rmap.c 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * mm->mmap_sem
  24. * page->flags PG_locked (lock_page)
  25. * mapping->i_mmap_mutex
  26. * anon_vma->rwsem
  27. * mm->page_table_lock or pte_lock
  28. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  29. * swap_lock (in swap_duplicate, swap_info_get)
  30. * mmlist_lock (in mmput, drain_mmlist and others)
  31. * mapping->private_lock (in __set_page_dirty_buffers)
  32. * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  33. * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within bdi.wb->list_lock in __sync_single_inode)
  38. *
  39. * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
  40. * ->tasklist_lock
  41. * pte map lock
  42. */
  43. #include <linux/mm.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/swap.h>
  46. #include <linux/swapops.h>
  47. #include <linux/slab.h>
  48. #include <linux/init.h>
  49. #include <linux/ksm.h>
  50. #include <linux/rmap.h>
  51. #include <linux/rcupdate.h>
  52. #include <linux/export.h>
  53. #include <linux/memcontrol.h>
  54. #include <linux/mmu_notifier.h>
  55. #include <linux/migrate.h>
  56. #include <linux/hugetlb.h>
  57. #include <linux/backing-dev.h>
  58. #include <asm/tlbflush.h>
  59. #include "internal.h"
  60. static struct kmem_cache *anon_vma_cachep;
  61. static struct kmem_cache *anon_vma_chain_cachep;
  62. static inline struct anon_vma *anon_vma_alloc(void)
  63. {
  64. struct anon_vma *anon_vma;
  65. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  66. if (anon_vma) {
  67. atomic_set(&anon_vma->refcount, 1);
  68. anon_vma->degree = 1; /* Reference for first vma */
  69. anon_vma->parent = anon_vma;
  70. /*
  71. * Initialise the anon_vma root to point to itself. If called
  72. * from fork, the root will be reset to the parents anon_vma.
  73. */
  74. anon_vma->root = anon_vma;
  75. }
  76. return anon_vma;
  77. }
  78. static inline void anon_vma_free(struct anon_vma *anon_vma)
  79. {
  80. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  81. /*
  82. * Synchronize against page_lock_anon_vma_read() such that
  83. * we can safely hold the lock without the anon_vma getting
  84. * freed.
  85. *
  86. * Relies on the full mb implied by the atomic_dec_and_test() from
  87. * put_anon_vma() against the acquire barrier implied by
  88. * down_read_trylock() from page_lock_anon_vma_read(). This orders:
  89. *
  90. * page_lock_anon_vma_read() VS put_anon_vma()
  91. * down_read_trylock() atomic_dec_and_test()
  92. * LOCK MB
  93. * atomic_read() rwsem_is_locked()
  94. *
  95. * LOCK should suffice since the actual taking of the lock must
  96. * happen _before_ what follows.
  97. */
  98. might_sleep();
  99. if (rwsem_is_locked(&anon_vma->root->rwsem)) {
  100. anon_vma_lock_write(anon_vma);
  101. anon_vma_unlock_write(anon_vma);
  102. }
  103. kmem_cache_free(anon_vma_cachep, anon_vma);
  104. }
  105. static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
  106. {
  107. return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
  108. }
  109. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  110. {
  111. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  112. }
  113. static void anon_vma_chain_link(struct vm_area_struct *vma,
  114. struct anon_vma_chain *avc,
  115. struct anon_vma *anon_vma)
  116. {
  117. avc->vma = vma;
  118. avc->anon_vma = anon_vma;
  119. list_add(&avc->same_vma, &vma->anon_vma_chain);
  120. anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
  121. }
  122. /**
  123. * anon_vma_prepare - attach an anon_vma to a memory region
  124. * @vma: the memory region in question
  125. *
  126. * This makes sure the memory mapping described by 'vma' has
  127. * an 'anon_vma' attached to it, so that we can associate the
  128. * anonymous pages mapped into it with that anon_vma.
  129. *
  130. * The common case will be that we already have one, but if
  131. * not we either need to find an adjacent mapping that we
  132. * can re-use the anon_vma from (very common when the only
  133. * reason for splitting a vma has been mprotect()), or we
  134. * allocate a new one.
  135. *
  136. * Anon-vma allocations are very subtle, because we may have
  137. * optimistically looked up an anon_vma in page_lock_anon_vma_read()
  138. * and that may actually touch the spinlock even in the newly
  139. * allocated vma (it depends on RCU to make sure that the
  140. * anon_vma isn't actually destroyed).
  141. *
  142. * As a result, we need to do proper anon_vma locking even
  143. * for the new allocation. At the same time, we do not want
  144. * to do any locking for the common case of already having
  145. * an anon_vma.
  146. *
  147. * This must be called with the mmap_sem held for reading.
  148. */
  149. int anon_vma_prepare(struct vm_area_struct *vma)
  150. {
  151. struct anon_vma *anon_vma = vma->anon_vma;
  152. struct anon_vma_chain *avc;
  153. might_sleep();
  154. if (unlikely(!anon_vma)) {
  155. struct mm_struct *mm = vma->vm_mm;
  156. struct anon_vma *allocated;
  157. avc = anon_vma_chain_alloc(GFP_KERNEL);
  158. if (!avc)
  159. goto out_enomem;
  160. anon_vma = find_mergeable_anon_vma(vma);
  161. allocated = NULL;
  162. if (!anon_vma) {
  163. anon_vma = anon_vma_alloc();
  164. if (unlikely(!anon_vma))
  165. goto out_enomem_free_avc;
  166. allocated = anon_vma;
  167. }
  168. anon_vma_lock_write(anon_vma);
  169. /* page_table_lock to protect against threads */
  170. spin_lock(&mm->page_table_lock);
  171. if (likely(!vma->anon_vma)) {
  172. vma->anon_vma = anon_vma;
  173. anon_vma_chain_link(vma, avc, anon_vma);
  174. /* vma reference or self-parent link for new root */
  175. anon_vma->degree++;
  176. allocated = NULL;
  177. avc = NULL;
  178. }
  179. spin_unlock(&mm->page_table_lock);
  180. anon_vma_unlock_write(anon_vma);
  181. if (unlikely(allocated))
  182. put_anon_vma(allocated);
  183. if (unlikely(avc))
  184. anon_vma_chain_free(avc);
  185. }
  186. return 0;
  187. out_enomem_free_avc:
  188. anon_vma_chain_free(avc);
  189. out_enomem:
  190. return -ENOMEM;
  191. }
  192. /*
  193. * This is a useful helper function for locking the anon_vma root as
  194. * we traverse the vma->anon_vma_chain, looping over anon_vma's that
  195. * have the same vma.
  196. *
  197. * Such anon_vma's should have the same root, so you'd expect to see
  198. * just a single mutex_lock for the whole traversal.
  199. */
  200. static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
  201. {
  202. struct anon_vma *new_root = anon_vma->root;
  203. if (new_root != root) {
  204. if (WARN_ON_ONCE(root))
  205. up_write(&root->rwsem);
  206. root = new_root;
  207. down_write(&root->rwsem);
  208. }
  209. return root;
  210. }
  211. static inline void unlock_anon_vma_root(struct anon_vma *root)
  212. {
  213. if (root)
  214. up_write(&root->rwsem);
  215. }
  216. /*
  217. * Attach the anon_vmas from src to dst.
  218. * Returns 0 on success, -ENOMEM on failure.
  219. *
  220. * If dst->anon_vma is NULL this function tries to find and reuse existing
  221. * anon_vma which has no vmas and only one child anon_vma. This prevents
  222. * degradation of anon_vma hierarchy to endless linear chain in case of
  223. * constantly forking task. On the other hand, an anon_vma with more than one
  224. * child isn't reused even if there was no alive vma, thus rmap walker has a
  225. * good chance of avoiding scanning the whole hierarchy when it searches where
  226. * page is mapped.
  227. */
  228. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  229. {
  230. struct anon_vma_chain *avc, *pavc;
  231. struct anon_vma *root = NULL;
  232. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  233. struct anon_vma *anon_vma;
  234. avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
  235. if (unlikely(!avc)) {
  236. unlock_anon_vma_root(root);
  237. root = NULL;
  238. avc = anon_vma_chain_alloc(GFP_KERNEL);
  239. if (!avc)
  240. goto enomem_failure;
  241. }
  242. anon_vma = pavc->anon_vma;
  243. root = lock_anon_vma_root(root, anon_vma);
  244. anon_vma_chain_link(dst, avc, anon_vma);
  245. /*
  246. * Reuse existing anon_vma if its degree lower than two,
  247. * that means it has no vma and only one anon_vma child.
  248. *
  249. * Do not chose parent anon_vma, otherwise first child
  250. * will always reuse it. Root anon_vma is never reused:
  251. * it has self-parent reference and at least one child.
  252. */
  253. if (!dst->anon_vma && anon_vma != src->anon_vma &&
  254. anon_vma->degree < 2)
  255. dst->anon_vma = anon_vma;
  256. }
  257. if (dst->anon_vma)
  258. dst->anon_vma->degree++;
  259. unlock_anon_vma_root(root);
  260. return 0;
  261. enomem_failure:
  262. /*
  263. * dst->anon_vma is dropped here otherwise its degree can be incorrectly
  264. * decremented in unlink_anon_vmas().
  265. * We can safely do this because callers of anon_vma_clone() don't care
  266. * about dst->anon_vma if anon_vma_clone() failed.
  267. */
  268. dst->anon_vma = NULL;
  269. unlink_anon_vmas(dst);
  270. return -ENOMEM;
  271. }
  272. /*
  273. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  274. * the corresponding VMA in the parent process is attached to.
  275. * Returns 0 on success, non-zero on failure.
  276. */
  277. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  278. {
  279. struct anon_vma_chain *avc;
  280. struct anon_vma *anon_vma;
  281. int error;
  282. /* Don't bother if the parent process has no anon_vma here. */
  283. if (!pvma->anon_vma)
  284. return 0;
  285. /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
  286. vma->anon_vma = NULL;
  287. /*
  288. * First, attach the new VMA to the parent VMA's anon_vmas,
  289. * so rmap can find non-COWed pages in child processes.
  290. */
  291. error = anon_vma_clone(vma, pvma);
  292. if (error)
  293. return error;
  294. /* An existing anon_vma has been reused, all done then. */
  295. if (vma->anon_vma)
  296. return 0;
  297. /* Then add our own anon_vma. */
  298. anon_vma = anon_vma_alloc();
  299. if (!anon_vma)
  300. goto out_error;
  301. avc = anon_vma_chain_alloc(GFP_KERNEL);
  302. if (!avc)
  303. goto out_error_free_anon_vma;
  304. /*
  305. * The root anon_vma's spinlock is the lock actually used when we
  306. * lock any of the anon_vmas in this anon_vma tree.
  307. */
  308. anon_vma->root = pvma->anon_vma->root;
  309. anon_vma->parent = pvma->anon_vma;
  310. /*
  311. * With refcounts, an anon_vma can stay around longer than the
  312. * process it belongs to. The root anon_vma needs to be pinned until
  313. * this anon_vma is freed, because the lock lives in the root.
  314. */
  315. get_anon_vma(anon_vma->root);
  316. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  317. vma->anon_vma = anon_vma;
  318. anon_vma_lock_write(anon_vma);
  319. anon_vma_chain_link(vma, avc, anon_vma);
  320. anon_vma->parent->degree++;
  321. anon_vma_unlock_write(anon_vma);
  322. return 0;
  323. out_error_free_anon_vma:
  324. put_anon_vma(anon_vma);
  325. out_error:
  326. unlink_anon_vmas(vma);
  327. return -ENOMEM;
  328. }
  329. void unlink_anon_vmas(struct vm_area_struct *vma)
  330. {
  331. struct anon_vma_chain *avc, *next;
  332. struct anon_vma *root = NULL;
  333. /*
  334. * Unlink each anon_vma chained to the VMA. This list is ordered
  335. * from newest to oldest, ensuring the root anon_vma gets freed last.
  336. */
  337. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  338. struct anon_vma *anon_vma = avc->anon_vma;
  339. root = lock_anon_vma_root(root, anon_vma);
  340. anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
  341. /*
  342. * Leave empty anon_vmas on the list - we'll need
  343. * to free them outside the lock.
  344. */
  345. if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
  346. anon_vma->parent->degree--;
  347. continue;
  348. }
  349. list_del(&avc->same_vma);
  350. anon_vma_chain_free(avc);
  351. }
  352. if (vma->anon_vma)
  353. vma->anon_vma->degree--;
  354. unlock_anon_vma_root(root);
  355. /*
  356. * Iterate the list once more, it now only contains empty and unlinked
  357. * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
  358. * needing to write-acquire the anon_vma->root->rwsem.
  359. */
  360. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  361. struct anon_vma *anon_vma = avc->anon_vma;
  362. BUG_ON(anon_vma->degree);
  363. put_anon_vma(anon_vma);
  364. list_del(&avc->same_vma);
  365. anon_vma_chain_free(avc);
  366. }
  367. }
  368. static void anon_vma_ctor(void *data)
  369. {
  370. struct anon_vma *anon_vma = data;
  371. init_rwsem(&anon_vma->rwsem);
  372. atomic_set(&anon_vma->refcount, 0);
  373. anon_vma->rb_root = RB_ROOT;
  374. }
  375. void __init anon_vma_init(void)
  376. {
  377. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  378. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  379. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  380. }
  381. /*
  382. * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
  383. *
  384. * Since there is no serialization what so ever against page_remove_rmap()
  385. * the best this function can do is return a locked anon_vma that might
  386. * have been relevant to this page.
  387. *
  388. * The page might have been remapped to a different anon_vma or the anon_vma
  389. * returned may already be freed (and even reused).
  390. *
  391. * In case it was remapped to a different anon_vma, the new anon_vma will be a
  392. * child of the old anon_vma, and the anon_vma lifetime rules will therefore
  393. * ensure that any anon_vma obtained from the page will still be valid for as
  394. * long as we observe page_mapped() [ hence all those page_mapped() tests ].
  395. *
  396. * All users of this function must be very careful when walking the anon_vma
  397. * chain and verify that the page in question is indeed mapped in it
  398. * [ something equivalent to page_mapped_in_vma() ].
  399. *
  400. * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
  401. * that the anon_vma pointer from page->mapping is valid if there is a
  402. * mapcount, we can dereference the anon_vma after observing those.
  403. */
  404. struct anon_vma *page_get_anon_vma(struct page *page)
  405. {
  406. struct anon_vma *anon_vma = NULL;
  407. unsigned long anon_mapping;
  408. rcu_read_lock();
  409. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  410. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  411. goto out;
  412. if (!page_mapped(page))
  413. goto out;
  414. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  415. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  416. anon_vma = NULL;
  417. goto out;
  418. }
  419. /*
  420. * If this page is still mapped, then its anon_vma cannot have been
  421. * freed. But if it has been unmapped, we have no security against the
  422. * anon_vma structure being freed and reused (for another anon_vma:
  423. * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
  424. * above cannot corrupt).
  425. */
  426. if (!page_mapped(page)) {
  427. rcu_read_unlock();
  428. put_anon_vma(anon_vma);
  429. return NULL;
  430. }
  431. out:
  432. rcu_read_unlock();
  433. return anon_vma;
  434. }
  435. /*
  436. * Similar to page_get_anon_vma() except it locks the anon_vma.
  437. *
  438. * Its a little more complex as it tries to keep the fast path to a single
  439. * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
  440. * reference like with page_get_anon_vma() and then block on the mutex.
  441. */
  442. struct anon_vma *page_lock_anon_vma_read(struct page *page)
  443. {
  444. struct anon_vma *anon_vma = NULL;
  445. struct anon_vma *root_anon_vma;
  446. unsigned long anon_mapping;
  447. rcu_read_lock();
  448. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  449. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  450. goto out;
  451. if (!page_mapped(page))
  452. goto out;
  453. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  454. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  455. if (down_read_trylock(&root_anon_vma->rwsem)) {
  456. /*
  457. * If the page is still mapped, then this anon_vma is still
  458. * its anon_vma, and holding the mutex ensures that it will
  459. * not go away, see anon_vma_free().
  460. */
  461. if (!page_mapped(page)) {
  462. up_read(&root_anon_vma->rwsem);
  463. anon_vma = NULL;
  464. }
  465. goto out;
  466. }
  467. /* trylock failed, we got to sleep */
  468. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  469. anon_vma = NULL;
  470. goto out;
  471. }
  472. if (!page_mapped(page)) {
  473. rcu_read_unlock();
  474. put_anon_vma(anon_vma);
  475. return NULL;
  476. }
  477. /* we pinned the anon_vma, its safe to sleep */
  478. rcu_read_unlock();
  479. anon_vma_lock_read(anon_vma);
  480. if (atomic_dec_and_test(&anon_vma->refcount)) {
  481. /*
  482. * Oops, we held the last refcount, release the lock
  483. * and bail -- can't simply use put_anon_vma() because
  484. * we'll deadlock on the anon_vma_lock_write() recursion.
  485. */
  486. anon_vma_unlock_read(anon_vma);
  487. __put_anon_vma(anon_vma);
  488. anon_vma = NULL;
  489. }
  490. return anon_vma;
  491. out:
  492. rcu_read_unlock();
  493. return anon_vma;
  494. }
  495. void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
  496. {
  497. anon_vma_unlock_read(anon_vma);
  498. }
  499. /*
  500. * At what user virtual address is page expected in @vma?
  501. */
  502. static inline unsigned long
  503. __vma_address(struct page *page, struct vm_area_struct *vma)
  504. {
  505. pgoff_t pgoff = page_to_pgoff(page);
  506. return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  507. }
  508. inline unsigned long
  509. vma_address(struct page *page, struct vm_area_struct *vma)
  510. {
  511. unsigned long address = __vma_address(page, vma);
  512. /* page should be within @vma mapping range */
  513. VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
  514. return address;
  515. }
  516. /*
  517. * At what user virtual address is page expected in vma?
  518. * Caller should check the page is actually part of the vma.
  519. */
  520. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  521. {
  522. unsigned long address;
  523. if (PageAnon(page)) {
  524. struct anon_vma *page__anon_vma = page_anon_vma(page);
  525. /*
  526. * Note: swapoff's unuse_vma() is more efficient with this
  527. * check, and needs it to match anon_vma when KSM is active.
  528. */
  529. if (!vma->anon_vma || !page__anon_vma ||
  530. vma->anon_vma->root != page__anon_vma->root)
  531. return -EFAULT;
  532. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  533. if (!vma->vm_file ||
  534. vma->vm_file->f_mapping != page->mapping)
  535. return -EFAULT;
  536. } else
  537. return -EFAULT;
  538. address = __vma_address(page, vma);
  539. if (unlikely(address < vma->vm_start || address >= vma->vm_end))
  540. return -EFAULT;
  541. return address;
  542. }
  543. pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
  544. {
  545. pgd_t *pgd;
  546. pud_t *pud;
  547. pmd_t *pmd = NULL;
  548. pmd_t pmde;
  549. pgd = pgd_offset(mm, address);
  550. if (!pgd_present(*pgd))
  551. goto out;
  552. pud = pud_offset(pgd, address);
  553. if (!pud_present(*pud))
  554. goto out;
  555. pmd = pmd_offset(pud, address);
  556. /*
  557. * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
  558. * without holding anon_vma lock for write. So when looking for a
  559. * genuine pmde (in which to find pte), test present and !THP together.
  560. */
  561. pmde = ACCESS_ONCE(*pmd);
  562. if (!pmd_present(pmde) || pmd_trans_huge(pmde))
  563. pmd = NULL;
  564. out:
  565. return pmd;
  566. }
  567. /*
  568. * Check that @page is mapped at @address into @mm.
  569. *
  570. * If @sync is false, page_check_address may perform a racy check to avoid
  571. * the page table lock when the pte is not present (helpful when reclaiming
  572. * highly shared pages).
  573. *
  574. * On success returns with pte mapped and locked.
  575. */
  576. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  577. unsigned long address, spinlock_t **ptlp, int sync)
  578. {
  579. pmd_t *pmd;
  580. pte_t *pte;
  581. spinlock_t *ptl;
  582. if (unlikely(PageHuge(page))) {
  583. /* when pud is not present, pte will be NULL */
  584. pte = huge_pte_offset(mm, address);
  585. if (!pte)
  586. return NULL;
  587. ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
  588. goto check;
  589. }
  590. pmd = mm_find_pmd(mm, address);
  591. if (!pmd)
  592. return NULL;
  593. pte = pte_offset_map(pmd, address);
  594. /* Make a quick check before getting the lock */
  595. if (!sync && !pte_present(*pte)) {
  596. pte_unmap(pte);
  597. return NULL;
  598. }
  599. ptl = pte_lockptr(mm, pmd);
  600. check:
  601. spin_lock(ptl);
  602. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  603. *ptlp = ptl;
  604. return pte;
  605. }
  606. pte_unmap_unlock(pte, ptl);
  607. return NULL;
  608. }
  609. /**
  610. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  611. * @page: the page to test
  612. * @vma: the VMA to test
  613. *
  614. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  615. * if the page is not mapped into the page tables of this VMA. Only
  616. * valid for normal file or anonymous VMAs.
  617. */
  618. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  619. {
  620. unsigned long address;
  621. pte_t *pte;
  622. spinlock_t *ptl;
  623. address = __vma_address(page, vma);
  624. if (unlikely(address < vma->vm_start || address >= vma->vm_end))
  625. return 0;
  626. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  627. if (!pte) /* the page is not in this mm */
  628. return 0;
  629. pte_unmap_unlock(pte, ptl);
  630. return 1;
  631. }
  632. struct page_referenced_arg {
  633. int mapcount;
  634. int referenced;
  635. unsigned long vm_flags;
  636. struct mem_cgroup *memcg;
  637. };
  638. /*
  639. * arg: page_referenced_arg will be passed
  640. */
  641. static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  642. unsigned long address, void *arg)
  643. {
  644. struct mm_struct *mm = vma->vm_mm;
  645. spinlock_t *ptl;
  646. int referenced = 0;
  647. struct page_referenced_arg *pra = arg;
  648. if (unlikely(PageTransHuge(page))) {
  649. pmd_t *pmd;
  650. /*
  651. * rmap might return false positives; we must filter
  652. * these out using page_check_address_pmd().
  653. */
  654. pmd = page_check_address_pmd(page, mm, address,
  655. PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
  656. if (!pmd)
  657. return SWAP_AGAIN;
  658. if (vma->vm_flags & VM_LOCKED) {
  659. spin_unlock(ptl);
  660. pra->vm_flags |= VM_LOCKED;
  661. return SWAP_FAIL; /* To break the loop */
  662. }
  663. /* go ahead even if the pmd is pmd_trans_splitting() */
  664. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  665. referenced++;
  666. spin_unlock(ptl);
  667. } else {
  668. pte_t *pte;
  669. /*
  670. * rmap might return false positives; we must filter
  671. * these out using page_check_address().
  672. */
  673. pte = page_check_address(page, mm, address, &ptl, 0);
  674. if (!pte)
  675. return SWAP_AGAIN;
  676. if (vma->vm_flags & VM_LOCKED) {
  677. pte_unmap_unlock(pte, ptl);
  678. pra->vm_flags |= VM_LOCKED;
  679. return SWAP_FAIL; /* To break the loop */
  680. }
  681. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  682. /*
  683. * Don't treat a reference through a sequentially read
  684. * mapping as such. If the page has been used in
  685. * another mapping, we will catch it; if this other
  686. * mapping is already gone, the unmap path will have
  687. * set PG_referenced or activated the page.
  688. */
  689. if (likely(!(vma->vm_flags & VM_SEQ_READ)))
  690. referenced++;
  691. }
  692. pte_unmap_unlock(pte, ptl);
  693. }
  694. if (referenced) {
  695. pra->referenced++;
  696. pra->vm_flags |= vma->vm_flags;
  697. }
  698. pra->mapcount--;
  699. if (!pra->mapcount)
  700. return SWAP_SUCCESS; /* To break the loop */
  701. return SWAP_AGAIN;
  702. }
  703. static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
  704. {
  705. struct page_referenced_arg *pra = arg;
  706. struct mem_cgroup *memcg = pra->memcg;
  707. if (!mm_match_cgroup(vma->vm_mm, memcg))
  708. return true;
  709. return false;
  710. }
  711. /**
  712. * page_referenced - test if the page was referenced
  713. * @page: the page to test
  714. * @is_locked: caller holds lock on the page
  715. * @memcg: target memory cgroup
  716. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  717. *
  718. * Quick test_and_clear_referenced for all mappings to a page,
  719. * returns the number of ptes which referenced the page.
  720. */
  721. int page_referenced(struct page *page,
  722. int is_locked,
  723. struct mem_cgroup *memcg,
  724. unsigned long *vm_flags)
  725. {
  726. int ret;
  727. int we_locked = 0;
  728. struct page_referenced_arg pra = {
  729. .mapcount = page_mapcount(page),
  730. .memcg = memcg,
  731. };
  732. struct rmap_walk_control rwc = {
  733. .rmap_one = page_referenced_one,
  734. .arg = (void *)&pra,
  735. .anon_lock = page_lock_anon_vma_read,
  736. };
  737. *vm_flags = 0;
  738. if (!page_mapped(page))
  739. return 0;
  740. if (!page_rmapping(page))
  741. return 0;
  742. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  743. we_locked = trylock_page(page);
  744. if (!we_locked)
  745. return 1;
  746. }
  747. /*
  748. * If we are reclaiming on behalf of a cgroup, skip
  749. * counting on behalf of references from different
  750. * cgroups
  751. */
  752. if (memcg) {
  753. rwc.invalid_vma = invalid_page_referenced_vma;
  754. }
  755. ret = rmap_walk(page, &rwc);
  756. *vm_flags = pra.vm_flags;
  757. if (we_locked)
  758. unlock_page(page);
  759. return pra.referenced;
  760. }
  761. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  762. unsigned long address, void *arg)
  763. {
  764. struct mm_struct *mm = vma->vm_mm;
  765. pte_t *pte;
  766. spinlock_t *ptl;
  767. int ret = 0;
  768. int *cleaned = arg;
  769. pte = page_check_address(page, mm, address, &ptl, 1);
  770. if (!pte)
  771. goto out;
  772. if (pte_dirty(*pte) || pte_write(*pte)) {
  773. pte_t entry;
  774. flush_cache_page(vma, address, pte_pfn(*pte));
  775. entry = ptep_clear_flush(vma, address, pte);
  776. entry = pte_wrprotect(entry);
  777. entry = pte_mkclean(entry);
  778. set_pte_at(mm, address, pte, entry);
  779. ret = 1;
  780. }
  781. pte_unmap_unlock(pte, ptl);
  782. if (ret) {
  783. mmu_notifier_invalidate_page(mm, address);
  784. (*cleaned)++;
  785. }
  786. out:
  787. return SWAP_AGAIN;
  788. }
  789. static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
  790. {
  791. if (vma->vm_flags & VM_SHARED)
  792. return false;
  793. return true;
  794. }
  795. int page_mkclean(struct page *page)
  796. {
  797. int cleaned = 0;
  798. struct address_space *mapping;
  799. struct rmap_walk_control rwc = {
  800. .arg = (void *)&cleaned,
  801. .rmap_one = page_mkclean_one,
  802. .invalid_vma = invalid_mkclean_vma,
  803. };
  804. BUG_ON(!PageLocked(page));
  805. if (!page_mapped(page))
  806. return 0;
  807. mapping = page_mapping(page);
  808. if (!mapping)
  809. return 0;
  810. rmap_walk(page, &rwc);
  811. return cleaned;
  812. }
  813. EXPORT_SYMBOL_GPL(page_mkclean);
  814. /**
  815. * page_move_anon_rmap - move a page to our anon_vma
  816. * @page: the page to move to our anon_vma
  817. * @vma: the vma the page belongs to
  818. * @address: the user virtual address mapped
  819. *
  820. * When a page belongs exclusively to one process after a COW event,
  821. * that page can be moved into the anon_vma that belongs to just that
  822. * process, so the rmap code will not search the parent or sibling
  823. * processes.
  824. */
  825. void page_move_anon_rmap(struct page *page,
  826. struct vm_area_struct *vma, unsigned long address)
  827. {
  828. struct anon_vma *anon_vma = vma->anon_vma;
  829. VM_BUG_ON_PAGE(!PageLocked(page), page);
  830. VM_BUG_ON_VMA(!anon_vma, vma);
  831. VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
  832. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  833. page->mapping = (struct address_space *) anon_vma;
  834. }
  835. /**
  836. * __page_set_anon_rmap - set up new anonymous rmap
  837. * @page: Page to add to rmap
  838. * @vma: VM area to add page to.
  839. * @address: User virtual address of the mapping
  840. * @exclusive: the page is exclusively owned by the current process
  841. */
  842. static void __page_set_anon_rmap(struct page *page,
  843. struct vm_area_struct *vma, unsigned long address, int exclusive)
  844. {
  845. struct anon_vma *anon_vma = vma->anon_vma;
  846. BUG_ON(!anon_vma);
  847. if (PageAnon(page))
  848. return;
  849. /*
  850. * If the page isn't exclusively mapped into this vma,
  851. * we must use the _oldest_ possible anon_vma for the
  852. * page mapping!
  853. */
  854. if (!exclusive)
  855. anon_vma = anon_vma->root;
  856. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  857. page->mapping = (struct address_space *) anon_vma;
  858. page->index = linear_page_index(vma, address);
  859. }
  860. /**
  861. * __page_check_anon_rmap - sanity check anonymous rmap addition
  862. * @page: the page to add the mapping to
  863. * @vma: the vm area in which the mapping is added
  864. * @address: the user virtual address mapped
  865. */
  866. static void __page_check_anon_rmap(struct page *page,
  867. struct vm_area_struct *vma, unsigned long address)
  868. {
  869. #ifdef CONFIG_DEBUG_VM
  870. /*
  871. * The page's anon-rmap details (mapping and index) are guaranteed to
  872. * be set up correctly at this point.
  873. *
  874. * We have exclusion against page_add_anon_rmap because the caller
  875. * always holds the page locked, except if called from page_dup_rmap,
  876. * in which case the page is already known to be setup.
  877. *
  878. * We have exclusion against page_add_new_anon_rmap because those pages
  879. * are initially only visible via the pagetables, and the pte is locked
  880. * over the call to page_add_new_anon_rmap.
  881. */
  882. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  883. BUG_ON(page->index != linear_page_index(vma, address));
  884. #endif
  885. }
  886. /**
  887. * page_add_anon_rmap - add pte mapping to an anonymous page
  888. * @page: the page to add the mapping to
  889. * @vma: the vm area in which the mapping is added
  890. * @address: the user virtual address mapped
  891. *
  892. * The caller needs to hold the pte lock, and the page must be locked in
  893. * the anon_vma case: to serialize mapping,index checking after setting,
  894. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  895. * (but PageKsm is never downgraded to PageAnon).
  896. */
  897. void page_add_anon_rmap(struct page *page,
  898. struct vm_area_struct *vma, unsigned long address)
  899. {
  900. do_page_add_anon_rmap(page, vma, address, 0);
  901. }
  902. /*
  903. * Special version of the above for do_swap_page, which often runs
  904. * into pages that are exclusively owned by the current process.
  905. * Everybody else should continue to use page_add_anon_rmap above.
  906. */
  907. void do_page_add_anon_rmap(struct page *page,
  908. struct vm_area_struct *vma, unsigned long address, int exclusive)
  909. {
  910. int first = atomic_inc_and_test(&page->_mapcount);
  911. if (first) {
  912. /*
  913. * We use the irq-unsafe __{inc|mod}_zone_page_stat because
  914. * these counters are not modified in interrupt context, and
  915. * pte lock(a spinlock) is held, which implies preemption
  916. * disabled.
  917. */
  918. if (PageTransHuge(page))
  919. __inc_zone_page_state(page,
  920. NR_ANON_TRANSPARENT_HUGEPAGES);
  921. __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
  922. hpage_nr_pages(page));
  923. }
  924. if (unlikely(PageKsm(page)))
  925. return;
  926. VM_BUG_ON_PAGE(!PageLocked(page), page);
  927. /* address might be in next vma when migration races vma_adjust */
  928. if (first)
  929. __page_set_anon_rmap(page, vma, address, exclusive);
  930. else
  931. __page_check_anon_rmap(page, vma, address);
  932. }
  933. /**
  934. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  935. * @page: the page to add the mapping to
  936. * @vma: the vm area in which the mapping is added
  937. * @address: the user virtual address mapped
  938. *
  939. * Same as page_add_anon_rmap but must only be called on *new* pages.
  940. * This means the inc-and-test can be bypassed.
  941. * Page does not have to be locked.
  942. */
  943. void page_add_new_anon_rmap(struct page *page,
  944. struct vm_area_struct *vma, unsigned long address)
  945. {
  946. VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
  947. SetPageSwapBacked(page);
  948. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  949. if (PageTransHuge(page))
  950. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  951. __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
  952. hpage_nr_pages(page));
  953. __page_set_anon_rmap(page, vma, address, 1);
  954. }
  955. /**
  956. * page_add_file_rmap - add pte mapping to a file page
  957. * @page: the page to add the mapping to
  958. *
  959. * The caller needs to hold the pte lock.
  960. */
  961. void page_add_file_rmap(struct page *page)
  962. {
  963. struct mem_cgroup *memcg;
  964. unsigned long flags;
  965. bool locked;
  966. memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
  967. if (atomic_inc_and_test(&page->_mapcount)) {
  968. __inc_zone_page_state(page, NR_FILE_MAPPED);
  969. mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
  970. }
  971. mem_cgroup_end_page_stat(memcg, locked, flags);
  972. }
  973. static void page_remove_file_rmap(struct page *page)
  974. {
  975. struct mem_cgroup *memcg;
  976. unsigned long flags;
  977. bool locked;
  978. memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
  979. /* page still mapped by someone else? */
  980. if (!atomic_add_negative(-1, &page->_mapcount))
  981. goto out;
  982. /* Hugepages are not counted in NR_FILE_MAPPED for now. */
  983. if (unlikely(PageHuge(page)))
  984. goto out;
  985. /*
  986. * We use the irq-unsafe __{inc|mod}_zone_page_stat because
  987. * these counters are not modified in interrupt context, and
  988. * pte lock(a spinlock) is held, which implies preemption disabled.
  989. */
  990. __dec_zone_page_state(page, NR_FILE_MAPPED);
  991. mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
  992. if (unlikely(PageMlocked(page)))
  993. clear_page_mlock(page);
  994. out:
  995. mem_cgroup_end_page_stat(memcg, locked, flags);
  996. }
  997. /**
  998. * page_remove_rmap - take down pte mapping from a page
  999. * @page: page to remove mapping from
  1000. *
  1001. * The caller needs to hold the pte lock.
  1002. */
  1003. void page_remove_rmap(struct page *page)
  1004. {
  1005. if (!PageAnon(page)) {
  1006. page_remove_file_rmap(page);
  1007. return;
  1008. }
  1009. /* page still mapped by someone else? */
  1010. if (!atomic_add_negative(-1, &page->_mapcount))
  1011. return;
  1012. /* Hugepages are not counted in NR_ANON_PAGES for now. */
  1013. if (unlikely(PageHuge(page)))
  1014. return;
  1015. /*
  1016. * We use the irq-unsafe __{inc|mod}_zone_page_stat because
  1017. * these counters are not modified in interrupt context, and
  1018. * pte lock(a spinlock) is held, which implies preemption disabled.
  1019. */
  1020. if (PageTransHuge(page))
  1021. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  1022. __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
  1023. -hpage_nr_pages(page));
  1024. if (unlikely(PageMlocked(page)))
  1025. clear_page_mlock(page);
  1026. /*
  1027. * It would be tidy to reset the PageAnon mapping here,
  1028. * but that might overwrite a racing page_add_anon_rmap
  1029. * which increments mapcount after us but sets mapping
  1030. * before us: so leave the reset to free_hot_cold_page,
  1031. * and remember that it's only reliable while mapped.
  1032. * Leaving it set also helps swapoff to reinstate ptes
  1033. * faster for those pages still in swapcache.
  1034. */
  1035. }
  1036. /*
  1037. * @arg: enum ttu_flags will be passed to this argument
  1038. */
  1039. static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  1040. unsigned long address, void *arg)
  1041. {
  1042. struct mm_struct *mm = vma->vm_mm;
  1043. pte_t *pte;
  1044. pte_t pteval;
  1045. spinlock_t *ptl;
  1046. int ret = SWAP_AGAIN;
  1047. enum ttu_flags flags = (enum ttu_flags)arg;
  1048. pte = page_check_address(page, mm, address, &ptl, 0);
  1049. if (!pte)
  1050. goto out;
  1051. /*
  1052. * If the page is mlock()d, we cannot swap it out.
  1053. * If it's recently referenced (perhaps page_referenced
  1054. * skipped over this mm) then we should reactivate it.
  1055. */
  1056. if (!(flags & TTU_IGNORE_MLOCK)) {
  1057. if (vma->vm_flags & VM_LOCKED)
  1058. goto out_mlock;
  1059. if (flags & TTU_MUNLOCK)
  1060. goto out_unmap;
  1061. }
  1062. if (!(flags & TTU_IGNORE_ACCESS)) {
  1063. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  1064. ret = SWAP_FAIL;
  1065. goto out_unmap;
  1066. }
  1067. }
  1068. /* Nuke the page table entry. */
  1069. flush_cache_page(vma, address, page_to_pfn(page));
  1070. pteval = ptep_clear_flush(vma, address, pte);
  1071. /* Move the dirty bit to the physical page now the pte is gone. */
  1072. if (pte_dirty(pteval))
  1073. set_page_dirty(page);
  1074. /* Update high watermark before we lower rss */
  1075. update_hiwater_rss(mm);
  1076. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  1077. if (!PageHuge(page)) {
  1078. if (PageAnon(page))
  1079. dec_mm_counter(mm, MM_ANONPAGES);
  1080. else
  1081. dec_mm_counter(mm, MM_FILEPAGES);
  1082. }
  1083. set_pte_at(mm, address, pte,
  1084. swp_entry_to_pte(make_hwpoison_entry(page)));
  1085. } else if (pte_unused(pteval)) {
  1086. /*
  1087. * The guest indicated that the page content is of no
  1088. * interest anymore. Simply discard the pte, vmscan
  1089. * will take care of the rest.
  1090. */
  1091. if (PageAnon(page))
  1092. dec_mm_counter(mm, MM_ANONPAGES);
  1093. else
  1094. dec_mm_counter(mm, MM_FILEPAGES);
  1095. } else if (PageAnon(page)) {
  1096. swp_entry_t entry = { .val = page_private(page) };
  1097. pte_t swp_pte;
  1098. if (PageSwapCache(page)) {
  1099. /*
  1100. * Store the swap location in the pte.
  1101. * See handle_pte_fault() ...
  1102. */
  1103. if (swap_duplicate(entry) < 0) {
  1104. set_pte_at(mm, address, pte, pteval);
  1105. ret = SWAP_FAIL;
  1106. goto out_unmap;
  1107. }
  1108. if (list_empty(&mm->mmlist)) {
  1109. spin_lock(&mmlist_lock);
  1110. if (list_empty(&mm->mmlist))
  1111. list_add(&mm->mmlist, &init_mm.mmlist);
  1112. spin_unlock(&mmlist_lock);
  1113. }
  1114. dec_mm_counter(mm, MM_ANONPAGES);
  1115. inc_mm_counter(mm, MM_SWAPENTS);
  1116. } else if (IS_ENABLED(CONFIG_MIGRATION)) {
  1117. /*
  1118. * Store the pfn of the page in a special migration
  1119. * pte. do_swap_page() will wait until the migration
  1120. * pte is removed and then restart fault handling.
  1121. */
  1122. BUG_ON(!(flags & TTU_MIGRATION));
  1123. entry = make_migration_entry(page, pte_write(pteval));
  1124. }
  1125. swp_pte = swp_entry_to_pte(entry);
  1126. if (pte_soft_dirty(pteval))
  1127. swp_pte = pte_swp_mksoft_dirty(swp_pte);
  1128. set_pte_at(mm, address, pte, swp_pte);
  1129. BUG_ON(pte_file(*pte));
  1130. } else if (IS_ENABLED(CONFIG_MIGRATION) &&
  1131. (flags & TTU_MIGRATION)) {
  1132. /* Establish migration entry for a file page */
  1133. swp_entry_t entry;
  1134. entry = make_migration_entry(page, pte_write(pteval));
  1135. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1136. } else
  1137. dec_mm_counter(mm, MM_FILEPAGES);
  1138. page_remove_rmap(page);
  1139. page_cache_release(page);
  1140. out_unmap:
  1141. pte_unmap_unlock(pte, ptl);
  1142. if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
  1143. mmu_notifier_invalidate_page(mm, address);
  1144. out:
  1145. return ret;
  1146. out_mlock:
  1147. pte_unmap_unlock(pte, ptl);
  1148. /*
  1149. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  1150. * unstable result and race. Plus, We can't wait here because
  1151. * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
  1152. * if trylock failed, the page remain in evictable lru and later
  1153. * vmscan could retry to move the page to unevictable lru if the
  1154. * page is actually mlocked.
  1155. */
  1156. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1157. if (vma->vm_flags & VM_LOCKED) {
  1158. mlock_vma_page(page);
  1159. ret = SWAP_MLOCK;
  1160. }
  1161. up_read(&vma->vm_mm->mmap_sem);
  1162. }
  1163. return ret;
  1164. }
  1165. /*
  1166. * objrmap doesn't work for nonlinear VMAs because the assumption that
  1167. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  1168. * Consequently, given a particular page and its ->index, we cannot locate the
  1169. * ptes which are mapping that page without an exhaustive linear search.
  1170. *
  1171. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  1172. * maps the file to which the target page belongs. The ->vm_private_data field
  1173. * holds the current cursor into that scan. Successive searches will circulate
  1174. * around the vma's virtual address space.
  1175. *
  1176. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  1177. * more scanning pressure is placed against them as well. Eventually pages
  1178. * will become fully unmapped and are eligible for eviction.
  1179. *
  1180. * For very sparsely populated VMAs this is a little inefficient - chances are
  1181. * there there won't be many ptes located within the scan cluster. In this case
  1182. * maybe we could scan further - to the end of the pte page, perhaps.
  1183. *
  1184. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  1185. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  1186. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  1187. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  1188. */
  1189. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  1190. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  1191. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  1192. struct vm_area_struct *vma, struct page *check_page)
  1193. {
  1194. struct mm_struct *mm = vma->vm_mm;
  1195. pmd_t *pmd;
  1196. pte_t *pte;
  1197. pte_t pteval;
  1198. spinlock_t *ptl;
  1199. struct page *page;
  1200. unsigned long address;
  1201. unsigned long mmun_start; /* For mmu_notifiers */
  1202. unsigned long mmun_end; /* For mmu_notifiers */
  1203. unsigned long end;
  1204. int ret = SWAP_AGAIN;
  1205. int locked_vma = 0;
  1206. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1207. end = address + CLUSTER_SIZE;
  1208. if (address < vma->vm_start)
  1209. address = vma->vm_start;
  1210. if (end > vma->vm_end)
  1211. end = vma->vm_end;
  1212. pmd = mm_find_pmd(mm, address);
  1213. if (!pmd)
  1214. return ret;
  1215. mmun_start = address;
  1216. mmun_end = end;
  1217. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1218. /*
  1219. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1220. * keep the sem while scanning the cluster for mlocking pages.
  1221. */
  1222. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1223. locked_vma = (vma->vm_flags & VM_LOCKED);
  1224. if (!locked_vma)
  1225. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1226. }
  1227. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1228. /* Update high watermark before we lower rss */
  1229. update_hiwater_rss(mm);
  1230. for (; address < end; pte++, address += PAGE_SIZE) {
  1231. if (!pte_present(*pte))
  1232. continue;
  1233. page = vm_normal_page(vma, address, *pte);
  1234. BUG_ON(!page || PageAnon(page));
  1235. if (locked_vma) {
  1236. if (page == check_page) {
  1237. /* we know we have check_page locked */
  1238. mlock_vma_page(page);
  1239. ret = SWAP_MLOCK;
  1240. } else if (trylock_page(page)) {
  1241. /*
  1242. * If we can lock the page, perform mlock.
  1243. * Otherwise leave the page alone, it will be
  1244. * eventually encountered again later.
  1245. */
  1246. mlock_vma_page(page);
  1247. unlock_page(page);
  1248. }
  1249. continue; /* don't unmap */
  1250. }
  1251. /*
  1252. * No need for _notify because we're within an
  1253. * mmu_notifier_invalidate_range_ {start|end} scope.
  1254. */
  1255. if (ptep_clear_flush_young(vma, address, pte))
  1256. continue;
  1257. /* Nuke the page table entry. */
  1258. flush_cache_page(vma, address, pte_pfn(*pte));
  1259. pteval = ptep_clear_flush(vma, address, pte);
  1260. /* If nonlinear, store the file page offset in the pte. */
  1261. if (page->index != linear_page_index(vma, address)) {
  1262. pte_t ptfile = pgoff_to_pte(page->index);
  1263. if (pte_soft_dirty(pteval))
  1264. ptfile = pte_file_mksoft_dirty(ptfile);
  1265. set_pte_at(mm, address, pte, ptfile);
  1266. }
  1267. /* Move the dirty bit to the physical page now the pte is gone. */
  1268. if (pte_dirty(pteval))
  1269. set_page_dirty(page);
  1270. page_remove_rmap(page);
  1271. page_cache_release(page);
  1272. dec_mm_counter(mm, MM_FILEPAGES);
  1273. (*mapcount)--;
  1274. }
  1275. pte_unmap_unlock(pte - 1, ptl);
  1276. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1277. if (locked_vma)
  1278. up_read(&vma->vm_mm->mmap_sem);
  1279. return ret;
  1280. }
  1281. static int try_to_unmap_nonlinear(struct page *page,
  1282. struct address_space *mapping, void *arg)
  1283. {
  1284. struct vm_area_struct *vma;
  1285. int ret = SWAP_AGAIN;
  1286. unsigned long cursor;
  1287. unsigned long max_nl_cursor = 0;
  1288. unsigned long max_nl_size = 0;
  1289. unsigned int mapcount;
  1290. list_for_each_entry(vma,
  1291. &mapping->i_mmap_nonlinear, shared.nonlinear) {
  1292. cursor = (unsigned long) vma->vm_private_data;
  1293. if (cursor > max_nl_cursor)
  1294. max_nl_cursor = cursor;
  1295. cursor = vma->vm_end - vma->vm_start;
  1296. if (cursor > max_nl_size)
  1297. max_nl_size = cursor;
  1298. }
  1299. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1300. return SWAP_FAIL;
  1301. }
  1302. /*
  1303. * We don't try to search for this page in the nonlinear vmas,
  1304. * and page_referenced wouldn't have found it anyway. Instead
  1305. * just walk the nonlinear vmas trying to age and unmap some.
  1306. * The mapcount of the page we came in with is irrelevant,
  1307. * but even so use it as a guide to how hard we should try?
  1308. */
  1309. mapcount = page_mapcount(page);
  1310. if (!mapcount)
  1311. return ret;
  1312. cond_resched();
  1313. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1314. if (max_nl_cursor == 0)
  1315. max_nl_cursor = CLUSTER_SIZE;
  1316. do {
  1317. list_for_each_entry(vma,
  1318. &mapping->i_mmap_nonlinear, shared.nonlinear) {
  1319. cursor = (unsigned long) vma->vm_private_data;
  1320. while (cursor < max_nl_cursor &&
  1321. cursor < vma->vm_end - vma->vm_start) {
  1322. if (try_to_unmap_cluster(cursor, &mapcount,
  1323. vma, page) == SWAP_MLOCK)
  1324. ret = SWAP_MLOCK;
  1325. cursor += CLUSTER_SIZE;
  1326. vma->vm_private_data = (void *) cursor;
  1327. if ((int)mapcount <= 0)
  1328. return ret;
  1329. }
  1330. vma->vm_private_data = (void *) max_nl_cursor;
  1331. }
  1332. cond_resched();
  1333. max_nl_cursor += CLUSTER_SIZE;
  1334. } while (max_nl_cursor <= max_nl_size);
  1335. /*
  1336. * Don't loop forever (perhaps all the remaining pages are
  1337. * in locked vmas). Reset cursor on all unreserved nonlinear
  1338. * vmas, now forgetting on which ones it had fallen behind.
  1339. */
  1340. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
  1341. vma->vm_private_data = NULL;
  1342. return ret;
  1343. }
  1344. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1345. {
  1346. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1347. if (!maybe_stack)
  1348. return false;
  1349. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1350. VM_STACK_INCOMPLETE_SETUP)
  1351. return true;
  1352. return false;
  1353. }
  1354. static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
  1355. {
  1356. return is_vma_temporary_stack(vma);
  1357. }
  1358. static int page_not_mapped(struct page *page)
  1359. {
  1360. return !page_mapped(page);
  1361. };
  1362. /**
  1363. * try_to_unmap - try to remove all page table mappings to a page
  1364. * @page: the page to get unmapped
  1365. * @flags: action and flags
  1366. *
  1367. * Tries to remove all the page table entries which are mapping this
  1368. * page, used in the pageout path. Caller must hold the page lock.
  1369. * Return values are:
  1370. *
  1371. * SWAP_SUCCESS - we succeeded in removing all mappings
  1372. * SWAP_AGAIN - we missed a mapping, try again later
  1373. * SWAP_FAIL - the page is unswappable
  1374. * SWAP_MLOCK - page is mlocked.
  1375. */
  1376. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1377. {
  1378. int ret;
  1379. struct rmap_walk_control rwc = {
  1380. .rmap_one = try_to_unmap_one,
  1381. .arg = (void *)flags,
  1382. .done = page_not_mapped,
  1383. .file_nonlinear = try_to_unmap_nonlinear,
  1384. .anon_lock = page_lock_anon_vma_read,
  1385. };
  1386. VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
  1387. /*
  1388. * During exec, a temporary VMA is setup and later moved.
  1389. * The VMA is moved under the anon_vma lock but not the
  1390. * page tables leading to a race where migration cannot
  1391. * find the migration ptes. Rather than increasing the
  1392. * locking requirements of exec(), migration skips
  1393. * temporary VMAs until after exec() completes.
  1394. */
  1395. if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
  1396. rwc.invalid_vma = invalid_migration_vma;
  1397. ret = rmap_walk(page, &rwc);
  1398. if (ret != SWAP_MLOCK && !page_mapped(page))
  1399. ret = SWAP_SUCCESS;
  1400. return ret;
  1401. }
  1402. /**
  1403. * try_to_munlock - try to munlock a page
  1404. * @page: the page to be munlocked
  1405. *
  1406. * Called from munlock code. Checks all of the VMAs mapping the page
  1407. * to make sure nobody else has this page mlocked. The page will be
  1408. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1409. *
  1410. * Return values are:
  1411. *
  1412. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1413. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1414. * SWAP_FAIL - page cannot be located at present
  1415. * SWAP_MLOCK - page is now mlocked.
  1416. */
  1417. int try_to_munlock(struct page *page)
  1418. {
  1419. int ret;
  1420. struct rmap_walk_control rwc = {
  1421. .rmap_one = try_to_unmap_one,
  1422. .arg = (void *)TTU_MUNLOCK,
  1423. .done = page_not_mapped,
  1424. /*
  1425. * We don't bother to try to find the munlocked page in
  1426. * nonlinears. It's costly. Instead, later, page reclaim logic
  1427. * may call try_to_unmap() and recover PG_mlocked lazily.
  1428. */
  1429. .file_nonlinear = NULL,
  1430. .anon_lock = page_lock_anon_vma_read,
  1431. };
  1432. VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
  1433. ret = rmap_walk(page, &rwc);
  1434. return ret;
  1435. }
  1436. void __put_anon_vma(struct anon_vma *anon_vma)
  1437. {
  1438. struct anon_vma *root = anon_vma->root;
  1439. anon_vma_free(anon_vma);
  1440. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1441. anon_vma_free(root);
  1442. }
  1443. static struct anon_vma *rmap_walk_anon_lock(struct page *page,
  1444. struct rmap_walk_control *rwc)
  1445. {
  1446. struct anon_vma *anon_vma;
  1447. if (rwc->anon_lock)
  1448. return rwc->anon_lock(page);
  1449. /*
  1450. * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
  1451. * because that depends on page_mapped(); but not all its usages
  1452. * are holding mmap_sem. Users without mmap_sem are required to
  1453. * take a reference count to prevent the anon_vma disappearing
  1454. */
  1455. anon_vma = page_anon_vma(page);
  1456. if (!anon_vma)
  1457. return NULL;
  1458. anon_vma_lock_read(anon_vma);
  1459. return anon_vma;
  1460. }
  1461. /*
  1462. * rmap_walk_anon - do something to anonymous page using the object-based
  1463. * rmap method
  1464. * @page: the page to be handled
  1465. * @rwc: control variable according to each walk type
  1466. *
  1467. * Find all the mappings of a page using the mapping pointer and the vma chains
  1468. * contained in the anon_vma struct it points to.
  1469. *
  1470. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1471. * where the page was found will be held for write. So, we won't recheck
  1472. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1473. * LOCKED.
  1474. */
  1475. static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
  1476. {
  1477. struct anon_vma *anon_vma;
  1478. pgoff_t pgoff = page_to_pgoff(page);
  1479. struct anon_vma_chain *avc;
  1480. int ret = SWAP_AGAIN;
  1481. anon_vma = rmap_walk_anon_lock(page, rwc);
  1482. if (!anon_vma)
  1483. return ret;
  1484. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1485. struct vm_area_struct *vma = avc->vma;
  1486. unsigned long address = vma_address(page, vma);
  1487. if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
  1488. continue;
  1489. ret = rwc->rmap_one(page, vma, address, rwc->arg);
  1490. if (ret != SWAP_AGAIN)
  1491. break;
  1492. if (rwc->done && rwc->done(page))
  1493. break;
  1494. }
  1495. anon_vma_unlock_read(anon_vma);
  1496. return ret;
  1497. }
  1498. /*
  1499. * rmap_walk_file - do something to file page using the object-based rmap method
  1500. * @page: the page to be handled
  1501. * @rwc: control variable according to each walk type
  1502. *
  1503. * Find all the mappings of a page using the mapping pointer and the vma chains
  1504. * contained in the address_space struct it points to.
  1505. *
  1506. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1507. * where the page was found will be held for write. So, we won't recheck
  1508. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1509. * LOCKED.
  1510. */
  1511. static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
  1512. {
  1513. struct address_space *mapping = page->mapping;
  1514. pgoff_t pgoff = page_to_pgoff(page);
  1515. struct vm_area_struct *vma;
  1516. int ret = SWAP_AGAIN;
  1517. /*
  1518. * The page lock not only makes sure that page->mapping cannot
  1519. * suddenly be NULLified by truncation, it makes sure that the
  1520. * structure at mapping cannot be freed and reused yet,
  1521. * so we can safely take mapping->i_mmap_mutex.
  1522. */
  1523. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1524. if (!mapping)
  1525. return ret;
  1526. mutex_lock(&mapping->i_mmap_mutex);
  1527. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  1528. unsigned long address = vma_address(page, vma);
  1529. if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
  1530. continue;
  1531. ret = rwc->rmap_one(page, vma, address, rwc->arg);
  1532. if (ret != SWAP_AGAIN)
  1533. goto done;
  1534. if (rwc->done && rwc->done(page))
  1535. goto done;
  1536. }
  1537. if (!rwc->file_nonlinear)
  1538. goto done;
  1539. if (list_empty(&mapping->i_mmap_nonlinear))
  1540. goto done;
  1541. ret = rwc->file_nonlinear(page, mapping, rwc->arg);
  1542. done:
  1543. mutex_unlock(&mapping->i_mmap_mutex);
  1544. return ret;
  1545. }
  1546. int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
  1547. {
  1548. if (unlikely(PageKsm(page)))
  1549. return rmap_walk_ksm(page, rwc);
  1550. else if (PageAnon(page))
  1551. return rmap_walk_anon(page, rwc);
  1552. else
  1553. return rmap_walk_file(page, rwc);
  1554. }
  1555. #ifdef CONFIG_HUGETLB_PAGE
  1556. /*
  1557. * The following three functions are for anonymous (private mapped) hugepages.
  1558. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1559. * and no lru code, because we handle hugepages differently from common pages.
  1560. */
  1561. static void __hugepage_set_anon_rmap(struct page *page,
  1562. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1563. {
  1564. struct anon_vma *anon_vma = vma->anon_vma;
  1565. BUG_ON(!anon_vma);
  1566. if (PageAnon(page))
  1567. return;
  1568. if (!exclusive)
  1569. anon_vma = anon_vma->root;
  1570. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1571. page->mapping = (struct address_space *) anon_vma;
  1572. page->index = linear_page_index(vma, address);
  1573. }
  1574. void hugepage_add_anon_rmap(struct page *page,
  1575. struct vm_area_struct *vma, unsigned long address)
  1576. {
  1577. struct anon_vma *anon_vma = vma->anon_vma;
  1578. int first;
  1579. BUG_ON(!PageLocked(page));
  1580. BUG_ON(!anon_vma);
  1581. /* address might be in next vma when migration races vma_adjust */
  1582. first = atomic_inc_and_test(&page->_mapcount);
  1583. if (first)
  1584. __hugepage_set_anon_rmap(page, vma, address, 0);
  1585. }
  1586. void hugepage_add_new_anon_rmap(struct page *page,
  1587. struct vm_area_struct *vma, unsigned long address)
  1588. {
  1589. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1590. atomic_set(&page->_mapcount, 0);
  1591. __hugepage_set_anon_rmap(page, vma, address, 1);
  1592. }
  1593. #endif /* CONFIG_HUGETLB_PAGE */