_sched_class,
  4482. };
  4483. /*
  4484. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4485. * try_to_wake_up()->select_task_rq().
  4486. *
  4487. * Called with rq->lock held even though we'er in stop_machine() and
  4488. * there's no concurrency possible, we hold the required locks anyway
  4489. * because of lock validation efforts.
  4490. */
  4491. static void migrate_tasks(unsigned int dead_cpu)
  4492. {
  4493. struct rq *rq = cpu_rq(dead_cpu);
  4494. struct task_struct *next, *stop = rq->stop;
  4495. int dest_cpu;
  4496. /*
  4497. * Fudge the rq selection such that the below task selection loop
  4498. * doesn't get stuck on the currently eligible stop task.
  4499. *
  4500. * We're currently inside stop_machine() and the rq is either stuck
  4501. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4502. * either way we should never end up calling schedule() until we're
  4503. * done here.
  4504. */
  4505. rq->stop = NULL;
  4506. /*
  4507. * put_prev_task() and pick_next_task() sched
  4508. * class method both need to have an up-to-date
  4509. * value of rq->clock[_task]
  4510. */
  4511. update_rq_clock(rq);
  4512. unthrottle_offline_rt_rqs(rq);
  4513. for ( ; ; ) {
  4514. /*
  4515. * There's this thread running, bail when that's the only
  4516. * remaining thread.
  4517. */
  4518. if (rq->nr_running == 1)
  4519. break;
  4520. next = pick_next_task(rq, &fake_task);
  4521. BUG_ON(!next);
  4522. next->sched_class->put_prev_task(rq, next);
  4523. /* Find suitable destination for @next, with force if needed. */
  4524. dest_cpu = select_fallback_rq(dead_cpu, next);
  4525. raw_spin_unlock(&rq->lock);
  4526. __migrate_task(next, dead_cpu, dest_cpu);
  4527. raw_spin_lock(&rq->lock);
  4528. }
  4529. rq->stop = stop;
  4530. }
  4531. #endif /* CONFIG_HOTPLUG_CPU */
  4532. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4533. static struct ctl_table sd_ctl_dir[] = {
  4534. {
  4535. .procname = "sched_domain",
  4536. .mode = 0555,
  4537. },
  4538. {}
  4539. };
  4540. static struct ctl_table sd_ctl_root[] = {
  4541. {
  4542. .procname = "kernel",
  4543. .mode = 0555,
  4544. .child = sd_ctl_dir,
  4545. },
  4546. {}
  4547. };
  4548. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4549. {
  4550. struct ctl_table *entry =
  4551. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4552. return entry;
  4553. }
  4554. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4555. {
  4556. struct ctl_table *entry;
  4557. /*
  4558. * In the intermediate directories, both the child directory and
  4559. * procname are dynamically allocated and could fail but the mode
  4560. * will always be set. In the lowest directory the names are
  4561. * static strings and all have proc handlers.
  4562. */
  4563. for (entry = *tablep; entry->mode; entry++) {
  4564. if (entry->child)
  4565. sd_free_ctl_entry(&entry->child);
  4566. if (entry->proc_handler == NULL)
  4567. kfree(entry->procname);
  4568. }
  4569. kfree(*tablep);
  4570. *tablep = NULL;
  4571. }
  4572. static int min_load_idx = 0;
  4573. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4574. static void
  4575. set_table_entry(struct ctl_table *entry,
  4576. const char *procname, void *data, int maxlen,
  4577. umode_t mode, proc_handler *proc_handler,
  4578. bool load_idx)
  4579. {
  4580. entry->procname = procname;
  4581. entry->data = data;
  4582. entry->maxlen = maxlen;
  4583. entry->mode = mode;
  4584. entry->proc_handler = proc_handler;
  4585. if (load_idx) {
  4586. entry->extra1 = &min_load_idx;
  4587. entry->extra2 = &max_load_idx;
  4588. }
  4589. }
  4590. static struct ctl_table *
  4591. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4592. {
  4593. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4594. if (table == NULL)
  4595. return NULL;
  4596. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4597. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4598. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4599. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4600. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4601. sizeof(int), 0644, proc_dointvec_minmax, true);
  4602. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4603. sizeof(int), 0644, proc_dointvec_minmax, true);
  4604. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4605. sizeof(int), 0644, proc_dointvec_minmax, true);
  4606. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4607. sizeof(int), 0644, proc_dointvec_minmax, true);
  4608. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4609. sizeof(int), 0644, proc_dointvec_minmax, true);
  4610. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4611. sizeof(int), 0644, proc_dointvec_minmax, false);
  4612. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4613. sizeof(int), 0644, proc_dointvec_minmax, false);
  4614. set_table_entry(&table[9], "cache_nice_tries",
  4615. &sd->cache_nice_tries,
  4616. sizeof(int), 0644, proc_dointvec_minmax, false);
  4617. set_table_entry(&table[10], "flags", &sd->flags,
  4618. sizeof(int), 0644, proc_dointvec_minmax, false);
  4619. set_table_entry(&table[11], "max_newidle_lb_cost",
  4620. &sd->max_newidle_lb_cost,
  4621. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4622. set_table_entry(&table[12], "name", sd->name,
  4623. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4624. /* &table[13] is terminator */
  4625. return table;
  4626. }
  4627. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4628. {
  4629. struct ctl_table *entry, *table;
  4630. struct sched_domain *sd;
  4631. int domain_num = 0, i;
  4632. char buf[32];
  4633. for_each_domain(cpu, sd)
  4634. domain_num++;
  4635. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4636. if (table == NULL)
  4637. return NULL;
  4638. i = 0;
  4639. for_each_domain(cpu, sd) {
  4640. snprintf(buf, 32, "domain%d", i);
  4641. entry->procname = kstrdup(buf, GFP_KERNEL);
  4642. entry->mode = 0555;
  4643. entry->child = sd_alloc_ctl_domain_table(sd);
  4644. entry++;
  4645. i++;
  4646. }
  4647. return table;
  4648. }
  4649. static struct ctl_table_header *sd_sysctl_header;
  4650. static void register_sched_domain_sysctl(void)
  4651. {
  4652. int i, cpu_num = num_possible_cpus();
  4653. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4654. char buf[32];
  4655. WARN_ON(sd_ctl_dir[0].child);
  4656. sd_ctl_dir[0].child = entry;
  4657. if (entry == NULL)
  4658. return;
  4659. for_each_possible_cpu(i) {
  4660. snprintf(buf, 32, "cpu%d", i);
  4661. entry->procname = kstrdup(buf, GFP_KERNEL);
  4662. entry->mode = 0555;
  4663. entry->child = sd_alloc_ctl_cpu_table(i);
  4664. entry++;
  4665. }
  4666. WARN_ON(sd_sysctl_header);
  4667. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4668. }
  4669. /* may be called multiple times per register */
  4670. static void unregister_sched_domain_sysctl(void)
  4671. {
  4672. if (sd_sysctl_header)
  4673. unregister_sysctl_table(sd_sysctl_header);
  4674. sd_sysctl_header = NULL;
  4675. if (sd_ctl_dir[0].child)
  4676. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4677. }
  4678. #else
  4679. static void register_sched_domain_sysctl(void)
  4680. {
  4681. }
  4682. static void unregister_sched_domain_sysctl(void)
  4683. {
  4684. }
  4685. #endif
  4686. static void set_rq_online(struct rq *rq)
  4687. {
  4688. if (!rq->online) {
  4689. const struct sched_class *class;
  4690. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4691. rq->online = 1;
  4692. for_each_class(class) {
  4693. if (class->rq_online)
  4694. class->rq_online(rq);
  4695. }
  4696. }
  4697. }
  4698. static void set_rq_offline(struct rq *rq)
  4699. {
  4700. if (rq->online) {
  4701. const struct sched_class *class;
  4702. for_each_class(class) {
  4703. if (class->rq_offline)
  4704. class->rq_offline(rq);
  4705. }
  4706. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4707. rq->online = 0;
  4708. }
  4709. }
  4710. /*
  4711. * migration_call - callback that gets triggered when a CPU is added.
  4712. * Here we can start up the necessary migration thread for the new CPU.
  4713. */
  4714. static int
  4715. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4716. {
  4717. int cpu = (long)hcpu;
  4718. unsigned long flags;
  4719. struct rq *rq = cpu_rq(cpu);
  4720. switch (action & ~CPU_TASKS_FROZEN) {
  4721. case CPU_UP_PREPARE:
  4722. rq->calc_load_update = calc_load_update;
  4723. break;
  4724. case CPU_ONLINE:
  4725. /* Update our root-domain */
  4726. raw_spin_lock_irqsave(&rq->lock, flags);
  4727. if (rq->rd) {
  4728. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4729. set_rq_online(rq);
  4730. }
  4731. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4732. break;
  4733. #ifdef CONFIG_HOTPLUG_CPU
  4734. case CPU_DYING:
  4735. sched_ttwu_pending();
  4736. /* Update our root-domain */
  4737. raw_spin_lock_irqsave(&rq->lock, flags);
  4738. if (rq->rd) {
  4739. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4740. set_rq_offline(rq);
  4741. }
  4742. migrate_tasks(cpu);
  4743. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4744. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4745. break;
  4746. case CPU_DEAD:
  4747. calc_load_migrate(rq);
  4748. break;
  4749. #endif
  4750. }
  4751. update_max_interval();
  4752. return NOTIFY_OK;
  4753. }
  4754. /*
  4755. * Register at high priority so that task migration (migrate_all_tasks)
  4756. * happens before everything else. This has to be lower priority than
  4757. * the notifier in the perf_event subsystem, though.
  4758. */
  4759. static struct notifier_block migration_notifier = {
  4760. .notifier_call = migration_call,
  4761. .priority = CPU_PRI_MIGRATION,
  4762. };
  4763. static void __cpuinit set_cpu_rq_start_time(void)
  4764. {
  4765. int cpu = smp_processor_id();
  4766. struct rq *rq = cpu_rq(cpu);
  4767. rq->age_stamp = sched_clock_cpu(cpu);
  4768. }
  4769. static int sched_cpu_active(struct notifier_block *nfb,
  4770. unsigned long action, void *hcpu)
  4771. {
  4772. switch (action & ~CPU_TASKS_FROZEN) {
  4773. case CPU_STARTING:
  4774. set_cpu_rq_start_time();
  4775. return NOTIFY_OK;
  4776. case CPU_DOWN_FAILED:
  4777. set_cpu_active((long)hcpu, true);
  4778. return NOTIFY_OK;
  4779. default:
  4780. return NOTIFY_DONE;
  4781. }
  4782. }
  4783. static int sched_cpu_inactive(struct notifier_block *nfb,
  4784. unsigned long action, void *hcpu)
  4785. {
  4786. unsigned long flags;
  4787. long cpu = (long)hcpu;
  4788. struct dl_bw *dl_b;
  4789. switch (action & ~CPU_TASKS_FROZEN) {
  4790. case CPU_DOWN_PREPARE:
  4791. set_cpu_active(cpu, false);
  4792. /* explicitly allow suspend */
  4793. if (!(action & CPU_TASKS_FROZEN)) {
  4794. bool overflow;
  4795. int cpus;
  4796. rcu_read_lock_sched();
  4797. dl_b = dl_bw_of(cpu);
  4798. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4799. cpus = dl_bw_cpus(cpu);
  4800. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  4801. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4802. rcu_read_unlock_sched();
  4803. if (overflow)
  4804. return notifier_from_errno(-EBUSY);
  4805. }
  4806. return NOTIFY_OK;
  4807. }
  4808. return NOTIFY_DONE;
  4809. }
  4810. static int __init migration_init(void)
  4811. {
  4812. void *cpu = (void *)(long)smp_processor_id();
  4813. int err;
  4814. /* Initialize migration for the boot CPU */
  4815. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4816. BUG_ON(err == NOTIFY_BAD);
  4817. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4818. register_cpu_notifier(&migration_notifier);
  4819. /* Register cpu active notifiers */
  4820. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4821. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4822. return 0;
  4823. }
  4824. early_initcall(migration_init);
  4825. #endif
  4826. #ifdef CONFIG_SMP
  4827. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4828. #ifdef CONFIG_SCHED_DEBUG
  4829. static __read_mostly int sched_debug_enabled;
  4830. static int __init sched_debug_setup(char *str)
  4831. {
  4832. sched_debug_enabled = 1;
  4833. return 0;
  4834. }
  4835. early_param("sched_debug", sched_debug_setup);
  4836. static inline bool sched_debug(void)
  4837. {
  4838. return sched_debug_enabled;
  4839. }
  4840. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4841. struct cpumask *groupmask)
  4842. {
  4843. struct sched_group *group = sd->groups;
  4844. char str[256];
  4845. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4846. cpumask_clear(groupmask);
  4847. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4848. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4849. printk("does not load-balance\n");
  4850. if (sd->parent)
  4851. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4852. " has parent");
  4853. return -1;
  4854. }
  4855. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4856. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4857. printk(KERN_ERR "ERROR: domain->span does not contain "
  4858. "CPU%d\n", cpu);
  4859. }
  4860. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4861. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4862. " CPU%d\n", cpu);
  4863. }
  4864. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4865. do {
  4866. if (!group) {
  4867. printk("\n");
  4868. printk(KERN_ERR "ERROR: group is NULL\n");
  4869. break;
  4870. }
  4871. if (!cpumask_weight(sched_group_cpus(group))) {
  4872. printk(KERN_CONT "\n");
  4873. printk(KERN_ERR "ERROR: empty group\n");
  4874. break;
  4875. }
  4876. if (!(sd->flags & SD_OVERLAP) &&
  4877. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4878. printk(KERN_CONT "\n");
  4879. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4880. break;
  4881. }
  4882. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4883. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4884. printk(KERN_CONT " %s", str);
  4885. if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
  4886. printk(KERN_CONT " (cpu_capacity = %d)",
  4887. group->sgc->capacity);
  4888. }
  4889. group = group->next;
  4890. } while (group != sd->groups);
  4891. printk(KERN_CONT "\n");
  4892. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4893. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4894. if (sd->parent &&
  4895. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4896. printk(KERN_ERR "ERROR: parent span is not a superset "
  4897. "of domain->span\n");
  4898. return 0;
  4899. }
  4900. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4901. {
  4902. int level = 0;
  4903. if (!sched_debug_enabled)
  4904. return;
  4905. if (!sd) {
  4906. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4907. return;
  4908. }
  4909. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4910. for (;;) {
  4911. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4912. break;
  4913. level++;
  4914. sd = sd->parent;
  4915. if (!sd)
  4916. break;
  4917. }
  4918. }
  4919. #else /* !CONFIG_SCHED_DEBUG */
  4920. # define sched_domain_debug(sd, cpu) do { } while (0)
  4921. static inline bool sched_debug(void)
  4922. {
  4923. return false;
  4924. }
  4925. #endif /* CONFIG_SCHED_DEBUG */
  4926. static int sd_degenerate(struct sched_domain *sd)
  4927. {
  4928. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4929. return 1;
  4930. /* Following flags need at least 2 groups */
  4931. if (sd->flags & (SD_LOAD_BALANCE |
  4932. SD_BALANCE_NEWIDLE |
  4933. SD_BALANCE_FORK |
  4934. SD_BALANCE_EXEC |
  4935. SD_SHARE_CPUCAPACITY |
  4936. SD_SHARE_PKG_RESOURCES |
  4937. SD_SHARE_POWERDOMAIN)) {
  4938. if (sd->groups != sd->groups->next)
  4939. return 0;
  4940. }
  4941. /* Following flags don't use groups */
  4942. if (sd->flags & (SD_WAKE_AFFINE))
  4943. return 0;
  4944. return 1;
  4945. }
  4946. static int
  4947. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4948. {
  4949. unsigned long cflags = sd->flags, pflags = parent->flags;
  4950. if (sd_degenerate(parent))
  4951. return 1;
  4952. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4953. return 0;
  4954. /* Flags needing groups don't count if only 1 group in parent */
  4955. if (parent->groups == parent->groups->next) {
  4956. pflags &= ~(SD_LOAD_BALANCE |
  4957. SD_BALANCE_NEWIDLE |
  4958. SD_BALANCE_FORK |
  4959. SD_BALANCE_EXEC |
  4960. SD_SHARE_CPUCAPACITY |
  4961. SD_SHARE_PKG_RESOURCES |
  4962. SD_PREFER_SIBLING |
  4963. SD_SHARE_POWERDOMAIN);
  4964. if (nr_node_ids == 1)
  4965. pflags &= ~SD_SERIALIZE;
  4966. }
  4967. if (~cflags & pflags)
  4968. return 0;
  4969. return 1;
  4970. }
  4971. static void free_rootdomain(struct rcu_head *rcu)
  4972. {
  4973. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4974. cpupri_cleanup(&rd->cpupri);
  4975. cpudl_cleanup(&rd->cpudl);
  4976. free_cpumask_var(rd->dlo_mask);
  4977. free_cpumask_var(rd->rto_mask);
  4978. free_cpumask_var(rd->online);
  4979. free_cpumask_var(rd->span);
  4980. kfree(rd);
  4981. }
  4982. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4983. {
  4984. struct root_domain *old_rd = NULL;
  4985. unsigned long flags;
  4986. raw_spin_lock_irqsave(&rq->lock, flags);
  4987. if (rq->rd) {
  4988. old_rd = rq->rd;
  4989. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4990. set_rq_offline(rq);
  4991. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4992. /*
  4993. * If we dont want to free the old_rd yet then
  4994. * set old_rd to NULL to skip the freeing later
  4995. * in this function:
  4996. */
  4997. if (!atomic_dec_and_test(&old_rd->refcount))
  4998. old_rd = NULL;
  4999. }
  5000. atomic_inc(&rd->refcount);
  5001. rq->rd = rd;
  5002. cpumask_set_cpu(rq->cpu, rd->span);
  5003. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5004. set_rq_online(rq);
  5005. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5006. if (old_rd)
  5007. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  5008. }
  5009. static int init_rootdomain(struct root_domain *rd)
  5010. {
  5011. memset(rd, 0, sizeof(*rd));
  5012. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5013. goto out;
  5014. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5015. goto free_span;
  5016. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  5017. goto free_online;
  5018. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5019. goto free_dlo_mask;
  5020. init_dl_bw(&rd->dl_bw);
  5021. if (cpudl_init(&rd->cpudl) != 0)
  5022. goto free_dlo_mask;
  5023. if (cpupri_init(&rd->cpupri) != 0)
  5024. goto free_rto_mask;
  5025. return 0;
  5026. free_rto_mask:
  5027. free_cpumask_var(rd->rto_mask);
  5028. free_dlo_mask:
  5029. free_cpumask_var(rd->dlo_mask);
  5030. free_online:
  5031. free_cpumask_var(rd->online);
  5032. free_span:
  5033. free_cpumask_var(rd->span);
  5034. out:
  5035. return -ENOMEM;
  5036. }
  5037. /*
  5038. * By default the system creates a single root-domain with all cpus as
  5039. * members (mimicking the global state we have today).
  5040. */
  5041. struct root_domain def_root_domain;
  5042. static void init_defrootdomain(void)
  5043. {
  5044. init_rootdomain(&def_root_domain);
  5045. atomic_set(&def_root_domain.refcount, 1);
  5046. }
  5047. static struct root_domain *alloc_rootdomain(void)
  5048. {
  5049. struct root_domain *rd;
  5050. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5051. if (!rd)
  5052. return NULL;
  5053. if (init_rootdomain(rd) != 0) {
  5054. kfree(rd);
  5055. return NULL;
  5056. }
  5057. return rd;
  5058. }
  5059. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  5060. {
  5061. struct sched_group *tmp, *first;
  5062. if (!sg)
  5063. return;
  5064. first = sg;
  5065. do {
  5066. tmp = sg->next;
  5067. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  5068. kfree(sg->sgc);
  5069. kfree(sg);
  5070. sg = tmp;
  5071. } while (sg != first);
  5072. }
  5073. static void free_sched_domain(struct rcu_head *rcu)
  5074. {
  5075. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5076. /*
  5077. * If its an overlapping domain it has private groups, iterate and
  5078. * nuke them all.
  5079. */
  5080. if (sd->flags & SD_OVERLAP) {
  5081. free_sched_groups(sd->groups, 1);
  5082. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  5083. kfree(sd->groups->sgc);
  5084. kfree(sd->groups);
  5085. }
  5086. kfree(sd);
  5087. }
  5088. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5089. {
  5090. call_rcu(&sd->rcu, free_sched_domain);
  5091. }
  5092. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5093. {
  5094. for (; sd; sd = sd->parent)
  5095. destroy_sched_domain(sd, cpu);
  5096. }
  5097. /*
  5098. * Keep a special pointer to the highest sched_domain that has
  5099. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  5100. * allows us to avoid some pointer chasing select_idle_sibling().
  5101. *
  5102. * Also keep a unique ID per domain (we use the first cpu number in
  5103. * the cpumask of the domain), this allows us to quickly tell if
  5104. * two cpus are in the same cache domain, see cpus_share_cache().
  5105. */
  5106. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  5107. DEFINE_PER_CPU(int, sd_llc_size);
  5108. DEFINE_PER_CPU(int, sd_llc_id);
  5109. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  5110. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  5111. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  5112. static void update_top_cache_domain(int cpu)
  5113. {
  5114. struct sched_domain *sd;
  5115. struct sched_domain *busy_sd = NULL;
  5116. int id = cpu;
  5117. int size = 1;
  5118. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  5119. if (sd) {
  5120. id = cpumask_first(sched_domain_span(sd));
  5121. size = cpumask_weight(sched_domain_span(sd));
  5122. busy_sd = sd->parent; /* sd_busy */
  5123. }
  5124. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  5125. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  5126. per_cpu(sd_llc_size, cpu) = size;
  5127. per_cpu(sd_llc_id, cpu) = id;
  5128. sd = lowest_flag_domain(cpu, SD_NUMA);
  5129. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  5130. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  5131. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  5132. }
  5133. /*
  5134. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5135. * hold the hotplug lock.
  5136. */
  5137. static void
  5138. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5139. {
  5140. struct rq *rq = cpu_rq(cpu);
  5141. struct sched_domain *tmp;
  5142. /* Remove the sched domains which do not contribute to scheduling. */
  5143. for (tmp = sd; tmp; ) {
  5144. struct sched_domain *parent = tmp->parent;
  5145. if (!parent)
  5146. break;
  5147. if (sd_parent_degenerate(tmp, parent)) {
  5148. tmp->parent = parent->parent;
  5149. if (parent->parent)
  5150. parent->parent->child = tmp;
  5151. /*
  5152. * Transfer SD_PREFER_SIBLING down in case of a
  5153. * degenerate parent; the spans match for this
  5154. * so the property transfers.
  5155. */
  5156. if (parent->flags & SD_PREFER_SIBLING)
  5157. tmp->flags |= SD_PREFER_SIBLING;
  5158. destroy_sched_domain(parent, cpu);
  5159. } else
  5160. tmp = tmp->parent;
  5161. }
  5162. if (sd && sd_degenerate(sd)) {
  5163. tmp = sd;
  5164. sd = sd->parent;
  5165. destroy_sched_domain(tmp, cpu);
  5166. if (sd)
  5167. sd->child = NULL;
  5168. }
  5169. sched_domain_debug(sd, cpu);
  5170. rq_attach_root(rq, rd);
  5171. tmp = rq->sd;
  5172. rcu_assign_pointer(rq->sd, sd);
  5173. destroy_sched_domains(tmp, cpu);
  5174. #ifdef CONFIG_HMP_PACK_SMALL_TASK
  5175. update_packing_domain(cpu);
  5176. #endif
  5177. update_top_cache_domain(cpu);
  5178. }
  5179. /* cpus with isolated domains */
  5180. static cpumask_var_t cpu_isolated_map;
  5181. /* Setup the mask of cpus configured for isolated domains */
  5182. static int __init isolated_cpu_setup(char *str)
  5183. {
  5184. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5185. cpulist_parse(str, cpu_isolated_map);
  5186. return 1;
  5187. }
  5188. __setup("isolcpus=", isolated_cpu_setup);
  5189. struct s_data {
  5190. struct sched_domain ** __percpu sd;
  5191. struct root_domain *rd;
  5192. };
  5193. enum s_alloc {
  5194. sa_rootdomain,
  5195. sa_sd,
  5196. sa_sd_storage,
  5197. sa_none,
  5198. };
  5199. /*
  5200. * Build an iteration mask that can exclude certain CPUs from the upwards
  5201. * domain traversal.
  5202. *
  5203. * Asymmetric node setups can result in situations where the domain tree is of
  5204. * unequal depth, make sure to skip domains that already cover the entire
  5205. * range.
  5206. *
  5207. * In that case build_sched_domains() will have terminated the iteration early
  5208. * and our sibling sd spans will be empty. Domains should always include the
  5209. * cpu they're built on, so check that.
  5210. *
  5211. */
  5212. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  5213. {
  5214. const struct cpumask *span = sched_domain_span(sd);
  5215. struct sd_data *sdd = sd->private;
  5216. struct sched_domain *sibling;
  5217. int i;
  5218. for_each_cpu(i, span) {
  5219. sibling = *per_cpu_ptr(sdd->sd, i);
  5220. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5221. continue;
  5222. cpumask_set_cpu(i, sched_group_mask(sg));
  5223. }
  5224. }
  5225. /*
  5226. * Return the canonical balance cpu for this group, this is the first cpu
  5227. * of this group that's also in the iteration mask.
  5228. */
  5229. int group_balance_cpu(struct sched_group *sg)
  5230. {
  5231. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  5232. }
  5233. static int
  5234. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5235. {
  5236. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5237. const struct cpumask *span = sched_domain_span(sd);
  5238. struct cpumask *covered = sched_domains_tmpmask;
  5239. struct sd_data *sdd = sd->private;
  5240. struct sched_domain *sibling;
  5241. int i;
  5242. cpumask_clear(covered);
  5243. for_each_cpu(i, span) {
  5244. struct cpumask *sg_span;
  5245. if (cpumask_test_cpu(i, covered))
  5246. continue;
  5247. sibling = *per_cpu_ptr(sdd->sd, i);
  5248. /* See the comment near build_group_mask(). */
  5249. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5250. continue;
  5251. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5252. GFP_KERNEL, cpu_to_node(cpu));
  5253. if (!sg)
  5254. goto fail;
  5255. sg_span = sched_group_cpus(sg);
  5256. if (sibling->child)
  5257. cpumask_copy(sg_span, sched_domain_span(sibling->child));
  5258. else
  5259. cpumask_set_cpu(i, sg_span);
  5260. cpumask_or(covered, covered, sg_span);
  5261. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  5262. if (atomic_inc_return(&sg->sgc->ref) == 1)
  5263. build_group_mask(sd, sg);
  5264. /*
  5265. * Initialize sgc->capacity such that even if we mess up the
  5266. * domains and no possible iteration will get us here, we won't
  5267. * die on a /0 trap.
  5268. */
  5269. sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
  5270. /*
  5271. * Make sure the first group of this domain contains the
  5272. * canonical balance cpu. Otherwise the sched_domain iteration
  5273. * breaks. See update_sg_lb_stats().
  5274. */
  5275. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  5276. group_balance_cpu(sg) == cpu)
  5277. groups = sg;
  5278. if (!first)
  5279. first = sg;
  5280. if (last)
  5281. last->next = sg;
  5282. last = sg;
  5283. last->next = first;
  5284. }
  5285. sd->groups = groups;
  5286. return 0;
  5287. fail:
  5288. free_sched_groups(first, 0);
  5289. return -ENOMEM;
  5290. }
  5291. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5292. {
  5293. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5294. struct sched_domain *child = sd->child;
  5295. if (child)
  5296. cpu = cpumask_first(sched_domain_span(child));
  5297. if (sg) {
  5298. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5299. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  5300. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  5301. }
  5302. return cpu;
  5303. }
  5304. /*
  5305. * build_sched_groups will build a circular linked list of the groups
  5306. * covered by the given span, and will set each group's ->cpumask correctly,
  5307. * and ->cpu_capacity to 0.
  5308. *
  5309. * Assumes the sched_domain tree is fully constructed
  5310. */
  5311. static int
  5312. build_sched_groups(struct sched_domain *sd, int cpu)
  5313. {
  5314. struct sched_group *first = NULL, *last = NULL;
  5315. struct sd_data *sdd = sd->private;
  5316. const struct cpumask *span = sched_domain_span(sd);
  5317. struct cpumask *covered;
  5318. int i;
  5319. get_group(cpu, sdd, &sd->groups);
  5320. atomic_inc(&sd->groups->ref);
  5321. if (cpu != cpumask_first(span))
  5322. return 0;
  5323. lockdep_assert_held(&sched_domains_mutex);
  5324. covered = sched_domains_tmpmask;
  5325. cpumask_clear(covered);
  5326. for_each_cpu(i, span) {
  5327. struct sched_group *sg;
  5328. int group, j;
  5329. if (cpumask_test_cpu(i, covered))
  5330. continue;
  5331. group = get_group(i, sdd, &sg);
  5332. cpumask_setall(sched_group_mask(sg));
  5333. for_each_cpu(j, span) {
  5334. if (get_group(j, sdd, NULL) != group)
  5335. continue;
  5336. cpumask_set_cpu(j, covered);
  5337. cpumask_set_cpu(j, sched_group_cpus(sg));
  5338. }
  5339. if (!first)
  5340. first = sg;
  5341. if (last)
  5342. last->next = sg;
  5343. last = sg;
  5344. }
  5345. last->next = first;
  5346. return 0;
  5347. }
  5348. /*
  5349. * Initialize sched groups cpu_capacity.
  5350. *
  5351. * cpu_capacity indicates the capacity of sched group, which is used while
  5352. * distributing the load between different sched groups in a sched domain.
  5353. * Typically cpu_capacity for all the groups in a sched domain will be same
  5354. * unless there are asymmetries in the topology. If there are asymmetries,
  5355. * group having more cpu_capacity will pickup more load compared to the
  5356. * group having less cpu_capacity.
  5357. */
  5358. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  5359. {
  5360. struct sched_group *sg = sd->groups;
  5361. WARN_ON(!sg);
  5362. do {
  5363. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5364. sg = sg->next;
  5365. } while (sg != sd->groups);
  5366. if (cpu != group_balance_cpu(sg))
  5367. return;
  5368. update_group_capacity(sd, cpu);
  5369. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  5370. }
  5371. /*
  5372. * Initializers for schedule domains
  5373. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5374. */
  5375. static int default_relax_domain_level = -1;
  5376. int sched_domain_level_max;
  5377. static int __init setup_relax_domain_level(char *str)
  5378. {
  5379. if (kstrtoint(str, 0, &default_relax_domain_level))
  5380. pr_warn("Unable to set relax_domain_level\n");
  5381. return 1;
  5382. }
  5383. __setup("relax_domain_level=", setup_relax_domain_level);
  5384. static void set_domain_attribute(struct sched_domain *sd,
  5385. struct sched_domain_attr *attr)
  5386. {
  5387. int request;
  5388. if (!attr || attr->relax_domain_level < 0) {
  5389. if (default_relax_domain_level < 0)
  5390. return;
  5391. else
  5392. request = default_relax_domain_level;
  5393. } else
  5394. request = attr->relax_domain_level;
  5395. if (request < sd->level) {
  5396. /* turn off idle balance on this domain */
  5397. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5398. } else {
  5399. /* turn on idle balance on this domain */
  5400. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5401. }
  5402. }
  5403. static void __sdt_free(const struct cpumask *cpu_map);
  5404. static int __sdt_alloc(const struct cpumask *cpu_map);
  5405. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5406. const struct cpumask *cpu_map)
  5407. {
  5408. switch (what) {
  5409. case sa_rootdomain:
  5410. if (!atomic_read(&d->rd->refcount))
  5411. free_rootdomain(&d->rd->rcu); /* fall through */
  5412. case sa_sd:
  5413. free_percpu(d->sd); /* fall through */
  5414. case sa_sd_storage:
  5415. __sdt_free(cpu_map); /* fall through */
  5416. case sa_none:
  5417. break;
  5418. }
  5419. }
  5420. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5421. const struct cpumask *cpu_map)
  5422. {
  5423. memset(d, 0, sizeof(*d));
  5424. if (__sdt_alloc(cpu_map))
  5425. return sa_sd_storage;
  5426. d->sd = alloc_percpu(struct sched_domain *);
  5427. if (!d->sd)
  5428. return sa_sd_storage;
  5429. d->rd = alloc_rootdomain();
  5430. if (!d->rd)
  5431. return sa_sd;
  5432. return sa_rootdomain;
  5433. }
  5434. /*
  5435. * NULL the sd_data elements we've used to build the sched_domain and
  5436. * sched_group structure so that the subsequent __free_domain_allocs()
  5437. * will not free the data we're using.
  5438. */
  5439. static void claim_allocations(int cpu, struct sched_domain *sd)
  5440. {
  5441. struct sd_data *sdd = sd->private;
  5442. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5443. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5444. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5445. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5446. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5447. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5448. }
  5449. #ifdef CONFIG_NUMA
  5450. static int sched_domains_numa_levels;
  5451. static int *sched_domains_numa_distance;
  5452. static struct cpumask ***sched_domains_numa_masks;
  5453. static int sched_domains_curr_level;
  5454. #endif
  5455. /*
  5456. * SD_flags allowed in topology descriptions.
  5457. *
  5458. * SD_SHARE_CPUCAPACITY - describes SMT topologies
  5459. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5460. * SD_NUMA - describes NUMA topologies
  5461. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5462. *
  5463. * Odd one out:
  5464. * SD_ASYM_PACKING - describes SMT quirks
  5465. */
  5466. #ifdef CONFIG_DISABLE_CPU_SCHED_DOMAIN_BALANCE
  5467. #define TOPOLOGY_SD_FLAGS \
  5468. (SD_LOAD_BALANCE | \
  5469. SD_SHARE_CPUCAPACITY | \
  5470. SD_SHARE_PKG_RESOURCES | \
  5471. SD_NUMA | \
  5472. SD_ASYM_PACKING | \
  5473. SD_SHARE_POWERDOMAIN)
  5474. #else
  5475. #define TOPOLOGY_SD_FLAGS \
  5476. (SD_SHARE_CPUCAPACITY | \
  5477. SD_SHARE_PKG_RESOURCES | \
  5478. SD_NUMA | \
  5479. SD_ASYM_PACKING | \
  5480. SD_SHARE_POWERDOMAIN)
  5481. #endif
  5482. static struct sched_domain *
  5483. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5484. {
  5485. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5486. int sd_weight, sd_flags = 0;
  5487. #ifdef CONFIG_NUMA
  5488. /*
  5489. * Ugly hack to pass state to sd_numa_mask()...
  5490. */
  5491. sched_domains_curr_level = tl->numa_level;
  5492. #endif
  5493. sd_weight = cpumask_weight(tl->mask(cpu));
  5494. if (tl->sd_flags)
  5495. sd_flags = (*tl->sd_flags)();
  5496. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5497. "wrong sd_flags in topology description\n"))
  5498. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5499. *sd = (struct sched_domain){
  5500. .min_interval = sd_weight,
  5501. .max_interval = 2*sd_weight,
  5502. .busy_factor = 32,
  5503. .imbalance_pct = 125,
  5504. .cache_nice_tries = 0,
  5505. .busy_idx = 0,
  5506. .idle_idx = 0,
  5507. .newidle_idx = 0,
  5508. .wake_idx = 0,
  5509. .forkexec_idx = 0,
  5510. #ifdef CONFIG_DISABLE_CPU_SCHED_DOMAIN_BALANCE
  5511. .flags = 0*SD_LOAD_BALANCE
  5512. #else
  5513. .flags = 1*SD_LOAD_BALANCE
  5514. #endif
  5515. | 1*SD_BALANCE_NEWIDLE
  5516. | 1*SD_BALANCE_EXEC
  5517. | 1*SD_BALANCE_FORK
  5518. #ifdef CONFIG_MT_LOAD_BALANCE_ENHANCEMENT
  5519. | 1*SD_BALANCE_WAKE
  5520. | 0*SD_WAKE_AFFINE
  5521. #else
  5522. | 0*SD_BALANCE_WAKE
  5523. | 1*SD_WAKE_AFFINE
  5524. #endif
  5525. | 0*SD_SHARE_CPUCAPACITY
  5526. | 0*SD_SHARE_PKG_RESOURCES
  5527. | 0*SD_SERIALIZE
  5528. | 0*SD_PREFER_SIBLING
  5529. | 0*SD_NUMA
  5530. #ifdef CONFIG_MTK_SCHED_CMP_TGS
  5531. | 1*SD_BALANCE_TG
  5532. #endif
  5533. | sd_flags
  5534. ,
  5535. .last_balance = jiffies,
  5536. .balance_interval = sd_weight,
  5537. .smt_gain = 0,
  5538. .max_newidle_lb_cost = 0,
  5539. .next_decay_max_lb_cost = jiffies,
  5540. #ifdef CONFIG_SCHED_DEBUG
  5541. .name = tl->name,
  5542. #endif
  5543. };
  5544. /*
  5545. * Convert topological properties into behaviour.
  5546. */
  5547. if (sd->flags & SD_SHARE_CPUCAPACITY) {
  5548. sd->flags |= SD_PREFER_SIBLING;
  5549. sd->imbalance_pct = 110;
  5550. sd->smt_gain = 1178; /* ~15% */
  5551. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5552. sd->imbalance_pct = 117;
  5553. sd->cache_nice_tries = 1;
  5554. sd->busy_idx = 2;
  5555. #ifdef CONFIG_NUMA
  5556. } else if (sd->flags & SD_NUMA) {
  5557. sd->cache_nice_tries = 2;
  5558. sd->busy_idx = 3;
  5559. sd->idle_idx = 2;
  5560. sd->flags |= SD_SERIALIZE;
  5561. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5562. sd->flags &= ~(SD_BALANCE_EXEC |
  5563. SD_BALANCE_FORK |
  5564. SD_WAKE_AFFINE);
  5565. }
  5566. #endif
  5567. } else {
  5568. sd->flags |= SD_PREFER_SIBLING;
  5569. sd->cache_nice_tries = 1;
  5570. sd->busy_idx = 2;
  5571. sd->idle_idx = 1;
  5572. }
  5573. sd->private = &tl->data;
  5574. return sd;
  5575. }
  5576. /*
  5577. * Topology list, bottom-up.
  5578. */
  5579. static struct sched_domain_topology_level default_topology[] = {
  5580. #ifdef CONFIG_SCHED_SMT
  5581. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5582. #endif
  5583. #ifdef CONFIG_SCHED_MC
  5584. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5585. #endif
  5586. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5587. { NULL, },
  5588. };
  5589. struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5590. #define for_each_sd_topology(tl) \
  5591. for (tl = sched_domain_topology; tl->mask; tl++)
  5592. void set_sched_topology(struct sched_domain_topology_level *tl)
  5593. {
  5594. sched_domain_topology = tl;
  5595. }
  5596. #ifdef CONFIG_NUMA
  5597. static const struct cpumask *sd_numa_mask(int cpu)
  5598. {
  5599. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5600. }
  5601. static void sched_numa_warn(const char *str)
  5602. {
  5603. static int done = false;
  5604. int i,j;
  5605. if (done)
  5606. return;
  5607. done = true;
  5608. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5609. for (i = 0; i < nr_node_ids; i++) {
  5610. printk(KERN_WARNING " ");
  5611. for (j = 0; j < nr_node_ids; j++)
  5612. printk(KERN_CONT "%02d ", node_distance(i,j));
  5613. printk(KERN_CONT "\n");
  5614. }
  5615. printk(KERN_WARNING "\n");
  5616. }
  5617. static bool find_numa_distance(int distance)
  5618. {
  5619. int i;
  5620. if (distance == node_distance(0, 0))
  5621. return true;
  5622. for (i = 0; i < sched_domains_numa_levels; i++) {
  5623. if (sched_domains_numa_distance[i] == distance)
  5624. return true;
  5625. }
  5626. return false;
  5627. }
  5628. static void sched_init_numa(void)
  5629. {
  5630. int next_distance, curr_distance = node_distance(0, 0);
  5631. struct sched_domain_topology_level *tl;
  5632. int level = 0;
  5633. int i, j, k;
  5634. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5635. if (!sched_domains_numa_distance)
  5636. return;
  5637. /*
  5638. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5639. * unique distances in the node_distance() table.
  5640. *
  5641. * Assumes node_distance(0,j) includes all distances in
  5642. * node_distance(i,j) in order to avoid cubic time.
  5643. */
  5644. next_distance = curr_distance;
  5645. for (i = 0; i < nr_node_ids; i++) {
  5646. for (j = 0; j < nr_node_ids; j++) {
  5647. for (k = 0; k < nr_node_ids; k++) {
  5648. int distance = node_distance(i, k);
  5649. if (distance > curr_distance &&
  5650. (distance < next_distance ||
  5651. next_distance == curr_distance))
  5652. next_distance = distance;
  5653. /*
  5654. * While not a strong assumption it would be nice to know
  5655. * about cases where if node A is connected to B, B is not
  5656. * equally connected to A.
  5657. */
  5658. if (sched_debug() && node_distance(k, i) != distance)
  5659. sched_numa_warn("Node-distance not symmetric");
  5660. if (sched_debug() && i && !find_numa_distance(distance))
  5661. sched_numa_warn("Node-0 not representative");
  5662. }
  5663. if (next_distance != curr_distance) {
  5664. sched_domains_numa_distance[level++] = next_distance;
  5665. sched_domains_numa_levels = level;
  5666. curr_distance = next_distance;
  5667. } else break;
  5668. }
  5669. /*
  5670. * In case of sched_debug() we verify the above assumption.
  5671. */
  5672. if (!sched_debug())
  5673. break;
  5674. }
  5675. if (!level)
  5676. return;
  5677. /*
  5678. * 'level' contains the number of unique distances, excluding the
  5679. * identity distance node_distance(i,i).
  5680. *
  5681. * The sched_domains_numa_distance[] array includes the actual distance
  5682. * numbers.
  5683. */
  5684. /*
  5685. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5686. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5687. * the array will contain less then 'level' members. This could be
  5688. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5689. * in other functions.
  5690. *
  5691. * We reset it to 'level' at the end of this function.
  5692. */
  5693. sched_domains_numa_levels = 0;
  5694. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5695. if (!sched_domains_numa_masks)
  5696. return;
  5697. /*
  5698. * Now for each level, construct a mask per node which contains all
  5699. * cpus of nodes that are that many hops away from us.
  5700. */
  5701. for (i = 0; i < level; i++) {
  5702. sched_domains_numa_masks[i] =
  5703. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5704. if (!sched_domains_numa_masks[i])
  5705. return;
  5706. for (j = 0; j < nr_node_ids; j++) {
  5707. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5708. if (!mask)
  5709. return;
  5710. sched_domains_numa_masks[i][j] = mask;
  5711. for (k = 0; k < nr_node_ids; k++) {
  5712. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5713. continue;
  5714. cpumask_or(mask, mask, cpumask_of_node(k));
  5715. }
  5716. }
  5717. }
  5718. /* Compute default topology size */
  5719. for (i = 0; sched_domain_topology[i].mask; i++);
  5720. tl = kzalloc((i + level + 1) *
  5721. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5722. if (!tl)
  5723. return;
  5724. /*
  5725. * Copy the default topology bits..
  5726. */
  5727. for (i = 0; sched_domain_topology[i].mask; i++)
  5728. tl[i] = sched_domain_topology[i];
  5729. /*
  5730. * .. and append 'j' levels of NUMA goodness.
  5731. */
  5732. for (j = 0; j < level; i++, j++) {
  5733. tl[i] = (struct sched_domain_topology_level){
  5734. .mask = sd_numa_mask,
  5735. .sd_flags = cpu_numa_flags,
  5736. .flags = SDTL_OVERLAP,
  5737. .numa_level = j,
  5738. SD_INIT_NAME(NUMA)
  5739. };
  5740. }
  5741. sched_domain_topology = tl;
  5742. sched_domains_numa_levels = level;
  5743. }
  5744. static void sched_domains_numa_masks_set(int cpu)
  5745. {
  5746. int i, j;
  5747. int node = cpu_to_node(cpu);
  5748. for (i = 0; i < sched_domains_numa_levels; i++) {
  5749. for (j = 0; j < nr_node_ids; j++) {
  5750. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5751. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5752. }
  5753. }
  5754. }
  5755. static void sched_domains_numa_masks_clear(int cpu)
  5756. {
  5757. int i, j;
  5758. for (i = 0; i < sched_domains_numa_levels; i++) {
  5759. for (j = 0; j < nr_node_ids; j++)
  5760. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5761. }
  5762. }
  5763. /*
  5764. * Update sched_domains_numa_masks[level][node] array when new cpus
  5765. * are onlined.
  5766. */
  5767. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5768. unsigned long action,
  5769. void *hcpu)
  5770. {
  5771. int cpu = (long)hcpu;
  5772. switch (action & ~CPU_TASKS_FROZEN) {
  5773. case CPU_ONLINE:
  5774. sched_domains_numa_masks_set(cpu);
  5775. break;
  5776. case CPU_DEAD:
  5777. sched_domains_numa_masks_clear(cpu);
  5778. break;
  5779. default:
  5780. return NOTIFY_DONE;
  5781. }
  5782. return NOTIFY_OK;
  5783. }
  5784. #else
  5785. static inline void sched_init_numa(void)
  5786. {
  5787. }
  5788. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5789. unsigned long action,
  5790. void *hcpu)
  5791. {
  5792. return 0;
  5793. }
  5794. #endif /* CONFIG_NUMA */
  5795. static int __sdt_alloc(const struct cpumask *cpu_map)
  5796. {
  5797. struct sched_domain_topology_level *tl;
  5798. int j;
  5799. for_each_sd_topology(tl) {
  5800. struct sd_data *sdd = &tl->data;
  5801. sdd->sd = alloc_percpu(struct sched_domain *);
  5802. if (!sdd->sd)
  5803. return -ENOMEM;
  5804. sdd->sg = alloc_percpu(struct sched_group *);
  5805. if (!sdd->sg)
  5806. return -ENOMEM;
  5807. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5808. if (!sdd->sgc)
  5809. return -ENOMEM;
  5810. for_each_cpu(j, cpu_map) {
  5811. struct sched_domain *sd;
  5812. struct sched_group *sg;
  5813. struct sched_group_capacity *sgc;
  5814. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5815. GFP_KERNEL, cpu_to_node(j));
  5816. if (!sd)
  5817. return -ENOMEM;
  5818. *per_cpu_ptr(sdd->sd, j) = sd;
  5819. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5820. GFP_KERNEL, cpu_to_node(j));
  5821. if (!sg)
  5822. return -ENOMEM;
  5823. sg->next = sg;
  5824. *per_cpu_ptr(sdd->sg, j) = sg;
  5825. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5826. GFP_KERNEL, cpu_to_node(j));
  5827. if (!sgc)
  5828. return -ENOMEM;
  5829. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5830. }
  5831. }
  5832. return 0;
  5833. }
  5834. static void __sdt_free(const struct cpumask *cpu_map)
  5835. {
  5836. struct sched_domain_topology_level *tl;
  5837. int j;
  5838. for_each_sd_topology(tl) {
  5839. struct sd_data *sdd = &tl->data;
  5840. for_each_cpu(j, cpu_map) {
  5841. struct sched_domain *sd;
  5842. if (sdd->sd) {
  5843. sd = *per_cpu_ptr(sdd->sd, j);
  5844. if (sd && (sd->flags & SD_OVERLAP))
  5845. free_sched_groups(sd->groups, 0);
  5846. kfree(*per_cpu_ptr(sdd->sd, j));
  5847. }
  5848. if (sdd->sg)
  5849. kfree(*per_cpu_ptr(sdd->sg, j));
  5850. if (sdd->sgc)
  5851. kfree(*per_cpu_ptr(sdd->sgc, j));
  5852. }
  5853. free_percpu(sdd->sd);
  5854. sdd->sd = NULL;
  5855. free_percpu(sdd->sg);
  5856. sdd->sg = NULL;
  5857. free_percpu(sdd->sgc);
  5858. sdd->sgc = NULL;
  5859. }
  5860. }
  5861. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5862. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5863. struct sched_domain *child, int cpu)
  5864. {
  5865. struct sched_domain *sd = sd_init(tl, cpu);
  5866. if (!sd)
  5867. return child;
  5868. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5869. if (child) {
  5870. sd->level = child->level + 1;
  5871. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5872. child->parent = sd;
  5873. sd->child = child;
  5874. if (!cpumask_subset(sched_domain_span(child),
  5875. sched_domain_span(sd))) {
  5876. pr_err("BUG: arch topology borken\n");
  5877. #ifdef CONFIG_SCHED_DEBUG
  5878. pr_err(" the %s domain not a subset of the %s domain\n",
  5879. child->name, sd->name);
  5880. #endif
  5881. /* Fixup, ensure @sd has at least @child cpus. */
  5882. cpumask_or(sched_domain_span(sd),
  5883. sched_domain_span(sd),
  5884. sched_domain_span(child));
  5885. }
  5886. }
  5887. set_domain_attribute(sd, attr);
  5888. return sd;
  5889. }
  5890. /*
  5891. * Build sched domains for a given set of cpus and attach the sched domains
  5892. * to the individual cpus
  5893. */
  5894. static int build_sched_domains(const struct cpumask *cpu_map,
  5895. struct sched_domain_attr *attr)
  5896. {
  5897. enum s_alloc alloc_state;
  5898. struct sched_domain *sd;
  5899. struct s_data d;
  5900. int i, ret = -ENOMEM;
  5901. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5902. if (alloc_state != sa_rootdomain)
  5903. goto error;
  5904. /* Set up domains for cpus specified by the cpu_map. */
  5905. for_each_cpu(i, cpu_map) {
  5906. struct sched_domain_topology_level *tl;
  5907. sd = NULL;
  5908. for_each_sd_topology(tl) {
  5909. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5910. if (tl == sched_domain_topology)
  5911. *per_cpu_ptr(d.sd, i) = sd;
  5912. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5913. sd->flags |= SD_OVERLAP;
  5914. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5915. break;
  5916. }
  5917. }
  5918. /* Build the groups for the domains */
  5919. for_each_cpu(i, cpu_map) {
  5920. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5921. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5922. if (sd->flags & SD_OVERLAP) {
  5923. if (build_overlap_sched_groups(sd, i))
  5924. goto error;
  5925. } else {
  5926. if (build_sched_groups(sd, i))
  5927. goto error;
  5928. }
  5929. }
  5930. }
  5931. /* Calculate CPU capacity for physical packages and nodes */
  5932. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5933. if (!cpumask_test_cpu(i, cpu_map))
  5934. continue;
  5935. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5936. claim_allocations(i, sd);
  5937. init_sched_groups_capacity(i, sd);
  5938. }
  5939. }
  5940. /* Attach the domains */
  5941. rcu_read_lock();
  5942. for_each_cpu(i, cpu_map) {
  5943. sd = *per_cpu_ptr(d.sd, i);
  5944. cpu_attach_domain(sd, d.rd, i);
  5945. }
  5946. rcu_read_unlock();
  5947. ret = 0;
  5948. error:
  5949. __free_domain_allocs(&d, alloc_state, cpu_map);
  5950. return ret;
  5951. }
  5952. static cpumask_var_t *doms_cur; /* current sched domains */
  5953. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5954. static struct sched_domain_attr *dattr_cur;
  5955. /* attribues of custom domains in 'doms_cur' */
  5956. /*
  5957. * Special case: If a kmalloc of a doms_cur partition (array of
  5958. * cpumask) fails, then fallback to a single sched domain,
  5959. * as determined by the single cpumask fallback_doms.
  5960. */
  5961. static cpumask_var_t fallback_doms;
  5962. /*
  5963. * arch_update_cpu_topology lets virtualized architectures update the
  5964. * cpu core maps. It is supposed to return 1 if the topology changed
  5965. * or 0 if it stayed the same.
  5966. */
  5967. int __weak arch_update_cpu_topology(void)
  5968. {
  5969. return 0;
  5970. }
  5971. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5972. {
  5973. int i;
  5974. cpumask_var_t *doms;
  5975. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5976. if (!doms)
  5977. return NULL;
  5978. for (i = 0; i < ndoms; i++) {
  5979. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5980. free_sched_domains(doms, i);
  5981. return NULL;
  5982. }
  5983. }
  5984. return doms;
  5985. }
  5986. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5987. {
  5988. unsigned int i;
  5989. for (i = 0; i < ndoms; i++)
  5990. free_cpumask_var(doms[i]);
  5991. kfree(doms);
  5992. }
  5993. /*
  5994. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5995. * For now this just excludes isolated cpus, but could be used to
  5996. * exclude other special cases in the future.
  5997. */
  5998. static int init_sched_domains(const struct cpumask *cpu_map)
  5999. {
  6000. int err;
  6001. arch_update_cpu_topology();
  6002. ndoms_cur = 1;
  6003. doms_cur = alloc_sched_domains(ndoms_cur);
  6004. if (!doms_cur)
  6005. doms_cur = &fallback_doms;
  6006. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6007. err = build_sched_domains(doms_cur[0], NULL);
  6008. register_sched_domain_sysctl();
  6009. return err;
  6010. }
  6011. /*
  6012. * Detach sched domains from a group of cpus specified in cpu_map
  6013. * These cpus will now be attached to the NULL domain
  6014. */
  6015. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6016. {
  6017. int i;
  6018. rcu_read_lock();
  6019. for_each_cpu(i, cpu_map)
  6020. cpu_attach_domain(NULL, &def_root_domain, i);
  6021. rcu_read_unlock();
  6022. }
  6023. /* handle null as "default" */
  6024. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6025. struct sched_domain_attr *new, int idx_new)
  6026. {
  6027. struct sched_domain_attr tmp;
  6028. /* fast path */
  6029. if (!new && !cur)
  6030. return 1;
  6031. tmp = SD_ATTR_INIT;
  6032. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6033. new ? (new + idx_new) : &tmp,
  6034. sizeof(struct sched_domain_attr));
  6035. }
  6036. /*
  6037. * Partition sched domains as specified by the 'ndoms_new'
  6038. * cpumasks in the array doms_new[] of cpumasks. This compares
  6039. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6040. * It destroys each deleted domain and builds each new domain.
  6041. *
  6042. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6043. * The masks don't intersect (don't overlap.) We should setup one
  6044. * sched domain for each mask. CPUs not in any of the cpumasks will
  6045. * not be load balanced. If the same cpumask appears both in the
  6046. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6047. * it as it is.
  6048. *
  6049. * The passed in 'doms_new' should be allocated using
  6050. * alloc_sched_domains. This routine takes ownership of it and will
  6051. * free_sched_domains it when done with it. If the caller failed the
  6052. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6053. * and partition_sched_domains() will fallback to the single partition
  6054. * 'fallback_doms', it also forces the domains to be rebuilt.
  6055. *
  6056. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6057. * ndoms_new == 0 is a special case for destroying existing domains,
  6058. * and it will not create the default domain.
  6059. *
  6060. * Call with hotplug lock held
  6061. */
  6062. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6063. struct sched_domain_attr *dattr_new)
  6064. {
  6065. int i, j, n;
  6066. int new_topology;
  6067. mutex_lock(&sched_domains_mutex);
  6068. /* always unregister in case we don't destroy any domains */
  6069. unregister_sched_domain_sysctl();
  6070. /* Let architecture update cpu core mappings. */
  6071. new_topology = arch_update_cpu_topology();
  6072. n = doms_new ? ndoms_new : 0;
  6073. /* Destroy deleted domains */
  6074. for (i = 0; i < ndoms_cur; i++) {
  6075. for (j = 0; j < n && !new_topology; j++) {
  6076. if (cpumask_equal(doms_cur[i], doms_new[j])
  6077. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6078. goto match1;
  6079. }
  6080. /* no match - a current sched domain not in new doms_new[] */
  6081. detach_destroy_domains(doms_cur[i]);
  6082. match1:
  6083. ;
  6084. }
  6085. n = ndoms_cur;
  6086. if (doms_new == NULL) {
  6087. n = 0;
  6088. doms_new = &fallback_doms;
  6089. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6090. WARN_ON_ONCE(dattr_new);
  6091. }
  6092. /* Build new domains */
  6093. for (i = 0; i < ndoms_new; i++) {
  6094. for (j = 0; j < n && !new_topology; j++) {
  6095. if (cpumask_equal(doms_new[i], doms_cur[j])
  6096. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6097. goto match2;
  6098. }
  6099. /* no match - add a new doms_new */
  6100. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6101. match2:
  6102. ;
  6103. }
  6104. /* Remember the new sched domains */
  6105. if (doms_cur != &fallback_doms)
  6106. free_sched_domains(doms_cur, ndoms_cur);
  6107. kfree(dattr_cur); /* kfree(NULL) is safe */
  6108. doms_cur = doms_new;
  6109. dattr_cur = dattr_new;
  6110. ndoms_cur = ndoms_new;
  6111. register_sched_domain_sysctl();
  6112. mutex_unlock(&sched_domains_mutex);
  6113. }
  6114. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  6115. /*
  6116. * Update cpusets according to cpu_active mask. If cpusets are
  6117. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6118. * around partition_sched_domains().
  6119. *
  6120. * If we come here as part of a suspend/resume, don't touch cpusets because we
  6121. * want to restore it back to its original state upon resume anyway.
  6122. */
  6123. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6124. void *hcpu)
  6125. {
  6126. switch (action) {
  6127. case CPU_ONLINE_FROZEN:
  6128. case CPU_DOWN_FAILED_FROZEN:
  6129. /*
  6130. * num_cpus_frozen tracks how many CPUs are involved in suspend
  6131. * resume sequence. As long as this is not the last online
  6132. * operation in the resume sequence, just build a single sched
  6133. * domain, ignoring cpusets.
  6134. */
  6135. num_cpus_frozen--;
  6136. if (likely(num_cpus_frozen)) {
  6137. partition_sched_domains(1, NULL, NULL);
  6138. break;
  6139. }
  6140. /*
  6141. * This is the last CPU online operation. So fall through and
  6142. * restore the original sched domains by considering the
  6143. * cpuset configurations.
  6144. */
  6145. case CPU_ONLINE:
  6146. case CPU_DOWN_FAILED:
  6147. cpuset_update_active_cpus(true);
  6148. break;
  6149. default:
  6150. return NOTIFY_DONE;
  6151. }
  6152. return NOTIFY_OK;
  6153. }
  6154. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6155. void *hcpu)
  6156. {
  6157. switch (action) {
  6158. case CPU_DOWN_PREPARE:
  6159. cpuset_update_active_cpus(false);
  6160. break;
  6161. case CPU_DOWN_PREPARE_FROZEN:
  6162. num_cpus_frozen++;
  6163. partition_sched_domains(1, NULL, NULL);
  6164. break;
  6165. default:
  6166. return NOTIFY_DONE;
  6167. }
  6168. return NOTIFY_OK;
  6169. }
  6170. void __init sched_init_smp(void)
  6171. {
  6172. cpumask_var_t non_isolated_cpus;
  6173. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6174. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6175. sched_init_numa();
  6176. get_online_cpus();
  6177. mutex_lock(&sched_domains_mutex);
  6178. init_sched_domains(cpu_active_mask);
  6179. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6180. if (cpumask_empty(non_isolated_cpus))
  6181. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6182. mutex_unlock(&sched_domains_mutex);
  6183. put_online_cpus();
  6184. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  6185. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6186. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6187. init_hrtick();
  6188. /* Move init over to a non-isolated CPU */
  6189. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6190. BUG();
  6191. sched_init_granularity();
  6192. free_cpumask_var(non_isolated_cpus);
  6193. init_sched_rt_class();
  6194. init_sched_dl_class();
  6195. }
  6196. #else
  6197. void __init sched_init_smp(void)
  6198. {
  6199. sched_init_granularity();
  6200. }
  6201. #endif /* CONFIG_SMP */
  6202. const_debug unsigned int sysctl_timer_migration = 1;
  6203. int in_sched_functions(unsigned long addr)
  6204. {
  6205. return in_lock_functions(addr) ||
  6206. (addr >= (unsigned long)__sched_text_start
  6207. && addr < (unsigned long)__sched_text_end);
  6208. }
  6209. #ifdef CONFIG_CGROUP_SCHED
  6210. /*
  6211. * Default task group.
  6212. * Every task in system belongs to this group at bootup.
  6213. */
  6214. struct task_group root_task_group;
  6215. LIST_HEAD(task_groups);
  6216. #endif
  6217. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  6218. void __init sched_init(void)
  6219. {
  6220. int i, j;
  6221. unsigned long alloc_size = 0, ptr;
  6222. #ifdef CONFIG_FAIR_GROUP_SCHED
  6223. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6224. #endif
  6225. #ifdef CONFIG_RT_GROUP_SCHED
  6226. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6227. #endif
  6228. #ifdef CONFIG_CPUMASK_OFFSTACK
  6229. alloc_size += num_possible_cpus() * cpumask_size();
  6230. #endif
  6231. if (alloc_size) {
  6232. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6233. #ifdef CONFIG_FAIR_GROUP_SCHED
  6234. root_task_group.se = (struct sched_entity **)ptr;
  6235. ptr += nr_cpu_ids * sizeof(void **);
  6236. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6237. ptr += nr_cpu_ids * sizeof(void **);
  6238. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6239. #ifdef CONFIG_RT_GROUP_SCHED
  6240. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6241. ptr += nr_cpu_ids * sizeof(void **);
  6242. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6243. ptr += nr_cpu_ids * sizeof(void **);
  6244. #endif /* CONFIG_RT_GROUP_SCHED */
  6245. #ifdef CONFIG_CPUMASK_OFFSTACK
  6246. for_each_possible_cpu(i) {
  6247. per_cpu(load_balance_mask, i) = (void *)ptr;
  6248. ptr += cpumask_size();
  6249. }
  6250. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6251. }
  6252. init_rt_bandwidth(&def_rt_bandwidth,
  6253. global_rt_period(), global_rt_runtime());
  6254. init_dl_bandwidth(&def_dl_bandwidth,
  6255. global_rt_period(), global_rt_runtime());
  6256. #ifdef CONFIG_SMP
  6257. init_defrootdomain();
  6258. #endif
  6259. #ifdef CONFIG_RT_GROUP_SCHED
  6260. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6261. global_rt_period(), global_rt_runtime());
  6262. #endif /* CONFIG_RT_GROUP_SCHED */
  6263. #ifdef CONFIG_CGROUP_SCHED
  6264. list_add(&root_task_group.list, &task_groups);
  6265. INIT_LIST_HEAD(&root_task_group.children);
  6266. INIT_LIST_HEAD(&root_task_group.siblings);
  6267. autogroup_init(&init_task);
  6268. #endif /* CONFIG_CGROUP_SCHED */
  6269. for_each_possible_cpu(i) {
  6270. struct rq *rq;
  6271. rq = cpu_rq(i);
  6272. raw_spin_lock_init(&rq->lock);
  6273. rq->nr_running = 0;
  6274. rq->calc_load_active = 0;
  6275. rq->calc_load_update = jiffies + LOAD_FREQ;
  6276. #ifdef CONFIG_PROVE_LOCKING
  6277. /* sched: for lock proving*/
  6278. rq->cpu = i;
  6279. #endif
  6280. init_cfs_rq(&rq->cfs);
  6281. init_rt_rq(&rq->rt, rq);
  6282. init_dl_rq(&rq->dl, rq);
  6283. #ifdef CONFIG_FAIR_GROUP_SCHED
  6284. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  6285. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6286. /*
  6287. * How much cpu bandwidth does root_task_group get?
  6288. *
  6289. * In case of task-groups formed thr' the cgroup filesystem, it
  6290. * gets 100% of the cpu resources in the system. This overall
  6291. * system cpu resource is divided among the tasks of
  6292. * root_task_group and its child task-groups in a fair manner,
  6293. * based on each entity's (task or task-group's) weight
  6294. * (se->load.weight).
  6295. *
  6296. * In other words, if root_task_group has 10 tasks of weight
  6297. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6298. * then A0's share of the cpu resource is:
  6299. *
  6300. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6301. *
  6302. * We achieve this by letting root_task_group's tasks sit
  6303. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6304. */
  6305. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6306. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6307. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6308. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6309. #ifdef CONFIG_RT_GROUP_SCHED
  6310. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6311. #endif
  6312. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6313. rq->cpu_load[j] = 0;
  6314. rq->last_load_update_tick = jiffies;
  6315. #ifdef CONFIG_SMP
  6316. rq->sd = NULL;
  6317. rq->rd = NULL;
  6318. rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
  6319. rq->post_schedule = 0;
  6320. rq->active_balance = 0;
  6321. rq->next_balance = jiffies;
  6322. rq->push_cpu = 0;
  6323. rq->cpu = i;
  6324. rq->online = 0;
  6325. rq->idle_stamp = 0;
  6326. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6327. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  6328. INIT_LIST_HEAD(&rq->cfs_tasks);
  6329. rq_attach_root(rq, &def_root_domain);
  6330. #ifdef CONFIG_NO_HZ_COMMON
  6331. rq->nohz_flags = 0;
  6332. #endif
  6333. #ifdef CONFIG_NO_HZ_FULL
  6334. rq->last_sched_tick = 0;
  6335. #endif
  6336. #endif
  6337. init_rq_hrtick(rq);
  6338. atomic_set(&rq->nr_iowait, 0);
  6339. }
  6340. set_load_weight(&init_task);
  6341. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6342. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6343. #endif
  6344. /*
  6345. * The boot idle thread does lazy MMU switching as well:
  6346. */
  6347. atomic_inc(&init_mm.mm_count);
  6348. enter_lazy_tlb(&init_mm, current);
  6349. /*
  6350. * Make us the idle thread. Technically, schedule() should not be
  6351. * called from this thread, however somewhere below it might be,
  6352. * but because we are the idle thread, we just pick up running again
  6353. * when this runqueue becomes "idle".
  6354. */
  6355. init_idle(current, smp_processor_id());
  6356. calc_load_update = jiffies + LOAD_FREQ;
  6357. /*
  6358. * During early bootup we pretend to be a normal task:
  6359. */
  6360. current->sched_class = &fair_sched_class;
  6361. #ifdef CONFIG_SMP
  6362. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6363. /* May be allocated at isolcpus cmdline parse time */
  6364. if (cpu_isolated_map == NULL)
  6365. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6366. idle_thread_set_boot_cpu();
  6367. set_cpu_rq_start_time();
  6368. #endif
  6369. init_sched_fair_class();
  6370. scheduler_running = 1;
  6371. }
  6372. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6373. static inline int preempt_count_equals(int preempt_offset)
  6374. {
  6375. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6376. return (nested == preempt_offset);
  6377. }
  6378. static int __might_sleep_init_called;
  6379. int __init __might_sleep_init(void)
  6380. {
  6381. __might_sleep_init_called = 1;
  6382. return 0;
  6383. }
  6384. early_initcall(__might_sleep_init);
  6385. void __might_sleep(const char *file, int line, int preempt_offset)
  6386. {
  6387. static unsigned long prev_jiffy; /* ratelimiting */
  6388. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6389. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  6390. !is_idle_task(current)) || oops_in_progress)
  6391. return;
  6392. if (system_state != SYSTEM_RUNNING &&
  6393. (!__might_sleep_init_called || system_state != SYSTEM_BOOTING))
  6394. return;
  6395. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6396. return;
  6397. prev_jiffy = jiffies;
  6398. printk(KERN_ERR
  6399. "BUG: sleeping function called from invalid context at %s:%d\n",
  6400. file, line);
  6401. printk(KERN_ERR
  6402. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6403. in_atomic(), irqs_disabled(),
  6404. current->pid, current->comm);
  6405. debug_show_held_locks(current);
  6406. if (irqs_disabled())
  6407. print_irqtrace_events(current);
  6408. #ifdef CONFIG_DEBUG_PREEMPT
  6409. if (!preempt_count_equals(preempt_offset)) {
  6410. pr_err("Preemption disabled at:");
  6411. print_ip_sym(current->preempt_disable_ip);
  6412. pr_cont("\n");
  6413. }
  6414. #endif
  6415. dump_stack();
  6416. }
  6417. EXPORT_SYMBOL(__might_sleep);
  6418. #endif
  6419. #ifdef CONFIG_MAGIC_SYSRQ
  6420. static void normalize_task(struct rq *rq, struct task_struct *p)
  6421. {
  6422. const struct sched_class *prev_class = p->sched_class;
  6423. struct sched_attr attr = {
  6424. .sched_policy = SCHED_NORMAL,
  6425. };
  6426. int old_prio = p->prio;
  6427. int queued;
  6428. queued = task_on_rq_queued(p);
  6429. if (queued)
  6430. dequeue_task(rq, p, 0);
  6431. __setscheduler(rq, p, &attr, false);
  6432. if (queued) {
  6433. enqueue_task(rq, p, 0);
  6434. resched_curr(rq);
  6435. }
  6436. check_class_changed(rq, p, prev_class, old_prio);
  6437. }
  6438. void normalize_rt_tasks(void)
  6439. {
  6440. struct task_struct *g, *p;
  6441. unsigned long flags;
  6442. struct rq *rq;
  6443. read_lock(&tasklist_lock);
  6444. for_each_process_thread(g, p) {
  6445. /*
  6446. * Only normalize user tasks:
  6447. */
  6448. if (p->flags & PF_KTHREAD)
  6449. continue;
  6450. p->se.exec_start = 0;
  6451. #ifdef CONFIG_SCHEDSTATS
  6452. p->se.statistics.wait_start = 0;
  6453. p->se.statistics.sleep_start = 0;
  6454. p->se.statistics.block_start = 0;
  6455. #endif
  6456. if (!dl_task(p) && !rt_task(p)) {
  6457. /*
  6458. * Renice negative nice level userspace
  6459. * tasks back to 0:
  6460. */
  6461. if (task_nice(p) < 0)
  6462. set_user_nice(p, 0);
  6463. continue;
  6464. }
  6465. rq = task_rq_lock(p, &flags);
  6466. normalize_task(rq, p);
  6467. task_rq_unlock(rq, p, &flags);
  6468. }
  6469. read_unlock(&tasklist_lock);
  6470. }
  6471. #endif /* CONFIG_MAGIC_SYSRQ */
  6472. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6473. /*
  6474. * These functions are only useful for the IA64 MCA handling, or kdb.
  6475. *
  6476. * They can only be called when the whole system has been
  6477. * stopped - every CPU needs to be quiescent, and no scheduling
  6478. * activity can take place. Using them for anything else would
  6479. * be a serious bug, and as a result, they aren't even visible
  6480. * under any other configuration.
  6481. */
  6482. /**
  6483. * curr_task - return the current task for a given cpu.
  6484. * @cpu: the processor in question.
  6485. *
  6486. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6487. *
  6488. * Return: The current task for @cpu.
  6489. */
  6490. struct task_struct *curr_task(int cpu)
  6491. {
  6492. return cpu_curr(cpu);
  6493. }
  6494. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6495. #ifdef CONFIG_IA64
  6496. /**
  6497. * set_curr_task - set the current task for a given cpu.
  6498. * @cpu: the processor in question.
  6499. * @p: the task pointer to set.
  6500. *
  6501. * Description: This function must only be used when non-maskable interrupts
  6502. * are serviced on a separate stack. It allows the architecture to switch the
  6503. * notion of the current task on a cpu in a non-blocking manner. This function
  6504. * must be called with all CPU's synchronized, and interrupts disabled, the
  6505. * and caller must save the original value of the current task (see
  6506. * curr_task() above) and restore that value before reenabling interrupts and
  6507. * re-starting the system.
  6508. *
  6509. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6510. */
  6511. void set_curr_task(int cpu, struct task_struct *p)
  6512. {
  6513. cpu_curr(cpu) = p;
  6514. }
  6515. #endif
  6516. #ifdef CONFIG_CGROUP_SCHED
  6517. /* task_group_lock serializes the addition/removal of task groups */
  6518. static DEFINE_SPINLOCK(task_group_lock);
  6519. static void free_sched_group(struct task_group *tg)
  6520. {
  6521. free_fair_sched_group(tg);
  6522. free_rt_sched_group(tg);
  6523. autogroup_free(tg);
  6524. kfree(tg);
  6525. }
  6526. /* allocate runqueue etc for a new task group */
  6527. struct task_group *sched_create_group(struct task_group *parent)
  6528. {
  6529. struct task_group *tg;
  6530. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6531. if (!tg)
  6532. return ERR_PTR(-ENOMEM);
  6533. if (!alloc_fair_sched_group(tg, parent))
  6534. goto err;
  6535. if (!alloc_rt_sched_group(tg, parent))
  6536. goto err;
  6537. return tg;
  6538. err:
  6539. free_sched_group(tg);
  6540. return ERR_PTR(-ENOMEM);
  6541. }
  6542. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6543. {
  6544. unsigned long flags;
  6545. spin_lock_irqsave(&task_group_lock, flags);
  6546. list_add_rcu(&tg->list, &task_groups);
  6547. WARN_ON(!parent); /* root should already exist */
  6548. tg->parent = parent;
  6549. INIT_LIST_HEAD(&tg->children);
  6550. list_add_rcu(&tg->siblings, &parent->children);
  6551. spin_unlock_irqrestore(&task_group_lock, flags);
  6552. }
  6553. /* rcu callback to free various structures associated with a task group */
  6554. static void free_sched_group_rcu(struct rcu_head *rhp)
  6555. {
  6556. /* now it should be safe to free those cfs_rqs */
  6557. free_sched_group(container_of(rhp, struct task_group, rcu));
  6558. }
  6559. /* Destroy runqueue etc associated with a task group */
  6560. void sched_destroy_group(struct task_group *tg)
  6561. {
  6562. /* wait for possible concurrent references to cfs_rqs complete */
  6563. call_rcu(&tg->rcu, free_sched_group_rcu);
  6564. }
  6565. void sched_offline_group(struct task_group *tg)
  6566. {
  6567. unsigned long flags;
  6568. int i;
  6569. /* end participation in shares distribution */
  6570. for_each_possible_cpu(i)
  6571. unregister_fair_sched_group(tg, i);
  6572. spin_lock_irqsave(&task_group_lock, flags);
  6573. list_del_rcu(&tg->list);
  6574. list_del_rcu(&tg->siblings);
  6575. spin_unlock_irqrestore(&task_group_lock, flags);
  6576. }
  6577. /* change task's runqueue when it moves between groups.
  6578. * The caller of this function should have put the task in its new group
  6579. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6580. * reflect its new group.
  6581. */
  6582. void sched_move_task(struct task_struct *tsk)
  6583. {
  6584. struct task_group *tg;
  6585. int queued, running;
  6586. unsigned long flags;
  6587. struct rq *rq;
  6588. rq = task_rq_lock(tsk, &flags);
  6589. running = task_current(rq, tsk);
  6590. queued = task_on_rq_queued(tsk);
  6591. if (queued)
  6592. dequeue_task(rq, tsk, 0);
  6593. if (unlikely(running))
  6594. put_prev_task(rq, tsk);
  6595. /*
  6596. * All callers are synchronized by task_rq_lock(); we do not use RCU
  6597. * which is pointless here. Thus, we pass "true" to task_css_check()
  6598. * to prevent lockdep warnings.
  6599. */
  6600. tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
  6601. struct task_group, css);
  6602. tg = autogroup_task_group(tsk, tg);
  6603. tsk->sched_task_group = tg;
  6604. #ifdef CONFIG_FAIR_GROUP_SCHED
  6605. if (tsk->sched_class->task_move_group)
  6606. tsk->sched_class->task_move_group(tsk, queued);
  6607. else
  6608. #endif
  6609. set_task_rq(tsk, task_cpu(tsk));
  6610. if (unlikely(running))
  6611. tsk->sched_class->set_curr_task(rq);
  6612. if (queued)
  6613. enqueue_task(rq, tsk, 0);
  6614. task_rq_unlock(rq, tsk, &flags);
  6615. }
  6616. #endif /* CONFIG_CGROUP_SCHED */
  6617. #ifdef CONFIG_RT_GROUP_SCHED
  6618. /*
  6619. * Ensure that the real time constraints are schedulable.
  6620. */
  6621. static DEFINE_MUTEX(rt_constraints_mutex);
  6622. /* Must be called with tasklist_lock held */
  6623. static inline int tg_has_rt_tasks(struct task_group *tg)
  6624. {
  6625. struct task_struct *g, *p;
  6626. /*
  6627. * Autogroups do not have RT tasks; see autogroup_create().
  6628. */
  6629. if (task_group_is_autogroup(tg))
  6630. return 0;
  6631. for_each_process_thread(g, p) {
  6632. if (rt_task(p) && task_group(p) == tg)
  6633. return 1;
  6634. }
  6635. return 0;
  6636. }
  6637. struct rt_schedulable_data {
  6638. struct task_group *tg;
  6639. u64 rt_period;
  6640. u64 rt_runtime;
  6641. };
  6642. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6643. {
  6644. struct rt_schedulable_data *d = data;
  6645. struct task_group *child;
  6646. unsigned long total, sum = 0;
  6647. u64 period, runtime;
  6648. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6649. runtime = tg->rt_bandwidth.rt_runtime;
  6650. if (tg == d->tg) {
  6651. period = d->rt_period;
  6652. runtime = d->rt_runtime;
  6653. }
  6654. /*
  6655. * Cannot have more runtime than the period.
  6656. */
  6657. if (runtime > period && runtime != RUNTIME_INF)
  6658. return -EINVAL;
  6659. /*
  6660. * Ensure we don't starve existing RT tasks.
  6661. */
  6662. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6663. return -EBUSY;
  6664. total = to_ratio(period, runtime);
  6665. /*
  6666. * Nobody can have more than the global setting allows.
  6667. */
  6668. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6669. return -EINVAL;
  6670. /*
  6671. * The sum of our children's runtime should not exceed our own.
  6672. */
  6673. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6674. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6675. runtime = child->rt_bandwidth.rt_runtime;
  6676. if (child == d->tg) {
  6677. period = d->rt_period;
  6678. runtime = d->rt_runtime;
  6679. }
  6680. sum += to_ratio(period, runtime);
  6681. }
  6682. if (sum > total)
  6683. return -EINVAL;
  6684. return 0;
  6685. }
  6686. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6687. {
  6688. int ret;
  6689. struct rt_schedulable_data data = {
  6690. .tg = tg,
  6691. .rt_period = period,
  6692. .rt_runtime = runtime,
  6693. };
  6694. rcu_read_lock();
  6695. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6696. rcu_read_unlock();
  6697. return ret;
  6698. }
  6699. static int tg_set_rt_bandwidth(struct task_group *tg,
  6700. u64 rt_period, u64 rt_runtime)
  6701. {
  6702. int i, err = 0;
  6703. mutex_lock(&rt_constraints_mutex);
  6704. read_lock(&tasklist_lock);
  6705. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6706. if (err)
  6707. goto unlock;
  6708. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6709. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6710. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6711. for_each_possible_cpu(i) {
  6712. struct rt_rq *rt_rq = tg->rt_rq[i];
  6713. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6714. rt_rq->rt_runtime = rt_runtime;
  6715. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6716. }
  6717. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6718. unlock:
  6719. read_unlock(&tasklist_lock);
  6720. mutex_unlock(&rt_constraints_mutex);
  6721. return err;
  6722. }
  6723. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6724. {
  6725. u64 rt_runtime, rt_period;
  6726. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6727. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6728. if (rt_runtime_us < 0)
  6729. rt_runtime = RUNTIME_INF;
  6730. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6731. }
  6732. static long sched_group_rt_runtime(struct task_group *tg)
  6733. {
  6734. u64 rt_runtime_us;
  6735. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6736. return -1;
  6737. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6738. do_div(rt_runtime_us, NSEC_PER_USEC);
  6739. return rt_runtime_us;
  6740. }
  6741. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6742. {
  6743. u64 rt_runtime, rt_period;
  6744. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6745. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6746. if (rt_period == 0)
  6747. return -EINVAL;
  6748. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6749. }
  6750. static long sched_group_rt_period(struct task_group *tg)
  6751. {
  6752. u64 rt_period_us;
  6753. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6754. do_div(rt_period_us, NSEC_PER_USEC);
  6755. return rt_period_us;
  6756. }
  6757. #endif /* CONFIG_RT_GROUP_SCHED */
  6758. #ifdef CONFIG_RT_GROUP_SCHED
  6759. static int sched_rt_global_constraints(void)
  6760. {
  6761. int ret = 0;
  6762. mutex_lock(&rt_constraints_mutex);
  6763. read_lock(&tasklist_lock);
  6764. ret = __rt_schedulable(NULL, 0, 0);
  6765. read_unlock(&tasklist_lock);
  6766. mutex_unlock(&rt_constraints_mutex);
  6767. return ret;
  6768. }
  6769. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6770. {
  6771. /* Don't accept realtime tasks when there is no way for them to run */
  6772. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6773. return 0;
  6774. return 1;
  6775. }
  6776. #else /* !CONFIG_RT_GROUP_SCHED */
  6777. static int sched_rt_global_constraints(void)
  6778. {
  6779. unsigned long flags;
  6780. int i, ret = 0;
  6781. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6782. for_each_possible_cpu(i) {
  6783. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6784. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6785. rt_rq->rt_runtime = global_rt_runtime();
  6786. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6787. }
  6788. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6789. return ret;
  6790. }
  6791. #endif /* CONFIG_RT_GROUP_SCHED */
  6792. static int sched_dl_global_constraints(void)
  6793. {
  6794. u64 runtime = global_rt_runtime();
  6795. u64 period = global_rt_period();
  6796. u64 new_bw = to_ratio(period, runtime);
  6797. struct dl_bw *dl_b;
  6798. int cpu, ret = 0;
  6799. unsigned long flags;
  6800. /*
  6801. * Here we want to check the bandwidth not being set to some
  6802. * value smaller than the currently allocated bandwidth in
  6803. * any of the root_domains.
  6804. *
  6805. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6806. * cycling on root_domains... Discussion on different/better
  6807. * solutions is welcome!
  6808. */
  6809. for_each_possible_cpu(cpu) {
  6810. rcu_read_lock_sched();
  6811. dl_b = dl_bw_of(cpu);
  6812. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6813. if (new_bw < dl_b->total_bw)
  6814. ret = -EBUSY;
  6815. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6816. rcu_read_unlock_sched();
  6817. if (ret)
  6818. break;
  6819. }
  6820. return ret;
  6821. }
  6822. static void sched_dl_do_global(void)
  6823. {
  6824. u64 new_bw = -1;
  6825. struct dl_bw *dl_b;
  6826. int cpu;
  6827. unsigned long flags;
  6828. def_dl_bandwidth.dl_period = global_rt_period();
  6829. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6830. if (global_rt_runtime() != RUNTIME_INF)
  6831. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6832. /*
  6833. * FIXME: As above...
  6834. */
  6835. for_each_possible_cpu(cpu) {
  6836. rcu_read_lock_sched();
  6837. dl_b = dl_bw_of(cpu);
  6838. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6839. dl_b->bw = new_bw;
  6840. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6841. rcu_read_unlock_sched();
  6842. }
  6843. }
  6844. static int sched_rt_global_validate(void)
  6845. {
  6846. if (sysctl_sched_rt_period <= 0)
  6847. return -EINVAL;
  6848. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6849. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6850. return -EINVAL;
  6851. return 0;
  6852. }
  6853. static void sched_rt_do_global(void)
  6854. {
  6855. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6856. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6857. }
  6858. int sched_rt_handler(struct ctl_table *table, int write,
  6859. void __user *buffer, size_t *lenp,
  6860. loff_t *ppos)
  6861. {
  6862. int old_period, old_runtime;
  6863. static DEFINE_MUTEX(mutex);
  6864. int ret;
  6865. mutex_lock(&mutex);
  6866. old_period = sysctl_sched_rt_period;
  6867. old_runtime = sysctl_sched_rt_runtime;
  6868. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6869. if (!ret && write) {
  6870. ret = sched_rt_global_validate();
  6871. if (ret)
  6872. goto undo;
  6873. ret = sched_rt_global_constraints();
  6874. if (ret)
  6875. goto undo;
  6876. ret = sched_dl_global_constraints();
  6877. if (ret)
  6878. goto undo;
  6879. sched_rt_do_global();
  6880. sched_dl_do_global();
  6881. }
  6882. if (0) {
  6883. undo:
  6884. sysctl_sched_rt_period = old_period;
  6885. sysctl_sched_rt_runtime = old_runtime;
  6886. }
  6887. mutex_unlock(&mutex);
  6888. return ret;
  6889. }
  6890. int sched_rr_handler(struct ctl_table *table, int write,
  6891. void __user *buffer, size_t *lenp,
  6892. loff_t *ppos)
  6893. {
  6894. int ret;
  6895. static DEFINE_MUTEX(mutex);
  6896. mutex_lock(&mutex);
  6897. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6898. /* make sure that internally we keep jiffies */
  6899. /* also, writing zero resets timeslice to default */
  6900. if (!ret && write) {
  6901. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6902. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6903. }
  6904. mutex_unlock(&mutex);
  6905. return ret;
  6906. }
  6907. #ifdef CONFIG_CGROUP_SCHED
  6908. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6909. {
  6910. return css ? container_of(css, struct task_group, css) : NULL;
  6911. }
  6912. static struct cgroup_subsys_state *
  6913. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6914. {
  6915. struct task_group *parent = css_tg(parent_css);
  6916. struct task_group *tg;
  6917. if (!parent) {
  6918. /* This is early initialization for the top cgroup */
  6919. return &root_task_group.css;
  6920. }
  6921. tg = sched_create_group(parent);
  6922. if (IS_ERR(tg))
  6923. return ERR_PTR(-ENOMEM);
  6924. return &tg->css;
  6925. }
  6926. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6927. {
  6928. struct task_group *tg = css_tg(css);
  6929. struct task_group *parent = css_tg(css->parent);
  6930. if (parent)
  6931. sched_online_group(tg, parent);
  6932. return 0;
  6933. }
  6934. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6935. {
  6936. struct task_group *tg = css_tg(css);
  6937. sched_destroy_group(tg);
  6938. }
  6939. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6940. {
  6941. struct task_group *tg = css_tg(css);
  6942. sched_offline_group(tg);
  6943. }
  6944. static void cpu_cgroup_fork(struct task_struct *task)
  6945. {
  6946. sched_move_task(task);
  6947. }
  6948. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6949. struct cgroup_taskset *tset)
  6950. {
  6951. struct task_struct *task;
  6952. cgroup_taskset_for_each(task, tset) {
  6953. #ifdef CONFIG_RT_GROUP_SCHED
  6954. if (!sched_rt_can_attach(css_tg(css), task))
  6955. return -EINVAL;
  6956. #else
  6957. /* We don't support RT-tasks being in separate groups */
  6958. if (task->sched_class != &fair_sched_class)
  6959. return -EINVAL;
  6960. #endif
  6961. }
  6962. return 0;
  6963. }
  6964. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6965. struct cgroup_taskset *tset)
  6966. {
  6967. struct task_struct *task;
  6968. cgroup_taskset_for_each(task, tset)
  6969. sched_move_task(task);
  6970. }
  6971. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6972. struct cgroup_subsys_state *old_css,
  6973. struct task_struct *task)
  6974. {
  6975. /*
  6976. * cgroup_exit() is called in the copy_process() failure path.
  6977. * Ignore this case since the task hasn't ran yet, this avoids
  6978. * trying to poke a half freed task state from generic code.
  6979. */
  6980. if (!(task->flags & PF_EXITING))
  6981. return;
  6982. sched_move_task(task);
  6983. }
  6984. #ifdef CONFIG_FAIR_GROUP_SCHED
  6985. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6986. struct cftype *cftype, u64 shareval)
  6987. {
  6988. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6989. }
  6990. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6991. struct cftype *cft)
  6992. {
  6993. struct task_group *tg = css_tg(css);
  6994. return (u64) scale_load_down(tg->shares);
  6995. }
  6996. #ifdef CONFIG_CFS_BANDWIDTH
  6997. static DEFINE_MUTEX(cfs_constraints_mutex);
  6998. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6999. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  7000. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  7001. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  7002. {
  7003. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  7004. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7005. if (tg == &root_task_group)
  7006. return -EINVAL;
  7007. /*
  7008. * Ensure we have at some amount of bandwidth every period. This is
  7009. * to prevent reaching a state of large arrears when throttled via
  7010. * entity_tick() resulting in prolonged exit starvation.
  7011. */
  7012. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  7013. return -EINVAL;
  7014. /*
  7015. * Likewise, bound things on the otherside by preventing insane quota
  7016. * periods. This also allows us to normalize in computing quota
  7017. * feasibility.
  7018. */
  7019. if (period > max_cfs_quota_period)
  7020. return -EINVAL;
  7021. /*
  7022. * Prevent race between setting of cfs_rq->runtime_enabled and
  7023. * unthrottle_offline_cfs_rqs().
  7024. */
  7025. get_online_cpus();
  7026. mutex_lock(&cfs_constraints_mutex);
  7027. ret = __cfs_schedulable(tg, period, quota);
  7028. if (ret)
  7029. goto out_unlock;
  7030. runtime_enabled = quota != RUNTIME_INF;
  7031. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  7032. /*
  7033. * If we need to toggle cfs_bandwidth_used, off->on must occur
  7034. * before making related changes, and on->off must occur afterwards
  7035. */
  7036. if (runtime_enabled && !runtime_was_enabled)
  7037. cfs_bandwidth_usage_inc();
  7038. raw_spin_lock_irq(&cfs_b->lock);
  7039. cfs_b->period = ns_to_ktime(period);
  7040. cfs_b->quota = quota;
  7041. __refill_cfs_bandwidth_runtime(cfs_b);
  7042. /* restart the period timer (if active) to handle new period expiry */
  7043. if (runtime_enabled && cfs_b->timer_active) {
  7044. /* force a reprogram */
  7045. __start_cfs_bandwidth(cfs_b, true);
  7046. }
  7047. raw_spin_unlock_irq(&cfs_b->lock);
  7048. for_each_online_cpu(i) {
  7049. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  7050. struct rq *rq = cfs_rq->rq;
  7051. raw_spin_lock_irq(&rq->lock);
  7052. cfs_rq->runtime_enabled = runtime_enabled;
  7053. cfs_rq->runtime_remaining = 0;
  7054. if (cfs_rq->throttled)
  7055. unthrottle_cfs_rq(cfs_rq);
  7056. raw_spin_unlock_irq(&rq->lock);
  7057. }
  7058. if (runtime_was_enabled && !runtime_enabled)
  7059. cfs_bandwidth_usage_dec();
  7060. out_unlock:
  7061. mutex_unlock(&cfs_constraints_mutex);
  7062. put_online_cpus();
  7063. return ret;
  7064. }
  7065. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  7066. {
  7067. u64 quota, period;
  7068. period = ktime_to_ns(tg->cfs_bandwidth.period);
  7069. if (cfs_quota_us < 0)
  7070. quota = RUNTIME_INF;
  7071. else
  7072. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  7073. return tg_set_cfs_bandwidth(tg, period, quota);
  7074. }
  7075. long tg_get_cfs_quota(struct task_group *tg)
  7076. {
  7077. u64 quota_us;
  7078. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  7079. return -1;
  7080. quota_us = tg->cfs_bandwidth.quota;
  7081. do_div(quota_us, NSEC_PER_USEC);
  7082. return quota_us;
  7083. }
  7084. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  7085. {
  7086. u64 quota, period;
  7087. period = (u64)cfs_period_us * NSEC_PER_USEC;
  7088. quota = tg->cfs_bandwidth.quota;
  7089. return tg_set_cfs_bandwidth(tg, period, quota);
  7090. }
  7091. long tg_get_cfs_period(struct task_group *tg)
  7092. {
  7093. u64 cfs_period_us;
  7094. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  7095. do_div(cfs_period_us, NSEC_PER_USEC);
  7096. return cfs_period_us;
  7097. }
  7098. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  7099. struct cftype *cft)
  7100. {
  7101. return tg_get_cfs_quota(css_tg(css));
  7102. }
  7103. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  7104. struct cftype *cftype, s64 cfs_quota_us)
  7105. {
  7106. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  7107. }
  7108. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  7109. struct cftype *cft)
  7110. {
  7111. return tg_get_cfs_period(css_tg(css));
  7112. }
  7113. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  7114. struct cftype *cftype, u64 cfs_period_us)
  7115. {
  7116. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  7117. }
  7118. struct cfs_schedulable_data {
  7119. struct task_group *tg;
  7120. u64 period, quota;
  7121. };
  7122. /*
  7123. * normalize group quota/period to be quota/max_period
  7124. * note: units are usecs
  7125. */
  7126. static u64 normalize_cfs_quota(struct task_group *tg,
  7127. struct cfs_schedulable_data *d)
  7128. {
  7129. u64 quota, period;
  7130. if (tg == d->tg) {
  7131. period = d->period;
  7132. quota = d->quota;
  7133. } else {
  7134. period = tg_get_cfs_period(tg);
  7135. quota = tg_get_cfs_quota(tg);
  7136. }
  7137. /* note: these should typically be equivalent */
  7138. if (quota == RUNTIME_INF || quota == -1)
  7139. return RUNTIME_INF;
  7140. return to_ratio(period, quota);
  7141. }
  7142. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  7143. {
  7144. struct cfs_schedulable_data *d = data;
  7145. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7146. s64 quota = 0, parent_quota = -1;
  7147. if (!tg->parent) {
  7148. quota = RUNTIME_INF;
  7149. } else {
  7150. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  7151. quota = normalize_cfs_quota(tg, d);
  7152. parent_quota = parent_b->hierarchical_quota;
  7153. /*
  7154. * ensure max(child_quota) <= parent_quota, inherit when no
  7155. * limit is set
  7156. */
  7157. if (quota == RUNTIME_INF)
  7158. quota = parent_quota;
  7159. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  7160. return -EINVAL;
  7161. }
  7162. cfs_b->hierarchical_quota = quota;
  7163. return 0;
  7164. }
  7165. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  7166. {
  7167. int ret;
  7168. struct cfs_schedulable_data data = {
  7169. .tg = tg,
  7170. .period = period,
  7171. .quota = quota,
  7172. };
  7173. if (quota != RUNTIME_INF) {
  7174. do_div(data.period, NSEC_PER_USEC);
  7175. do_div(data.quota, NSEC_PER_USEC);
  7176. }
  7177. rcu_read_lock();
  7178. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  7179. rcu_read_unlock();
  7180. return ret;
  7181. }
  7182. static int cpu_stats_show(struct seq_file *sf, void *v)
  7183. {
  7184. struct task_group *tg = css_tg(seq_css(sf));
  7185. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7186. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  7187. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  7188. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  7189. return 0;
  7190. }
  7191. #endif /* CONFIG_CFS_BANDWIDTH */
  7192. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7193. #ifdef CONFIG_RT_GROUP_SCHED
  7194. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  7195. struct cftype *cft, s64 val)
  7196. {
  7197. return sched_group_set_rt_runtime(css_tg(css), val);
  7198. }
  7199. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  7200. struct cftype *cft)
  7201. {
  7202. return sched_group_rt_runtime(css_tg(css));
  7203. }
  7204. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  7205. struct cftype *cftype, u64 rt_period_us)
  7206. {
  7207. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  7208. }
  7209. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  7210. struct cftype *cft)
  7211. {
  7212. return sched_group_rt_period(css_tg(css));
  7213. }
  7214. #endif /* CONFIG_RT_GROUP_SCHED */
  7215. static struct cftype cpu_files[] = {
  7216. #ifdef CONFIG_FAIR_GROUP_SCHED
  7217. {
  7218. .name = "shares",
  7219. .read_u64 = cpu_shares_read_u64,
  7220. .write_u64 = cpu_shares_write_u64,
  7221. },
  7222. #endif
  7223. #ifdef CONFIG_CFS_BANDWIDTH
  7224. {
  7225. .name = "cfs_quota_us",
  7226. .read_s64 = cpu_cfs_quota_read_s64,
  7227. .write_s64 = cpu_cfs_quota_write_s64,
  7228. },
  7229. {
  7230. .name = "cfs_period_us",
  7231. .read_u64 = cpu_cfs_period_read_u64,
  7232. .write_u64 = cpu_cfs_period_write_u64,
  7233. },
  7234. {
  7235. .name = "stat",
  7236. .seq_show = cpu_stats_show,
  7237. },
  7238. #endif
  7239. #ifdef CONFIG_RT_GROUP_SCHED
  7240. {
  7241. .name = "rt_runtime_us",
  7242. .read_s64 = cpu_rt_runtime_read,
  7243. .write_s64 = cpu_rt_runtime_write,
  7244. },
  7245. {
  7246. .name = "rt_period_us",
  7247. .read_u64 = cpu_rt_period_read_uint,
  7248. .write_u64 = cpu_rt_period_write_uint,
  7249. },
  7250. #endif
  7251. { } /* terminate */
  7252. };
  7253. struct cgroup_subsys cpu_cgrp_subsys = {
  7254. .css_alloc = cpu_cgroup_css_alloc,
  7255. .css_free = cpu_cgroup_css_free,
  7256. .css_online = cpu_cgroup_css_online,
  7257. .css_offline = cpu_cgroup_css_offline,
  7258. .fork = cpu_cgroup_fork,
  7259. .can_attach = cpu_cgroup_can_attach,
  7260. .attach = cpu_cgroup_attach,
  7261. .allow_attach = subsys_cgroup_allow_attach,
  7262. .exit = cpu_cgroup_exit,
  7263. .legacy_cftypes = cpu_files,
  7264. .early_init = 1,
  7265. };
  7266. #endif /* CONFIG_CGROUP_SCHED */
  7267. void dump_cpu_task(int cpu)
  7268. {
  7269. pr_info("Task dump for CPU %d:\n", cpu);
  7270. sched_show_task(cpu_curr(cpu));
  7271. }