/*******************************************************************************
* The MIT License (MIT)
*
* Copyright (c) 2015 - 2019 Dr. Marc Mültin (V2G Clarity)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*******************************************************************************/
package com.v2gclarity.risev2g.shared.utils;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.math.BigInteger;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.security.AlgorithmParameters;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyManagementException;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.KeyStore;
import java.security.KeyStoreException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.PublicKey;
import java.security.SecureRandom;
import java.security.Signature;
import java.security.SignatureException;
import java.security.UnrecoverableKeyException;
import java.security.cert.Certificate;
import java.security.cert.CertificateEncodingException;
import java.security.cert.CertificateException;
import java.security.cert.CertificateExpiredException;
import java.security.cert.CertificateFactory;
import java.security.cert.CertificateNotYetValidException;
import java.security.cert.X509Certificate;
import java.security.interfaces.ECPrivateKey;
import java.security.interfaces.ECPublicKey;
import java.security.spec.ECGenParameterSpec;
import java.security.spec.ECParameterSpec;
import java.security.spec.ECPoint;
import java.security.spec.ECPrivateKeySpec;
import java.security.spec.ECPublicKeySpec;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.InvalidParameterSpecException;
import java.security.spec.PKCS8EncodedKeySpec;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.Date;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.TimeUnit;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.EncryptedPrivateKeyInfo;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.KeyAgreement;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.SecretKeySpec;
import javax.naming.InvalidNameException;
import javax.naming.ldap.LdapName;
import javax.naming.ldap.Rdn;
import javax.net.ssl.KeyManager;
import javax.net.ssl.KeyManagerFactory;
import javax.net.ssl.SSLContext;
import javax.net.ssl.TrustManager;
import javax.net.ssl.TrustManagerFactory;
import javax.security.auth.x500.X500Principal;
import javax.xml.bind.JAXBElement;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import com.v2gclarity.risev2g.shared.enumerations.GlobalValues;
import com.v2gclarity.risev2g.shared.enumerations.PKI;
import com.v2gclarity.risev2g.shared.exiCodec.ExiCodec;
import com.v2gclarity.risev2g.shared.v2gMessages.msgDef.CanonicalizationMethodType;
import com.v2gclarity.risev2g.shared.v2gMessages.msgDef.CertificateChainType;
import com.v2gclarity.risev2g.shared.v2gMessages.msgDef.ContractSignatureEncryptedPrivateKeyType;
import com.v2gclarity.risev2g.shared.v2gMessages.msgDef.DiffieHellmanPublickeyType;
import com.v2gclarity.risev2g.shared.v2gMessages.msgDef.DigestMethodType;
import com.v2gclarity.risev2g.shared.v2gMessages.msgDef.EMAIDType;
import com.v2gclarity.risev2g.shared.v2gMessages.msgDef.ListOfRootCertificateIDsType;
import com.v2gclarity.risev2g.shared.v2gMessages.msgDef.ReferenceType;
import com.v2gclarity.risev2g.shared.v2gMessages.msgDef.ResponseCodeType;
import com.v2gclarity.risev2g.shared.v2gMessages.msgDef.SignatureMethodType;
import com.v2gclarity.risev2g.shared.v2gMessages.msgDef.SignatureType;
import com.v2gclarity.risev2g.shared.v2gMessages.msgDef.SignedInfoType;
import com.v2gclarity.risev2g.shared.v2gMessages.msgDef.SubCertificatesType;
import com.v2gclarity.risev2g.shared.v2gMessages.msgDef.TransformType;
import com.v2gclarity.risev2g.shared.v2gMessages.msgDef.TransformsType;
import com.v2gclarity.risev2g.shared.v2gMessages.msgDef.X509IssuerSerialType;
import java.util.Base64;
public final class SecurityUtils {
/*
* Add VM (virtual machine) argument "-Djavax.net.debug=ssl" if you want more detailed debugging output
*/
static Logger logger = LogManager.getLogger(SecurityUtils.class.getSimpleName());
static ExiCodec exiCodec;
static boolean showSignatureVerificationLog = ((boolean) MiscUtils.getPropertyValue("signature.verification.showlog"));
public static enum ContractCertificateStatus {
UPDATE_NEEDED,
INSTALLATION_NEEDED,
OK,
UNKNOWN // is used as default for communication session context
}
public static Logger getLogger() {
return logger;
}
/**
* Returns the standard JKS keystore which holds the respective credentials (private key and
* certificate chain) for the EVCC or SECC (whoever calls this method).
*
* The keystore file itself must reside outside the JAR file, at the same level as the JAR file itself,
* because
* a) at least the evccKeystore needs to be editable when installing the contract certificate (JAR file is read-only), and
* b) it is very likely that private keys and certificate chains might be stored separately in a secure hardware module.
* Therefore, the file is not loaded with getResourceAsStream(), but with a FileInputStream.
*
* @param keyStorePath The relative path and file name of the keystore
* @param keyStorePassword The password which protects the keystore
* @return The respective keystore
*/
public static KeyStore getKeyStore(String keyStorePath, String keyStorePassword) {
FileInputStream keyStore;
try {
keyStore = new FileInputStream(keyStorePath);
return getKeyStore(keyStore, keyStorePassword, "jks");
} catch (FileNotFoundException e) {
getLogger().error("Keystore file location '" + keyStorePath + "' not found (FileNotFoundException).");
return null;
}
}
/**
* Returns the standard JKS truststore which holds the respective trusted certificates for the EVCC
* or SECC (whoever calls this method).
*
* The truststore file itself must reside outside the JAR file, at the same level as the JAR file itself,
* because
* a) at least the evccKeystore needs to be editable when installing the contract certificate (JAR file is read-only), and
* b) it is very likely that private keys and certificate chains might be stored separately in a secure hardware module.
* Therefore, the file is not loaded with getResourceAsStream(), but with a FileInputStream.
*
* @param trustStorePath The relative path and file name of the truststore
* @param trustStorePassword The password which protects the truststore
* @return The respective truststore
*/
public static KeyStore getTrustStore(String trustStorePath, String trustStorePassword) {
FileInputStream trustStore;
try {
trustStore = new FileInputStream(trustStorePath);
return getKeyStore(trustStore, trustStorePassword, "jks");
} catch (FileNotFoundException e) {
getLogger().error("Truststore file location '" + trustStorePath + "' not found (FileNotFoundException).");
return null;
}
}
/**
* Returns a PKCS#12 container which holds the respective credentials (private key and certificate chain)
*
* @param pkcs12Path The relative path and file name of the PKCS#12 container
* @param password The password which protects the PKCS#12 container
* @return The respective keystore
*/
public static KeyStore getPKCS12KeyStore(String pkcs12Path, String password) {
FileInputStream fis = null;
try {
fis = new FileInputStream(pkcs12Path);
return getKeyStore(fis, password, "pkcs12");
} catch (FileNotFoundException e) {
getLogger().error("FileNotFoundException occurred while trying to access PKCS#12 container at " +
"location '" + pkcs12Path + "'");
return null;
}
}
/**
* Returns a standard keystore which holds the respective credentials (private key and certificate chain).
*
* @param keyStoreIS The input stream of the keystore
* @param keyStorePassword The password which protects the keystore
* @param keyStoreType The type of the keystore, either "jks" or "pkcs12"
* @return The respective keystore
*/
private static KeyStore getKeyStore(InputStream keyStoreIS, String keyStorePassword, String keyStoreType) {
KeyStore keyStore = null;
try {
keyStore = KeyStore.getInstance(keyStoreType);
keyStore.load(keyStoreIS, keyStorePassword.toCharArray());
keyStoreIS.close();
return keyStore;
} catch (KeyStoreException | NoSuchAlgorithmException | CertificateException |
IOException | NullPointerException e) {
getLogger().error(e.getClass().getSimpleName() + " occurred while trying to load keystore", e);
}
return null;
}
/**
* Checks whether the given certificate is currently valid with regards to date and time.
*
* @param certificate The X509Certificiate to be checked for validity
* @return ResponseCode FAILED_CertificateExpired, if the certificate is expired. FAILED, if the certificate is
* not yet valid, since there is no other proper response code available. OK, otherwise.
*/
public static ResponseCodeType verifyValidityPeriod(X509Certificate certificate) {
try {
certificate.checkValidity();
return ResponseCodeType.OK;
} catch (CertificateExpiredException e) {
X500Principal subject = certificate.getSubjectX500Principal();
getLogger().warn("Certificate with distinguished name '" + subject.getName() +
"' already expired (not after " + certificate.getNotAfter() + ")");
return ResponseCodeType.FAILED_CERTIFICATE_EXPIRED;
} catch (CertificateNotYetValidException e) {
X500Principal subject = certificate.getSubjectX500Principal();
getLogger().warn("Certificate with distinguished name '" + subject.getName() +
"' not yet valid (not before " + certificate.getNotBefore() + ")");
return ResponseCodeType.FAILED;
}
}
/**
* Domain Component restrictions:
* - SECC certificate: "CPO" (verification by EVCC)
* - CPS leaf certificate: "CPS" (verification by EVCC)
* - OEM Provisioning Certificate: "OEM" (verification by provisioning service (neither EVCC nor SECC))
*
* @param certificate The X509Certificiate to be checked for validity
* @param domainComponent The domain component to be checked for in the distinguished name of the certificate
* @return True, if the given domain component is present in the distinguished name, false otherwise
*/
public static boolean verifyDomainComponent(X509Certificate certificate, String domainComponent) {
String dn = certificate.getSubjectX500Principal().getName();
LdapName ln;
try {
ln = new LdapName(dn);
for (Rdn rdn : ln.getRdns()) {
if (rdn.getType().equalsIgnoreCase("DC") && rdn.getValue().equals(domainComponent)) {
return true;
}
}
} catch (InvalidNameException e) {
getLogger().error("InvalidNameException occurred while trying to check domain component of certificate", e);
}
getLogger().error("Expected domain component (DC) '" + domainComponent + "' not found in certificate "
+ "with distinguished name '" + dn + "'");
return false;
}
/**
* Checks how many days a given certificate is still valid.
* If the certificate is not valid any more, a negative number will be returned according to the number
* of days the certificate is already expired.
*
* @param certificate The X509Certificiate to be checked for validity period
* @return The number of days the given certificate is still valid, a negative number if already expired.
*/
public static short getValidityPeriod(X509Certificate certificate) {
Date today = Calendar.getInstance().getTime();
Date certificateExpirationDate = certificate.getNotAfter();
long diff = certificateExpirationDate.getTime() - today.getTime();
return (short) TimeUnit.DAYS.convert(diff, TimeUnit.MILLISECONDS);
}
/**
* Executes the following validity checks:
*
* 1. Verifies the signature for each certificate in the given certificate chain all the way up to the trust
* anchor. Certificates in certificate chain must be in the right order (leaf -> Sub-CA2 -> Sub-CA1)
* 2. Verifies whether the given certificate is currently valid with regards to date and time.
* 3. Verifies that certificate attributes are set correctly, depending on the PKI the certificate chain belongs to
*
* @param certChain The certificate chain to iterate over to check for validity
* @param trustStoreFileName The relative path and file name of the truststore
* @param pki The Public Key Infrastructure to which the certChain belongs (a PKI enumeration value)
* @return ResponseCode applicable to the verification steps
*/
public static ResponseCodeType verifyCertificateChain(
CertificateChainType certChain,
String trustStoreFileName,
PKI pki) {
X509Certificate leafCertificate = null;
X509Certificate subCA1Certificate = null;
X509Certificate subCA2Certificate = null;
ResponseCodeType responseCode = null;
// Get leaf certificate
if (certChain != null) {
leafCertificate = getCertificate(certChain.getCertificate());
} else {
getLogger().error("Signature verification failed because provided certificate chain is empty (null)");
return ResponseCodeType.FAILED_CERT_CHAIN_ERROR;
}
// Get Sub-CA certificates
if (leafCertificate != null) {
SubCertificatesType subCertificates = certChain.getSubCertificates();
if (subCertificates != null && subCertificates.getCertificate().size() != 0) {
subCA2Certificate = getCertificate(subCertificates.getCertificate().get(0));
if (subCertificates.getCertificate().size() == 2)
subCA1Certificate = getCertificate(subCertificates.getCertificate().get(1));
} else {
getLogger().error("Signature verification failed because no Sub-CA certificates available in provided "
+ "certificate chain");
return ResponseCodeType.FAILED_CERT_CHAIN_ERROR;
}
} else {
getLogger().error("Signature verification failed because no leaf certificate available in provided "
+ "certificate chain");
return ResponseCodeType.FAILED_CERT_CHAIN_ERROR;
}
/*
* ****************
* SIGNATURE CHECKS
* ****************
*/
// Check signature of leaf certificate
if (!verifySignature(leafCertificate, subCA2Certificate)) return ResponseCodeType.FAILED_CERT_CHAIN_ERROR;
// Check signature of Sub-CA 2 and optionally, if present, Sub-CA 2 certificate
if (subCA1Certificate != null) {
if (!verifySignature(subCA2Certificate, subCA1Certificate)) return ResponseCodeType.FAILED_CERT_CHAIN_ERROR;
if (!verifySignature(subCA1Certificate, trustStoreFileName)) return ResponseCodeType.FAILED_CERT_CHAIN_ERROR;
} else {
// In case there is only one intermediate certificate (profile of Sub-CA 2)
if (!verifySignature(subCA2Certificate, trustStoreFileName)) return ResponseCodeType.FAILED_CERT_CHAIN_ERROR;
}
/*
* **********************
* VALIDITY PERIOD CHECKS
* **********************
*/
ResponseCodeType validityResponseCode = null;
// Check validity of leaf certificate
validityResponseCode = verifyValidityPeriod(leafCertificate);
if (!validityResponseCode.equals(ResponseCodeType.OK)) return validityResponseCode;
// Check validity of Sub-CA2 certificate
validityResponseCode = verifyValidityPeriod(subCA2Certificate);
if (!validityResponseCode.equals(ResponseCodeType.OK)) return validityResponseCode;
// Check validity of Sub-CA1 certificate, if present
if (subCA1Certificate != null) {
validityResponseCode = verifyValidityPeriod(subCA1Certificate);
if (!validityResponseCode.equals(ResponseCodeType.OK)) return validityResponseCode;
}
/*
* ***********************************
* COMMON CERTIFICATE ATTRIBUTES CHECK
* ***********************************
*/
// Check pathLenContraint (maximum number of non-self-issued intermediate certificates that may follow this certificate)
if (subCA2Certificate.getBasicConstraints() != 0) {
getLogger().error("Sub-CA 2 certificate with distinguished name '" +
subCA2Certificate.getSubjectX500Principal().getName() + "' has incorrect value for " +
"pathLenConstraint. Should be 0 instead of " + subCA2Certificate.getBasicConstraints());
return ResponseCodeType.FAILED_CERTIFICATE_EXPIRED;
}
if (subCA1Certificate != null && subCA1Certificate.getBasicConstraints() != 1) {
getLogger().error("Sub-CA 1 certificate with distinguished name '" +
subCA1Certificate.getSubjectX500Principal().getName() + "' has incorrect value for " +
"pathLenConstraint. Should be 1 instead of " + subCA2Certificate.getBasicConstraints());
return ResponseCodeType.FAILED_CERTIFICATE_EXPIRED;
}
responseCode = verifyLeafCertificateAttributes(leafCertificate, pki);
if (responseCode.equals(ResponseCodeType.OK))
return responseCode;
return ResponseCodeType.OK;
}
/**
* Checks certificate attributes for a given leaf certificate belonging to an ISO 15118 PKI.
*
* @param certificate The X.509 certificate whose attributes need to be checked
* @param pki The PKI to which the certificate belongs
* @return
*/
public static ResponseCodeType verifyLeafCertificateAttributes(X509Certificate leafCertificate, PKI pki) {
switch (pki) {
case CPO:
if (!verifyDomainComponent(leafCertificate, "CPO")) {
getLogger().error("SECC leaf certificate with distinguished name '" +
leafCertificate.getSubjectX500Principal().getName() + "' has incorrect value for " +
"domain component. Should be 'CPO'");
return ResponseCodeType.FAILED_CERT_CHAIN_ERROR;
}
break;
case CPS:
if (!verifyDomainComponent(leafCertificate, "CPS")) {
getLogger().error("CPS leaf certificate with distinguished name '" +
leafCertificate.getSubjectX500Principal().getName() + "' has incorrect value for " +
"domain component. Should be 'CPS'");
return ResponseCodeType.FAILED_CERT_CHAIN_ERROR;
}
break;
case MO:
if (!isEMAIDSyntaxValid(leafCertificate)) {
return ResponseCodeType.FAILED_CERT_CHAIN_ERROR;
}
break;
case OEM:
if (!verifyDomainComponent(leafCertificate, "OEM")) {
getLogger().error("OEM provisioning certificate with distinguished name '" +
leafCertificate.getSubjectX500Principal().getName() + "' has incorrect value for " +
"domain component. Should be 'OEM'");
return ResponseCodeType.FAILED_CERT_CHAIN_ERROR;
}
break;
default:
break;
}
return ResponseCodeType.OK;
}
/**
* Verifies that the given certificate was signed using the private key that corresponds to the
* public key of the provided certificate.
*
* @param certificate The X509Certificate which is to be checked
* @param issuingCertificate The X.509 certificate which holds the public key corresponding to the private
* key with which the given certificate should have been signed
* @return True, if the verification was successful, false otherwise
*/
public static boolean verifySignature(X509Certificate certificate, X509Certificate issuingCertificate) {
X500Principal subject = certificate.getSubjectX500Principal();
X500Principal expectedIssuerSubject = certificate.getIssuerX500Principal();
X500Principal issuerSubject = issuingCertificate.getSubjectX500Principal();
PublicKey publicKeyForSignature = issuingCertificate.getPublicKey();
try {
certificate.verify(publicKeyForSignature);
return true;
} catch (InvalidKeyException | CertificateException | NoSuchAlgorithmException |
NoSuchProviderException | SignatureException e) {
getLogger().warn("\n"
+ "\tSignature verification of certificate having distinguished name \n"
+ "\t'" + subject.getName() + "'\n"
+ "\twith certificate having distinguished name (the issuer) \n"
+ "\t'" + issuerSubject.getName() + "'\n"
+ "\tfailed. Expected issuer has distinguished name \n"
+ "\t'" + expectedIssuerSubject.getName() + "' (" + e.getClass().getSimpleName() + ")", e);
}
return false;
}
/**
* Iterates over the certificates stored in the truststore to verify the signature of the provided certificate
*
* @param trustStoreFilename The relative path and file name of the truststore
* @param certificate The certificate whose signature needs to be verified
* @return True, if the provided certificate has been signed by one of the certificates in the
* truststore, false otherwise
*/
public static boolean verifySignature(X509Certificate certificate, String trustStoreFilename) {
KeyStore trustStore = SecurityUtils.getTrustStore(trustStoreFilename, GlobalValues.PASSPHRASE_FOR_CERTIFICATES_AND_KEYS.toString());
X500Principal expectedIssuer = certificate.getIssuerX500Principal();
try {
Enumeration aliases = trustStore.aliases();
while (aliases.hasMoreElements()) {
X509Certificate rootCA = (X509Certificate) trustStore.getCertificate(aliases.nextElement());
if (rootCA.getSubjectX500Principal().getName().equals(expectedIssuer.getName()) &&
verifySignature(certificate, rootCA)) return true;
}
} catch (KeyStoreException | NullPointerException e) {
getLogger().error(e.getClass().getSimpleName() + " occurred while trying to verify trust " +
"status of certificate with distinguished name '" +
certificate.getSubjectX500Principal().getName() + "' with truststore at " +
"location '" + trustStoreFilename + "'", e);
}
return false;
}
/**
* Returns the leaf certificate from a given certificate chain.
*
* @param certChain The certificate chain given as an array of Certificate instances
* @return The leaf certificate (begin not a CA)
*/
public static X509Certificate getLeafCertificate(Certificate[] certChain) {
for (Certificate cert : certChain) {
X509Certificate x509Cert = (X509Certificate) cert;
// Check whether the pathLen constraint is set which indicates if this certificate is a CA
if (x509Cert.getBasicConstraints() == -1) return x509Cert;
}
getLogger().warn("No leaf certificate found in given certificate chain");
return null;
}
/**
* Returns the intermediate certificates (sub CAs) from a given certificate chain.
*
* @param certChain The certificate chain given as an array of Certificate instances
* @return The sub certificates given as a list of byte arrays contained in a SubCertiticatesType instance
*/
public static SubCertificatesType getSubCertificates(Certificate[] certChain) {
SubCertificatesType subCertificates = new SubCertificatesType();
for (Certificate cert : certChain) {
X509Certificate x509Cert = (X509Certificate) cert;
// Check whether the pathLen constraint is set which indicates if this certificate is a CA
if (x509Cert.getBasicConstraints() != -1)
try {
subCertificates.getCertificate().add(x509Cert.getEncoded());
} catch (CertificateEncodingException e) {
X500Principal subject = x509Cert.getIssuerX500Principal();
getLogger().error("A CertificateEncodingException occurred while trying to get certificate " +
"with distinguished name '" + subject.getName().toString() + "'", e);
}
}
if (subCertificates.getCertificate().size() == 0) {
getLogger().warn("No intermediate CAs found in given certificate array");
}
return subCertificates;
}
/**
* Returns the list of X509IssuerSerialType instances of the root CAs contained in the truststore.
*
* @param trustStoreFileName The relative path and file name of the truststore
* @param trustStorePassword The password which protects the truststore
* @return The list of X509IssuerSerialType instances of the root CAs
*/
public static ListOfRootCertificateIDsType getListOfRootCertificateIDs(
String trustStoreFileName,
String trustStorePassword) {
KeyStore evccTrustStore = getTrustStore(trustStoreFileName, trustStorePassword);
ListOfRootCertificateIDsType rootCertificateIDs = new ListOfRootCertificateIDsType();
X509Certificate cert = null;
try {
Enumeration aliases = evccTrustStore.aliases();
while (aliases.hasMoreElements()) {
cert = (X509Certificate) evccTrustStore.getCertificate(aliases.nextElement());
X509IssuerSerialType serialType = new X509IssuerSerialType();
serialType.setX509IssuerName(cert.getIssuerX500Principal().getName());
serialType.setX509SerialNumber(cert.getSerialNumber());
rootCertificateIDs.getRootCertificateID().add(serialType);
}
} catch (KeyStoreException | NullPointerException e) {
getLogger().error(e.getClass().getSimpleName() + " occurred while trying to get list of " +
"root certificate IDs from truststore at location '" + trustStoreFileName + "'", e);
}
return rootCertificateIDs;
}
/**
* Returns an instance of a X.509 certificate created from its raw byte array
*
* @param certificate The byte array representing a X.509 certificate
* @return The X.509 certificate
*/
public static X509Certificate getCertificate(byte[] certificate) {
X509Certificate cert = null;
try {
InputStream in = new ByteArrayInputStream(certificate);
CertificateFactory certFactory = CertificateFactory.getInstance("X.509");
cert = (X509Certificate) certFactory.generateCertificate(in);
} catch (CertificateException e) {
getLogger().error("CertificateException occurred when trying to create X.509 certificate from byte array", e);
}
return cert;
}
/**
* Returns the mobility operator Sub-CA 2 certificate (MOSubCA2 certificate) which can verify the signature of the
* contract certificate from the given keystore. The public key of the MOSub2Certificate is then used to verify
* the signature of sales tariffs.
*
* @param keyStoreFileName The relative path and file name of the keystore
* @return The X.509 mobility operator Sub-CA2 certificate (a certificate from a Sub-CA)
*/
public static X509Certificate getMOSubCA2Certificate(String keyStoreFileName) {
KeyStore keystore = getKeyStore(keyStoreFileName, GlobalValues.PASSPHRASE_FOR_CERTIFICATES_AND_KEYS.toString());
X509Certificate moSubCA2Certificate = null;
try {
Certificate[] certChain = keystore.getCertificateChain(GlobalValues.ALIAS_CONTRACT_CERTIFICATE.toString());
X509Certificate contractCertificate = getLeafCertificate(certChain);
SubCertificatesType subCertificates = getSubCertificates(certChain);
for (byte[] certificate : subCertificates.getCertificate()) {
X509Certificate x509Cert = getCertificate(certificate);
if (contractCertificate.getIssuerX500Principal().getName().equals(
x509Cert.getSubjectX500Principal().getName())) {
moSubCA2Certificate = x509Cert;
break;
}
}
} catch (KeyStoreException e) {
getLogger().error("KeyStoreException occurred while trying to get MOSubCA2 certificate");
}
return moSubCA2Certificate;
}
/**
* Returns the ECPublicKey instance from its encoded raw bytes.
* The first byte has the fixed value 0x04 indicating the uncompressed form.
* Therefore, the byte array must be of form: [0x04, x coord of point (32 bytes), y coord of point (32 bytes)]
*
* @param publicKeyBytes The byte array representing the encoded raw bytes of the public key
* @return The ECPublicKey instance
*/
public static ECPublicKey getPublicKey(byte[] publicKeyBytes) {
// First we separate x and y of coordinates into separate variables
byte[] x = new byte[32];
byte[] y = new byte[32];
System.arraycopy(publicKeyBytes, 1, x, 0, 32);
System.arraycopy(publicKeyBytes, 33, y, 0, 32);
try {
KeyFactory kf = KeyFactory.getInstance("EC");
AlgorithmParameters parameters = AlgorithmParameters.getInstance("EC");
parameters.init(new ECGenParameterSpec("secp256r1"));
ECParameterSpec ecParameterSpec = parameters.getParameterSpec(ECParameterSpec.class);
ECPublicKeySpec ecPublicKeySpec = new ECPublicKeySpec(new ECPoint(new BigInteger(x), new BigInteger(y)), ecParameterSpec);
ECPublicKey ecPublicKey = (ECPublicKey) kf.generatePublic(ecPublicKeySpec);
return ecPublicKey;
} catch (NoSuchAlgorithmException | InvalidParameterSpecException | InvalidKeySpecException e) {
getLogger().error(e.getClass().getSimpleName() + " occurred when trying to get public key from raw bytes", e);
return null;
}
}
/**
* Returns the public key part of an elliptic curve Diffie-Hellman keypair
*
* @param ecdhKeyPair The elliptic curve Diffie-Hellman keypair
* @return The respective public key
*/
public static DiffieHellmanPublickeyType getDHPublicKey(KeyPair ecdhKeyPair) {
DiffieHellmanPublickeyType dhPublicKey = new DiffieHellmanPublickeyType();
/*
* Experience from the test symposium in San Diego (April 2016):
* The Id element of the signature is not restricted in size by the standard itself. But on embedded
* systems, the memory is very limited which is why we should not use long IDs for the signature reference
* element. A good size would be 3 characters max (like the example in the ISO 15118-2 annex J)
*/
dhPublicKey.setId("id1");
byte[] uncompressedDHpublicKey = getUncompressedSubjectPublicKey((ECPublicKey) ecdhKeyPair.getPublic());
getLogger().debug("Created DHpublickey: " + ByteUtils.toHexString(uncompressedDHpublicKey));
dhPublicKey.setValue(uncompressedDHpublicKey);
return dhPublicKey;
}
/**
* Returns the ECPrivateKey instance from its raw bytes. Note that you must provide the "s" value of the
* private key, not e.g. the byte array from reading a PKCS#8 key file.
*
* @param privateKeyBytes The byte array (the "s" value) of the private key
* @return The ECPrivateKey instance
*/
public static ECPrivateKey getPrivateKey(byte[] privateKeyBytes) {
try {
AlgorithmParameters parameters = AlgorithmParameters.getInstance("EC");
parameters.init(new ECGenParameterSpec("secp256r1"));
ECParameterSpec ecParameterSpec = parameters.getParameterSpec(ECParameterSpec.class);
ECPrivateKeySpec ecPrivateKeySpec = new ECPrivateKeySpec(new BigInteger(privateKeyBytes), ecParameterSpec);
ECPrivateKey privateKey = (ECPrivateKey) KeyFactory.getInstance("EC").generatePrivate(ecPrivateKeySpec);
return privateKey;
} catch (NoSuchAlgorithmException | InvalidKeySpecException | InvalidParameterSpecException e) {
getLogger().error(e.getClass().getSimpleName() + " occurred when trying to get private key from raw bytes", e);
return null;
}
}
/**
* Searches the given keystore for the private key. It is assumed that the given keystore holds
* only one private key entry whose alias is not known before, which is the case during certificate
* installation when the SECC uses a PKCS#12 container encapsulating the
* contract certificate, its private key and an optional chain of intermediate CAs.
*
* @param keyStore The PKCS#12 keystore
* @return The private key contained in the given keystore as an ECPrivateKey
*/
public static ECPrivateKey getPrivateKey(KeyStore keyStore) {
ECPrivateKey privateKey = null;
try {
Enumeration aliases = keyStore.aliases();
// Only one certificate chain (and therefore alias) should be available
while (aliases.hasMoreElements()) {
privateKey = (ECPrivateKey) keyStore.getKey(
aliases.nextElement(),
GlobalValues.PASSPHRASE_FOR_CERTIFICATES_AND_KEYS.toString().toCharArray());
}
} catch (KeyStoreException | UnrecoverableKeyException | NoSuchAlgorithmException |
NullPointerException e) {
getLogger().error(e.getClass().getSimpleName() + " occurred while trying to get private " +
"key from keystore", e);
}
return privateKey;
}
/**
* Reads the private key from an encrypted PKCS#8 file and returns it as an ECPrivateKey instance.
*
* ----- !! IMPORTANT NOTE!! -----
* The PKCS#8 key file must be encrypted using a PKCS#12 encryption scheme, since JCE parsing of Pbes2Parameters (as defined in PKCS#5)
* is buggy in Java 1.8, see also https://bugs.openjdk.java.net/browse/JDK-8076999. The bug results in an IOException when trying to
* instantiate the EncryptedPrivateKeyInfo class.
*
* The OpenSSL command used to create the DER-encoded and encrypted PKCS#8 file needs to use the 'v1 alg' option, specifying a proper algorithm.
* Example: '-v1 PBE-SHA1-3DES' (see https://www.openssl.org/docs/man1.0.2/man1/openssl-pkcs8.html).
* -----
*
* @param A PKCS#8 (.key) file containing the private key with value "s"
* @return The private key as an ECPrivateKey instance
*/
public static ECPrivateKey getPrivateKey(String keyFilePath) {
Path fileLocation = Paths.get(keyFilePath);
byte[] pkcs8ByteArray;
try {
pkcs8ByteArray = Files.readAllBytes(fileLocation);
// Get the password that was used to encrypt the private key
PBEKeySpec password = new PBEKeySpec(GlobalValues.PASSPHRASE_FOR_CERTIFICATES_AND_KEYS.toString().toCharArray());
// Read the ASN.1 structure of the PKCS#8 DER-encoded file
EncryptedPrivateKeyInfo encryptedPrivKeyInfo = new EncryptedPrivateKeyInfo(pkcs8ByteArray);
// Instantiate the key factory which will create the symmetric (secret) key using algorithm that is encoded in the ASN.1 structure
// (see 'v1 alg' in OpenSSL's pkcs8 command) and the given password
SecretKeyFactory secretKeyFactory = SecretKeyFactory.getInstance(encryptedPrivKeyInfo.getAlgName());
// Create the symmetric key from the given password
Key decryptKey = secretKeyFactory.generateSecret(password);
// Extract the PKCS8EncodedKeySpec object from the encrypted data
PKCS8EncodedKeySpec pkcs8PrivKeySpec = encryptedPrivKeyInfo.getKeySpec(decryptKey);
// Generate the EC private key
ECPrivateKey privateKey = (ECPrivateKey) KeyFactory.getInstance("EC").generatePrivate(pkcs8PrivKeySpec);
return privateKey;
} catch (IOException | InvalidKeySpecException | NoSuchAlgorithmException | InvalidKeyException e) {
getLogger().error(e.getClass().getSimpleName() + " occurred while trying to access private key at " +
"location '" + keyFilePath + "'");
e.printStackTrace();
return null;
}
}
/**
* Searches the given keystore for the private key which corresponds to the provided alias.
* Example: In case of the EVCC and during certificate installation, the private key of the
* OEM provisioning certificate is needed. During certificate update, the private key of the
* existing contract certificate is needed.
*
* @param keyStore The keystore of EVCC or SECC
* @param alias The alias of a specific private key entry
* @return The private key corresponding to the respective alias in the given keystore
*/
public static ECPrivateKey getPrivateKey(KeyStore keyStore, String alias) {
ECPrivateKey privateKey = null;
try {
privateKey = (ECPrivateKey) keyStore.getKey(
alias,
GlobalValues.PASSPHRASE_FOR_CERTIFICATES_AND_KEYS.toString().toCharArray());
} catch (KeyStoreException | UnrecoverableKeyException | NoSuchAlgorithmException e) {
getLogger().error("The private key from keystore with alias '" + alias +
"' could not be retrieved (" + e.getClass().getSimpleName() + ")", e);
}
return privateKey;
}
/**
* Returns the SecretKey instance from its raw bytes
*
* @param key The byte array representing the symmetric SecretKey instance
* @return The SecretKey instance
*/
public static SecretKey getSecretKey(byte[] key) {
SecretKey secretKey = new SecretKeySpec(key, 0, key.length, "DiffieHellman");
return secretKey;
}
/**
* Returns the certificate chain from a PKCS#12 container holding credentials such as private key,
* leaf certificate and zero or more intermediate certificates.
*
* @param pkcs12Resource The PKCS#12 container
* @return The certificate chain
*/
public static CertificateChainType getCertificateChain(String pkcs12Resource) {
CertificateChainType certChain = new CertificateChainType();
/*
* For testing purposes, the respective PKCS12 container file has already been put in the
* resources folder. However, when implementing a real interface to a secondary actor's backend,
* the retrieval of a certificate must be done via some other online mechanism.
*/
KeyStore contractCertificateKeystore = getPKCS12KeyStore(pkcs12Resource, GlobalValues.PASSPHRASE_FOR_CERTIFICATES_AND_KEYS.toString());
if (contractCertificateKeystore == null) {
getLogger().error("Unable to access certificate chain because no PKCS#12 container found at " +
"location '" + pkcs12Resource + "'");
return null;
}
try {
Enumeration aliases = contractCertificateKeystore.aliases();
Certificate[] tempCertChain = null;
// Only one certificate chain (and therefore alias) should be available
while (aliases.hasMoreElements()) {
tempCertChain = contractCertificateKeystore.getCertificateChain(aliases.nextElement());
certChain.setCertificate(getLeafCertificate(tempCertChain).getEncoded());
certChain.setSubCertificates(getSubCertificates(tempCertChain));
}
} catch (KeyStoreException | CertificateEncodingException | NullPointerException e) {
getLogger().error(e.getClass().getSimpleName() + " occurred while trying to get " +
"certificate chain from resource '" + pkcs12Resource + "'", e);
}
return certChain;
}
/**
* Returns the SignedInfo element of the V2GMessage header, based on the provided HashMap which holds
* the reference IDs (URIs) and the corresponding SHA-256 digests.
*
* @param xmlSignatureRefElements A HashMap of Strings (reflecting the reference IDs) and digest values
* @return The SignedInfoType instance
*/
public static SignedInfoType getSignedInfo(HashMap xmlSignatureRefElements) {
/*
* According to requirement [V2G2-771] in ISO/IEC 15118-2 the following message elements of the
* XML signature framework shall not be used:
* - Id (attribute in SignedInfo)
* - ##any in SignedInfo – CanonicalizationMethod
* - HMACOutputLength in SignedInfo – SignatureMethod
* - ##other in SignedInfo – SignatureMethod
* - Type (attribute in SignedInfo-Reference)
* - ##other in SignedInfo – Reference – Transforms – Transform
* - XPath in SignedInfo – Reference – Transforms – Transform
* - ##other in SignedInfo – Reference – DigestMethod
* - Id (attribute in SignatureValue)
* - Object (in Signature)
* - KeyInfo
*/
DigestMethodType digestMethod = new DigestMethodType();
digestMethod.setAlgorithm("http://www.w3.org/2001/04/xmlenc#sha256");
TransformType transform = new TransformType();
transform.setAlgorithm("http://www.w3.org/TR/canonical-exi/");
TransformsType transforms = new TransformsType();
transforms.getTransform().add(transform);
List references = new ArrayList();
xmlSignatureRefElements.forEach( (k,v) -> {
ReferenceType reference = new ReferenceType();
reference.setDigestMethod(digestMethod);
reference.setDigestValue(v);
reference.setTransforms(transforms);
reference.setURI("#" + k);
references.add(reference);
});
CanonicalizationMethodType canonicalizationMethod = new CanonicalizationMethodType();
canonicalizationMethod.setAlgorithm("http://www.w3.org/TR/canonical-exi/");
SignatureMethodType signatureMethod = new SignatureMethodType();
signatureMethod.setAlgorithm("http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256");
SignedInfoType signedInfo = new SignedInfoType();
signedInfo.setCanonicalizationMethod(canonicalizationMethod);
signedInfo.setSignatureMethod(signatureMethod);
signedInfo.getReference().addAll(references);
return signedInfo;
}
/**
* Saves the newly received contract certificate chain, provided by CertificateInstallationRes or
* CertificateUpdateRes.
*
* @param keyStorePassword The password which protects the EVCC keystore
* @param contractCertChain The certificate chain belonging to the contract certificate
* @param contractCertPrivateKey The private key corresponding to the public key of the leaf certificate
* stored in the certificate chain
* @return True, if the contract certificate chain and private key could be saved, false otherwise
*/
public static boolean saveContractCertificateChain(
String keyStorePassword,
CertificateChainType contractCertChain,
ECPrivateKey contractCertPrivateKey) {
KeyStore keyStore = getKeyStore(GlobalValues.EVCC_KEYSTORE_FILEPATH.toString(), keyStorePassword);
try {
if (isPrivateKeyValid(contractCertPrivateKey, contractCertChain)) {
keyStore.setKeyEntry(
GlobalValues.ALIAS_CONTRACT_CERTIFICATE.toString(),
contractCertPrivateKey,
keyStorePassword.toCharArray(),
getCertificateChain(contractCertChain));
// Save the keystore persistently
FileOutputStream fos = new FileOutputStream("evccKeystore.jks");
keyStore.store(fos, GlobalValues.PASSPHRASE_FOR_CERTIFICATES_AND_KEYS.toString().toCharArray());
fos.close();
X509Certificate contractCert = getCertificate(contractCertChain.getCertificate());
getLogger().info("Contract certificate with distinguished name '" +
contractCert.getSubjectX500Principal().getName() + "' saved. " +
"Valid until " + contractCert.getNotAfter()
);
getLogger().debug("Decrypted private key belonging to contract certificate saved. Key bytes: " +
ByteUtils.toHexString(contractCertPrivateKey.getEncoded()));
} else {
getLogger().error("Private key for contract certificate is not valid");
return false;
}
} catch (KeyStoreException | NoSuchAlgorithmException | CertificateException | IOException | NullPointerException e) {
getLogger().error(e.getClass().getSimpleName() + " occurred while trying to save contract " +
"certificate chain", e);
return false;
}
return true;
}
/**
* Checks if the private key is a valid key (according to requirement [V2G2-823]) for the received contract
* certificate before saving it to the keystore.
* @param privateKey The private key corresponding to the contract certificate
* @param contractCertChain The received contract certificate chain
* @return True, if the private key is a valid key, false otherwise.
*/
private static boolean isPrivateKeyValid(ECPrivateKey privateKey, CertificateChainType contractCertChain) {
AlgorithmParameters parameters;
try {
parameters = AlgorithmParameters.getInstance("EC");
parameters.init(new ECGenParameterSpec("secp256r1"));
ECParameterSpec ecParameterSpec = parameters.getParameterSpec(ECParameterSpec.class);
// Now we need to check if the private key is correct (see requirement [V2G2-823])
BigInteger order = ecParameterSpec.getOrder();
ECPoint basePoint = ecParameterSpec.getGenerator();
BigInteger privateKeyValue = privateKey.getS();
X509Certificate contractCert = getCertificate(contractCertChain.getCertificate());
ECPublicKey publicKey = (ECPublicKey) contractCert.getPublicKey();
// 1. check
if (privateKeyValue.compareTo(order) != -1) {
getLogger().error("Validation of private key failed: its value is not strictly smaller than the "
+ "order of the base point");
return false;
}
// 2. check
/*
* TODO:
* No idea how to check for
* "multiplication of the base point with this value must generate a key matching the public key of
* the contract certificate"
* "this value" = value of private key
* -> some more expert knowledge on the arithmetic of elliptic curves is needed to tackle this!
*/
} catch (NoSuchAlgorithmException | InvalidParameterSpecException e) {
getLogger().error(e.getClass().getSimpleName() + " occurred when trying to get private key from raw bytes", e);
return false;
}
return true;
}
/**
* Gets the contract certificate from the EVCC keystore.
*
* @return The contract certificate if present, null otherwise
*/
public static X509Certificate getContractCertificate() {
X509Certificate contractCertificate = null;
KeyStore evccKeyStore = getKeyStore(
GlobalValues.EVCC_KEYSTORE_FILEPATH.toString(),
GlobalValues.PASSPHRASE_FOR_CERTIFICATES_AND_KEYS.toString()
);
try {
contractCertificate = (X509Certificate) evccKeyStore.getCertificate(GlobalValues.ALIAS_CONTRACT_CERTIFICATE.toString());
} catch (KeyStoreException e) {
getLogger().error("KeyStoreException occurred while trying to get contract certificate from keystore", e);
}
return contractCertificate;
}
/**
* A convenience function which checks if a contract certificate installation is needed.
* Normally not needed because of function getContractCertificateStatus().
*
* @return True, if no contract certificate is store or if the stored certificate is not valid, false otherwise
*/
public static boolean isContractCertificateInstallationNeeded() {
X509Certificate contractCert = getContractCertificate();
if (contractCert == null) {
getLogger().info("No contract certificate stored");
return true;
} else if (!verifyValidityPeriod(contractCert).equals(ResponseCodeType.OK)) {
return true;
} else return false;
}
/**
* A convenience function which checks if a contract certificate update is needed.
* Normally not needed because of function getContractCertificateStatus().
*
* @return True, if contract certificate is still valid but about to expire, false otherwise.
* The expiration period is given in GlobalValues.CERTIFICATE_EXPIRES_SOON_PERIOD.
*/
public static boolean isContractCertificateUpdateNeeded() {
X509Certificate contractCert = getContractCertificate();
short validityOfContractCert = getValidityPeriod(contractCert);
if (validityOfContractCert < 0) {
getLogger().warn("Contract certificate with distinguished name '" +
contractCert.getSubjectX500Principal().getName() + "' is not valid any more, expired " +
Math.abs(validityOfContractCert) + " days ago");
return false;
} else if (validityOfContractCert <= GlobalValues.CERTIFICATE_EXPIRES_SOON_PERIOD.getShortValue()) {
getLogger().info("Contract certificate with distinguished name '" +
contractCert.getSubjectX500Principal().getName() + "' is about to expire in " +
validityOfContractCert + " days");
return true;
} else return false;
}
/**
* Checks whether a contract certificate
* - is stored
* - in case it is stored, if it is valid
* - in case it is valid, if it expires soon
*
* This method is intended to reduce cryptographic computation overhead by checking both, if installation or
* update is needed, at the same time. When executing either method by itself (isContractCertificateUpdateNeeded() and
* isContractCertificateInstallationNeeded()), each time the certificate is read anew from the Java keystore
* holding the contract certificate. With this method the contract certificate is read just once from the keystore.
*
* @return An enumeration value ContractCertificateStatus (either UPDATE_NEEDED, INSTALLATION_NEEDED, or OK)
*/
public static ContractCertificateStatus getContractCertificateStatus() {
X509Certificate contractCert = getContractCertificate();
if (contractCert == null) {
getLogger().info("No contract certificate stored");
return ContractCertificateStatus.INSTALLATION_NEEDED;
} else if (contractCert != null && !verifyValidityPeriod(contractCert).equals(ResponseCodeType.OK)) {
return ContractCertificateStatus.INSTALLATION_NEEDED;
} else {
short validityOfContractCert = getValidityPeriod(contractCert);
// Checking for a negative value of validityOfContractCert is not needed because the method
// isCertificateValid() already checks for that
if (validityOfContractCert <= GlobalValues.CERTIFICATE_EXPIRES_SOON_PERIOD.getShortValue()) {
getLogger().info("Contract certificate with distinguished name '" +
contractCert.getSubjectX500Principal().getName() + "' is about to expire in " +
validityOfContractCert + " days");
return ContractCertificateStatus.UPDATE_NEEDED;
}
return ContractCertificateStatus.OK;
}
}
/**
* Returns a list of certificates from the given CertificateChainType with the leaf certificate
* being the first element and potential subcertificates (intermediate CA certificatess)
* in the array of certificates.
*
* @param certChainType The CertificateChainType instance which holds a leaf certificate and
* possible intermediate certificates to verify the leaf certificate up to
* some root certificate.
* @return An array of Certificates
*/
public static Certificate[] getCertificateChain(CertificateChainType certChainType) {
List subCertificates = certChainType.getSubCertificates().getCertificate();
Certificate[] certChain = new Certificate[subCertificates.size() + 1];
certChain[0] = getCertificate(certChainType.getCertificate());
for (int i = 0; i < subCertificates.size(); i++) {
certChain[i+1] = getCertificate(subCertificates.get(i));
}
return certChain;
}
/**
* Generates an elliptic curve key pair using the named curve "secp256r1".
* This function is mainly used for the ECDH procedure.
*
* To use ECC (elliptic curve cryptography), SECC as well as EVCC must agree on all the elements
* defining the elliptic curve, that is, the "domain parameters" of the scheme. Such domain
* parameters are predefined by standardization bodies and are commonly known as "standard curves"
* or "named curves"; a named curve can be referenced either by name or by the unique object
* identifier defined in the standard documents. For the ISO/IEC 15118-2 document, the named curve
* "secp256r1" (SECG notation, see http://www.secg.org/sec2-v2.pdf) is used.
* See [V2G2-818] in ISO/IEC 15118-2 for further information.
*
* @return An elliptic curve key pair according to the named curve 'secp256r1'
*/
public static KeyPair getECKeyPair() {
KeyPair keyPair = null;
try {
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("EC");
ECGenParameterSpec ecParameterSpec = new ECGenParameterSpec("secp256r1");
keyPairGenerator.initialize(ecParameterSpec, new SecureRandom());
keyPair = keyPairGenerator.generateKeyPair();
} catch (InvalidAlgorithmParameterException | NoSuchAlgorithmException e) {
getLogger().error(e.getClass().getSimpleName() + " occurred while trying to generate ECDH key pair", e);
}
return keyPair;
}
/**
* The shared secret is computed using the domain parameters of the named curve "secp256r1", the private key
* part of the ephemeral key pair, and the OEM provisioning certiicate’s public key (in case of certificate
* installation) or the contract certificate's public key (in case of certificate update).
* The shared secret is used as input to a key derivation function.
* A key derivation function (KDF) is a deterministic algorithm to derive a key of a given
* size from some secret value. If two parties use the same shared secret value and the same KDF,
* they should always derive exactly the same key.
*
* @param privateKey The private key of an EC key pair generated from the named curve "secp256r1".
*
* The mobility operator (MO) provides his ephemeral private key when using this function for
* generating the shared secret to encrypt the private key of the contract certificate.
*
* The EVCC provides the private key belonging to his OEM provisioning certificate's public key
* when using this function for generating the shared secret to decrypt the encrypted private key
* of the newly to be installed contract certificate.
* @param publicKey The public key of an EC key pair generated from the named curve "secp256r1"
*
* The mobility operator (MO) provides the static OEM provisioning certificate's (in case of
* CertificateInstallation) or old contract certificate's (in case of CertificateUpdate)
* public key when using this function for generating the shared secret to encrypt the private
* key of the contract certificate.
*
* The EVCC provides the ephemeral public key of the MO (coming with the CertificateInstallationRes
* or CertificateUpdateRes, respectively) when using this function for generating the shared secret
* to decrypt the encrypted private key of the newly to be installed contract certificate.
* @return The computed shared secret of the elliptic curve Diffie-Hellman key exchange protocol
*/
public static byte[] generateSharedSecret(ECPrivateKey privateKey, ECPublicKey publicKey) {
try {
KeyAgreement keyAgreement = KeyAgreement.getInstance("ECDH");
keyAgreement.init(privateKey, new SecureRandom());
keyAgreement.doPhase(publicKey, true);
return keyAgreement.generateSecret();
} catch (InvalidKeyException | NoSuchAlgorithmException e) {
getLogger().error(e.getClass().getSimpleName() + " occurred while trying to generate the shared secret (ECDH)", e);
return null;
}
}
/**
* The key derivation function (KDF). See [V2G2-818] in ISO/IEC 15118-2 for further information.
*
* @param sharedSecret The shared secret derived from the ECDH algorithm
*/
public static SecretKey generateSessionKey(byte[] sharedSecret) {
MessageDigest md = null;
/*
* TODO it is unclear to me what should be the content of suppPubInfo or suppPrivInfo
* according to page 49 of http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
* Requirement [V2G2-818] is not clear about that.
*/
byte[] suppPubInfo = null;
byte[] suppPrivInfo = null;
try {
md = MessageDigest.getInstance("SHA-256");
} catch (NoSuchAlgorithmException e1) {
getLogger().error("Message digest algorithm SHA-256 not supported");
return null;
}
ByteArrayOutputStream baosOtherInfo = new ByteArrayOutputStream();
try {
baosOtherInfo.write(ByteUtils.toByteArrayFromHexString("01")); // algorithm ID
baosOtherInfo.write(ByteUtils.toByteArrayFromHexString("55")); // partyUInfo
baosOtherInfo.write(ByteUtils.toByteArrayFromHexString("56")); // partyVInfo
if (suppPubInfo != null) baosOtherInfo.write(suppPubInfo);
if (suppPrivInfo != null) baosOtherInfo.write(suppPrivInfo);
} catch (IOException e) {
getLogger().error("IOException occurred while trying to write OtherInfo for session key generation", e);
}
byte[] otherInfo = baosOtherInfo.toByteArray();
// A symmetric encryption key of exactly 128 bits shall be derived.
byte[] sessionKeyAsByteArray = concatKDF(md, sharedSecret, 128, otherInfo);
SecretKey sessionKey = null;
try {
sessionKey = new SecretKeySpec(sessionKeyAsByteArray, "AES");
} catch (IllegalArgumentException e) {
getLogger().error("IllegalArgumentException occurred while trying to generate session key", e);
}
return sessionKey;
}
/**
* Implementation of Concatenation Key Derivation Function
* http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
*
* Author: NimbusDS Lai Xin Chu and Vladimir Dzhuvinov
*
* See https://code.google.com/p/openinfocard/source/browse/trunk/testsrc/org/xmldap/crypto/ConcatKeyDerivationFunction.java?r=770
*/
private static byte[] concatKDF(MessageDigest md, byte[] z, int keyDataLen, byte[] otherInfo) {
final long MAX_HASH_INPUTLEN = Long.MAX_VALUE;
final long UNSIGNED_INT_MAX_VALUE = 4294967295L;
keyDataLen = keyDataLen/8;
byte[] key = new byte[keyDataLen];
int hashLen = md.getDigestLength();
int reps = keyDataLen / hashLen;
if (reps > UNSIGNED_INT_MAX_VALUE) {
getLogger().error("Key derivation failed");
return null;
}
int counter = 1;
byte[] counterInBytes = ByteUtils.intToFourBytes(counter);
if ((counterInBytes.length + z.length + otherInfo.length) * 8 > MAX_HASH_INPUTLEN) {
getLogger().error("Key derivation failed");
return null;
}
for (int i = 0; i <= reps; i++) {
md.reset();
md.update(ByteUtils.intToFourBytes(i+1));
md.update(z);
md.update(otherInfo);
byte[] hash = md.digest();
if (i < reps) {
System.arraycopy(hash, 0, key, hashLen * i, hashLen);
} else {
if (keyDataLen % hashLen == 0) {
System.arraycopy(hash, 0, key, hashLen * i, hashLen);
} else {
System.arraycopy(hash, 0, key, hashLen * i, keyDataLen % hashLen);
}
}
}
return key;
}
private static ContractSignatureEncryptedPrivateKeyType getContractSignatureEncryptedPrivateKey(
SecretKey sessionKey, ECPrivateKey contractCertPrivateKey) {
ContractSignatureEncryptedPrivateKeyType encryptedPrivateKey = new ContractSignatureEncryptedPrivateKeyType();
encryptedPrivateKey.setValue(encryptPrivateKey(sessionKey, contractCertPrivateKey));
return encryptedPrivateKey;
}
/**
* Encrypts the private key of the contract certificate which is to be sent to the EVCC. First, the
* shared secret based on the ECDH parameters is calculated, then the symmetric session key with which
* the private key of the contract certificate is to be encrypted.
*
* @param certificateECPublicKey The public key of either the OEM provisioning certificate (in case of
* CertificateInstallation) or the to be updated contract certificate
* (in case of CertificateUpdate)
* @param dhPrivateKey The DH private key
* @param contractCertPrivateKey The private key of the contract certificate
* @return The encrypted private key of the to be installed contract certificate
*/
public static ContractSignatureEncryptedPrivateKeyType encryptContractCertPrivateKey(
ECPublicKey certificateECPublicKey,
ECPrivateKey dhPrivateKey,
ECPrivateKey contractCertPrivateKey) {
// Generate the shared secret by using the public key of either OEMProvCert or ContractCert
byte[] sharedSecret = generateSharedSecret(dhPrivateKey, certificateECPublicKey);
if (sharedSecret == null) {
getLogger().error("Shared secret could not be generated");
return null;
}
// The session key is generated using the computed shared secret
SecretKey sessionKey = generateSessionKey(sharedSecret);
// Finally, the private key of the contract certificate is encrypted using the session key
ContractSignatureEncryptedPrivateKeyType encryptedContractCertPrivateKey =
getContractSignatureEncryptedPrivateKey(sessionKey, contractCertPrivateKey);
return encryptedContractCertPrivateKey;
}
/**
* Applies the algorithm AES-CBC-128 according to NIST Special Publication 800-38A.
* The initialization vector IV shall be randomly generated before encryption and shall have a
* length of 128 bit and never be reused.
* The IV shall be transmitted in the 16 most significant bytes of the
* ContractSignatureEncryptedPrivateKey field.
*
* @param sessionKey The symmetric session key with which the private key will be encrypted
* @param contractCertPrivateKey The private key which is to be encrypted
* @return The encrypted private key of the contract certificate given as a byte array
*/
private static byte[] encryptPrivateKey(SecretKey sessionKey, ECPrivateKey contractCertPrivateKey) {
try {
/*
* Padding of the plain text (private key) is not required as its length (256 bit) is a
* multiple of the block size (128 bit) of the used encryption algorithm (AES)
*/
Cipher cipher = Cipher.getInstance("AES/CBC/NoPadding");
IvParameterSpec ivParamSpec = new IvParameterSpec(generateRandomNumber(16));
cipher.init(Cipher.ENCRYPT_MODE, sessionKey, ivParamSpec);
/*
* Not the complete ECPrivateKey container, but the private value s represents the 256 bit
* private key which must be encoded.
* The private key is stored as an ASN.1 integer which may need to have zero padding
* in the most significant bits removed (if 33 bytes)
*/
byte[] encryptedKey;
if (contractCertPrivateKey.getS().toByteArray().length == 33) {
byte[] temp = new byte[32];
System.arraycopy(contractCertPrivateKey.getS().toByteArray(), 1, temp, 0, contractCertPrivateKey.getS().toByteArray().length-1);
encryptedKey = cipher.doFinal(temp);
} else {
encryptedKey = cipher.doFinal(contractCertPrivateKey.getS().toByteArray());
}
/*
* The IV must be transmitted in the 16 most significant bytes of the
* ContractSignatureEncryptedPrivateKey
*/
byte[] encryptedKeyWithIV = new byte[ivParamSpec.getIV().length + encryptedKey.length];
System.arraycopy(ivParamSpec.getIV(), 0, encryptedKeyWithIV, 0, ivParamSpec.getIV().length);
System.arraycopy(encryptedKey, 0, encryptedKeyWithIV, ivParamSpec.getIV().length, encryptedKey.length);
getLogger().debug("Encrypted private key: " + ByteUtils.toHexString(encryptedKeyWithIV));
return encryptedKeyWithIV;
} catch (NoSuchAlgorithmException | NoSuchPaddingException | InvalidKeyException |
InvalidAlgorithmParameterException | IllegalBlockSizeException | BadPaddingException e) {
getLogger().error(e.getClass().getSimpleName() + " occurred while trying to encrypt private key." +
"\nSession key (" + sessionKey.getEncoded().length + " bytes): " +
ByteUtils.toHexString(sessionKey.getEncoded()) +
"\nContract certificate private key (" + contractCertPrivateKey.getS().toByteArray().length + " bytes): " +
ByteUtils.toHexString(contractCertPrivateKey.getS().toByteArray()), e);
}
return null;
}
/**
* Decrypts the encrypted private key of the contract certificate which is to be installed.
*
* @param dhPublicKey The ECDH public key received the the respective response message
* (either CertificateInstallationRes or CertificateUpdateRes)
* @param contractSignatureEncryptedPrivateKey The encrypted private key of the contract certificate
* @param certificateECPrivateKey The private key of either OEMProvisioningCertificate (in case of
* receipt of CertificateInstallationRes) or the existing ContractCertificate which is to be
* updated (in case of receipt of CertificateUpdateRes).
* @return The decrypted private key of the contract certificate which is to be installed
*/
public static ECPrivateKey decryptContractCertPrivateKey(
byte[] dhPublicKey,
byte[] contractSignatureEncryptedPrivateKey,
ECPrivateKey certificateECPrivateKey) {
// Generate shared secret
ECPublicKey publicKey = getPublicKey(dhPublicKey);
byte[] sharedSecret = generateSharedSecret(certificateECPrivateKey, publicKey);
if (sharedSecret == null) {
getLogger().error("Shared secret could not be generated");
return null;
}
// Generate the session key ...
SecretKey sessionKey = generateSessionKey(sharedSecret);
if (sessionKey == null) {
getLogger().error("Session key secret could not be generated");
return null;
}
// ... to decrypt the contract certificate private key
ECPrivateKey contractCertPrivateKey = decryptPrivateKey(sessionKey, contractSignatureEncryptedPrivateKey);
if (contractCertPrivateKey == null) {
getLogger().error("Contract certificate private key secret could not be decrypted");
return null;
}
return contractCertPrivateKey;
}
/**
* The private key corresponding to the contract certificate is to be decrypted by
* the receiver (EVCC) using the session key derived in the ECDH protocol.
* Applies the algorithm AES-CBC-128 according to NIST Special Publication 800-38A.
* The initialization vector IV shall be read from the 16 most significant bytes of the
* ContractSignatureEncryptedPrivateKey field.
*
* @param sessionKey The symmetric session key with which the encrypted private key is to be decrypted
* @param encryptedKeyWithIV The encrypted private key of the contract certificate given as a byte array
* whose first 16 byte hold the initialization vector
* @return The decrypted private key of the contract certificate
*/
private static ECPrivateKey decryptPrivateKey(SecretKey sessionKey, byte[] encryptedKeyWithIV) {
byte[] initVector = new byte[16];
byte[] encryptedKey = null;
try {
// Get the first 16 bytes of the encrypted private key which hold the IV
encryptedKey = new byte[encryptedKeyWithIV.length - 16];
System.arraycopy(encryptedKeyWithIV, 0, initVector, 0, 16);
System.arraycopy(encryptedKeyWithIV, 16, encryptedKey, 0, encryptedKeyWithIV.length - 16);
IvParameterSpec ivParamSpec = new IvParameterSpec(initVector);
Cipher cipher = Cipher.getInstance("AES/CBC/NoPadding");
/*
* You must have the Java Cryptography Extension (JCE) Unlimited Strength
* Jurisdiction Policy Files 8 installed, otherwise this cipher.init call will yield a
* "java.security.InvalidKeyException: Illegal key size"
*/
cipher.init(Cipher.DECRYPT_MODE, sessionKey, ivParamSpec);
byte[] decrypted = cipher.doFinal(encryptedKey);
return getPrivateKey(decrypted);
} catch (NoSuchAlgorithmException | NoSuchPaddingException | InvalidKeyException |
InvalidAlgorithmParameterException | IllegalBlockSizeException | BadPaddingException |
NegativeArraySizeException e) {
getLogger().error(e.getClass().getSimpleName() + " occurred while trying to decrypt private key" +
"\nSession key (" + (sessionKey != null ? sessionKey.getEncoded().length : 0) + " bytes): " +
ByteUtils.toHexString(sessionKey.getEncoded()) +
"\nEncrypted key (" + (encryptedKey != null ? encryptedKey.length : 0) + " bytes): " +
ByteUtils.toHexString(encryptedKey) +
"\nEncrypted key with IV (" + (encryptedKeyWithIV != null ? encryptedKeyWithIV.length : 0) + " bytes): " +
ByteUtils.toHexString(encryptedKey), e);
}
return null;
}
/**
* Useful for debugging purposes when verifying a signature and trying to figure out where it went wrong if
* a signature verification failed.
*
* @return
*/
// public static byte[] decryptSignature(byte[] signature, ECPublicKey publicKey) {
//
// }
/**
* Returns the EMAID (e-mobility account identifier) from the contract certificate as part of the contract certificate chain.
*
* @param contractCertificateChain The certificate chain holding the contract certificate
* @return The EMAID
*/
public static EMAIDType getEMAID(CertificateChainType contractCertificateChain) {
X509Certificate contractCertificate = getCertificate(contractCertificateChain.getCertificate());
return getEMAIDFromDistinguishedName(contractCertificate.getSubjectX500Principal().getName());
}
/**
* Returns the EMAID (e-mobility account identifier) from the contract certificate.
*
* @param contractCertificate The contract certificate
* @return The EMAID
*/
public static EMAIDType getEMAID(X509Certificate contractCertificate) {
return getEMAIDFromDistinguishedName(contractCertificate.getSubjectX500Principal().getName());
}
/**
* Returns the EMAID (e-mobility account identifier) from the contract certificate.
*
* @param keyStorePassword The password which protects the keystore holding the contract certificate
* @return The EMAID
*/
public static EMAIDType getEMAID(String keyStorePassword) {
KeyStore keyStore = getKeyStore(GlobalValues.EVCC_KEYSTORE_FILEPATH.toString(), keyStorePassword);
try {
X509Certificate contractCertificate =
(X509Certificate) keyStore.getCertificate(GlobalValues.ALIAS_CONTRACT_CERTIFICATE.toString());
if (contractCertificate == null) {
getLogger().error("No contract certificate with alias '" +
GlobalValues.ALIAS_CONTRACT_CERTIFICATE.toString() + "' found");
return null;
}
return getEMAIDFromDistinguishedName(contractCertificate.getSubjectX500Principal().getName());
} catch (KeyStoreException e) {
getLogger().error("KeyStoreException occurred while trying to get EMAID from keystore", e);
return null;
}
}
/**
* Reads the EMAID (e-mobility account identifier) from the distinguished name (DN) of a certificate.
*
* @param distinguishedName The distinguished name whose 'CN' component holds the EMAID
* @return The EMAID
*/
private static EMAIDType getEMAIDFromDistinguishedName(String distinguishedName) {
EMAIDType emaid = new EMAIDType();
LdapName ln = null;
try {
ln = new LdapName(distinguishedName);
} catch (InvalidNameException e) {
getLogger().error("InvalidNameException occurred while trying to get EMAID from distinguished name", e);
}
for(Rdn rdn : ln.getRdns()) {
if (rdn.getType().equalsIgnoreCase("CN")) {
// Optional hyphens used for better human readability must be omitted here
emaid.setId("id1");
emaid.setValue(rdn.getValue().toString().replace("-", ""));
break;
}
}
return emaid;
}
/**
* Searches a given keystore either for a contract certificate chain or OEM provisioning certificate
* chain, determined by the alias (the alias is associated with the certificate chain and the private
* key).
* However, it may be the case that more than once contract certificate is installed in the EV,
* in which case an OEM specific implementation would need to interact at this point with a HMI in
* order to enable the user to select the certificate which is to be used for contract based charging.
*
* @param evccKeyStore The keystore to check for the respective certificate chain
* @param alias The alias associated with a key entry and certificate chain
* @return The respective certificate chain if present, null otherwise
*/
public static CertificateChainType getCertificateChain(KeyStore evccKeyStore, String alias) {
CertificateChainType certChain = new CertificateChainType();
SubCertificatesType subCertificates = new SubCertificatesType();
try {
Certificate[] certChainArray = evccKeyStore.getCertificateChain(alias);
if (certChainArray == null) {
getLogger().info("No certificate chain found for alias '" + alias + "'");
return null;
}
certChain.setCertificate(certChainArray[0].getEncoded());
for (int i = 1; i < certChainArray.length; i++) {
subCertificates.getCertificate().add(certChainArray[i].getEncoded());
}
certChain.setSubCertificates(subCertificates);
return certChain;
} catch (KeyStoreException | CertificateEncodingException e) {
getLogger().error(e.getClass().getSimpleName() + " occurred while trying to get certificate chain", e);
return null;
}
}
/**
* Returns a random number of a given length of bytes.
*
* @param lengthOfBytes The number of bytes which hold the generated random number
* @return A random number given as a byte array
*/
public static byte[] generateRandomNumber(int lengthOfBytes) {
// TODO how to assure that the entropy of the genChallenge is at least 120 bits according to [V2G2-826]?
SecureRandom random = new SecureRandom();
byte[] randomNumber = new byte[lengthOfBytes];
random.nextBytes(randomNumber);
return randomNumber;
}
/**
* Generates a digest for a complete message or field (which ever is handed over as first parameter).
* During digest (SHA-256) generation, the parameter is converted to a JAXBElement and then EXI encoded
* using the respective EXI schema-informed grammar. If the digest for the signature is to be generated,
* the second parameter is to be set to true, for all other messages or fields the second parameter
* needs to be set to false.
*
* @param jaxbMessageOrField The message or field for which a digest is to be generated, given as a JAXB element
* @param digestForSignedInfoElement True if a digest for the SignedInfoElement of the header's signature is to be generated, false otherwise
* @return The SHA-256 digest for message or field
*/
@SuppressWarnings("rawtypes")
public static byte[] generateDigest(String id, JAXBElement jaxbMessageOrField) {
byte[] encoded;
// The schema-informed fragment grammar option needs to be used for EXI encodings in the header's signature
getExiCodec().setFragment(true);
/*
* When creating the signature value for the SignedInfoElement, we need to use the XMLdsig schema,
* whereas for creating the reference elements of the signature, we need to use the V2G_CI_MsgDef schema.
*/
if (jaxbMessageOrField.getValue() instanceof SignedInfoType) {
encoded = getExiCodec().encodeEXI(jaxbMessageOrField, GlobalValues.SCHEMA_PATH_XMLDSIG.toString());
} else encoded = getExiCodec().encodeEXI(jaxbMessageOrField, GlobalValues.SCHEMA_PATH_MSG_DEF.toString());
// Do not use the schema-informed fragment grammar option for other EXI encodings (message bodies)
getExiCodec().setFragment(false);
if (encoded == null) {
getLogger().error("Digest could not be generated because of EXI encoding problem");
return null;
}
try {
MessageDigest md = MessageDigest.getInstance("SHA-256");
md.update(encoded);
byte[] digest = md.digest();
if (showSignatureVerificationLog) {
/*
* Show Base64 encoding of digests only for reference elements, not for the SignedInfo element.
* The hashed SignedInfo element is input for ECDSA before the final signature value gets Base64 encoded.
*/
if ( !(jaxbMessageOrField.getValue() instanceof SignedInfoType) ) {
getLogger().debug("\n"
+ "\tDigest generated for XML reference element " + jaxbMessageOrField.getName().getLocalPart() + " with ID '" + id + "': " + ByteUtils.toHexString(digest) + "\n"
+ "\tBase64 encoding of digest: " + Base64.getEncoder().encodeToString(digest));
}
}
return digest;
} catch (NoSuchAlgorithmException e) {
getLogger().error("NoSuchAlgorithmException occurred while trying to create digest", e);
return null;
}
}
/**
* Signs the SignedInfo element of the V2GMessage header.
*
* @param signedInfoElementExi The EXI-encoded SignedInfo element given as a byte array
* @param ecPrivateKey The private key which is used to sign the SignedInfo element
* @return The signature value for the SignedInfo element given as a byte array
*/
public static byte[] signSignedInfoElement(byte[] signedInfoElementExi, ECPrivateKey ecPrivateKey) {
try {
Signature ecdsa = Signature.getInstance("SHA256withECDSA", "SunEC");
getLogger().debug("EXI encoded SignedInfo: " + ByteUtils.toHexString(signedInfoElementExi));
if (ecPrivateKey != null) {
getLogger().debug("\n\tPrivate key used for creating signature: " + ByteUtils.toHexString(ecPrivateKey.getS().toByteArray()));
ecdsa.initSign(ecPrivateKey);
ecdsa.update(signedInfoElementExi);
byte[] signature = ecdsa.sign();
// Java operates on DER encoded signatures, but we must send the raw r and s values as signature
byte[] rawSignature = getRawSignatureFromDEREncoding(signature);
getLogger().debug("Signature value: " + ByteUtils.toHexString(rawSignature));
return rawSignature;
} else {
getLogger().error("Private key used to sign SignedInfo element is null");
return null;
}
} catch (NoSuchAlgorithmException | InvalidKeyException | SignatureException | NoSuchProviderException e) {
getLogger().error(e.getClass().getSimpleName() + " occurred while trying to create signature", e);
return null;
}
}
/**
* Verifies the signature given in the received header of an EVCC or SECC message
*
* @param signature The received header's signature
* @param jaxbSignature The received header's signature, given as a JAXB element (needed for EXI operations)
* @param verifyXMLSigRefElements The HashMap of signature IDs and digest values of the message body
* or fields respectively of the received message (to cross-check against the XML reference
* elements contained in the received message header)
* @param verifyCert The certificate holding the public key corresponding to the private key which was used
* for the signature. Given as a byte array, this function will call verifySignature() with an X509Certificate
* as last parameter.
* @return True, if digest validation of all XML reference elements and signature validation was
* successful, false otherwise
*/
public static boolean verifySignature(
SignatureType signature,
JAXBElement jaxbSignature,
HashMap verifyXMLSigRefElements,
byte[] verifyCert) {
X509Certificate x509VerifyCert = getCertificate(verifyCert);
return verifySignature(signature, jaxbSignature, verifyXMLSigRefElements, x509VerifyCert);
}
/**
* Verifies the signature given in the received header of an EVCC or SECC message
*
* @param signature The received header's signature
* @param jaxbSignature The received header's signature, given as a JAXB element (needed for EXI operations)
* @param verifyXMLSigRefElements The HashMap of signature IDs and digest values of the message body
* or fields respectively of the received message (to cross-check against the XML reference
* elements contained in the received message header)
* @param verifyCert The certificate holding the public key corresponding to the private key which was used for the signature
* @return True, if digest validation of all XML reference elements and signature validation was
* successful, false otherwise
*/
public static boolean verifySignature(
SignatureType signature,
JAXBElement jaxbSignedInfo,
HashMap verifyXMLSigRefElements,
X509Certificate verifyCert) {
byte[] calculatedReferenceDigest;
boolean messageDigestsEqual;
/*
* 1. step:
* Iterate over all element IDs of the message which should have been signed and find the
* respective Reference element in the given message header
*/
for (Map.Entry verifyXMLSigRefElement : verifyXMLSigRefElements.entrySet()) {
String id = verifyXMLSigRefElement.getKey();
getLogger().debug("Verifying digest for element '" + id + "'");
messageDigestsEqual = false;
calculatedReferenceDigest = verifyXMLSigRefElement.getValue();
for (ReferenceType reference : signature.getSignedInfo().getReference()) {
if (reference == null) {
getLogger().warn("Reference element to check is null");
continue;
}
// We need to check the URI attribute, not the Id attribute. But the Id must be set to sth. different than the IDs used in the body!
if (reference.getURI() == null) {
getLogger().warn("Reference ID element is null");
continue;
}
if (reference.getURI().equals('#' + id)) {
messageDigestsEqual = MessageDigest.isEqual(reference.getDigestValue(), calculatedReferenceDigest);
if (showSignatureVerificationLog) {
getLogger().debug("\n"
+ "\tReceived digest of reference with ID '" + id + "': " + ByteUtils.toHexString(reference.getDigestValue()) + "\n"
+ "\tCalculated digest of reference with ID '" + id + "': " + ByteUtils.toHexString(calculatedReferenceDigest) + "\n"
+ "\t==> Match: " + messageDigestsEqual);
}
}
}
if (!messageDigestsEqual) {
getLogger().error("No matching signature found for ID '" + id + "' and digest value " +
ByteUtils.toHexString(calculatedReferenceDigest));
return false;
}
}
/*
* 2. step:
* Check the signature itself
*/
ECPublicKey ecPublicKey = (ECPublicKey) verifyCert.getPublicKey();
Signature ecdsa;
boolean verified;
try {
getLogger().debug("Verifying signature of SignedInfo element ...");
// Check if signature verification logging is to be shown (for debug purposes)
if (showSignatureVerificationLog) showSignatureVerificationLog(verifyCert, signature, jaxbSignedInfo, ecPublicKey);
ecdsa = Signature.getInstance("SHA256withECDSA");
// The Signature object needs to be initialized by setting it into the VERIFY state with the public key
ecdsa.initVerify(ecPublicKey);
// The data to be signed needs to be supplied to the Signature object
byte[] exiEncodedSignedInfo = getExiCodec().getExiEncodedSignedInfo(jaxbSignedInfo);
ecdsa.update(exiEncodedSignedInfo);
// Java operates on DER encoded signature values, but the sent signature consists of the raw r and s value
byte[] signatureValue = signature.getSignatureValue().getValue();
byte[] derEncodedSignatureValue = getDEREncodedSignature(signatureValue);
// The verify() method will do both, the decryption and SHA256 validation. So don't hash separately before verifying
verified = ecdsa.verify(derEncodedSignatureValue);
return verified;
} catch (NoSuchAlgorithmException | InvalidKeyException | SignatureException e) {
getLogger().error(e.getClass().getSimpleName() + " occurred while trying to verify signature value", e);
return false;
}
}
/**
* Shows some extended logging while verifying a signature for debugging purposes.
* @param verifyCert The X509Certificate whose public key is used to verify the signature, used for printing the
* certificate's subject value
* @param signature The signature contained in the header of the V2GMessage
* @param ecPublicKey The public key used to verify the signature
*/
private static void showSignatureVerificationLog(
X509Certificate verifyCert,
SignatureType signature,
JAXBElement jaxbSignedInfo,
ECPublicKey ecPublicKey) {
byte[] computedSignedInfoDigest = generateDigest("", jaxbSignedInfo);
byte[] receivedSignatureValue = signature.getSignatureValue().getValue();
getLogger().debug("\n"
+ "\tCertificate used to verify signature: " + verifyCert.getSubjectX500Principal().getName() + "\n"
+ "\tPublic key used to verify signature: " + ByteUtils.toHexString(getUncompressedSubjectPublicKey(ecPublicKey)) + "\n"
+ "\tReceived signature value: " + ByteUtils.toHexString(receivedSignatureValue) + " (Base64: " + Base64.getEncoder().encodeToString(receivedSignatureValue) + ")\n"
+ "\tCalculated digest of SignedInfo element: " + ByteUtils.toHexString(computedSignedInfoDigest));
}
/**
* Java puts some encoding information into the ECPublicKey.getEncoded().
* This method returns the raw ECPoint (the x and y coordinate of the public key) in uncompressed form
* (with the 0x04 as first octet), aka the Subject Public Key according to RFC 5480
*
* @param ecPublicKey The ECPublicKey provided by Java
* @return The uncompressed Subject Public Key (with the first octet set to 0x04)
*/
public static byte[] getUncompressedSubjectPublicKey(ECPublicKey ecPublicKey) {
byte[] uncompressedPubKey = new byte[65];
uncompressedPubKey[0] = 0x04;
byte[] affineX = ecPublicKey.getW().getAffineX().toByteArray();
byte[] affineY = ecPublicKey.getW().getAffineY().toByteArray();
// If the length is 33 bytes, then the first byte is a 0x00 which is to be omitted
if (affineX.length == 33)
System.arraycopy(affineX, 1, uncompressedPubKey, 1, 32);
else
System.arraycopy(affineX, 0, uncompressedPubKey, 1, 32);
if (affineY.length == 33)
System.arraycopy(affineY, 1, uncompressedPubKey, 33, 32);
else
System.arraycopy(affineY, 0, uncompressedPubKey, 33, 32);
return uncompressedPubKey;
}
/**
* An ECDSA signature consists of two positive integers r and s, each of the bit length equal to the curve size.
* When Java is creating an ECDSA signature, it is encoding it in the DER (Distinguished Encoding Rules) format.
* But in ISO 15118, we do not expect DER encoded signatures. Thus, this function takes the DER encoded signature
* as input and returns the raw r and s integer values of the signature.
* See further explanations in the @getDEREncodedSignature function for DER encoded ECDSA signatures.
*
* @param derEncodedSignature The DER encoded signature as a result from java.security.Signature.sign()
* @return A byte array containing only the r and s value of the signature
*/
public static byte[] getRawSignatureFromDEREncoding(byte[] derEncodedSignature) {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
byte[] r = new byte[32];
byte[] s = new byte[32];
// Length of r is encoded in the fourth byte
int lengthOfR = derEncodedSignature[3];
// Length of r is encoded in the second byte AFTER r
int lengthOfS = derEncodedSignature[lengthOfR + 5];
// Length of r and s are either 33 bytes (including padding byte 0x00), 32 bytes (normal), or less (leftmost 0x00 bytes were removed)
try {
if (lengthOfR == 33) System.arraycopy(derEncodedSignature, 5, r, 0, lengthOfR - 1); // skip leftmost padding byte 0x00
else if (lengthOfR == 32) System.arraycopy(derEncodedSignature, 4, r, 0, lengthOfR);
else System.arraycopy(derEncodedSignature, 4, r, 32 - lengthOfR, lengthOfR); // destPos = number of leftmost 0x00 bytes
if (lengthOfS == 33) System.arraycopy(derEncodedSignature, lengthOfR + 7, s, 0, lengthOfS - 1); // skip leftmost padding byte 0x00
else if (lengthOfS == 32) System.arraycopy(derEncodedSignature, lengthOfR + 6, s, 0, lengthOfS);
else System.arraycopy(derEncodedSignature, lengthOfR + 6, s, 32 - lengthOfS, lengthOfS); // destPos = number of leftmost 0x00 bytes
} catch (ArrayIndexOutOfBoundsException e) {
getLogger().error("ArrayIndexOutOfBoundsException occurred while trying to get raw signature from DER encoded signature.", e);
}
try {
baos.write(r);
baos.write(s);
} catch (IOException e) {
getLogger().error("IOException occurred while trying to write r and s into DER-encoded signature", e);
}
byte[] rawRAndS = baos.toByteArray();
if (showSignatureVerificationLog) {
StringBuilder sb = new StringBuilder();
sb.append("Signature encoding DER -> raw:").append(System.lineSeparator());
sb.append("\tDER: ").append(ByteUtils.toHexString(derEncodedSignature)).append(System.lineSeparator());
sb.append("\tR: ").append(ByteUtils.toHexString(r)).append(System.lineSeparator());
sb.append("\tS: ").append(ByteUtils.toHexString(s)).append(System.lineSeparator());
sb.append("\tRaw: ").append(ByteUtils.toHexString(rawRAndS));
getLogger().debug(sb.toString());
}
return rawRAndS;
}
/**
* When encoded in DER, the signature - holding the
* x-coordinate of the elliptic curve point in the value "r"
* and the
* y-coordinate of the elliptic curve point in the value "s"
* - becomes the following sequence of bytes (in total somewhere between 68 and 72 bytes instead of 64 bytes):
*
* 0x30 len(z) 0x02 len(r) r 0x02 len(s) s
*
* where:
*
* - 0x30: is always the first byte of the DER encoded signature format (ASN.1 tag for sequence)
*
* - len(z): is a single byte value, encoding the length in bytes of the sequence z (remaining list of bytes)
* (from the first 0x02 to the end of the encoding); is a value between 0x43 and 0x46
*
* - 0x02: is a fixed value indicating that an integer value will follow (ASN.1 tag for int)
*
* - len(r): is a single byte value, encoding the length in bytes of r;
* Distinguished Encoding Rules (DER)-encoded integers are defined so that they can encode both positive and negative values
* (aka signed values). This means that the leftmost bit (aka most-significant bit in big-endian) indicates whether the value
* is positive (0) or negative (1).
* For ECDSA, however, the r and s values are positive integers. So the leftmost bit must be a 0. If it's not, a 0x00
* padding byte must be added.
*
* Furthermore, DER require that integer values are represented in the shortest byte representation possible. This
* effectively prohibits the use of leading zeroes (0x00) if the leftmost bit was not set to 1.
*
* So len(r) will either be 0x21 (33 bytes), 0x20 (32 bytes) or less (mostly not less than 0x1F (31 bytes)).
* Case 31 bytes or less: The leftmost bytes of the raw (non-DER-encoded) r are 0x00 and, according to DER, need to be
* removed so that r is DER-encoded in the shortest possible way. Also, the leftmost bit of the
* remaining byte array is 0 (-> a positive x-value).
* Case 32 bytes: What we would normally expect, as the x- and y-coordinates are positive values of 32 bytes length.
* The leftmost bit is set to 0 and the leftmost byte is not 0x00.
* Case 33 bytes: A padding 0x00 byte was added as the most significant (leftmost) byte because the raw (non-DER-encoded) r
* value had the leftmost bit set to 1, which would result in a negative value.
*
* - r: is the signed big-endian encoding of the value "r", of minimal length;
*
* - 0x02: is a fixed value indicating that an integer value will follow (ASN.1 tag for int)
*
* - len(s): is a single byte value, encoding the length in bytes of s;
* (See further explanation of len(r) that applies as well for len(s))
*
* - s: is the signed big-endian encoding of the value "s", of minimal length.
*
* @param rawSignatureValue The r and s values (each 32 bytes) of an ECDSA signature, given as a byte array of 64 bytes
* @return A byte array representing the DER-encoded version of the raw r and s values
*/
private static byte[] getDEREncodedSignature (byte[] rawSignatureValue) {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
// First we separate x and y of coordinates into separate byte arrays r and s
byte[] r = new byte[32];
byte[] s = new byte[32];
try {
System.arraycopy(rawSignatureValue, 0, r, 0, 32);
System.arraycopy(rawSignatureValue, 32, s, 0, 32);
} catch (ArrayIndexOutOfBoundsException e) {
getLogger().error("ArrayIndexOutOfBoundsException occurred while trying to get DER encoded signature", e);
return new byte[0];
}
// Then encode both parts (r & s) individually
byte[] rDerEncoded = getDerEncodedSignatureValue(r);
byte[] sDerEncoded = getDerEncodedSignatureValue(s);
// And write everything with the proper header to the buffer
baos.write(0x30);
baos.write(rDerEncoded.length + sDerEncoded.length);
try {
baos.write(rDerEncoded);
baos.write(sDerEncoded);
} catch (IOException e) {
getLogger().error("IOException occurred while trying to write DER encoded signature r and s value", e);
}
byte[] derEncodedSignature = baos.toByteArray();
try {
baos.close();
} catch (IOException e) {
getLogger().error("IOException occurred while trying to close ByteArrayOutputStream", e);
}
if (showSignatureVerificationLog) {
StringBuilder sb = new StringBuilder();
sb.append("Signature encoding raw -> DER:").append(System.lineSeparator());
sb.append("\tRaw: ").append(ByteUtils.toHexString(rawSignatureValue)).append(System.lineSeparator());
sb.append("\tR: ").append(ByteUtils.toHexString(r)).append(System.lineSeparator());
sb.append("\tR (DER-encoded): ").append(ByteUtils.toHexString(rDerEncoded)).append(System.lineSeparator());
sb.append("\tS: ").append(ByteUtils.toHexString(s)).append(System.lineSeparator());
sb.append("\tS (DER-encoded): ").append(ByteUtils.toHexString(sDerEncoded)).append(System.lineSeparator());
sb.append("\tDER: ").append(ByteUtils.toHexString(derEncodedSignature));
getLogger().debug(sb.toString());
}
return derEncodedSignature;
}
/**
* Helper function which provides a partial DER encoding for positive integer values used for r and s
*
* @param value byte array containing a positive integer (non two's complement)
* @return DER-encoded value of r or s (depending on the @param), including int content type, length and, if needed, padding
*/
private static byte[] getDerEncodedSignatureValue(byte[] value) {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
// Check if the value is negative which is equivalent to r[0] being bigger than 0x7f
boolean isFillByteNeeded = value[0] < 0;
int indexOfFirstNonNullValue = 0;
for (/* empty init statement */; indexOfFirstNonNullValue < value.length; indexOfFirstNonNullValue++) {
if (value[indexOfFirstNonNullValue] != 0) {
break;
}
}
byte derEncodedLength = (byte) (value.length - indexOfFirstNonNullValue);
baos.write(0x02);
if (isFillByteNeeded) {
baos.write(derEncodedLength + 1);
baos.write(0x00);
} else {
baos.write(derEncodedLength);
}
baos.write(value, indexOfFirstNonNullValue, value.length - indexOfFirstNonNullValue);
byte[] result = baos.toByteArray();
try {
baos.close();
} catch (IOException e) {
getLogger().error("IOException occurred while trying to close ByteArrayOutputStream", e);
}
return result;
}
/**
* Sets the SSLContext of the TLSServer and TLSClient with the given keystore and truststore locations as
* well as the password protecting the keystores/truststores.
*
* @param keyStorePath The relative path and filename for the keystore
* @param trustStorePath The relative path and filename for the truststore
* @param keyStorePassword The password protecting the keystore
*/
public static void setSSLContext(
String keyStorePath,
String trustStorePath,
String keyStorePassword) {
KeyStore keyStore = SecurityUtils.getKeyStore(keyStorePath, keyStorePassword);
KeyStore trustStore = SecurityUtils.getKeyStore(trustStorePath, keyStorePassword);
try {
// Initialize a key manager factory with the keystore
KeyManagerFactory keyFactory = KeyManagerFactory.getInstance(KeyManagerFactory.getDefaultAlgorithm());
keyFactory.init(keyStore, keyStorePassword.toCharArray());
KeyManager[] keyManagers = keyFactory.getKeyManagers();
// Initialize a trust manager factory with the truststore
TrustManagerFactory trustFactory = TrustManagerFactory.getInstance(TrustManagerFactory.getDefaultAlgorithm());
trustFactory.init(trustStore);
TrustManager[] trustManagers = trustFactory.getTrustManagers();
// Initialize an SSL context to use these managers and set as default
SSLContext sslContext = SSLContext.getInstance("TLS");
sslContext.init(keyManagers, trustManagers, null);
SSLContext.setDefault(sslContext);
} catch (NoSuchAlgorithmException | UnrecoverableKeyException | KeyStoreException |
KeyManagementException e) {
getLogger().error(e.getClass().getSimpleName() + " occurred while trying to initialize SSL context");
}
}
/**
* Checks the syntax of the EMAID according to Annex H.1 of ISO 15118-2
*
* @param certChain The contract certificate chain. The EMAID is read from the contract certificate's common name
* @return True, if the syntax is valid, false otherwise
*/
public static boolean isEMAIDSyntaxValid(X509Certificate contractCertificate) {
String emaid = getEMAID(contractCertificate).getValue().toUpperCase();
if (emaid.length() < 14 || emaid.length() > 18) {
getLogger().error("EMAID is invalid. Its length (" + emaid.length() + ") mus be between "
+ "14 (min, excluding separators) and 18 (max, including separators)");
return false;
}
String emaidWithoutSeparator = emaid.replace("-", "");
// Check country code
if (Character.isDigit(emaidWithoutSeparator.charAt(0)) || Character.isDigit(emaidWithoutSeparator.charAt(1))) {
getLogger().error("EMAID (" + emaid + ") is invalid, the first two characters must not be a digit");
return false;
}
// Check provider ID
if (! (Character.isLetterOrDigit(emaidWithoutSeparator.charAt(2)) &&
Character.isLetterOrDigit(emaidWithoutSeparator.charAt(3)) &&
Character.isLetterOrDigit(emaidWithoutSeparator.charAt(4))) ) {
getLogger().error("EMAID (" + emaid + ") is invalid, the provider ID must be alpha-numerical");
return false;
}
// Check emaInstance
if (! (Character.isLetterOrDigit(emaidWithoutSeparator.charAt(5)) &&
Character.isLetterOrDigit(emaidWithoutSeparator.charAt(6)) &&
Character.isLetterOrDigit(emaidWithoutSeparator.charAt(7)) &&
Character.isLetterOrDigit(emaidWithoutSeparator.charAt(8)) &&
Character.isLetterOrDigit(emaidWithoutSeparator.charAt(9)) &&
Character.isLetterOrDigit(emaidWithoutSeparator.charAt(10)) &&
Character.isLetterOrDigit(emaidWithoutSeparator.charAt(11)) &&
Character.isLetterOrDigit(emaidWithoutSeparator.charAt(12)) &&
Character.isLetterOrDigit(emaidWithoutSeparator.charAt(13))) ) {
getLogger().error("EMAID (" + emaid + ") is invalid, the eMA instance must be alpha-numerical");
return false;
}
return true;
}
public static void setExiCodec(ExiCodec exiCodecChoice) {
exiCodec = exiCodecChoice;
}
private static ExiCodec getExiCodec() {
return exiCodec;
}
}